WorldWideScience

Sample records for high baseflow conditions

  1. High frequency monitoring revels new insights into baseflow DOM processing

    Science.gov (United States)

    Khamis, K.; Bradley, C.; Blaen, P.; Krause, S.; Hannah, D. M.

    2017-12-01

    Dissolved organic matter (DOM) is important for myriad biogeochemical processes in river ecosystems. Currently, however, we have limited knowledge of DOM dynamics under low flow conditions as most previous studies have focused largely on storm event dynamics. Field deployable fluorescence technology offers new opportunities to explore diurnal DOM dynamics at finer time-steps and for longer periods than previously possible, thus providing new insights into in-stream DOM processing. In this study, we collected hourly fluorescence data (Spring - Fall) and a suite of hydro-climatological variables from two contrasting UK headwater watersheds: the urban Bourn Brook, Birmingham (52° 26' N, 1° 55' W) and agricultural Mill Haft, Shropshire (52° 48' N, 2° 14' W). We hypothesised that diurnal dynamics in humic-like fluorescence (Peak C; Ex. 365 nm / Em. 490 nm) would be driven by photo-oxidation processes; while tryptophan-like fluorescence (Peak T; Ex. 285 nm / Em. 345 nm) would respond to diurnal biomass production cycles. Wavelet analysis identified significant diurnal variations in Peak C for both the Bourn Brook and Mill Haft, with the strongest signal in early summer. While the amplitude was broadly similar between sites, peak timing and consistency differed, the Bourn Brook displayed peaks in the early morning (04:00 ± 2.2 h) and Mill Haft in early evening (19:00 ± 6.6 h). Cross wavelet analysis identified strong coherence with SW radiation for the urban stream but stronger relationships with discharge for the agricultural system. Hence, results from the Bourn Brook support our hypothesis regarding Peak C photo-oxidation processes but for Mill Haft, discharge (DOM dilution) appeared to be the key control. Contrary to our hypothesis, no strong diurnal pattern was identified for Peak T for either system. From this, we infer that the low levels of Peak T produced were rapidly taken up by bacteria and/or that productivity in these systems was low. Future work on in

  2. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  3. Retrieving Baseflow from SWOT Mission

    Science.gov (United States)

    Baratelli, F.; Flipo, N.; Biancamaria, S.; Rivière, A.

    2017-12-01

    The quantification of aquifer contribution to river discharge is of primary importance to evaluate the impact of climatic and anthropogenic stresses on the availability of water resources. Several baseflow estimation methods require river discharge measurements, which can be difficult to obtain at high spatio-temporal resolution for large scale basins. The SWOT satellite mission will provide discharge estimations for large rivers (50 - 100 m wide) even in remote basins. The frequency of these estimations depends on the position and ranges from zero to four values in the 21-days satellite cycle. This work aims at answering the following question: can baseflow be estimated from SWOT observations during the mission lifetime? An algorithm based on hydrograph separation by Chapman's filter was developed to automatically estimate the baseflow in a river network at regional or larger scale (> 10000 km2). The algorithm was first applied using the discharge time series simulated at daily time step by a coupled hydrological-hydrogeological model to obtain the reference baseflow estimations. The same algorithm is then forced with discharge time series sampled at SWOT observation frequency. The methodology was applied to the Seine River basin (65000 km2, France). The results show that the average baseflow is estimated with good accuracy for all the reaches which are observed at least once per cycle (relative bias less than 4%). The time evolution of baseflow is also rather well retrieved, with a Nash coefficient which is more than 0.7 for 94% of the network length. This work provides new potential for the SWOT mission in terms of global hydrological analysis.

  4. Radium migration of thorium deposit of Morro do Ferro (Pocos de Caldas, MG, Brazil) under conditions of no rainfall (baseflow regime)

    International Nuclear Information System (INIS)

    Campos, M.J.M.T. de.

    1984-01-01

    The mechanisms of radium leaching and transport at the Morro do Ferro are investigated to estimate the 228 Ra mobilization rate, under conditions of no rainfall (baseflow regime). Radium was analysed in solution and in suspended solids, in surface and ground waters at the Morro do Ferro general basin Ra-226 was determined by the radon emanation method and 228 Ra through the radiometry of its first daughter 228 Ac. Initially, a radiochemical procedure was employed for 228 Ra, which performs the purification of radium by coprecipitation with BaSO 4 , and the separation of 228 Ac by coprecipitation with LaF 3 , which is then beta counted. At the later phase of this work the samples were analyzed by the radiometric method which is based on the radiometry of β-γ 228 Ac coincidence transitions. (M.A.C.) [pt

  5. Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén

    2017-06-26

    A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen

  6. Ultra-urban baseflow and stormflow concentrations and fluxes in a watershed undergoing restoration (WS263)

    Science.gov (United States)

    Kenneth T. Belt; William P. Stack; Richard V. Pouyat; Kimberly Burgess; Peter M. Groffman; William M. Frost; Sujay S. Kaushal; Guy. Hager

    2014-01-01

    We discuss the results of sampling baseflow and stormwater runoff in Watershed 263, an ultra-urban catchment in west Baltimore City that is undergoing restoration aimed at both improving water quality as well as the quality of life in its neighborhoods. We focus on urban hydrology and describe the high baseflow and stormwater nutrient, metal, bacterial and other...

  7. Is the difference between chemical and numerical estimates of baseflow meaningful?

    Science.gov (United States)

    Cartwright, Ian; Gilfedder, Ben; Hofmann, Harald

    2014-05-01

    Both chemical and numerical techniques are commonly used to calculate baseflow inputs to gaining rivers. In general the chemical methods yield lower estimates of baseflow than the numerical techniques. In part, this may be due to the techniques assuming two components (event water and baseflow) whereas there may also be multiple transient stores of water. Bank return waters, interflow, or waters stored on floodplains are delayed components that may be geochemically similar to the surface water from which they are derived; numerical techniques may record these components as baseflow whereas chemical mass balance studies are likely to aggregate them with the surface water component. This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. While more sophisticated techniques exist, these methods of estimating baseflow are readily applied with the available data and have been used widely elsewhere. During the early stages of high-discharge events, chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those from chemical mass balance using Cl calculated from continuous electrical conductivity. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of annual discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of annual discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge). These differences most probably reflect how the different techniques characterise the transient water sources in this catchment. The local minimum and recursive digital filters aggregate much of the

  8. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2012-04-01

    Full Text Available Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  9. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    Science.gov (United States)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  10. Effect of Baseflow Separation on Uncertainty of Hydrological Modeling in the Xinanjiang Model

    Directory of Open Access Journals (Sweden)

    Kairong Lin

    2014-01-01

    Full Text Available Based on the idea of inputting more available useful information for evaluation to gain less uncertainty, this study focuses on how well the uncertainty can be reduced by considering the baseflow estimation information obtained from the smoothed minima method (SMM. The Xinanjiang model and the generalized likelihood uncertainty estimation (GLUE method with the shuffled complex evolution Metropolis (SCEM-UA sampling algorithm were used for hydrological modeling and uncertainty analysis, respectively. The Jiangkou basin, located in the upper of the Hanjiang River, was selected as case study. It was found that the number and standard deviation of behavioral parameter sets both decreased when the threshold value for the baseflow efficiency index increased, and the high Nash-Sutcliffe efficiency coefficients correspond well with the high baseflow efficiency coefficients. The results also showed that uncertainty interval width decreased significantly, while containing ratio did not decrease by much and the simulated runoff with the behavioral parameter sets can fit better to the observed runoff, when threshold for the baseflow efficiency index was taken into consideration. These implied that using the baseflow estimation information can reduce the uncertainty in hydrological modeling to some degree and gain more reasonable prediction bounds.

  11. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  12. [Baseflow separation methods in hydrological process research: a review].

    Science.gov (United States)

    Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui

    2011-11-01

    Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.

  13. A comparison of high-resolution specific conductance-based end-member mixing analysis and a graphical method for baseflow separation of four streams in hydrologically challenging agricultural watersheds

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2015-01-01

    Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end-member mixing analysis that used high-resolution specific conductance measurements (SC-EMMA) were used to estimate daily and average long-term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC-EMMA is strongly related to the choice of slowflow and fastflow end-member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end-members. There were substantial discrepancies among the BFI and SC-EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC-EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present.

  14. Contrasts between estimates of baseflow help discern multiple sources of water contributing to rivers

    Science.gov (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2014-01-01

    This study compares baseflow estimates using chemical mass balance, local minimum methods, and recursive digital filters in the upper reaches of the Barwon River, southeast Australia. During the early stages of high-discharge events, the chemical mass balance overestimates groundwater inflows, probably due to flushing of saline water from wetlands and marshes, soils, or the unsaturated zone. Overall, however, estimates of baseflow from the local minimum and recursive digital filters are higher than those based on chemical mass balance using Cl calculated from continuous electrical conductivity measurements. Between 2001 and 2011, the baseflow contribution to the upper Barwon River calculated using chemical mass balance is between 12 and 25% of the annual discharge with a net baseflow contribution of 16% of total discharge. Recursive digital filters predict higher baseflow contributions of 19 to 52% of discharge annually with a net baseflow contribution between 2001 and 2011 of 35% of total discharge. These estimates are similar to those from the local minimum method (16 to 45% of annual discharge and 26% of total discharge). These differences most probably reflect how the different techniques characterise baseflow. The local minimum and recursive digital filters probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow, floodplain storage, or interflow) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The difference between the estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months at that time. Cl vs. discharge variations during individual flow events also demonstrate that inflows of high-salinity older water occurs on the rising limbs of hydrographs followed by inflows of low

  15. Contrasts between chemical and physical estimates of baseflow help discern multiple sources of water contributing to rivers

    Science.gov (United States)

    Cartwright, I.; Gilfedder, B.; Hofmann, H.

    2013-05-01

    This study compares geochemical and physical methods of estimating baseflow in the upper reaches of the Barwon River, southeast Australia. Estimates of baseflow from physical techniques such as local minima and recursive digital filters are higher than those based on chemical mass balance using continuous electrical conductivity (EC). Between 2001 and 2011 the baseflow flux calculated using chemical mass balance is between 1.8 × 103 and 1.5 × 104 ML yr-1 (15 to 25% of the total discharge in any one year) whereas recursive digital filters yield baseflow fluxes of 3.6 × 103 to 3.8 × 104 ML yr-1 (19 to 52% of discharge) and the local minimum method yields baseflow fluxes of 3.2 × 103 to 2.5 × 104 ML yr-1 (13 to 44% of discharge). These differences most probably reflect how the different techniques characterise baseflow. Physical methods probably aggregate much of the water from delayed sources as baseflow. However, as many delayed transient water stores (such as bank return flow or floodplain storage) are likely to be geochemically similar to surface runoff, chemical mass balance calculations aggregate them with the surface runoff component. The mismatch between geochemical and physical estimates is greatest following periods of high discharge in winter, implying that these transient stores of water feed the river for several weeks to months. Consistent with these interpretations, modelling of bank storage indicates that bank return flows provide water to the river for several weeks after flood events. EC vs. discharge variations during individual flow events also imply that an inflow of low EC water stored within the banks or on the floodplain occurs as discharge falls. The joint use of physical and geochemical techniques allows a better understanding of the different components of water that contribute to river flow, which is important for the management and protection of water resources.

  16. Temporal variations in baseflow for the Little River experimental watershed in South Georgia, USA

    Directory of Open Access Journals (Sweden)

    David D. Bosch

    2017-04-01

    New hydrological insights for the region: Baseflow was found to produce 53% of annual streamflow. Stormflow was found to produce 47% of the annual streamflow. Baseflow was the greatest during the months from December through May (55–57% and the least during the months from June through November (43–46%. Annual BFI was found to decrease with increasing annual precipitation, indicating that during high precipitation year’s saturation excess driven stormflow increases in the LREW. Hydrograph analysis indicated an average stormflow duration of seven days, typically extended by interflow in this watershed. These observed seasonal patterns can have a significant impact on regional agriculture as well as coastal estuaries that both rely heavily upon streamflow.

  17. TRENDS IN URBAN STORM WATER QUALITY IN TALLINN AND INFLUENCES FROM STORMFLOW AND BASEFLOW

    Directory of Open Access Journals (Sweden)

    Bharat Maharjan

    2016-04-01

    Full Text Available Temporal trends provide a good interpretation of change in stormwater quality over time. This study aimed to analyse trends and influences due to stormflow and baseflow. Grab samples of 18-19 years from 1995 to 2014 recorded at outlets of 7 Tallinn watersheds were analysed for monotonic trend through seasonal Mann Kendall test for long-term, short-term, baseflow and stormflow. Statistically significant downward trends (P-value (p 0.05 and < 0.2 for 3 – SS, 1 – BOD, 1 – TN and 1 – TP were identified. Statistically significant long-term upward trends of pH were revealed in 5 basins, which reduced to 2 with 5 less significant upward trends over the 10 year period, indicating improvements in pH reduction. Härjapea has the highest pH without trend but it includes an upward trend of TN at p = 0.051. The highly possible causes for downward trends are street sweeping, sewer network improvement, decline in sub-urban agricultural areas, etc. The upward trend results of pH are related to increased alkalinisation due to acidic rain, weathering of carbonate rocks, sewage discharge and alkaline road dust. In most of the basins, stormflow has more influence on trends than baseflow.

  18. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    Science.gov (United States)

    Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...

  19. Numerical simulation of baseflow modification due to effects of ...

    African Journals Online (AJOL)

    Numerical simulation of baseflow modification due to effects of sediment yield. ... Physically-based mathematical modelling affords the opportunity to look at this kind of interaction, which should be simulated by deterministic responses of both water and fluvial processes. In addition to simulating the streamflow and ...

  20. The hydrological response of baseflow in fractured mountain areas

    Directory of Open Access Journals (Sweden)

    M. A. Losada

    2009-07-01

    Full Text Available The study of baseflow in mountainous areas of basin headwaters, where the characteristics of the often fractured materials are very different to the standard issues concerning porous material applied in conventional hydrogeology, is an essential element in the characterization and quantification of water system resources. Their analysis through recession fragments provides information on the type of response of the sub-surface and subterranean systems and on the average relation between the storage and discharge of aquifers, starting from the joining of these fragments into a single curve, the Master Recession Curve (MRC. This paper presents the generation of the downward MRC over fragments selected after a preliminary analysis of the recession curves, using a hydrological model as the methodology for the identification and the characterization of quick sub-surface flows flowing through fractured materials. The hydrological calculation has identified recession fragments through surface runoff or snowmelt and those periods of intense evapotranspiration. The proposed methodology has been applied to three sub-basins belonging to a high altitude mountain basin in the Mediterranean area, with snow present every year, and their results were compared with those for the upward concatenation of the recession fragments. The results show the existence of two different responses, one quick (at the sub-surface, through the fractured material and the other slow, with linear behaviour which takes place in periods of 10 and 17 days respectively and which is linked to the dimensions of the sub-basin. In addition, recesses belonging to the dry season have been selected in order to compare and validate the results corresponding to the study of recession fragments. The comparison, using these two methodologies, which differ in the time period selected, has allowed us to validate the results obtained for the slow flow.

  1. How can streamflow and climate-landscape data be used to estimate baseflow mean response time?

    Science.gov (United States)

    Zhang, Runrun; Chen, Xi; Zhang, Zhicai; Soulsby, Chris; Gao, Man

    2018-02-01

    Mean response time (MRT) is a metric describing the propagation of catchment hydraulic behavior that reflects both hydro-climatic conditions and catchment characteristics. To provide a comprehensive understanding of catchment response over a longer-time scale for hydraulic processes, the MRT function for baseflow generation was derived using an instantaneous unit hydrograph (IUH) model that describes the subsurface response to effective rainfall inputs. IUH parameters were estimated based on the "match test" between the autocorrelation function (ACFs) derived from the filtered base flow time series and from the IUH parameters, under the GLUE framework. Regionalization of MRT was conducted using estimates and hydroclimate-landscape indices in 22 sub-basins of the Jinghe River Basin (JRB) in the Loess Plateau of northwest China. Results indicate there is strong equifinality in determination of the best parameter sets but the median values of the MRT estimates are relatively stable in the acceptable range of the parameters. MRTs vary markedly over the studied sub-basins, ranging from tens of days to more than a year. Climate, topography and geomorphology were identified as three first-order controls on recharge-baseflow response processes. Human activities involving the cultivation of permanent crops may elongate the baseflow MRT and hence increase the dynamic storage. Cross validation suggests the model can be used to estimate MRTs in ungauged catchments in similar regions of throughout the Loess Plateau. The proposed method provides a systematic approach for MRT estimation and regionalization in terms of hydroclimate and catchment characteristics, which is helpful in the sustainable water resources utilization and ecological protection in the Loess Plateau.

  2. Radium migration of Morro do Ferro (Pocos de Caldas, MG) thorium deposit during baseflow regime (no rainfall)

    International Nuclear Information System (INIS)

    Campos, M.J.; Sachett, I.A.; Franca, E.P.; Lobao, N.; Trindade, H.

    1986-01-01

    The mechanisms of radium leaching and transport at the Morro do Ferro and to estimate the 228 Ra mobilization rate, under conditions of no rainfall (baseflow regime) are investigated. Radium was analyzed in solution and in suspended solids, in surface and ground waters at the Morro do Ferro general basin. Ra-226 was determined by the classical radon emanation method. Ra-228 was analyzed by radiometric method which is based on the radiometry of β-γ 228Ac concidence transitions. (Author) [pt

  3. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review

    Science.gov (United States)

    Baseflow is the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways. Understanding baseflow processes is critical to issues of water quality, supply, and habitat. This review synthesizes the body of...

  4. An empirical method for approximating stream baseflow time series using groundwater table fluctuations

    Science.gov (United States)

    Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May

    2014-11-01

    Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.

  5. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    Science.gov (United States)

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized

  6. On the use of a physically-based baseflow timescale in land surface models.

    Science.gov (United States)

    Jost, A.; Schneider, A. C.; Oudin, L.; Ducharne, A.

    2017-12-01

    Groundwater discharge is an important component of streamflow and estimating its spatio-temporal variation in response to changes in recharge is of great value to water resource planning, and essential for modelling accurate large scale water balance in land surface models (LSMs). First-order representation of groundwater as a single linear storage element is frequently used in LSMs for the sake of simplicity, but requires a suitable parametrization of the aquifer hydraulic behaviour in the form of the baseflow characteristic timescale (τ). Such a modelling approach can be hampered by the lack of available calibration data at global scale. Hydraulic groundwater theory provides an analytical framework to relate the baseflow characteristics to catchment descriptors. In this study, we use the long-time solution of the linearized Boussinesq equation to estimate τ at global scale, as a function of groundwater flow length and aquifer hydraulic diffusivity. Our goal is to evaluate the use of this spatially variable and physically-based τ in the ORCHIDEE surface model in terms of simulated river discharges across large catchments. Aquifer transmissivity and drainable porosity stem from GLHYMPS high-resolution datasets whereas flow length is derived from an estimation of drainage density, using the GRIN global river network. ORCHIDEE is run in offline mode and its results are compared to a reference simulation using an almost spatially constant topographic-dependent τ. We discuss the limits of our approach in terms of both the relevance and accuracy of global estimates of aquifer hydraulic properties and the extent to which the underlying assumptions in the analytical method are valid.

  7. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    billion gallons of water that reaches the Chesapeake Bay each day, nearly 27 billion gallons is base flow. Generalized lithology (siliciclastic, carbonate, crystalline, and unconsolidated) was combined with physiographic province (the Appalachian Plateau, the Valley and Ridge, the Blue Ridge, the Piedmont, including the Mesozoic Lowland section, and the Coastal Plain) to delineate 11 hydrogeomorphic regions. Areal variation of base flow and base-flow nitrate yield were assessed by means of nonparametric, one-way analysis of variance on basins grouped by the dominant hydrogeomorphic region and by correlation analysis of base flow or base-flow nitrate yield with the percentage of land area of a given hydrogeomorphic region within a basin. Base flow appeared to have a significant relation to the hydrogeomorphic regions. The highest percentages of base flow were found in areas underlain by carbonate rock, crystalline rock with relatively low relief, and unconsolidated sediments. Lower percentages were found in areas underlain by siliclastic rocks and crystalline rocks with relatively high relief. The relation between base-flow nitrate yield and hydrogeomorphic region is less clear. Although there is a relation between low nitrate yields and areas underlain by highrelief siliciclastic rocks, and a relation between high yields and carbonate rocks, much of this relation can be explained by the strong association between the hydrogeomorphic units and land use. In addition, most basins are mixtures of several hydrogeomorphic regions, so the nitrate yield from a basin depends on a large number of complex interacting factors. These unclear results indicate that the sample of available data used here may not be adequate to fully assess the relation between base-flow nitrate yield and the hydrogeomorphic setting of the basin. The results appear to show, however, that ground-water discharge is an important component of the total nontidal streamflow, and that ground

  8. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau?

    Science.gov (United States)

    Yao, Yingying; Zheng, Chunmiao; Andrews, Charles; Zheng, Yi; Zhang, Aijing; Liu, Jie

    2017-08-01

    Mountainous areas are referred to as "water towers" since they are the source of water for many low-lying communities. The hydrologic budgets of these areas, which are particularly susceptible to climate change, are typically poorly constrained. To address this, we analyzed the partitioning between baseflow and mountain block recharge (MBR) using a regional groundwater model of the northern Qinghai-Tibet Plateau run with multiple scenarios. We found that 19% of precipitation is recharged, approximately 35% of which becomes MBR, while 65% discharges as baseflow. This partitioning is relatively independent of the recharge rate but is sensitive to exponential depth decrease of hydraulic conductivity (K). The MBR is more sensitive to this exponential decrease in K than baseflow. The proportion of MBR varies from twice to half of baseflow as the decay exponent increases by more than fivefold. Thus, the depth dependence of K is critical for quantifying hydrologic partitioning in these sensitive areas.

  9. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  10. Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT

    Directory of Open Access Journals (Sweden)

    Gwanjae Lee

    2014-04-01

    Full Text Available Groundwater has received increasing attention as an important strategic water resource for adaptation to climate change. In this regard, the separation of baseflow from streamflow and the analysis of recession curves make a significant contribution to integrated river basin management. The United States Geological Survey (USGS RECESS model adopting the master-recession curve (MRC method can enhance the accuracy with which baseflow may be separated from streamflow, compared to other baseflow-separation schemes that are more limited in their ability to reflect various watershed/aquifer characteristics. The RECESS model has been widely used for the analysis of hydrographs, but the applications using RECESS were only available through Microsoft-Disk Operating System (MS-DOS. Thus, this study aims to develop a web-based RECESS model for easy separation of baseflow from streamflow, with easy applications for ungauged regions. RECESS on the web derived the alpha factor, which is a baseflow recession constant in the Soil Water Assessment Tool (SWAT, and this variable was provided to SWAT as the input. The results showed that the alpha factor estimated from the web-based RECESS model improved the predictions of streamflow and recession. Furthermore, these findings showed that the baseflow characteristics of the ungauged watersheds were influenced by the land use and slope angle of watersheds, as well as by precipitation and streamflow.

  11. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    Science.gov (United States)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  12. Baseflow vs floods: Linking geomorphology and ecology by blurring disciplinary and ecosystem boundaries

    Science.gov (United States)

    Doyle, M. W.; Stanley, E. H.; Small, M.

    2011-12-01

    Linking ideas between geomorphology and ecology has led to some of the formative concepts in river science. These past developments suggest opportunities for greater conceptual alignment novel research agenda via continued cross-fertilization. Hydrologic variability provides a notable example of both intellectual divergence and convergence between geomorphologists and ecologists. Conceptually, both disciplines have recognition of the importance the "natural flow regime." Yet geomorphologists tend to focus on rare events which are formative in sculpting the landscape, while ecologists often emphasize baseflow conditions when biological production and biochemical processes (transformation) dominate over hydrologic transport. Thus, perceptions of river systems begin from two different starting points for these two disciplines. These different perspectives in turn lead to presumed appropriate spatial or temporal scale at which studies should be conducted and can influence site selection. Geomorphologists are more likely to work in rivers subject to pronounced physical change to gain insight to geomorphic processes, and to limit their work to sites with sufficient historic data to analyze change. Conversely, ecologists are likely to select less dynamic physical templates - both in space and time- to allow greater focus on biotic processes. Thus, the basic geography of the disciplines can be surprisingly divergent, as can be the basic timescales of studies. Recent developments in incorporating hydrologic variability into nutrient spiraling have been important in linking geomorphology and stream ecology. Moving from baseflow to more full inclusion of the hydrologic spectrum has dramatically increased understanding of stream biogeochemistry, but it has also drawn in more sophisticated treatments of hydrology into stream biogeochemistry and ecology. This relative success of hydrologic variability and nutrient spiraling studies raises the question of what other opportunities

  13. Baseflow recession analysis across the Eagle Ford shale play (Texas, USA)

    Science.gov (United States)

    Arciniega, Saul; Brena-Naranjo, Agustin; Hernandez-Espriu, Jose Antonio; Pedrozo-Acuña, Adrian

    2016-04-01

    Baseflow is an important process of the hydrological cycle as it can be related to aquatic ecosystem health and groundwater recharge. The temporal and spatial dynamics of baseflow are typically governed by fluctuations in the water table of shallow aquifers hence groundwater pumping and return flow can greatly modify baseflow patterns. More recently, in some regions of the world the exploitation of gas trapped in shale formations by means of hydraulic fracturing (fracking) has raised major concerns on the quantitative and qualitative groundwater impacts. Although fracking implies massive amounts of groundwater withdrawals, its contribution on baseflow decline has not yet been fully investigated. Furthermore, its impact with respect to other human activities or climate extremes such as irrigation or extreme droughts, respectively, remain largely unknown. This work analyzes baseflow recession time-space patterns for a set of watersheds located across the largest shale producer in the world, the Eagle Ford shale play in Texas (USA). The period of study (1985-2014) includes a pre-development and post-development period. The dataset includes 56 hydrometric time series located inside and outside the shale play. Results show that during the development and expansion of the Eagle Ford play, around 70 % of the time series displayed a significant decline wheras no decline was observed during the pre-development)

  14. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  15. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  16. HUBUNGAN ANTARA INDEKS VEGETASI NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX DAN KOEFISIEN RESESI BASEFLOW PADA BEBERAPA SUBDAS PROPINSI JAWA TENGAH DAN DAERAH ISTIMEWA YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    Bokiraiya Latuamury

    2013-06-01

    has a very weak control on low flows. Basically, river baseflow is a genetic component of river flow which comes from aquifer storage and/or other low flow sources. Thus, geology and soil have a significant effect on baseflow.

  17. Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds

    Science.gov (United States)

    Bart, Ryan; Hope, Allen

    2014-11-01

    Baseflow recession rates vary inter-seasonally in many watersheds. This variability is generally associated with changes in evapotranspiration; however, an additional and less studied control over inter-seasonal baseflow recession rates is the effect of aquifer antecedent storage. Understanding the role of aquifer antecedent storage on baseflow recession rates is crucial for Mediterranean-climate regions, where seasonal asynchronicity of precipitation and energy levels produces large inter-seasonal differences in aquifer storage. The primary objective of this study was to elucidate the relation between aquifer antecedent storage and baseflow recession rates in four central California watersheds using antecedent streamflow as a surrogate for watershed storage. In addition, a parsimonious storage-discharge model consisting of two nonlinear stores in parallel was developed as a heuristic tool for interpreting the empirical results and providing insight into how inter-seasonal changes in aquifer antecedent storage may affect baseflow recession rates. Antecedent streamflow cumulated from the beginning of the wateryear was found to be the strongest predictor of baseflow recession rates, indicating that inter-seasonal differences in aquifer storage are a key control on baseflow recession rates in California watersheds. Baseflow recession rates and antecedent streamflow exhibited a negative power-law relation, with baseflow recession rates decreasing by up to two orders of magnitude as antecedent streamflow levels increased. Inference based on the storage-discharge model indicated that the dominant source of recession flow shifted from small, rapid response aquifers at the beginning of the wet season to large, seasonal aquifers as the wet season progressed. Aquifer antecedent storage in California watersheds should be accounted for along with evapotranspiration when characterizing baseflow recession rates.

  18. Enrichment of stream water with fecal indicator organisms from bottom sediments during baseflow periods

    Science.gov (United States)

    Fecal indicator organisms (FIOs) are generally believed to be present in surface waters due solely to direct deposition of feces or through transport in runoff. However, emerging evidence points toward hyporheic exchange between sediment pore water and the overlying water column during baseflow peri...

  19. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework

    Science.gov (United States)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  20. Baseflow characterization of the inter-mountainous regions of northern Idaho and eastern Washington, USA

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.; Elliot, W.

    2012-12-01

    Baseflow is one of the most important components of the streamflow regime of any river or creek since it provides continuous habitat to aquatic biota; regulates water temperature and dissolved oxygen during summer; and functions as an essential supply for drinking water and irrigation in most temperate regions. Understanding which factors control how water is released to streams during baseflow periods has become critical for watershed management worldwide, especially, in arid and semiarid areas. This study analyzed storage-discharge relationships of 26 watersheds of northern Idaho and eastern Washington using Brutsaert and Nieber (1977) baseflow recession analysis. Daily streamflow and precipitation records ranged from 7 to 70 years. Mean annual precipitation fluctuated from 536 to 1,312 mm. Drainage basin areas varied from 6.35 to 12,357 km2, with streamgage elevation ranging from 536 to 2,172 m. Mean watershed slope varied from 9.24 to 46.53%. Because of the non-uniqueness watershed shapes, illustrated by the natural spectrum of data points, organic correlation analysis was used to determine the recession coefficients (kb). Numerous climatic attributes and geomorphology characteristics were evaluated as potential predictors of kb rates using a Pearson's correlation matrix. Baseflow coefficients ranged from 0.015 to 0.08 day-1. The mean characteristic timescale for baseflow drainage was found to be 33±15 days with extremes of 12.5 and 66.7 days. Watersheds dominated by basalt features showed the lowest drainage times (12.5-20.0 days). The drainage time increased as the metamorphic and sedimentary rock composition increased (33.3-66.7 days). Watersheds mainly composed by granitic features ranged from 29.1 to 50.0 days. The ratio of mean annual precipitation (MAP) to annual potential evapotranspiration (PET), also known as Aridity Index (AI), was found to explain 67% of kb variability. Mean watershed slope exhibited a moderate negative correlation of -0.57. Other

  1. Stream Nitrate Concentrations Diverge at Baseflow and Converge During Storms in Watersheds with Contrasting Urbanization

    Science.gov (United States)

    Carey, R. O.; Wollheim, W. M.; Mulukutla, G. K.; Cook, C. S.

    2013-12-01

    Management of non-point sources is challenging because it requires adequate quantification of non-point fluxes that are highly dynamic over time. Most fluxes occur during storms and are difficult to characterize with grab samples alone in flashy, urban watersheds. Accurate and relatively precise measurements using in situ sensor technology can quantify fluxes continuously, avoiding the uncertainties in extrapolation of infrequently collected grab samples. In situ nitrate (NO3-N) sensors were deployed simultaneously from April to December 2013 in two streams with contrasting urban land uses in an urbanizing New Hampshire watershed (80 km2). Nitrogen non-point fluxes and temporal patterns were evaluated in Beards Creek (forested: 50%; residential: 24%; commercial/institutional/transportation: 7%; agricultural: 6%) and College Brook (forested: 35%; residential: 11%; commercial/institutional/transportation: 20%; agricultural: 17%). Preliminary data indicated NO3-N concentrations in Beards Creek (mean: 0.37 mg/L) were lower than College Brook (mean: 0.60 mg/L), but both streams exhibited rapid increases in NO3-N during the beginning of storms followed by overall dilution. While baseflow NO3-N was greater in College Brook than Beards Creek, NO3-N at the two sites consistently converged during storms. This suggests that standard grab sampling may overestimate fluxes in urban streams, since short-term dilution occurred during periods of highest flow. Analyzing NO3-N flux patterns in smaller urban streams that are directly impacted by watershed activities could help to inform management decisions regarding N source controls, ultimately allowing an assessment of the interactions of climate variability and management actions.

  2. Beryllium in river baseflow, shallow groundwaters and major aquifers of the U.K

    International Nuclear Information System (INIS)

    Edmunds, W.M.; Trafford, J.M.

    1993-01-01

    Out of 924 samples from 13 aquifer units in the United Kingdom, Be was detected in only 12. In carbonate aquifers no Be was found above the detection limit of 0.05 μg/1. The occurrence of Be was restricted to arenaceous aquifers where concentrations up to 1 μg/1 were found mainly in the Carboniferous Millstone Grit and Lower Cretaceous Lower Greensand. Interstitial water profiles from the unsaturated zones of the Lower Greensand and Triassic sandstone contain Be concentrations in excess of 10 μg/1 within the top 10 m which may persist to the water table at concentrations near to 1 μg/1. The only major anomaly to be found in river baseflow was from the Mourne Mountains of Northern Ireland where Be concentrations of up to 4.7 μg/1 were found associated with the outcrop of the Tertiary granite intrusion. Elsewhere, Be (0.22 μg/1) was found in neutral groundwaters derived from granite feeding the acid Loch Fleet (southern Scotland) in which concentrations of 0.09 μg/1 were maintained. Beryllium occurrence therefore depends strongly on geology. The predominant aqueous species below pH 5.5 is Be 2+ and above this Be(OH) + dominates. The presence of high Al in most waters sampled greatly suppresses the formation of BeF complex ions. Beryllium shows close geochemical behaviour with Mg across a range of pH which may have environmental consequences, if Be substitution for Mg takes place. (author)

  3. An application of baseflow isolation and passive wetland treatment to watershed restoration

    International Nuclear Information System (INIS)

    Hoover, K.L.; Rightnour, T.A.; Zug, F.R. III

    1999-01-01

    The project site, located in West Virginia, is a reclaimed wood waste disposal area situated on Pennsylvanian coal strata. Following reclamation of the disposal area, flow in the adjacent stream was observed to have elevated iron and manganese concentrations. The source of the groundwater baseflow entering this portion of the stream appeared to be hydrologically related to the landfill by its close proximity. The source of the metals contamination was not determined, but may be related to percolation from the disposal area into the underlying coal strata. The observable contamination was typical of alkaline coal mine drainage and met the criteria for passive wetland treatment. However, the contaminated baseflow entered the stream along the sides and bottom of the channel at several locations over a 100-meter section and could not be collected for accurate characterization of pollutant loading. Treatment of the entire contaminated stream flow to comply with NPDES permit requirements would have been prohibitively expensive, and insufficient space was available for a treatment facility of adequate size within the narrow stream valley. Given these constraints, it was decided to isolate the contaminated baseflow from the surface flow by construction of a lined stream relocation on top of a gravity-drained collection zone in the existing stream channel. The collection zone consists of a bed of coarse aggregate with a central collection pipe discharging to a submerged outlet, which prevents air from entering the collection zone and minimizes the formation of iron precipitates. The relocated stream channel was formed in place on top of the collection zone with compacted earth, and lined with one layer of polypropylene geomembrane covered by two layers of geotextile. Gabion baskets were then placed on top of the liner for stream stabilization and shaping of the final channel. Accurate discharge characterization at the end of the collection pipe allowed the design of a

  4. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    Science.gov (United States)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  5. Numerical simulation of baseflow modification due to effects of ...

    African Journals Online (AJOL)

    drinie

    2001-04-02

    Apr 2, 2001 ... is disturbed, the rivers tend to adjust to new pseudo-equilibrium conditions by ..... open channel and ground water hydrological processes. It .... Where the hydraulic conductivity of zero is assumed for the riverbed .... New York.

  6. Recharge Area, Base-Flow and Quick-Flow Discharge Rates and Ages, and General Water Quality of Big Spring in Carter County, Missouri, 2000-04

    Science.gov (United States)

    Imes, Jeffrey L.; Plummer, Niel; Kleeschulte, Michael J.; Schumacher, John G.

    2007-01-01

    Exploration for lead deposits has occurred in a mature karst area of southeast Missouri that is highly valued for its scenic beauty and recreational opportunities. The area contains the two largest springs in Missouri (Big Spring and Greer Spring), both of which flow into federally designated scenic rivers. Concerns about potential mining effects on the area ground water and aquatic biota prompted an investigation of Big Spring. Water-level measurements made during 2000 helped define the recharge area of Big Spring, Greer Spring, Mammoth Spring, and Boze Mill Spring. The data infer two distinct potentiometric surfaces. The shallow potentiometric surface, where the depth-to-water is less than about 250 feet, tends to mimic topographic features and is strongly controlled by streams. The deep potentiometric surface, where the depth-to-water is greater than about 250 feet represents ground-water hydraulic heads within the more mature karst areas. A highly permeable zone extends about 20 mile west of Big Spring toward the upper Hurricane Creek Basin. Deeper flowing water in the Big Spring recharge area is directed toward this permeable zone. The estimated sizes of the spring recharge areas are 426 square miles for Big Spring, 352 square miles for Greer Spring, 290 square miles for Mammoth Spring, and 54 square miles for Boze Mill Spring. A discharge accumulation curve using Big Spring daily mean discharge data shows no substantial change in the discharge pattern of Big Spring during the period of record (water years 1922 through 2004). The extended periods when the spring flow deviated from the trend line can be attributed to prolonged departures from normal precipitation. The maximum possible instantaneous flow from Big Spring has not been adequately defined because of backwater effects from the Current River during high-flow conditions. Physical constraints within the spring conduit system may restrict its maximum flow. The largest discharge measured at Big Spring

  7. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    Science.gov (United States)

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  8. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-11-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1 from the Global River Discharge Center (GRDC and a linear reservoir model were used to obtain baseflow recession coefficients (kbf for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.

  9. SEPHYDRO: An Integrated Multi-Filter Web-Based Tool for Baseflow Separation

    Science.gov (United States)

    Serban, D.; MacQuarrie, K. T. B.; Popa, A.

    2017-12-01

    Knowledge of baseflow contributions to streamflow is important for understanding watershed scale hydrology, including groundwater-surface water interactions, impact of geology and landforms on baseflow, estimation of groundwater recharge rates, etc. Baseflow (or hydrograph) separation methods can be used as supporting tools in many areas of environmental research, such as the assessment of the impact of agricultural practices, urbanization and climate change on surface water and groundwater. Over the past few decades various digital filtering and graphically-based methods have been developed in an attempt to improve the assessment of the dynamics of the various sources of streamflow (e.g. groundwater, surface runoff, subsurface flow); however, these methods are not available under an integrated platform and, individually, often require significant effort for implementation. Here we introduce SEPHYDRO, an open access, customizable web-based tool, which integrates 11 algorithms allowing for separation of streamflow hydrographs. The streamlined interface incorporates a reference guide as well as additional information that allows users to import their own data, customize the algorithms, and compare, visualise and export results. The tool includes one-, two- and three-parameter digital filters as well as graphical separation methods and has been successfully applied in Atlantic Canada, in studies dealing with nutrient loading to fresh water and coastal water ecosystems. Future developments include integration of additional separation algorithms as well as incorporation of geochemical separation methods. SEPHYDRO has been developed through a collaborative research effort between the Canadian Rivers Institute, University of New Brunswick (Fredericton, New Brunswick, Canada), Agriculture and Agri-Food Canada and Environment and Climate Change Canada and is currently available at http://canadianriversinstitute.com/tool/

  10. Changes in baseflow patterns in water-limited shale oil and gas regions: the Eagle Ford play

    Science.gov (United States)

    Arciniega, S.; Brena-Naranjo, J. A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.

    2016-12-01

    Quantifying and analyzing the contribution of groundwater from shallow aquifers to rivers as baseflow is very important for water supply and riverine ecosystem health, especially in water-limited catchments. Baseflow depends on the water available (precipitation), vegetation (land use, water use), aquifer properties and water-table depth. In this context, human activities such as groundwater abstraction for multiple purposes can alter the relationship between aquifer storage and baseflow. In this study, we analyzed observed changes in baseflow patterns of 40 catchments located across the Eagle Ford shale gas/oil play (Texas) during the period 1986-2015. The Eagle Ford sedimentary formation is actually the largest shale oil producing region in the US with large production in shale gas. Intensive unconventional resources extraction in the Eagle Ford play started in 2009 and gas/oil production increased faster than in other plays, accompanied by a rise in groundwater consumption for HF purposes. Spatial and temporal impacts on baseflow at the Eagle Ford play derived from HF were assessed by means of different patterns such as baseflow hydrograph separation, flow-duration curves, empirical storage-discharge relationships and streamflow recession curve analysis. A comparison during different periods of water use for HF activities was performed: pre-development period (1986-2000); moderate period (2001-2008); and intensive period (2009-2015). The pre-development period was considered as a baseline and catchments located inside and outside the play area were separately analyzed. The results show negative changes on baseflow patterns during the intensive HF period that were not observed during the moderate period, especially in catchments located inside the play. These changes were also characterized by a decline on mean annual baseflow volume and shorter hydrograph recession times, that led to a shift in the streamflow regime in some catchments from perennial to

  11. Effects of Unsaturated Zones on Baseflow Recession: Analytical Solution and Application

    Science.gov (United States)

    Zhan, H.; Liang, X.; Zhang, Y. K.

    2017-12-01

    Unsaturated flow is an important process in baseflow recessions and its effect is rarely investigated. A mathematical model for a coupled unsaturated-saturated flow in a horizontally unconfined aquifer with time-dependent infiltrations is presented. Semi-analytical solutions for hydraulic heads and discharges are derived using Laplace transform and Cosine transform. The solutions are compared with solutions of the linearized Boussinesq equation (LB solution) and the linearized Laplace equation (LL solution), respectively. The result indicates that a larger dimensionless constitutive exponent κD of the unsaturated zone leads to a smaller discharge during the infiltration period and a larger discharge after the infiltration. The lateral discharge of the unsaturated zone is significant when κD≤1, and becomes negligible when κD≥100. For late times, the power index b of the recession curve-dQ/dt aQb, is 1 and independent of κD, where Q is the baseflow and a is a constant lumped aquifer parameter. For early times, b is approximately equal to 3 but it approaches infinity when t→1. The present solution is applied to synthetic and field cases. The present solution matched the synthetic data better than both the LL and LB solutions, with a minimum relative error of 16% for estimate of hydraulic conductivity. The present solution was applied to the observed streamflow discharge in Iowa, and the estimated values of the aquifer parameters were reasonable.

  12. Baseflow recession analysis in a large shale play: Climate variability and anthropogenic alterations mask effects of hydraulic fracturing

    Science.gov (United States)

    Arciniega-Esparza, Saúl; Breña-Naranjo, Jose Agustín; Hernández-Espriú, Antonio; Pedrozo-Acuña, Adrián; Scanlon, Bridget R.; Nicot, Jean Philippe; Young, Michael H.; Wolaver, Brad D.; Alcocer-Yamanaka, Victor Hugo

    2017-10-01

    Water resources development and landscape alteration exert marked impacts on water-cycle dynamics, including areas subjected to hydraulic fracturing (HF) for exploitation of unconventional oil and gas resources found in shale or tight sandstones. Here we apply a conceptual framework for linking baseflow analysis to changes in water demands from different sectors (e.g. oil/gas extraction, irrigation, and municipal consumption) and climatic variability in the semiarid Eagle Ford play in Texas, USA. We hypothesize that, in water-limited regions, baseflow (Qb) changes are partly due (along with climate variability) to groundwater abstraction. For a more realistic assessment, the analysis was conducted in two different sets of unregulated catchments, located outside and inside the Eagle Ford play. Three periods were considered in the analysis related to HF activities: pre-development (1980-2000), moderate (2001-2008) and intensive (2009-2015) periods. Results indicate that in the Eagle Ford play region, temporal changes in baseflow cannot be directly related to the increase in hydraulic fracturing. Instead, substantial baseflow declines during the intensive period of hydraulic fracturing represent the aggregated effects from the combination of: (1) a historical exceptional drought during 2011-2012; (2) increased groundwater-based irrigation; and (3) an intensive hydraulic fracturing activity.

  13. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River basin

    Science.gov (United States)

    Detection of changes (steady or abrupt) in long time series of hydrological data is important for effective planning and management of water resources. This study evaluated trends in baseflow and precipitation in the Missouri River Basin (MORB) using a modified Mann-Kendall (MK) test. Precipitation ...

  14. Spatially distributed characterization of hyporheic solute transport during baseflow recession in a headwater mountain stream using electrical geophysical imaging

    Science.gov (United States)

    Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha

    2014-01-01

    The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...

  15. Effects of Watershed Land Use and Geomorphology on Stream Baseflows In the Southern Blue Ridge Mountains, NC and GA

    Science.gov (United States)

    While it has been shown in many settings that both human land use and natural topographic variability influence stream baseflows, their interactions and relative influences have remained unresolved. Our objective was to determine the influence of human land use and watershed geo...

  16. Impacts of climate change on trends in baseflow and stormflow in major watersheds of China

    Science.gov (United States)

    Wang, L.

    2017-12-01

    Impacts of climate change on trends in baseflow and stormflow in major watersheds of ChinaLijun Wang1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: During the past 50 years, runoff from the major watersheds in China has demonstrated a decrease trend. The variations in the amount of precipitation will directly influence the runoff, however in some parts of China, it is also found that there is huge variations in the amount of runoff whereas the amount of precipitation has not shown such variations. In the same time, the intensity and duration of rainfall has changed a lot. Therefore, it is important to categorize the different trends of runoff and to identify the major factors responsible for these changes. In this study, we have collected the data of 200 different locations from 8 major watersheds of China. By comparing and analyzing the daily precipitation and the daily runoff data, we have found some significant changes in runoff coefficients between two periods (1979-1988 and 2006-2014). On the basis of this, the further study will be carried out which identify that how the climate change influences the two major components of runoff, baseflow and stormflow. The impact of anthropogenic activity in the study area could not be ignored and it is important to know whether human action and climate change is the main factors for the decline of waterflow in river and how these factors influence the river water.

  17. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  18. Combining observations of channel network contraction and spatial discharge variation to inform spatial controls on baseflow in Birch Creek, Catskill Mountains, USA

    Directory of Open Access Journals (Sweden)

    Stephen B. Shaw

    2017-08-01

    New hydrological insights: For the 31 different sub-channels, baseflow discharge per unit drainage area and per unit stream length were highly variable, even during periods of higher moisture storage when all channels were active. Simple mapping of the active channels would not have recognized these sizable spatial differences in discharge contribution. Previous studies of hydrologic scaling in the Catskills have noted the likelihood of heterogeneity in discharge below a threshold of approximately 3–8 km2. This study provides direct documentation of such heterogeneity at smaller spatial scales. When considering perennial and ephemeral streams, such heterogeneity was not well explained by standard topographic, geologic, or meteorological factors. We suggest the heterogeneity may arise from difficult to map fine-scale variations in subsurface properties.

  19. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  20. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  1. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  2. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  3. Cu lability and bioavailability in an urban stream during baseflow versus stormflow

    Science.gov (United States)

    Vadas, T.; Luan, H.

    2012-12-01

    Urban streams are dynamic systems with many anthropogenic inputs and stressors. Existing contaminant inputs are regulated through total maximum daily loads. Techniques for assessing that load are based on a combination of acute and chronic water quality criteria, biotic ligand models, and physical, chemical and biological assessments. In addition, the apportionment of reduction in load to different sources is based on total mass and not, for example, on bioavailable fraction. Our understanding of the impact of different metal inputs to stream impairment is limited. Free metal ions are understood to play a role in direct cellular uptake, but metal speciation (e.g. free metal, labile metals, or size fractionated) is relevant to more complex stream food webs. As part of an ongoing study, this work examines dissolved and particulate Cu concentrations in the Hockanum River, Vernon, CT situated in a developed watershed. Stream samples were taken during baseflow as well as stormflow upstream and downstream of wastewater treatment plant and stormwater runoff inputs. In addition, diffusive gradient in thin-film (DGT) devices which measure labile metal concentrations and cultured periphyton were used to examine bioavailable fractions. Total and filtered Cu concentrations ranged from about 1.3 to 10.7 μg/L, and 0.9 to 5.1 μg/L, respectively. Cu concentrations always increased downstream of the wastewater treatment plant by about 1.1-2 times, and effluent accounted for about 30% of baseflow. Generally, small increases (sites downstream from the wastewater treatment plant downstream sampling point, suggesting contributions from sediment resuspension. DGT measured concentrations represented 30 to 70% of dissolved Cu concentrations, and that percentage increased in the days following a storm, suggesting more labile Cu compounds remained in the water column longer. Whereas solution metal concentrations in stormwater influenced reaches did not largely change upstream versus

  4. A high precision radiation-tolerant LVDT conditioning module

    CERN Document Server

    Masi, A; Losito, R; Peronnard, P; Secondo, R; Spiezia, G

    2014-01-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. ...

  5. Evaluation of the body condition of high yielding cows

    OpenAIRE

    Grubić G.; Novaković Ž.; Aleksić S.; Sretenović Lj.; Pantelić V.; Ostojić-Andrić D.

    2009-01-01

    Problems which relate to production, health and reproduction in herds of high yielding cows very often occur due to insufficient knowledge and monitoring of energy reserves in cow organisms. Many researches and practical experiences in this field indicate significant relation between body condition and achieved results in production. Body condition of heads of cattle in certain stages of production cycle is important parameter of applied nutrition, but also entire technological procedure. In ...

  6. Dual design resistor for high voltage conditioning and transmission lines

    Science.gov (United States)

    Siggins, Timothy Lynn [Newport News, VA; Murray, Charles W [Hayes, VA; Walker, Richard L [Norfolk, VA

    2007-01-23

    A dual resistor for eliminating the requirement for two different value resistors. The dual resistor includes a conditioning resistor at a high resistance value and a run resistor at a low resistance value. The run resistor can travel inside the conditioning resistor. The run resistor is capable of being advanced by a drive assembly until an electrical path is completed through the run resistor thereby shorting out the conditioning resistor and allowing the lower resistance run resistor to take over as the current carrier.

  7. Understand the impacts of wetland restoration on peak flow and baseflow by coupling hydrologic and hydrodynamic models

    Science.gov (United States)

    Gao, H.; Sabo, J. L.

    2016-12-01

    Wetlands as the earth's kidneys provides various ecosystem services, such as absorbing pollutants, purifying freshwater, providing habitats for diverse ecosystems, sustaining species richness and biodiversity. From hydrologic perspective, wetlands can store storm-flood water in flooding seasons and release it afterwards, which will reduce flood peaks and reshape hydrograph. Therefore, as a green infrastructure and natural capital, wetlands provides a competent alternative to manage water resources in a green way, with potential to replace the widely criticized traditional gray infrastructure (i.e. dams and dikes) in certain cases. However, there are few systematic scientific tools to support our decision-making on site selection and allow us to quantitatively investigate the impacts of restored wetlands on hydrological process, not only in local scale but also in the view of entire catchment. In this study, we employed a topographic index, HAND (the Height Above the Nearest Drainage), to support our decision on potential site selection. Subsequently, a hydrological model (VIC, Variable Infiltration Capacity) was coupled with a macro-scale hydrodynamic model (CaMa-Flood, Catchment-Based Macro-scale Floodplain) to simulate the impact of wetland restoration on flood peaks and baseflow. The results demonstrated that topographic information is an essential factor to select wetland restoration location. Different reaches, wetlands area and the change of roughness coefficient should be taken into account while evaluating the impacts of wetland restoration. The simulated results also clearly illustrated that wetland restoration will increase the local storage and decrease the downstream peak flow which is beneficial for flood prevention. However, its impact on baseflow is ambiguous. Theoretically, restored wetlands will increase the baseflow due to the slower release of the stored flood water, but the increase of wetlands area may also increase the actual evaporation

  8. On the use of spring baseflow recession for a more accurate parameterization of aquifer transit time distribution functions

    Directory of Open Access Journals (Sweden)

    J. Farlin

    2013-05-01

    Full Text Available Baseflow recession analysis and groundwater dating have up to now developed as two distinct branches of hydrogeology and have been used to solve entirely different problems. We show that by combining two classical models, namely the Boussinesq equation describing spring baseflow recession, and the exponential piston-flow model used in groundwater dating studies, the parameters describing the transit time distribution of an aquifer can be in some cases estimated to a far more accurate degree than with the latter alone. Under the assumption that the aquifer basis is sub-horizontal, the mean transit time of water in the saturated zone can be estimated from spring baseflow recession. This provides an independent estimate of groundwater transit time that can refine those obtained from tritium measurements. The approach is illustrated in a case study predicting atrazine concentration trend in a series of springs draining the fractured-rock aquifer known as the Luxembourg Sandstone. A transport model calibrated on tritium measurements alone predicted different times to trend reversal following the nationwide ban on atrazine in 2005 with different rates of decrease. For some of the springs, the actual time of trend reversal and the rate of change agreed extremely well with the model calibrated using both tritium measurements and the recession of spring discharge during the dry season. The agreement between predicted and observed values was however poorer for the springs displaying the most gentle recessions, possibly indicating a stronger influence of continuous groundwater recharge during the summer months.

  9. Effects of residential and agricultural land uses on the chemical quality of baseflow of small streams in the Croton Watershed, southeastern New York

    Science.gov (United States)

    Heisig, Paul M.

    2000-01-01

    Data on the chemical quality of baseflow from 33 small streams that drain basins of differing land-use type and intensity within the Croton watershed were collected seasonally for 1 year to identify and characterize the quality of ground-water contributions to surface water. The watershed includes twelve of New York City's water-supply reservoirs. Baseflow samples were collected a minimum of three days after the most recent precipitation and were analyzed for major ions, boron, and nutrients.

  10. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  11. Effect of high wind conditions on AHX performance for PFBR

    International Nuclear Information System (INIS)

    Goyal, P.; Datta, Anu; Verma, Vishnu; Singh, R.K.

    2013-05-01

    In case of normal shut down or station blackout condition the core decay heat is removed by Safety Grade Decay Heat Removal System (SGDHRS) in PFBR. The Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. SGDHRS remove decay heat from the core and dissipate it into the environment with the help of Air Heat Exchanger (AHX). SGDHRS consists of four redundant numbers of totally independent circuits capable of removing decay heat from the hot pool through natural convection in the primary and intermediate sodium sides as well as in the air side. Each circuit consists of a sodium to sodium heat exchanger (DHX) and a sodium to AHX connected to intermediate sodium circuit, AHX is located at a higher elevation compared to DHX. AHX is serpentine type finned tube compact heat exchanger with sodium in the tube side and air flowing over finned tubes. A tall stack provides the driving force for the natural convection of air flow through the AHX, when the dampers are opened. The AHX is placed outside of Reactor Control Building (RCB), on the roof of Steam Generator Building. Due to the presence of nearby buildings around the stack, the AHX performance under high wind condition may be affected. A CFD simulation using CFD-ACE+ code has been carried in which effect of high wind condition and nearby building on AHX performance have been studied. For high wind condition various orientation of wind movement was considered for parametric studies. AHX performance for all the cases were compared with the results that obtained for the absence of nearby buildings. A comparative table was prepared to understand how the AHX performance is effected with the high wind condition for various direction and with the presence of nearby building. It was observed that AHX performance is influenced by high wind conditions in most of the cases for with and without presence of nearby building. Hence to ensure the optimal performance of the AHX under high wind conditions its

  12. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    Science.gov (United States)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in

  13. Experimental characterization of gasoline sprays under highly evaporating conditions

    Science.gov (United States)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  14. A high precision radiation-tolerant LVDT conditioning module

    Energy Technology Data Exchange (ETDEWEB)

    Masi, A. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Danzeca, S. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); IES, F-34000 Montpellier (France); Losito, R.; Peronnard, P. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Secondo, R., E-mail: raffaello.secondo@cern.ch [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Spiezia, G. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  15. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  16. Wave Runup on a Frozen Beach Under High Energy Conditions

    Science.gov (United States)

    Didier, D.; Bernatchez, P.; Dumont, D.; Corriveau, M.

    2017-12-01

    High and mid-latitude beaches have typical morphological characteristics influenced by nearshore processes prevailing under ice conditions during cold season. Nearshore ice complexes (NIC) offer a natural coastal protection by covering beach sediments, while offshore ice-infested waters dissipate incoming waves. Climate change contributes to sea ice shrinking therefore reducing its protection against erosion and flooding. In the Estuary and Gulf of the St. Lawrence (ESL, GSL) (eastern Canada), sea ice cover undergoes an overall shrinking and simulated future projections tend toward a negligible effect on wave climate by 2100. Quantifying the effect of nearshore dynamics on frozen beaches is therefore imperative for coastal management as more wave energy at the coast is expected in the future. To measure the effect of a frozen beach on wave runup elevations, this study employs a continuous video recording of the swash motion at 4Hz. Video-derived wave runup statistics have been extracted during a tidal cycle on a frozen beach, using the Pointe-Lebel beach (ESL) as a test case. Timestack analysis was combined with offshore water levels and wave measurements. A comparison of runup under icy conditions (Dec. 30 2016) with a runup distribution during summer was made under similar high energy wave conditions. Results indicate high runup excursions potentially caused by lowered sediment permeability due to high pore-ice saturation in the swash zone, accentuating the overwash of the eroding coastline and thus the risk of flooding. With projected reduction in coastal sea ice cover and thus higher wave energy, this study suggests that episodes of degradation and weakening could influence the coastal flood risk in mid- and high-latitude cold environments.

  17. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    Science.gov (United States)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  18. Adverse health effects of high-effort/low-reward conditions.

    Science.gov (United States)

    Siegrist, J

    1996-01-01

    In addition to the person-environment fit model (J. R. French, R. D. Caplan, & R. V. Harrison, 1982) and the demand-control model (R. A. Karasek & T. Theorell, 1990), a third theoretical concept is proposed to assess adverse health effects of stressful experience at work: the effort-reward imbalance model. The focus of this model is on reciprocity of exchange in occupational life where high-cost/low-gain conditions are considered particularly stressful. Variables measuring low reward in terms of low status control (e.g., lack of promotion prospects, job insecurity) in association with high extrinsic (e.g., work pressure) or intrinsic (personal coping pattern, e.g., high need for control) effort independently predict new cardiovascular events in a prospective study on blue-collar men. Furthermore, these variables partly explain prevalence of cardiovascular risk factors (hypertension, atherogenic lipids) in 2 independent studies. Studying adverse health effects of high-effort/low-reward conditions seems well justified, especially in view of recent developments of the labor market.

  19. High-Latitude Ionospheric Dynamics During Conditions of Northward IMF

    Science.gov (United States)

    Sharber, J. R.

    1996-01-01

    In order to better understand the physical processes operating during conditions of northward interplanetary magnetic field (IMF), in situ measurements from the Dynamics Explorer-2 (low altitude) polar satellite and simultaneous observations from the auroral imager on the Dynamics Explorer-1 (high altitude) satellite were used to investigate the relationships between optical emissions, particle precipitation, and convective flows in the high-latitude ionosphere. Field aligned current and convective flow patterns during IMF north include polar cap arcs, the theta aurora or transpolar arc, and the 'horse-collar' aurora. The initial part of the study concentrated on the electrodynamics of auroral features in the horse-collar aurora, a contracted but thickened emission region in which the dawn and dusk portions can spread to very high latitudes, while the latter part focused on the evolution of one type of IMF north auroral pattern to another, specifically the quiet-time horse-collar pattern to a theta aurora.

  20. Design and realization of high voltage disconnector condition monitoring system

    Science.gov (United States)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  1. Evaluation of conditioned high-level waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Turcotte, R.P.; Chikalla, T.D.; Hench, L.L.

    1983-01-01

    The evaluation of conditioned high-level waste forms requires an understanding of radiation and thermal effects, mechanical properties, volatility, and chemical durability. As a result of nuclear waste research and development programs in many countries, a good understanding of these factors is available for borosilicate glass containing high-level waste. The IAEA through its coordinated research program has contributed to this understanding. Methods used in the evaluation of conditioned high-level waste forms are reviewed. In the US, this evaluation has been facilitated by the definition of standard test methods by the Materials Characterization Center (MCC), which was established by the Department of Energy (DOE) in 1979. The DOE has also established a 20-member Materials Review Board to peer-review the activities of the MCC. In addition to comparing waste forms, testing must be done to evaluate the behavior of waste forms in geologic repositories. Such testing is complex; accelerated tests are required to predict expected behavior for thousands of years. The tests must be multicomponent tests to ensure that all potential interactions between waste form, canister/overpack and corrosion products, backfill, intruding ground water and the repository rock, are accounted for. An overview of the status of such multicomponent testing is presented

  2. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  3. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Science.gov (United States)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  4. [The oral cavity condition in patients with high blood pressure].

    Science.gov (United States)

    Rosiak, Joanna; Kubić-Filiks, Beata; Szymańska, Jolanta

    2015-10-01

    The incidence of high blood pressure in adults is estimated at ca. 30-40% of the general population. Both hypertension disease and hypertensive drugs affect the condition of the patients' oral cavity. A review of the current literature shows that disorders most frequently found in the masticatory organ of patients with hypertension include: xerostomia, changes in salivary glands, gum hypertrophy, lichenoid lesions, taste disorders, and paraesthesias. The authors emphasize that patients with high blood pressure, along with the treatment of the underlying disease, should receive prophylactic and therapeutic dental care. This would enable reduction and/or elimination of unpleasant complaints, and also help prevent the emergence of secondary disorders in the patients' oral cavity as a result of hypertension pharmacotherapy. © 2015 MEDPRESS.

  5. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  6. Lie construction affects information storage under high memory load condition.

    Directory of Open Access Journals (Sweden)

    Yuqiu Liu

    Full Text Available Previous studies indicate that lying consumes cognitive resources, especially working memory (WM resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA, a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  7. Lie construction affects information storage under high memory load condition.

    Science.gov (United States)

    Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan

    2017-01-01

    Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  8. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA.

    Science.gov (United States)

    Sánchez-Murillo, Ricardo; Brooks, Erin S; Elliot, William J; Boll, Jan

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ(2)H = 7.42·δ(18)O + 0.88 (n = 316; r(2) = 0.97). Isotope compositions exhibited a strong temperature-dependent seasonality. Despite this seasonal variation, the stream δ(18)O variation was small. A significant regression (τ = 0.11D(-1.09); r(2) = 0.83) between baseflow MTTs and the damping ratio was found. Baseflow MTTs ranged from 0.4 to 0.6 years (human-altered), 0.7 to 1.7 years (mining-altered), and 0.7 to 3.2 years (forested). Greater MTTs were represented by more homogenous aqueous chemistry whereas smaller MTTs resulted in more dynamic compositions. The isotope and geochemical data presented provide a baseline for future hydrological modelling in the inland PNW.

  9. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  10. Procedure for conditioning high-level solidified wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hild, W; Krause, H; Scheffler, K

    1974-05-30

    The molds of glass, ceramic or basalt-similar mass in which highly radioactive wastes are incorporated are used for the conditioning of waste waters and/or of sewage or precipitating sludge or of natural water to obtain drinking water, prior to the end storage. By means of the gamma-radiation they emit, the viruses and bacteria and worm eggs are killed off as well as the poisonous, and organic substances such as, e.g., chlorated aromatics are destroyed. Furthermore, the filtration power is increased by coagulation, and the sludge is drained. Natural water is degermed. In particular, fission product mixtures of light water reactors can be incorporated in the molds. The molds are immersed in the media.

  11. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  12. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  13. Relationships between High Impact Tropical Rainfall Events and Environmental Conditions

    Science.gov (United States)

    Painter, C.; Varble, A.; Zipser, E. J.

    2017-12-01

    While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event

  14. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  15. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  16. Testing of high-level waste forms under repository conditions

    International Nuclear Information System (INIS)

    Mc Menamin, T.

    1989-01-01

    The workshop on testing of high-level waste forms under repository conditions was held on 17 to 21 October 1988 in Cadarache, France, and sponsored by the Commission of the European Communities (CEC), the Commissariat a l'energie atomique (CEA) and the Savannah River Laboratory (US DOE). Participants included representatives from Australia, Belgium, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, The United Kingdom and the United States. The first part of the conference featured a workshop on in situ testing of simulated nuclear waste forms and proposed package components, with an emphasis on the materials interface interactions tests (MIIT). MIIT is a sevent-part programme that involves field testing of 15 glass and waste form systems supplied by seven countries, along with potential canister and overpack materials as well as geologic samples, in the salt geology at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, USA. This effort is still in progress and these proceedings document studies and findings obtained thus far. The second part of the meeting emphasized multinational experimental studies and results derived from repository systems simulation tests (RSST), which were performed in granite, clay and salt environments

  17. Fault gouge rheology under confined, high-velocity conditions

    Science.gov (United States)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was

  18. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  19. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  20. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  1. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  2. Nutrition of pigs kept under low and high sanitary conditions

    NARCIS (Netherlands)

    Meer, van der Yvonne

    2017-01-01

    It is economically and environmentally important to match the nutrient supply to the nutrient requirements in pig production. Until now, the effects of different sanitary conditions on energy and nutrient requirements are not implemented in recommendations for nutrient composition of pig diets.

  3. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    Energy Technology Data Exchange (ETDEWEB)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce; Dobbins, John; Liu, Xianghong; Smolenski, Karl [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. These results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.

  4. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    Full Text Available Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural in the flood, dry and transition seasons during three consecutive years (2010-2012 within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH(4(+-N, SRP, K(+, COD(Mn, and Cl- were generally highest in urban watersheds. NO3(-N Concentration was generally highest in agricultural watersheds. Mg(2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research

  5. Superconducting cyclotron deflector conditioning status - an experience with high voltage

    International Nuclear Information System (INIS)

    Ghosh, Subhash; Chattopadhyay, Subrata; Bhattacharjee, Tanushyam; De, Anirban; Paul, Santanu; Pal, Gautam; Saha, Subimal; Mallik, C.; Bhandari, R.K.

    2009-01-01

    In this paper we report about the status of the electrostatic deflector which will be used in K500 superconducting cyclotron at VECC, Kolkata. For extraction of beams from superconducting cyclotron we have to achieve 130 kV/cm. Titanium and tungsten are used for anode and septum respectively. The deflector fits within the median plane of the superconducting magnet. We report here the voltage limit, sparking rates, dark current levels and the effects observed on conditioning. For commissioning of the superconducting cyclotron, the plan is to accelerate Neon beam of 50 MeV/n for which the required extraction voltage is 81 kV/cm and we reached up to 110 kV/cm. The conditioning test chamber is maintained at a pressure of 8.0 x 10 -7 mbar. (author)

  6. Conditional imitation might promote cooperation under high temptations to defect

    Science.gov (United States)

    Dai, Qionglin; Li, Haihong; Cheng, Hongyan; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong

    2012-07-01

    In this paper we introduce a conditional imitation rule into an evolutionary game, in which the imitation probabilities of individuals are determined by a function of payoff difference and two crucial parameters μ and σ. The parameter μ characterizes the most adequate goal for individuals and the parameter σ characterizes the tolerance of individuals. By using the pair approximation method and numerical simulations, we find an anomalous cooperation enhancement in which the cooperation level shows a nonmonotonic variation with the increase of temptation. The parameter μ affects the regime of the payoff parameter which supports the anomalous cooperation enhancement, whereas the parameter σ plays a decisive role on the appearance of the nonmonotonic variation of the cooperation level. Furthermore, to give explicit implications for the parameters μ and σ we present an alterative form of the conditional imitation rule based on the benefit and the cost incurred to individuals during strategy updates. In this way, we also provide a phenomenological interpretation for the nonmonotonic behavior of cooperation with the increase of temptation. The results give a clue that a higher cooperation level could be obtained under adverse environments for cooperation by applying the conditional imitation rule, which is possible to be manipulated in real life. More generally, the results in this work might point out an efficient way to maintain cooperation in the risky environments to cooperators.

  7. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  8. Evaluation of PBL schemes in WRF for high Arctic conditions

    DEFF Research Database (Denmark)

    Kirova-Galabova, Hristina; Batchvarova, Ekaterina; Gryning, Sven-Erik

    2015-01-01

    was examined through two configurations (25 vertical levels and 4km grid step, 42 vertical levels and 1.33 km grid step). WRF was run with two planetary boundary layer schemes: Mellor –Yamada – Janjic with local vertical closure and non – local Yonsei University scheme. Temporal evolution of planetary boundary...... for temperature, above 150 m for relative humidity and for all levels for wind speed. Direct comparison of model and measured data showed that vertical profiles of studied parameters were reconstructed by the model relatively better in cloudy sky conditions, compared to clear skies....

  9. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  10. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  11. Hulls and structural material waste conditioning by high pressure compaction

    International Nuclear Information System (INIS)

    Frotscher, H.

    1991-01-01

    Since 1986 KfK is developing a conditioning process. Main subjects of the investigations were the development of the production technique and the planning of the most important equipments of the process under remote conditions. The process is based on an extensive program of experiments. Inactive bulks of hulls and structural material components were compacted using maximum axial pressure load of about 300 MPa. The product density as function of press force was experimentally determinated. The mechanical loads of the press and tools were estimated for the design of these equipments. The hydraulic press consists a horizontal four-cylinder press. The maximum force of the press is 25 MN. The main advantage is the modular design of the press which is open on all sides. Especially the free accessibility from top is ensured. The report also represents relevant radiological data of the alternative product. Co-60 is the dominating activity of the product due to the effects of the heat production. An amount of 10 kg hull waste or 25 kg top and bottom pieces of the spent fuel assemblies per package is already beyond the Co-60 limit of the KONRAD regulations. The nuclear thermal power of a filled container is approximately sixty times lower compared with a vitrified HLW-container. Since the product shows thermal stability beyond 200 0 C, this it is suited for a combined disposal together with vitrified HLW-containers in salt bore holes of a geological disposal. The preliminary cost evaluation is based on a reprocessing throughput of 500 t HM per year and volume reduction factor of 5.3. Accordingly there are produced 300 waste packages with hulls only or 625 units with hulls and top and bottom pieces which require 1.6 or 2.3 millions DM respectively

  12. Pricing High-Dimensional American Options Using Local Consistency Conditions

    NARCIS (Netherlands)

    Berridge, S.J.; Schumacher, J.M.

    2004-01-01

    We investigate a new method for pricing high-dimensional American options. The method is of finite difference type but is also related to Monte Carlo techniques in that it involves a representative sampling of the underlying variables.An approximating Markov chain is built using this sampling and

  13. High-level waste processing and conditioning: vitrification

    International Nuclear Information System (INIS)

    Bonniaud, R.

    1981-02-01

    The vitrification process used to treat fission product solutions at the Marcoule Vitrification Plant is described. The type of waste processed is characterized by its very high activity and the long lifetimes of some of the emitters that it contains. The performance obtained with this process is given together with the future developments envisaged. The storage of glasses is described as well as their behavior with time [fr

  14. Decision making under conditions of high complexity and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Sherwell, J.

    1999-07-01

    There is a trend to move environmental policy away from a command and control position to a more market based approach. Decision making under this new approach is made more difficult for both the regulators and the regulated due in part to the constant conflict arising from the divergent expectations that participants may have for the outcome of policy deliberations and from the complexity and uncertainty inherent in the systems that are to be regulated. This change in policy reflects the maturing of environment issues from a must do towards maintenance and reasonable progress and a condition of Sustainable Development. The emerging science of Complexity Theory and the established methods of Game Theory can provide theoretical tools that can act as an aid to decision-makers as they negotiate the perplexing landscape of conflicting needs and wants. The role of these methods in the development and implementation of policy on issues associated with Sustainable Development is of considerable importance. This paper presents a review of approaches to decision making under uncertainty, from Game Theory and Complexity Theory. Data from simulations, such as the Iterated Prisoner's Dilemma, and Controlled Chaos are discussed as they relate the complexity of the underlying economic and ecological systems to natural resource use and exploitation, pollution control and carrying capacity. The important role for rules and their regular review and implementation is highlighted.

  15. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.

    Science.gov (United States)

    Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond

    2014-12-01

    Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the

  16. HUBUNGAN ANTARA INDEKS VEGETASI NDVI (NORMALIZED DIFFERENCE VEGETATION INDEX DAN KOEFISIEN RESESI BASEFLOW PADA BEBERAPA SUBDAS PROPINSI JAWA TENGAH DAN DAERAH ISTIMEWA YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    Bokiraiya Latuamury

    2013-06-01

    Full Text Available The background of this research is the decrease of environment capacity in cacthment ecosystem, especially impact of vegetation forest on behavior streamflow. The indicators of cacthment destruction can be seen through hydrograph characteristics. Evaluation of cactment respons of flow hydrographic as an evaluation tools of river catchment responses becomes very important to analyze because it is a benchmark in determination several policy about flood, drough, sedimentation and landslide handling. The research purpose is to analyze the relationship between vegetation index NDVI (Normalized Difference Vegetation Index and the characteristic of baseflow recession coefficient at several subcatchment areas in province of Central Java and Specific District of Yogjakarta.The method of this research is surveillance on data recording of AWLR (Automatic Water Level Recorder and data of River Flow Measuring Stations in order to separate the baseflow by calibration curve, and image interpretation of Landsat ETM+ for the transformation of vegetation index (NDVI-Normalized Difference Vegetation Index.The analysis on recession coefficient data (Krb and NDVI were correlated to analyze the strength of relationship between these two parameters. The results of statistical analysis on index NDVI and recession coefficient showsthat NDVI and recession coefficient value at R2 is 0.1427, F = 2.17 which is not significant at 1% significance level of 0.1646. The result shows a very weak correlation of 0.077 which mean that vegetation density (NDVI indexhas a very weak control on low flows. Basically, river baseflow is a genetic component of river flow which comes from aquifer storage and/or other low flow sources. Thus, geology and soil have a significant effect on baseflow.

  17. High-mass Star Formation and Its Initial Conditions

    Science.gov (United States)

    Zhang, C. P.

    2017-11-01

    In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc

  18. 77 FR 32006 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection

    Science.gov (United States)

    2012-05-31

    ... Special Conditions No. 25-423-SC] Special Conditions: Gulfstream Model GVI Airplane; High Incidence... pertaining to a high incidence protection system that replaces the stall warning system during normal... the condition existing in the test or performance standard in which V SR is being used. (3) The weight...

  19. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  20. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  1. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing Through Compartmentalized, Alluvial Aquifers

    Science.gov (United States)

    Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.

    2017-12-01

    As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.

  2. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    Science.gov (United States)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  3. 75 FR 80735 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection

    Science.gov (United States)

    2010-12-23

    ... Special Conditions No. 25-10-03-SC] Special Conditions: Gulfstream Model GVI Airplane; High Incidence... airworthiness standards for transport category airplanes associated with the use of high incidence protection... transport airplane with an executive cabin interior. The maximum takeoff weight will be 99,600 pounds, with...

  4. 76 FR 17022 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection

    Science.gov (United States)

    2011-03-28

    ... Special Conditions No. 25-423-SC] Special Conditions: Gulfstream Model GVI Airplane; High Incidence... for transport category airplanes associated with the use of high incidence protection. The applicable... with an executive cabin interior. The maximum takeoff weight will be 99,600 pounds, with a maximum...

  5. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID...

  6. Influence of the Magnitude and Spatial Distribution of Water Storage in Aquifers on the Character of Baseflow Recessions

    Science.gov (United States)

    Nieber, J. L.; Li, W.

    2017-12-01

    The instantaneous groundwater discharge (Qgw) from a watershed is related to volume of drainable water stored (Sgw) within the watershed aquifer(s). The relation is hysteretic and the magnitude of the hysteresis is completely scale-dependent. In the research reported here we apply a previously calibrated (USGS) GSFLOW model to the simulation of surface and subsurface runoff for the Sagehen Creek watershed. This 29.3 km2 watershed is located in the eastern range of the Sierra Nevada Mountains, and most of the precipitation falls in the form of snow. The GSFLOW model is composed of a surface water and shallow subsurface flow hydrology model, PRMS, and a groundwater flow component based on MODFLOW. PRMS is a semi-distributed watershed model, very similar in character to the well-known SWAT model. The PRMS model is coupled with the MODFLOW model in that deep percolation generated within the PRMS model feeds into the MODFLOW model. The simulated baseflow recessions, plotted as -dQ/dt vs Q, show a strong dependence to watershed topography and plot concave downward. These plots show a somewhat weaker dependence on the hydrologic fluxes of evapotranspiration and recharge, with the concave downward shape maintained but somewhat modified by these hydrologic fluxes. As expected the Qgw vs Sgw relation is markedly hysteretic. The cause for this hysteresis is related to the magnitude of water stored, and also the spatial distribution of water stored in the watershed, with the antecedent storage in upland areas controlling the recession flow in late time, while the valley area dominates the recession flow in the early time. Both the minimum streamflow (Qmin ; the flow at the transition between early time and late time uninterrupted recession) and the intercept (intercept of the regression line fit to the recession data on a log-log scale) show a strong relationship with antecedent streamflows. The minimum streamflow, Qmin, is found to be a valid normalizing parameter for

  7. The Epidemiology of Overuse Conditions in Youth Football and High School Football Players.

    Science.gov (United States)

    Morris, Kevin; Simon, Janet E; Grooms, Dustin R; Starkey, Chad; Dompier, Thomas P; Kerr, Zachary Y

    2017-10-01

    High-intensity sport training at the youth level has led to increased concern for overuse conditions. Few researchers have examined overuse conditions in youth sports.   To examine the rates, risks, and distributions of overuse conditions between youth and high school football players.   Descriptive epidemiologic study.   Youth and high school football teams.   The Youth Football Safety Study (YFSS) investigated youth football athletes from age 5 to 14 years. The National Athletic Treatment, Injury and Outcomes Network (NATION) focused on high school football athletes 14 to 18 years old. The YFSS data consisted of 210 team-seasons, and the NATION data consisted of 138 team-seasons.   Athletic trainers collected football injury and exposure data during the 2012 and 2013 seasons. Injury rates, risks, and distributions were calculated, with injury rate ratios, risk ratios, and injury proportion ratios with 95% confidence intervals (CIs) comparing youth and high school football players.   The YFSS reported 1488 injuries, of which 53 (3.6%) were overuse conditions. The NATION reported 12 013 injuries, of which 339 (2.8%) were overuse conditions. The overuse condition rate did not differ between high school and youth football (3.93 versus 3.72/10 000 athlete-exposures; injury rate ratio = 1.06; 95% CI = 0.79, 1.41). However, the 1-season risk of overuse condition was higher in high school than in youth football players (2.66% versus 1.05%; risk ratio = 2.53; 95% CI = 1.84, 3.47). Compared with high school football players, youth football players had greater proportions of overuse conditions that were nontime loss (ie, football players. However, differences existed between the 2 levels of competition. Although additional research on the incidence of overuse conditions across all youth and high school sports is needed, these findings may highlight the need for programming that is specific to competition level.

  8. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  9. Infants' Perception of Affordances of Slopes under High- and Low-Friction Conditions

    Science.gov (United States)

    Adolph, Karen E.; Joh, Amy S.; Eppler, Marion A.

    2010-01-01

    Three experiments investigated whether 14- and 15-month-old infants use information for both friction and slant for prospective control of locomotion down slopes. In Experiment 1, high- and low-friction conditions were interleaved on a range of shallow and steep slopes. In Experiment 2, friction conditions were blocked. In Experiment 3, the…

  10. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  11. Development of a Shared Vision for Groundwater Management to Protect and Sustain Baseflows of the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Holly E. Richter

    2014-08-01

    Full Text Available Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  12. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...

  13. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  14. Application on electrochemistry measurement of high temperature high pressure condition in PWR nuclear power plants

    International Nuclear Information System (INIS)

    Li Yuchun; Xiao Zhongliang; Jiang Ya; Yu Xiaowei; Pang Feifei; Deng Fenfang; Gao Fan; Zhou Nianguang

    2011-01-01

    High temperature high pressure electrochemistry testing system was comprehensively analyzed in this paper, according to actual status for supervision in primary and secondary circuits of PWR nuclear power plants. Three research methods were reviewed and discussed for in-situ monitor system. By combination with ECP realtime measurement it was executed for evaluation and water chemistry optimization in nuclear power plants. It is pointed out that in-situ electrochemistry measurement has great potential application for water chemistry evaluation in PWR nuclear power plants. (authors)

  15. A high control bandwidth design method for aalborg inverter under weak grid condition

    DEFF Research Database (Denmark)

    Wu, Weimin; Zhou, Cong; Wang, Houqin

    2017-01-01

    Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...

  16. 78 FR 77611 - Special Conditions: Airbus, A350-900 Series Airplane; High Speed Protection System

    Science.gov (United States)

    2013-12-24

    ... initiated three seconds after operation of the high speed warning system by application of a load of 1.5g (0...-1001; Notice No. 25-13-35-SC] Special Conditions: Airbus, A350-900 Series Airplane; High Speed...-speed protection system. The applicable airworthiness regulations do not contain adequate or appropriate...

  17. At what conditions does zircon grow/dissolve during high-T metamorphism? Relating zircon textures to PT-conditions

    Science.gov (United States)

    Kunz, Barbara E.; Regis, Daniele; Manzotti, Paola; Engi, Martin

    2015-04-01

    A key question in ziconology is when and how zircon grows during metamorphism. To shed light on zircon forming processes and the corresponding PT-conditions during high-T metamorphism a case study was undertaken. The Ivrea Zone (N-Italy) exposes a lower continental crustal section in which a continuous metamorphic field gradient from amphibolite to granulite facies is documented. This field gradient is thought to reflect protracted heating during late Paleozoic times, with a probable high-T peak in the Permian. We present first results from a primarily textural study supported by U-Pb ages, Th/U ratios and Ti-in-Zrn thermometry. Four types of zircon were identified based on their overgrowth proportions and the preservation of detrital cores. Zircon grains were thus classified as Type1 - detrital grains with no overgrowth or very narrow rims (300 Ma) and appears to reflect an early dehydration phase. Rim2b has Permian ages (median 275 Ma), is by far the most common overgrowth type, found in a wide PT-range. Its development appears related to biotite breakdown. Rim3 is texturally indicative of magmatic zircon, occurs only in diatexites. Rim4 is the latest overgrowth and is locally found at all metamorphic grades. Textural features suggest late fluid-related recrystallization of existing zircon. At lowest grade (675±35°C, 6±2 kbar) zircons show type1 only, overgrowths are too thin to clearly identify the rim type. Further upgrade (~700°C, 7 kbar) type1 and type2 dominate. Type2 zircons show rim1, rim2a and occasionally rim4. At the Mu-out isograd (750±50°C, 8.2±1.4 kbar) most zircons are of type2, now with rim2b instead of 2a, in addition to rim1 and rim4. Near and in granulite facies (to 800°C, 8±2 kbar) mostly zircon type2 and type4 are present. While rim1 gets more narrow with increasing metamorphic grade, rim2b grows significantly thicker. Occasionally rim2a and rim4 occur. Close to the Bt-out isograd (~860°C, 9.2±1.7 kbar), mostly type3 and type4 are

  18. Decomposition of conditional probability for high-order symbolic Markov chains

    Science.gov (United States)

    Melnik, S. S.; Usatenko, O. V.

    2017-07-01

    The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.

  19. Data base system for research and development of high-level waste conditioning

    International Nuclear Information System (INIS)

    Masaki, Toshio; Igarashi, Hiroshi; Ohuchi, Jin; Miyauchi, Tomoko.

    1992-01-01

    Results of research and development for High-Level Waste Conditioning are accumulated as large number of documents. Data Base System for Research and Development of High-Level Waste Conditioning has been developed since 1987 to search for necessary informations correctly and rapidly with the intention of offering and transferring the results to organization inside and outside of PNC. This data base system has contributed that technical informations has been correctly and rapidly searched. Designing of devices etc. and making of reports have become easy and work has been efficiently and rationally accomplished. (author)

  20. High Level Ethanol Production by Nitrogen and Osmoprotectant Supplementation under Very High Gravity Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Pachaya Chan-u-tit

    2013-02-01

    Full Text Available Optimization of nutrient supplements i.e., yeast extract (1, 3 and 5 g·L−1, dried spent yeast (DSY: 4, 12 and 20 g·L−1 and osmoprotectant (glycine: 1, 3 and 5 g·L−1 to improve the efficiency of ethanol production from a synthetic medium under very high gravity (VHG fermentation by Saccharomyces cerevisiae NP 01 was performed using a statistical method, an L9 (34 orthogonal array design. The synthetic medium contained 280 g·L−1 of sucrose as a sole carbon source. When the fermentation was carried out at 30 °C, the ethanol concentration (P, yield (Yp/s and productivity (Qp without supplementation were 95.3 g·L−1, 0.49 g·g−1 and 1.70 g·L−1·h−1, respectively. According to the orthogonal results, the order of influence on the P and Qp values were yeast extract > glycine > DSY, and the optimum nutrient concentrations were yeast extract, 3; DSY, 4 and glycine, 5 g·L−1, respectively. The verification experiment using these parameters found that the P, Yp/s and Qp values were 119.9 g·L−1, 0.49 g g−1 and 2.14 g·L−1·h−1, respectively. These values were not different from those of the synthetic medium supplemented with 9 g·L−1 of yeast extract, indicating that DSY could be used to replace some amount of yeast extract. When sweet sorghum juice cv. KKU40 containing 280 g·L−1 of total sugar supplemented with the three nutrients at the optimum concentrations was used as the ethanol production medium, the P value (120.0 g·L−1 was not changed, but the Qp value was increased to 2.50 g·L−1·h−1.

  1. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  2. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  3. [Investigation the Inhibitory Effects of Kaempferol on Rat Renalmesangial Cells Proliferation under High Glucose Condition].

    Science.gov (United States)

    Chen, Ni; Han, Peng-Ding; Chen, Wen; Deng, Yan

    2017-07-01

    To investigate the protective effects of kaempferol on rat renal mesangial cells under high glucose condition and explore its mechanism. The HBZY-1 cells were divided into normal glucose group (5.5 mmol/L), high glucose group (25 mmol/L), 10 μmol/L kaempferol+high glucose group, and 30 μmol/L kaempferol+high glucose group. Cell proliferative ability was measured by MTT; cell cycle was analyzed by flow cytometry; mRNA and protein levels were determined by Real-time PCR and Western blot, respectively. Kaempferol had no effect on the proliferative ability of rat renal mesangial cells under normal glucose (5.5 mmol/L) condition. High glucose (25 mmol/L) enhanced the cell proliferative ability, and this effect was antagonized by kaempferol (10-30 μmol/L) treatment. High glucose reduced the cell population at G 0 /G 1 phase with an associated increase in S phase, and had no effect on G₂/M phase; and kaempferol treatment restored high glucose-induced changes in cell cycle. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Kaempferol also prevented high glucose-induced increase in fibronectin and connective tissue growth factor mRNA and protein expression levels. Further, high glucose caused an increase in protein level of phosphorylated p38 mitogen-activated protein kinases (p38 MAPK), which was antagonized by kaempferol treatment. Our results suggest that kaempferol exerts its protective effect on rat renal mesangial cells under high glucose condition via p38 MAPK signaling pathway.

  4. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  5. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  6. 13 CFR 143.12 - Special grant or subgrant conditions for “high-risk” grantees.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Special grant or subgrant conditions for âhigh-riskâ grantees. 143.12 Section 143.12 Business Credit and Assistance SMALL BUSINESS... or subgrantee: (1) Has a history of unsatisfactory performance, or (2) Is not financially stable, or...

  7. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Science.gov (United States)

    2010-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the qualification...

  8. The methods for diagnostic of the technical condition of vehicles employing high precise satellite data

    Directory of Open Access Journals (Sweden)

    Anatoliy KULIK

    2014-03-01

    Full Text Available The paper presents a methodology for diagnostic of the technical condition of vehicle. The high accuracy of the actual trajectory of the transport aggregate (TA is provided by the use of local differential mode of global navigation satellite system (GNSS. Comparing the real and rational trajectories will determine the kinematic and dynamic characteristics of the car.

  9. 21 CFR 1403.12 - Special grant or subgrant conditions for “high-risk” grantees.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Special grant or subgrant conditions for âhigh-riskâ grantees. 1403.12 Section 1403.12 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY UNIFORM...) Has a history of unsatisfactory performance, or (2) Is not financially stable, or (3) Has a management...

  10. Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors

    Science.gov (United States)

    Lykov, A. N.

    2008-06-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.

  11. Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2008-01-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors

  12. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Zong Yao

    2016-06-01

    Full Text Available This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts, the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  13. Mixed problem with integral boundary condition for a high order mixed type partial differential equation

    OpenAIRE

    M. Denche; A. L. Marhoune

    2003-01-01

    In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.

  14. Cavitation Simulation on Conventional and Highly-Skewed Propellers in the Behind Condition

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Mikkelsen, Robert Flemming

    2011-01-01

    The cavitating flows around conventional and highly-skewed propellers in the behind-hull condition are simulated by an in-house RANS solver, EllipSys (Sørensen 2003), with the cavitation model, based on the homogeneous equilibrium modeling (HEM) approach and a vapor transport equation. The valida...

  15. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  16. High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance

    KAUST Repository

    Ming, Jun; Zheng, Junwei; Zhou, Qun; Ren, Jianxin; Ming, Hai; Jia, Zhenyong; Zhang, Yanqing

    2017-01-01

    Preparation of uniform spherical Li4Ti5O12 with high tap density is significant to achieve a high volumetric energy density in lithium-ion batteries. Herein, Li4Ti5O12 micro-spheres with variable tap-density and tunable size distribution were synthesized by a newly designed industrial spray drying approach. The slurry concentration, sintering time and sintering conditions after spray, the effect of Li/Ti molar ratio on the lithium ion (Li+) storage capability were investigated. A narrow particle size distribution around 10 μm and high tap-density close to 1.4 g cm-3 of the Li4Ti5O12 spheres can be obtained under the optimized conditions. The Li4Ti5O12 spheres can deliver much higher capacity of 168 mAh g-1 at 1 C-rate and show high capacity retention of 97.7% over 400 cycles. The synthetic conditions are confirmed to be critical for improving the electron conductivity and Li+ diffusivity by adjusting the crystal and spatial structures. As-prepared high performance Li4Ti5O12 is an ideal electrode for Li-ion batteries or capacitors; meanwhile the presented approach is also applicable for preparing other kind of spherical materials.

  17. High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance

    KAUST Repository

    Ming, Jun

    2017-03-17

    Preparation of uniform spherical Li4Ti5O12 with high tap density is significant to achieve a high volumetric energy density in lithium-ion batteries. Herein, Li4Ti5O12 micro-spheres with variable tap-density and tunable size distribution were synthesized by a newly designed industrial spray drying approach. The slurry concentration, sintering time and sintering conditions after spray, the effect of Li/Ti molar ratio on the lithium ion (Li+) storage capability were investigated. A narrow particle size distribution around 10 μm and high tap-density close to 1.4 g cm-3 of the Li4Ti5O12 spheres can be obtained under the optimized conditions. The Li4Ti5O12 spheres can deliver much higher capacity of 168 mAh g-1 at 1 C-rate and show high capacity retention of 97.7% over 400 cycles. The synthetic conditions are confirmed to be critical for improving the electron conductivity and Li+ diffusivity by adjusting the crystal and spatial structures. As-prepared high performance Li4Ti5O12 is an ideal electrode for Li-ion batteries or capacitors; meanwhile the presented approach is also applicable for preparing other kind of spherical materials.

  18. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  19. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  20. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw

    DEFF Research Database (Denmark)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David

    2014-01-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from...... of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately...

  1. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  2. Transition-Metal-Free Highly Efficient Aerobic Oxidation of Sulfides to Sulfoxides under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2009-12-01

    Full Text Available A highly efficient transition-metal-free catalytic system Br2/NaNO2/H2O has been developed for a robust and economic acid-free aerobic oxidation of sulfides. It is noteworthy that the sulfide function reacts under mild conditions without over-oxidation to sulfone. The role of NaNO2as an efficient NO equivalent for the activation of molecular oxygen was identified. Under the optimal conditions, a broad range of sulfide substrates were converted into their corresponding sulfoxides in high yields by molecular oxygen. The present catalytic system utilizes cheap and readily available agents as the catalysts, exhibits high selectivity for sulfoxide products and releases only innocuous water as the by-products.

  3. Rock Strength Anisotropy in High Stress Conditions: A Case Study for Application to Shaft Stability Assessments

    Directory of Open Access Journals (Sweden)

    Watson Julian Matthew

    2015-03-01

    Full Text Available Although rock strength anisotropy is a well-known phenomenon in rock mechanics, its impact on geotechnical design is often ignored or underestimated. This paper explores the concept of anisotropy in a high stress environment using an improved unified constitutive model (IUCM, which can account for more complex failure mechanisms. The IUCM is used to better understand the typical responses of anisotropic rocks to underground mining. This study applies the IUCM to a proposed rock shaft located in high stress/anisotropic conditions. Results suggest that the effect of rock strength anisotropy must be taken into consideration when assessing the rock mass response to mining in high stress and anisotropic rock conditions.

  4. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  5. Flow conditioning for improved optical propagation of beams through regions bounded by surfaces of high solidity

    International Nuclear Information System (INIS)

    Robey, H.F.; Albrecht, G.F.; Freitas, B.L.

    1991-01-01

    A flow conditioning system has been designed to maximize the thermal homogeneity in an enclosed region through which a laser beam must propagate. In the present application, such an enclosed region exists between the Nd:glass disks of a high average power solid-state laser amplifier. Experiments have been conducted on a test facility to quantify the magnitude of the beam losses due to thermal scattering. It is shown that the intensity of the incoherent light which is thermally scattered from this region can be reduced to less than 0.1% of the incident-beam intensity under apropriate flow and cooling conditions

  6. Climatology of GNPs ionospheric scintillation at high and mid latitudes under different solar activity conditions

    International Nuclear Information System (INIS)

    Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A.

    2010-01-01

    We analyze data of ionospheric scintillation over North European regions for the same period (October to November) of two different years (2003 and 2008), characterized by different geomagnetic conditions. The work aims to develop a scintillation climatology of the high- and mid-latitude ionosphere, analyzing the behaviour of the scintillation occurrence as a function of the magnetic local time (MLT) and of the altitude adjusted corrected magnetic latitude (M lat), to characterize scintillation scenarios under different solar activity conditions. The results shown herein are obtained merging observations from a network of GISTMs (GPS Ionospheric Scintillation and TEC Monitor) located over a wide range of latitudes in the northern hemisphere. Our findings confirm the associations of the occurrence of the ionospheric irregularities with the expected position of the auroral oval and of the ionospheric trough walls and show the contribution of the polar cap patches even under solar minimum conditions.

  7. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  8. Evaluation of high-energy electron detectors for probing the inner magnetosphere under high-counting condition

    International Nuclear Information System (INIS)

    Tamada, Yukihiro; Takashima, Takeshi; Mitani, Takefumi; Miyake, Wataru

    2013-01-01

    An ERG (Energization and Radiation in Geospace) satellite will be launched to study the acceleration processes of energetic particles in the radiation belt surrounding the earth. It is very important to reveal the acceleration process of high-energy particles for both science and the application to space weather forecast. Drastic increases of high-energy electrons in the radiation belt is sometimes observed during a geomagnetic storm. When a large magnetic storm occurs, energetic electron count rates may exceed flux limits expected in the nominal design and large number of incident electrons leading to detection loss. The purpose of this study is to demonstrate that the count rate range of a single detection on board ERG satellite can be expanded by means of reading circuit operations to decrease an area of detection. In our ground experiment, we also found an unexpected result that count peaks shift to the higher energy side under high counting conditions. (author)

  9. Technical evaluation on high aging, and performance conditions on long-term conservation program

    International Nuclear Information System (INIS)

    Yamashita, Atsushi

    2001-01-01

    In order to secure safety and safe operation of power plants, in every nuclear power plants, conservation actions based on preventive conservation are performed. They contain operative condition monitoring, patrolling inspection, and periodical tests on important systems and apparatus by operators under plant operation and condition monitoring by maintenance workers, and so on, and when finding out their abnormal conditions, their detailed survey is performed to adopt adequate countermeasures such as recovery, exchange, and so on. And, to equipments for nuclear power generation periodical conditions were obliged by legal examinations and by independent inspections. As a result of these conservation actions, even on a plant elapsed about 30 years since beginning of its operation it was thought that the plant was aged with elapsing time even if not recognizing any indication on its aged deterioration at that time. Therefore, for its concrete countermeasure, by supposing long-term operation of a plant with longer operation history, some technical evaluation on aged phenomena were carried out, to investigate on reflection of the obtained results to present conservation actions. Here were described on efforts on the high aging countermeasures, and performing conditions of long-term conservation in the Tsuruga Unit No. 1 Nuclear Power Station. (G.K.)

  10. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Bell, R.E.; Bitter, M.; Darrow, D.S.; Fredrickson, E.; Grek, B.

    1995-05-01

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date

  11. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    OpenAIRE

    Abramov Fedir V.

    2017-01-01

    The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamen...

  12. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions

    DEFF Research Database (Denmark)

    Moretto, T.; Ridley, A.J.; Engebretson, M.J.

    2000-01-01

    A high-density structure under northward interplanetary magnetic field B-z conditions is identified at the Wind and IMP 8 satellites, both in the solar wind on August 22, 1995. A compression of the magnetosphere is observed by the GOES 7 magnetometer within a few minutes of the pressure increase ...... the interpretation as events of traveling convection vortices, as has been suggested by past studies....

  13. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.

    Science.gov (United States)

    Parkash, Ravi; Ranga, Poonam; Aggarwal, Dau Dayal

    2014-09-01

    Several Drosophila species originating from tropical humid localities are more resistant to starvation and heat stress than populations from high latitudes but mechanistic bases of such physiological changes are largely unknown. In order to test whether humidity levels affect starvation and heat resistance, we investigated developmental acclimation effects of low to high humidity conditions on the storage and utilization of energy resources, body mass, starvation survival, heat knockdown and heat survival of D. melanogaster. Isofemale lines reared under higher humidity (85% RH) stored significantly higher level of lipids and showed greater starvation survival hours but smaller in body size. In contrast, lines reared at low humidity evidenced reduced levels of body lipids and starvation resistance. Starvation resistance and lipid storage level were higher in females than males. However, the rate of utilization of lipids under starvation stress was lower for lines reared under higher humidity. Adult flies of lines reared at 65% RH and acclimated under high or low humidity condition for 200 hours also showed changes in resistance to starvation and heat but such effects were significantly lower as compared with developmental acclimation. Isofemale lines reared under higher humidity showed greater heat knockdown time and heat-shock survival. These laboratory observations on developmental and adult acclimation effects of low versus high humidity conditions have helped in explaining seasonal changes in resistance to starvation and heat of the wild-caught flies of D. melanogaster. Thus, we may suggest that wet versus drier conditions significantly affect starvation and heat resistance of D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  15. Magnetic activity effect on equatorial spread-F under high and low solar activity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, K S.V.; Somayajulu, V V; Krishna Murthy, B V

    1986-08-01

    The effect of magnetic activity on spread-F at two equatorial stations, Trivandrum and Huancayo, separated in longitude by about 150 deg, under high and low solar activity conditions has been investigated. Magnetic activity produces strong inhibition effect on spread-F at Huancayo compared to that at Trivandrum especially during high solar activity period. This results in a decrease of spread-F with solar activity at Huancayo in contrast to Trivandrum. These findings are explained in terms of F-region electrodynamics and Rayleigh-Taylor instability mechanism for spread-F.

  16. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... (H2O) vapor content in the flue gas on the high-temperaturecorrosion of austenitic stainless steel (TP 347H FG) under laboratory conditions, to improve the understanding of corrosionmechanisms. Deposit-coated and deposit-free samples were isothermally exposed for 72 h in a synthetic flue gas...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  17. Life quality and living standards in big cities under conditions of high-rise construction development

    Science.gov (United States)

    Avdeeva, Elena; Averina, Tatiana; Kochetova, Larisa

    2018-03-01

    Modern urbanization processes occurring on a global scale inevitably lead to an increase in population density in large cities. People assess the state of life quality and living standards of megalopolises under conditions of high-rise construction development ambiguously. Using SWOT analysis, the authors distinguished positive and negative aspects of high-rise construction, highlighted threats to its development and its opportunities. The article considers the model of development of the city's industry and infrastructure, which enables determining the optimal volume of production by sectors and branches of city economy in order to increase its innovative, production and economic potential and business activity.

  18. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  19. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  20. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.

    Science.gov (United States)

    Hall-Stoodley, L; Keevil, C W; Lappin-Scott, H M

    1998-12-01

    The rapidly growing mycobacteria (RGM) are broadly disbursed in the environment. They have been recovered from freshwater, seawater, wastewater and even potable water samples and are increasingly associated with non-tuberculous mycobacterial disease. There is scant evidence that non-tuberculous mycobacteria (NTM) and RGM form biofilms. Therefore, an experimental system was designed to assess the ability of RGM to form biofilms under controlled laboratory conditions. A flat plate reactor flow cell was attached to either a high or low nutrient reservoir and monitored by image analysis over time. Two surfaces were chosen for assessment of biofilm growth: silastic which is commonly used in medical settings and high density polyethylene (HDPE) which is prevalent in water distribution systems. The results show that Mycobacterium fortuitum and M. chelonae formed biofilms under both high and low nutrient conditions on both surfaces studied. These results suggest that RGM may form biofilms under a variety of conditions in industrial and medical environments. 1998 Society of Applied Microbiology.

  1. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  2. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  3. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    Science.gov (United States)

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  4. The Formation of Carbide-Free Bainite in High-Carbon High-Silicon Steel under Isothermal Conditions

    Science.gov (United States)

    Tereshchenko, N. A.; Yakovleva, I. L.; Mirzaev, D. A.; Buldashev, I. V.

    2017-12-01

    It is shown that a carbide-free bainite structure can be formed in high-carbon steel of the Fe-Si-Mn-Cr-V system using a traditional furnace facility. The structural aspects of bainitic transformation developing under isothermal conditions at 300°C have been studied by the methods of X-ray diffraction and transmission electron microscopy. Orientation relationships between crystalline lattices of γ and α phases have been established. A superequilibrium carbon concentration in the bainite α phase has been determined.

  5. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  6. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    Science.gov (United States)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  7. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    International Nuclear Information System (INIS)

    Strączkiewicz, M; Barszcz, T; Jabłoński, A

    2015-01-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine. (paper)

  8. [Obesity paradox or reverse epidemiology: is high body weight a protective factor for various chronic conditions].

    Science.gov (United States)

    Dorner, T E; Rieder, A

    2010-03-01

    Overweight and obesity are independent risk factors for the development of disease and death in the general population. However, in people with various conditions (old age, wasting diseases, heart diseases or renal dialysis) overweight and obesity are associated with a higher survival rate. The terms "reverse epidemiology" or "obesity paradox" have been suggested to describe this finding. However, it still remains uncertain, whether this phenomenon is attributable to a real protective effect of high body fat mass. Methodological problems in studies suggesting an obesity paradox such as survivor bias, selection bias, lead time bias or, in meta analyses, publication bias and confounders have been discussed. These cannot, however, entirely explain the observed phenomenon. Biological models, examining possible explanations for the protective effect of high body mass, for instance, in wasting diseases and elderly patients, have also been produced. In particular high inflammation markers combined with malnutrition predict a high mortality rate among patients with various medical conditions: overweight and obesity could counter these effects. Possible implications for clinical and public health recommendations regarding weight management and nutrition are issues for future research. In elderly subjects and patients with a poor prognosis the impact of weight management on quality of life should also be taken into account.

  9. Extraction of diode parameters of silicon solar cells under high illumination conditions

    International Nuclear Information System (INIS)

    Khan, Firoz; Baek, Seong-Ho; Park, Yiseul; Kim, Jae Hyun

    2013-01-01

    Graphical abstract: We have developed an analytical method to determine the diode parameters of concentrator solar cells under high illumination conditions. The determined values of diode parameters have been used to compute the theoretical values of performance parameters. The computed values of the open circuit voltage, curve factor, and efficiency obtained using diode parameters determined with this method showed good agreement (<2% discrepancy) with their experimental values in the temperature range 298–323 K. Highlights: • An analytical method to extract the diode parameters of concentrated Si solar cells. • This method uses single I–V curve under high illumination conditions. • The theoretical values of performance parameters have been computed. • Theoretical values of parameters matched within 2% discrepancy limit. • This method gives best results among the methods used in this work. - Abstract: An analytical method has been developed to extract all four diode parameters, namely the shunt resistance, series resistance, diode ideality factor, and reverse saturation current density, using a single J–V curve, based on one exponential model of silicon solar cells under high illumination conditions. The slope of the J–V curve (dV/dJ) at a short circuit condition is used to determine the value of the shunt resistance. The slope of the J–V curve at an open circuit condition together with the short circuit current density, open circuit voltage, current density, and voltage at maximum power point have been used to determine the values of the series resistance, diode ideality factor, and reverse saturation current density. The determined values of the diode parameters have been used to compute the theoretical values of the open circuit voltage, curve factor, and efficiency of the solar cell. The theoretical J–V curves matched well with the corresponding experimental curves. This method is applied to determine the diode parameters of concentrator

  10. Wall conditioning with a high magnetic field in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Li Jiangang; Gu Xuemao; Gao Xiang; Zhang Souying; Jie Yingxian; Yang Xiaokang

    2000-01-01

    ICRF wall conditioning techniques, which includes the hydrogen removal, impurity cleaning, boronization and siliconization, were described in this paper. This new technique has been demonstrated to be very effective for wall conditioning, recycling, isotopic control and used daily during experiments. The RF plasma parameters were measured as T e =3-8 eV, T i =0.5-2 keV, n e =0.3-5 x 10 17 m -3 by different diagnostics. The nontoxic and nonexplosive solid carborane powder was used for the RF boronization. Energetic ions cracked the carborane molecule and the boron ions impacted and deposited onto first wall. Comparing with GDC boronization, the B/C coating film shows the higher adhesion, better uniformity and longer lifetime to the plasma discharges. Siliconization was carried out by using a high field side long RF antenna, which made the discharge more uniform. The ratio of SiH 4 to helium is about 5:95 at the pressure range of P v =0.8-8 x 10 -2 Pa. Compare with boronization, it showed quicker recovery from a bad wall condition due to leakage of air to good wall condition. Plasma density could be easily controlled after siliconization. But the lifetime is much shorter than that obtained by boronization. Plasma performance has been improved after RF boronization and siliconization. (author)

  11. Study of the CMS RPC detector performance in high radiation background conditions

    CERN Document Server

    Miguel Colin, Osvaldo

    2017-01-01

    The RPC system at the CMS Detector is operating successfully from beginning of the data taking. The high instantaneous luminosity causes an extremely high flux of ionizing particles. The long period of operation (Run1 and Run2) in a huge radiation background conditions, gives the opportunity to study the operation capability of the RPCs and also to predict a data-driven extrapolation about the expecting particle rates at HL LHC (High Luminosity) scenario. The obtained results in terms of measured rate, currents and integrated charged will be presented in the poster. When it is possible they will be compared to the relevant results obtained from the dedicated study where a set of test chambers have been irradiated at GIF++ laboratory setup.

  12. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    Science.gov (United States)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  13. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    International Nuclear Information System (INIS)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-01-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ∼1×10 17 /m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  14. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  15. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  16. A short discussion on artifact creating conditions using multibeam bathymetric systems in a highly reflecting and smooth bottom

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Using multibeam system, artifact creating conditions are dominant when functioning in highly reflective and flat bottom areas. This simulation study manifests the causes responsible for creating such conditions which influence seafloor...

  17. Performance of high level waste forms and engineered barriers under repository conditions

    International Nuclear Information System (INIS)

    1991-02-01

    The IAEA initiated in 1977 a co-ordinated research programme on the ''Evaluation of Solidified High-Level Waste Forms'' which was terminated in 1983. As there was a continuing need for international collaboration in research on solidified high-level waste form and spent fuel, the IAEA initiated a new programme in 1984. The new programme, besides including spent fuel and SYNROC, also placed greater emphasis on the effect of the engineered barriers of future repositories on the properties of the waste form. These engineered barriers included containers, overpacks, buffer and backfill materials etc. as components of the ''near-field'' of the repository. The Co-ordinated Research Programme on the Performance of High-Level Waste Forms and Engineered Barriers Under Repository Conditions had the objectives of promoting the exchange of information on the experience gained by different Member States in experimental performance data and technical model evaluation of solidified high level waste forms, components of the waste package and the complete waste management system under conditions relevant to final repository disposal. The programme includes studies on both irradiated spent fuel and glass and ceramic forms as the final solidified waste forms. The following topics were discussed: Leaching of vitrified high-level wastes, modelling of glass behaviour in clay, salt and granite repositories, environmental impacts of radionuclide release, synroc use for high--level waste solidification, leachate-rock interactions, spent fuel disposal in deep geologic repositories and radionuclide release mechanisms from various fuel types, radiolysis and selective leaching correlated with matrix alteration. Refs, figs and tabs

  18. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  19. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L G [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C I; Dal Castel, C; Santos, K S; Mello, A C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S A; Oviedo, M A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  20. Experimental and simulational study of the operation conditions for a high transmission mass filter

    International Nuclear Information System (INIS)

    Ayesh, A. I.; Lassesson, A.; Brown, S. A.; Dunbar, A. D. F.; Kaufmann, M.; Partridge, J. G.; Reichel, R.; Lith, J. van

    2007-01-01

    The operation conditions of a double pulsed field mass filter were studied using both experiment and simulation. The mass filter consists of two pairs of parallel plates and operates on the time-of-flight principle. The study showed that the ions' beam deflection angle is a critical factor in optimizing the mass filter transmission efficiency. This angle is dependent on the accelerating voltage, ion mass, and horizontal velocity of the ions. The optimum operating conditions for the mass filter were found and used to study the mass distribution of palladium ions produced by a magnetron sputtering source. The study shows that this mass filter is suitable for technological applications because of its high transmission and wide mass range

  1. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  2. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Furlan, L.G.; Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S.

    2011-01-01

    Highlights: → Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. → Polypropylene Nanocomposites with higher increase on impact resistance. → Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  3. A high-protein diet enhances satiety without conditioned taste aversion in the rat.

    Science.gov (United States)

    Bensaïd, Ahmed; Tomé, Daniel; L'Heureux-Bourdon, Diane; Even, Patrick; Gietzen, Dorothy; Morens, Céline; Gaudichon, Claire; Larue-Achagiotis, Christiane; Fromentin, Gilles

    2003-02-01

    In order to determine the respective roles of conditioned food aversion, satiety and palatability, we studied behavioral responses to a 50% total milk protein diet, compared with those to a normal protein diet containing 14% total milk protein. Different paradigms were employed, including meal pattern analysis, two-choice testing, flavor testing, a behavioral satiety sequence (BSS) and taste reactivity. Our experiments showed that only behavioral and food intake parameters were disturbed during the first day when an animal ate the high-protein (P50) diet, and that most parameters returned to baseline values as soon as the second day of P50. Rats adapted to P50 did not acquire a conditioned taste aversion (CTA) but exhibited satiety, and a normal BSS. The initial reduction in high-protein diet intake appeared to result from the lower palatability of the food combined with the satiety effect of the high-protein diet and the delay required for metabolic adaptation to the higher protein level.

  4. Investigation of a High Head Francis Turbine at Runaway Operating Conditions

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-03-01

    Full Text Available Hydraulic turbines exhibit total load rejection during operation because of high fluctuations in the grid parameters. The generator reaches no-load instantly. Consequently, the turbine runner accelerates to high speed, runaway speed, in seconds. Under common conditions, stable runaway is only reached if after a load rejection, the control and protection mechanisms both fail and the guide vanes cannot be closed. The runner life is affected by the high amplitude pressure loading at the runaway speed. A model Francis turbine was used to investigate the consequences at the runaway condition. Measurements and simulations were performed at three operating points. The numerical simulations were performed using standard k-ε, k-ω shear stress transport (SST and scale-adaptive simulation (SAS models. A total of 12.8 million hexahedral mesh elements were created in the complete turbine, from the spiral casing inlet to the draft tube outlet. The experimental and numerical analysis showed that the runner was subjected to an unsteady pressure loading up to three-times the pressure loading observed at the best efficiency point. Investigates of unsteady pressure pulsations at the vaneless space, runner and draft tube are discussed in the paper. Further, unsteady swirling flow in the blade passages was observed that was rotating at a frequency of 4.8-times the runaway runner angular speed. Apart from the unsteady pressure loading, the development pattern of the swirling flow in the runner is discussed in the paper.

  5. Formation of scandium carbides and scandium oxycarbide from the elements at high-(P, T) conditions

    International Nuclear Information System (INIS)

    Juarez-Arellano, Erick A.; Winkler, Bjoern; Bayarjargal, Lkhamsuren; Friedrich, Alexandra; Milman, Victor; Kammler, Daniel R.; Clark, Simon M.; Yan Jinyuan; Koch-Mueller, Monika; Schroeder, Florian; Avalos-Borja, Miguel

    2010-01-01

    Synchrotron diffraction experiments with in situ laser heated diamond anvil cells and multi-anvil press synthesis experiments have been performed in order to investigate the reaction of scandium and carbon from the elements at high-(P,T) conditions. It is shown that the reaction is very sensitive to the presence of oxygen. In an oxygen-rich environment the most stable phase is ScO x C y , where for these experiments x=0.39 and y=0.50-0.56. If only a small oxygen contamination is present, we have observed the formation of Sc 3 C 4 , Sc 4 C 3 and a new orthorhombic ScC x phase. All the phases formed at high pressures and temperatures are quenchable. Experimentally determined elastic properties of the scandium carbides are compared to values obtained by density functional theory based calculations. - Graphical Abstract Legend (TOC Figure): Table of Contents Figure Selected images recorded with a MAR345 image plate detector show the reaction of α-Sc and graphite at high-(P,T) conditions. Left: mixture of α-Sc and graphite. Right: recovered sample after laser heated the diamond anvil cell.

  6. Effect of halophilic conditions in stabilisation of RNA structure and function at high temperature under radiations.

    Science.gov (United States)

    Maurel, M.-C.

    We have already shown the structural integrity of tRNA at high temperature - 82C for 30h - in high salt concentrations (Tehei et al, 2002). Stability were also performed by measuring the residual specific tRNA charge capacity after heat treatment for 30 h at 82C. RNA molecules are selected (in vitro selection) at high temperature at high salt concentration. We are undergoing studies of such molecules submitted to several stressful conditions, in particular high radiations. These studies provide support for the importance of salt to protect macromolecules against severe cosmic conditions. These could be useful for searching traces of life in planetary objects and space exploration. References : ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine adsorption onto and release from meteorite specimens assessed by Surface Enhanced Raman Spectroscopy ''. Journal of Raman Spectroscopy (2004) in press. Meli, M., Vergne, J. and Maurel, M-C. "In vitro selection of adenine-dependent hairpin ribozymes" J. Biol. Chem., (2003), 278, 11, 9835-9842. ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine in mineral samples : development of a methodology based on Surface Enhanced Raman Spectroscopy (SERS) for picomole detections ''. Spectrochimica Acta, A, 59, 2645-2654. Tehei, M., Franzetti, B., Maurel, M-C., Vergne, J., Hountondji, C. , Zaccai, G. ``Salt and the Search for Traces of Life '', Extremophiles, (2002), 6 : 427-430. Meli, M., Vergne, J., Décout, J.L., and Maurel, M-C. ``Adenine-Aptamer Complexes. A bipartite RNA site which binds the adenine nucleic base '', J. Biol. Chem., (2002), 277, 3, 2104-2111.

  7. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  8. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  9. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  10. High Temperature Oxidation Behavior of T91 Steel in Dry and Humid Condition

    Directory of Open Access Journals (Sweden)

    Yonghao Leong

    2016-09-01

    Full Text Available High temperature oxidation behavior of T91 ferritic/martensitic steel was examined over the temperature range of 500 to 700°C in dry and humid environments.  The weight gain result revealed that oxidation occurs at all range of temperatures and its rate is accelerated by increasing the temperature. The weight gain of the oxidized steel at 700°C in steam condition was six times bigger than the dry oxidation.. SEM/EDX of the cross-sectional image showed that under dry condition, a protective and steady growth of the chromium oxide (Cr2O3 layer was formed on the steel with the thickness of 2.39±0.34 µm. Meanwhile for the humid environment, it is found that the iron oxide layer, which consists of the hematite (Fe2O3 and magnetite (Fe3O4 was formed as the outer scale, and spinnel as inner scale. This result indicated that the oxidation behavior of T91 steel was affected by its oxidation environment. The existence of water vapor in steam condition may prevent the formation of chromium oxide as protective layer.

  11. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However......, the degradation of the film capacitors is a concern in applications exposed to high humidity environments. This paper investigates the degradation of a type of plastic-boxed metallized DC film capacitors under different humidity conditions based on a total of 8700 h of accelerated testing and also post failure...... of interest is also presented. The study enables a better understanding of the humidity-related failure mechanisms and reliability performance of DC film capacitors for power electronics applications....

  12. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  13. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  14. Effect of mixing rule boundary conditions on high pressure (liquid + liquid) equilibrium prediction

    International Nuclear Information System (INIS)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2012-01-01

    Highlights: ► Prediction of LLE from the combined use of EOS and liquid model are examined. ► The mixing rule used affects the predicted pressure dependence of LLE. ► MHV1 mixing rule predicts decent LLE at low pressures. ► WS mixing rule predicts more accurate excess volume and LLE at high pressures. ► The hybrid of MHV1 and WS mixing rule gives overall the best predictions. - Abstract: We examine the prediction of high pressure (liquid + liquid) equilibrium (LLE) from the Peng–Robinson equation with three excess Gibbs free energy (G ex )-based mixing rules (MR): the first order modified Huron–Vidal (MHV1), the Wong–Sandler (WS), and a hybrid of these two (referred to as G ex B 2 ). These mixing rules differ by the boundary conditions used for determination of the temperature and composition dependence of parameters a and b in the PR EOS. The condition of matching the excess Gibbs free energy from the EOS at zero pressure to that from the G ex model, used in MHV1 and G ex B 2 MR, leads to a similar miscibility gap from PR EOS and the G ex model used. On the other hand, the condition of matching excess Helmholtz energy from the EOS at infinite pressure to that from the G ex model, used in the WS MR, shows remarkable deviations. The condition of quadratic composition dependence in the second virial coefficient (B 2 ), used in WS and G ex B 2 MR, allows for both positive and negative values in the molar excess volume. Depending on the mixture, either the increase or decrease of the miscibility gap with pressure can be observed when the WS or the G ex B 2 MR is used. The condition of linear combination of molecular sizes of each component used in the MHV1 MR, however, often leads to small, positive molar excess volumes. As a consequence, the predicted LLE from using the MHV1 MR are insensitive to pressure. Therefore, we find that the G ex B 2 mixing rule provides the best predictive power for the LLE over a wide range of temperature and pressure.

  15. High Burnup Fuel Behaviour under LOCA Conditions as Observed in Halden Reactor Experiments

    International Nuclear Information System (INIS)

    Kolstad, E.; Wiesenack, W.; Oberlander, B.; Tverberg, T.

    2013-01-01

    In the context of assessing the validity of safety criteria for loss of coolant accidents with high burnup fuel, the OECD Halden Reactor Project has implemented an integral in-pile LOCA test series. In this series, fuel fragmentation and relocation, axial gas communication in high burnup rods as affected by gap closure and fuel- clad bonding, and secondary cladding oxidation and hydriding are of major interest. In addition, the data are being used for code validation as well as model development and verification. So far, nine tests with irradiated fuel segments (burnup 40-92 MW.d.kg -1 ) from PWR, BWR and VVER commercial nuclear power plants have been carried out. The in-pile measurements and the PIE results show a good repeatability of the experiments. The paper describes the experimental setup as well as the principal features and main results of these tests. Fuel fragmentation and relocation have occurred to varying degrees in these tests. The paper compares the conditions leading to the presence or absence of fuel fragmentation, e.g., burnup and loss of constraint. Axial gas flow is an important driving force for clad ballooning, fuel relocation and fuel expulsion. The experiments have provided evidence that such gas flow can be impeded in high burnup fuel with a potential impact on the ballooning and fuel dispersal. Although the results of the Halden LOCA tests are, to some extent, amplified by conditions and features deliberately introduced into the test series, the fuel behaviour identified in the Halden tests has an impact on the safety assessment of high burnup fuel and should give rise to improvements of the predictive capabilities of LOCA modelling codes. (author)

  16. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  17. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  18. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  19. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    Directory of Open Access Journals (Sweden)

    Abramov Fedir V.

    2017-12-01

    Full Text Available The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamentally incapable of achieving a significant reduction in the level of corruptness. It has been proved that, in addition to significant target inefficiency, repressive anti-corruption methods can potentially lead to increased levels of corruption because of abusing by supervisory officials of their official duties and the spread of internal corruption within anti-corruption structures. The potential threats from the uncontrolled anti-corruption structures towards other controlling organizations were considered. It is shown that in conditions of high-level corruption repressive anti-corruption measures can lead to expansion of imitation of anti-corruption activity.

  20. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  1. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  2. Analysis of heat transfer under high heat flux nucleate boiling conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Dinh, N.

    2016-01-01

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  3. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    Science.gov (United States)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  4. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, D.; Beuvier, L.; Cornaton, M. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Tabarant, M. [CEA, DEN, DPC, SEARS, LISL, F-91191 Gif-sur-Yvette (France); Esnouf, S. [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France); Ferry, M., E-mail: muriel.ferry@cea.fr [CEA, DEN, DPC, SECR, LRMO, F-91191 Gif-sur-Yvette (France)

    2015-05-15

    Highlights: • Magnesium stearate was radio-oxidized at very high doses using gamma-rays. • H{sub 2} emission was estimated as a function of the integrated dose. • Modifications in the organic solid were followed as a function of the integrated dose. • A non-exhaustive degradation mechanism of magnesium stearate was proposed. - Abstract: In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  5. The plasma membrane proteome of maize roots grown under low and high iron conditions.

    Science.gov (United States)

    Hopff, David; Wienkoop, Stefanie; Lüthje, Sabine

    2013-10-08

    Iron (Fe) homeostasis is essential for life and has been intensively investigated for dicots, while our knowledge for species in the Poaceae is fragmentary. This study presents the first proteome analysis (LC-MS/MS) of plasma membranes isolated from roots of 18-day old maize (Zea mays L.). Plants were grown under low and high Fe conditions in hydroponic culture. In total, 227 proteins were identified in control plants, whereas 204 proteins were identified in Fe deficient plants and 251 proteins in plants grown under high Fe conditions. Proteins were sorted by functional classes, and most of the identified proteins were classified as signaling proteins. A significant number of PM-bound redox proteins could be identified including quinone reductases, heme and copper-containing proteins. Most of these components were constitutive, and others could hint at an involvement of redox signaling and redox homeostasis by change in abundance. Energy metabolism and translation seem to be crucial in Fe homeostasis. The response to Fe deficiency includes proteins involved in development, whereas membrane remodeling and assembly and/or repair of Fe-S clusters is discussed for Fe toxicity. The general stress response appears to involve proteins related to oxidative stress, growth regulation, an increased rigidity and synthesis of cell walls and adaption of nutrient uptake and/or translocation. This article is part of a Special Issue entitled: Plant Proteomics in Europe. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. On the performance of a high head Francis turbine at design and off-design conditions

    International Nuclear Information System (INIS)

    Aakti, B; Amstutz, O; Casartelli, E; Romanelli, G; Mangani, L

    2015-01-01

    In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component

  7. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    Science.gov (United States)

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pulse simulations and heat flow measurements for the ATLAS Forward Calorimeter under high-luminosity conditions

    CERN Document Server

    AUTHOR|(SzGeCERN)758133; Zuber, Kai

    The high luminosity phase of the Large Hadron Collider at CERN is an important step for further and more detailed studies of the Standard Model of particle physics as well as searches for new physics. The necessary upgrade of the ATLAS detector is a challenging task as the increased luminosity entails many problems for the different detector parts. The liquid-argon Forward Calorimeter suffers signal-degradation effects and a high voltage drop of the supply potential under high-luminosity conditions. It is possible that the argon starts to boil due to the large energy depositions. The effect of the high-luminosity environment on the liquid-argon Forward Calorimeter has been simulated in order to investigate the level of signal degradation. The results show a curvature of the triangular pulse shape that appears prolonged when increasing the energy deposit. This effect is caused by the drop in the electric potential that produces a decrease in the electric field across the liquid-argon gap in the Forward Calorim...

  9. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    Science.gov (United States)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  10. GDF-3 is an adipogenic cytokine under high fat dietary condition

    International Nuclear Information System (INIS)

    Wang Wei; Yang Yan; Meng Ying; Shi Yanggu

    2004-01-01

    Growth differentiation factor 3 (GDF-3) is structurally a bone morphogenetic protein/growth differentiation factor subfamily member of the TGF-β superfamily. GDF-3 exhibits highest level of expression in white fat tissue in mice and is greatly induced by high fat diet if fat metabolic pathway is blocked. To identify its biological function, GDF-3 was overexpressed in mice by adenovirus mediated gene transfer. Mice transduced with GDF-3 displayed profound weight gain when fed with high fat diet. The phenotypes included greatly expanded adipose tissue mass, increased body adiposity, highly hypertrophic adipocytes, hepatic steatosis, and elevated plasma leptin. GDF-3 stimulated peroxisome proliferator activated receptor expression in adipocytes, a master nuclear receptor that controls adipogenesis. However, GDF-3 was not involved in blood glucose homeostasis or insulin resistance, a condition associated with obesity. In contrast, similar phenotypes were not observed in GDF-3 mice fed with normal chow, indicating that GDF-3 is only active under high lipid load. Thus, GDF-3 is a new non-diabetic adipogenic factor tightly coupled with fat metabolism

  11. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  12. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  13. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  15. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  16. An efficient protocol for the synthesis of highly sensitive indole imines utilizing green chemistry: optimization of reaction conditions.

    Science.gov (United States)

    Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz

    2018-04-11

    Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.

  17. High Speed Finish Turning of Inconel 718 Using PCBN Tools under Dry Conditions

    Directory of Open Access Journals (Sweden)

    José Luis Cantero

    2018-03-01

    Full Text Available Inconel 718 is a superalloy, considered one of the least machinable materials. Tools must withstand a high level of temperatures and pressures in a very localized area, the abrasiveness of the hard carbides contained in the Inconel 718 microstructure and the adhesion tendency during its machining. Mechanical properties along with the low thermal conductivity become an important issue for the tool wear. The finishing operations for Inconel 718 are usually performed after solution heat treatment and age hardening of the material to give the superalloy a higher level of hardness. Carbide tools, cutting fluid (at normal or high pressures and low cutting speed are the main recommendations for finish turning of Inconel 718. However, dry machining is preferable to the use of cutting fluids, because of its lower environmental impact and cost. Previous research has concluded that the elimination of cutting fluid in these processes is feasible when using hard carbide tools. Recent development of new PCBN (Polycrystalline Cubic Boron Nitride grades for cutting tools with higher tenacity has allowed the application of these tool grades in the finishing operations of Inconel 718. This work studies the performance of commercial PCBN tools from four different tool manufacturers as well as an additional grade with equivalent performance during finish turning of Inconel 718 under dry conditions. Wear tests were carried out with different cutting conditions, determining the evolution of machining forces, surface roughness and tool wear. It is concluded that it is not industrially viable the high-speed finishing of Inconel 718 in a dry environment.

  18. Numerical investigation of a high head Francis turbine under steady operating conditions using foam-extend

    International Nuclear Information System (INIS)

    Lenarcic, M; Eichhorn, M; Schoder, S J; Bauer, Ch

    2015-01-01

    In this work the incompressible turbulent flow in a high head Francis turbine under steady operating conditions is investigated using the open source CFD software package FOAM-extend- 3.1. By varying computational domains (cyclic model, full model), coupling methods between stationary and rotating frames (mixing-plane, frozen-rotor) and turbulence models (kω-SST, κε), numerical flow simulations are performed at the best efficiency point as well as at operating points in part load and high load. The discretization is adjusted according the y + -criterion with y + mean > 30. A grid independence study quantifies the discretization error and the corresponding computational costs for the appropriate simulations, reaching a GCI < 1% for the chosen grid. Specific quantities such as efficiency, head, runner shaft torque as well as static pressure and velocity components are computed and compared with experimental data and commercial code. Focusing on the computed results of integral quantities and static pressures, the highest level of accuracy is obtained using FOAM in combination with the full model discretization, the mixing-plane coupling method and the κω-SST turbulence model. The corresponding relative deviations regarding the efficiency reach values of Δη rel ∼ 7% at part load, Δη rel ∼ 0.5% at best efficiency point and Δη rel ∼ 5.6% at high load. The computed static pressures deviate from the measurements by a maximum of Δp rel = 9.3% at part load, Δp rel = 4.3% at best efficiency point and Δp rel = 6.7% at high load. Commercial code in turn yields slightly better predictions for the velocity components in the draft tube cone, reaching a good accordance with the measurements at part load. Although FOAM also shows an adequate correspondence to the experimental data at part load, local effects near the runner hub are captured less accurate at best efficiency point and high load. Nevertheless, FOAM is a reasonable alternative to commercial code

  19. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  20. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  1. Mosquitoes meet microfluidics: High-throughput microfluidic tools for insect-parasite ecology in field conditions

    Science.gov (United States)

    Prakash, Manu; Mukundarajan, Haripriya

    2013-11-01

    A simple bite from an insect is the transmission mechanism for many deadly diseases worldwide--including malaria, yellow fever, west nile and dengue. Very little is known about how populations of numerous insect species and disease-causing parasites interact in their natural habitats due to a lack of measurement techniques. At present, vector surveillance techniques involve manual capture by using humans as live bait, which is hard to justify on ethical grounds. Individual mosquitoes are manually dissected to isolate salivary glands to detect sporozites. With typical vector infection rates being very low even in endemic areas, it is almost impossible to get an accurate picture of disease distribution, in both space and time. Here we present novel high-throughput microfluidic tools for vector surveillance, specifically mosquitoes. A two-dimensional high density array with baits provide an integrated platform for multiplex PCR for detection of both vector and parasite species. Combining techniques from engineering and field ecology, methods and tools developed here will enable high-throughput measurement of infection rates for a number of diseases in mosquito populations in field conditions. Pew Foundation.

  2. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  3. High speed machinability of the aerospace alloy AA7075 T6 under different cooling conditions

    Science.gov (United States)

    Imbrogno, Stano; Rinaldi, Sergio; Suarez, Asier Gurruchaga; Arrazola, Pedro J.; Umbrello, Domenico

    2018-05-01

    This paper describes the results of an experimental investigation aimed to st udy the machinability of AA7075 T6 (160 HV) for aerospace industry at high cutting speeds. The paper investigates the effects of different lubri-cooling strategies (cryogenic, M QL and dry) during high speed turning process on cutting forces, tool wear, chip morphology and cutting temperatures. The cutting speeds selected were 1000m/min, 1250m/min and 1500 m/min, while the feed rate values used were 0.1mm/rev and 0.3 mm/rev. The results of cryogenic and M QL application is compared with dry application. It was found that the cryogenic and M QL lubri-cooling techniques could represent a functional alternative to the common dry cutting application in order to implement a more effect ive high speed turning process. Higher cuttingparameters would be able to increase the productivity and reduce the production costs. The effects of the cutting parameters and on the variables object of study were investigated and the role of the different lubri-cooling conditions was assessed.

  4. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  5. Breakup, instabilities, and dynamics of high-speed droplet under transcritical conditions

    Directory of Open Access Journals (Sweden)

    Yanfei Gao

    2015-06-01

    Full Text Available A droplet breakup model is developed for a single droplet introduced into transcritical and strong convective environments. The numerical model takes into account variable thermophysical properties, gas solubility in the liquid phase, and vapor–liquid interfacial thermodynamics. The influences of ambient conditions on droplet breakup characteristics are investigated. The results indicate that (1 the drag acceleration decreases slowly at first and then increases drastically with the initial droplet temperature increasing, but always increases at a constant rate with ambient pressure; (2 the pressure and the drop temperature have similar effects on the Kelvin–Helmholtz and Rayleigh–Taylor wave growth at high pressures (reduced pressure higher than 1.2 and high temperatures (reduced temperature higher than 0.7, but the impact of pressure on the wave growth is relatively stronger than that of droplet temperature at relatively low pressures (reduced pressure lower than 0.8 and low temperatures (reduced temperature lower than 0.63; (3 the temperature significantly affects the surface instability growth at high drop temperatures (reduced temperature higher than 0.7, but has no effect on the instability growth at low temperatures (reduced temperature lower than 0.63.

  6. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  7. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  8. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  9. Earthworks logistics in the high density urban development conditions - case study

    Science.gov (United States)

    Sobotka, A.; Blajer, M.

    2017-10-01

    Realisation of the construction projects on highly urbanised areas carries many difficulties and logistic problems. Earthworks conducted in such conditions constitute a good example of how important it is to properly plan the works and use the technical means of the logistics infrastructure. The construction processes on the observed construction site, in combination with their external logistics service are a complex system, difficult for mathematical modelling and achievement of appropriate data for planning the works. The paper shows describe and analysis of earthworks during construction of the Centre of Power Engineering of AGH in Krakow for two stages of a construction project. At the planning stage in the preparatory phase (before realization) and in the implementation phase of construction works (foundation). In the first case, an example of the use of queuing theory for prediction of excavation time under random work conditions of the excavator and the associated trucks is provided. In the second case there is a change of foundation works technology resulting as a consequence of changes in logistics earthworks. Observation of the construction has confirmed that the use of appropriate methods of construction works management, and in this case agile management, the time and cost of the project have not been exceeded. The success of a project depends on the ability of the contractor to react quickly when changes occur in the design, technology, environment, etc.

  10. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  12. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  13. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  14. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  15. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  16. Operating experience with a high capacity helium pump under supercritical conditions

    International Nuclear Information System (INIS)

    Lehmann, W.; Minges, J.

    1984-01-01

    This chapter discusses the development and testing of a high-capacity piston pump to provide forced cooling for large superconducting magnets. The pump is a three cylinder, vertically arranged single-acting piston pump equipped with a frequency controlled three-phase geared motor operating at room temperature. The pump is capable of delivering up to 150 g/s at a maximum speed of 310 rpm and under the inlet conditions of 4 bar/4.5 K. No decline was noticed in delivery head and efficiencies during more than 560 hours of operation. It is concluded that the pump satisfies all requirements for circulating large mass flows across great pressure differences as needed (e.g. in fusion magnet design)

  17. A correlation for single phase turbulent mixing in square rod arrays under highly turbulent conditions

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Lee, Yong Bum

    2006-01-01

    The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, δ ij /D h , correlates the turbulent mixing data better than S/d, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter δ ij /D h has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio

  18. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  19. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  20. Radionuclide release from high level waste forms under repository conditions in clay or granite

    International Nuclear Information System (INIS)

    Godon, N.; Lanza, F.

    1990-01-01

    The behaviour of both fully active and simulated vitrified high level waste (HLW) has been studied under conditions that are likely to occur in future repositories in clay and granite. The simulated HLW was doped with Cs, Sr, Tc and the actinides and the leaching of these elements from the glass has been measured together with their concentrations in the water of the near-field and their distribution between the various components of the repository. The diffusion coefficients of several elements in Boom clay has also been measured. The results show that the concentrations of Tc and the actinides in the near-field of a repository will be very low and that the actinides will only diffuse very slowly away from the vicinity of the glass. 24 refs., 1 figs., 7 tabs

  1. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  2. Investigation of conditions of thallium extraction-photometric determination in high pure cadmium

    International Nuclear Information System (INIS)

    Bagdasarov, K.N.; Shchemeleva, G.G.; Rubtsova, O.K.; Shelepin, N.E.

    1978-01-01

    Interaction of thallium (3) with 2-(O-methoxyphenylhydrazinomethylene)-1,3,3-trimethylindolinium perchlorate (R) is studied. The reaction proceeds in the presence of chlorine ions with formation of three-component compound [TlCl 4 ] - R + . Optimum conditions for extraction-photometric determination of thallium on the basis of this reaction are determined. Benzene and toluene have been used as extractants. The optical density of the extracts is highest and remains constant from pH 5 to 0.15 NHCl in aqueous phase. Optimum concentration of the reagent is (1.5-4.5)x10 -5 M in aqueous phase. The selectivity of the method has been examined. The method is used to determine small quantities of thallium (approximately 1x10 -3 %) in metallic cadmium of high purity

  3. Influences of hydrodynamic conditions, nozzle geometry on appearance of high submerged cavitating jets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available Based on visualization results of highly-submerged cavitating water jet obtained with digital camera, the influences of related parameters such as: injection pressure, nozzle diameter and geometry, nozzle mounting (for convergent / divergent flow, cavitation number and exit jet velocity, were investigated. In addition, the influence of visualization system position was also studied. All the parameters have been found to be of strong influence on the jet appearance and performance. Both hydro-dynamical and geometrical parameters are playing the main role in behavior and intensity of cavitation phenomenon produced by cavitating jet generator. Based on our considerable previous experience in working with cavitating jet generator, the working conditions were chosen in order to obtain measurable phenomenon. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  4. Use of high frequency analysis of acoustic emission signals to determine rolling element bearing condition

    International Nuclear Information System (INIS)

    Cockerill, A; Holford, K M; Pullin, R; Clarke, A; Bradshaw, T; Cole, P

    2015-01-01

    Acoustic Emission (AE) sensors were used to detect signals arising from a cylindrical roller bearing with artificial defects seeded onto the outer raceway. An SKF N204ECP roller bearing was placed between two double row spherical roller bearings, type SKF 22202E, and loaded between 0.29 and 1.79kN. Speed was constant at 5780rpm. High frequency analysis allowed insight into the condition of the bearings through the determination of an increase in the structural resonances of the system as the size of an artificial defect was increased. As higher loads were applied, frequencies around 100kHz were excited, indicating the release of AE possibly attributed to friction and the plastic deformation as peaks, induced through engraving of the raceway, were flattened and worn down. Sensitivity of AE to this level in bearings indicates the potential of the technique to detect the early stages of bearing failure during life tests. (paper)

  5. In vivo measurement of uranium in the human chest under high background conditions

    International Nuclear Information System (INIS)

    Kruger, P.J.; Feather, J.I.

    1981-08-01

    The use of a low-background counting room was considered essential for in vivo gamma counting of uranium in the human chest. When such measurements were, however, carried out under relatively high background conditions, this necessitated a new method of analysis. It was found that a linear relationship between LnN and E exists for each individual where N is the count rate per keV and E the energy in keV, for gamma energies between 90 keV and 300 keV. The displacements from this straight line at the energy values of 90 and 186 keV then represent the contribution of the uranium present. These displacements were calibrated for natural uranium. It was possible to detect contamination levels of lower than half MPLB [af

  6. Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James Lavada [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.

  7. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of

  8. Thermoluminescence response of calcic bentonite subjected to conditions of high nuclear waste underground storage

    International Nuclear Information System (INIS)

    Dies, J.; Miralles, L.; Tarrasa, F.; Pueyo, J.J.; Cuevas, C. de las

    2002-01-01

    Bentonite is regarded as a backfilling material for underground storage facilities of highly radioactive nuclear waste built on granite formations. In these facilities, bentonite will be subjected to a gradient of temperature and dose rate, achieving a very high integrated dose and, therefore, changes in its structure and physical properties may take place. Two experiments to discriminate between the thermal and the irradiation effect were performed. In the first (named BIC-2A), samples were subjected to temperature while in second (named BIC-2B) the combined effect of temperature and irradiation was studied. The experimental conditions were: a thermal gradient between 130 deg. C and 90 deg. C, a maximum dose rate of 3.5 kGy.h -1 and a gradient of the integrated dose between 1.75 MGy and 10 MGy. Both experiments lasted a total of 124 days. An irradiation source of 60 Co with an activity close to 300,000 Ci, and bentonite samples of 200 mm in length and 50 mm in diameter were used. After the experiment, the samples were ground and two fractions were obtained: a fine fraction ( 80 μm). The results are described of thermoluminescence analyses on the two fractions obtained which showed that the coarse fractions can be 100 times more sensitive to radiation than the fine fraction. On the other hand, the heated and irradiated samples showed a thermoluminescence response around 50 times greater than the samples that were only heated. In addition to this, the temperature and dose rate conditions are relevant parameters in the generation and stabilisation of radiation induced defects. Finally, the response of samples heated and irradiated for two months was quite similar to that obtained on samples heated and irradiated for four months, indicating a saturation phenomenon. (author)

  9. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    Science.gov (United States)

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  10. Exertional Heat Illnesses and Environmental Conditions During High School Football Practices.

    Science.gov (United States)

    Tripp, Brady L; Eberman, Lindsey E; Smith, Michael Seth

    2015-10-01

    Guidelines for preventing exertional heat illnesses (EHIs) during extreme heat stress should be specific to regional environments, age, and sport and should be based on evidence of reducing the risk. Each year in the United States, over 1 million high school football players practice in the August heat; however, no published data describe the incidence of EHIs in these athletes. To describe the environmental conditions and incidence of EHIs during high school football practices over a 3-month period. Descriptive epidemiology study. For a 3-month period (August-October), athletic trainers at 12 high schools in North Central Florida recorded the practice time and length, environmental conditions (wet-bulb globe temperature), and incidences of EHIs in varsity football athletes. Athletes suffered 57 total EHIs during 29,759 athlete-exposures (AEs) for the 3-month data collection period (rate = 1.92/1000 AEs). August accounted for the majority of all EHIs, with 82.5% (47/57) and the highest rate (4.35/1000 AEs). Of total heat illnesses, heat cramps accounted for 70.2% (40/57), heat exhaustion 22.8% (13/57), and heat syncope 7.0% (4/57). The odds ratio indicated that athletes in August practices that lasted longer than the recommended 3 hours were 9.84 times more likely to suffer a heat illness than those in practices lasting ≤3 hours. The highest rate of EHIs was during August. Practices in August that exceeded the recommended 3 hours were associated with a greater risk of heat illnesses. The overall rate of EHIs was lower for the high school football athletes observed in the study compared with that reported for collegiate football athletes in the region. The low rates of EHIs recorded suggest that the prevention guidelines employed by sports medicine teams are appropriate for the region and population. Team physicians and athletic trainers should employ evidence-based, region- and population-specific EHI prevention guidelines. Sports medicine teams, coaches, and

  11. A CLUSTER IN THE MAKING: ALMA REVEALS THE INITIAL CONDITIONS FOR HIGH-MASS CLUSTER FORMATION

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Kruijssen, J. M. D.; Testi, L.; Walsh, A. J.

    2015-01-01

    G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high density, combined with its lack of prevalent star formation, make it an excellent candidate for an Arches-like cluster in a very early stage of formation. Here we present new Atacama Large Millimeter/Sub-millimeter Array observations of its small-scale (∼0.07 pc) 3 mm dust continuum and molecular line emission from 17 different species that probe a range of distinct physical and chemical conditions. The data reveal a complex network of emission features with a complicated velocity structure: there is emission on all spatial scales, the morphology of which ranges from small, compact regions to extended, filamentary structures that are seen in both emission and absorption. The dust column density is well traced by molecules with higher excitation energies and critical densities, consistent with a clump that has a denser interior. A statistical analysis supports the idea that turbulence shapes the observed gas structure within G0.253+0.016. We find a clear break in the turbulent power spectrum derived from the optically thin dust continuum emission at a spatial scale of ∼0.1 pc, which may correspond to the spatial scale at which gravity has overcome the thermal pressure. We suggest that G0.253+0.016 is on the verge of forming a cluster from hierarchical, filamentary structures that arise from a highly turbulent medium. Although the stellar distribution within high-mass Arches-like clusters is compact, centrally condensed, and smooth, the observed gas distribution within G0.253+0.016 is extended, with no high-mass central concentration, and has a complex, hierarchical structure. If this clump gives rise to a high-mass cluster and its stars are formed from this initially hierarchical gas structure, then the resulting cluster must evolve into a centrally condensed structure via a dynamical process

  12. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  13. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  14. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition

    Directory of Open Access Journals (Sweden)

    Dan Luo

    2017-06-01

    Full Text Available To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20, high-concentrate diet (HC; forage-to-concentrate ratio = 20:80, and HC supplemented with 800 mg/kg niacin (HCN. Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.

  15. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    Science.gov (United States)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The

  16. Tribological Evaluation of Candidate Gear Materials Operating Under Light Loads in Highly Humid Conditions

    Science.gov (United States)

    Dellacorte, Christopher; Thomas, Fransua; Leak, Olivia Ann

    2015-01-01

    A series of pin-on-disk sliding wear tests were undertaken to identify candidate materials for a pair of lightly loaded timing gears operating under highly humid conditions. The target application involves water purification and thus precludes the use of oil, grease and potentially toxic solid lubricants. The baseline sliding pair is austenitic stainless steel operating against a carbon filled polyimide. The test load and sliding speed (4.9 N, 2.7 m/s) were chosen to represent average contact conditions of the meshing gear teeth. In addition to the baseline materials, the hard superelastic NiTiNOL 60 (60NiTi) was slid against itself, against the baseline polyimide, and against 60NiTi onto which a commercially deposited dry film lubricant (DFL) was applied. The alternate materials were evaluated as potential replacements to achieve a longer wear life and improved dimensional stability for the timing gear application. An attempt was also made to provide solid lubrication to self-mated 60NiTi by rubbing the polyimide against the disk wear track outside the primary 60NiTi-60NiTi contact, a method named stick or transfer-film lubrication. The selected test conditions gave repeatable friction and wear data and smooth sliding surfaces for the baseline materials similar to those in the target application. Friction and wear for self-mated stainless steel were high and erratic. Self-mated 60NiTi gave acceptably low friction (approx. 0.2) and modest wear but the sliding surfaces were rough and potentially unsuitable for the gear application. Tests in which 60NiTi pins were slid against DFL coated 60NiTi and DFL coated stainless steel gave low friction and long wear life. The use of stick lubrication via the secondary polyimide pin provided effective transfer film lubrication to self-mated 60NiTi tribological specimens. Using this approach, friction levels were equal or lower than the baseline polyimide-stainless combination and wear was higher but within data scatter observed

  17. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  18. High-pressure polymorphs in Yamato-790729 L6 chondrite and their significance for collisional conditions

    Science.gov (United States)

    Kato, Yukako; Sekine, Toshimori; Kayama, Masahiko; Miyahara, Masaaki; Yamaguchi, Akira

    2017-12-01

    Shock pressure recorded in Yamato (Y)-790729, classified as L6 type ordinary chondrite, was evaluated based on high-pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host-rock of Y-790729 consists mainly of olivine, low-Ca pyroxene, plagioclase, metallic Fe-Ni, and iron-sulfide with minor amounts of phosphate and chromite. A shock-melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock-melt vein. The shock pressure in the shock-melt vein is about 14-23 GPa based on the phase equilibrium diagrams of high-pressure polymorphs. Some plagioclase portions in the host-rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11-19 GPa. The difference in pressure between the shock-melt vein and host-rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent-body of Y-790729 is calculated to be 1.90 km s-1. The parent-body would be at least 10 km in size based on the incoherent formation mechanism of ringwoodite in Y-790729.

  19. Optimal condition of torrefaction for high energy density solid fuel of fast growing tree species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hun; Na, Byeong-Il; Lee, Hyoung-Woo; Lee, Jae-Won [College of Agriculture and Life Sciences, Chonnam National University, Gwangju (Korea, Republic of); Ahn, Byoung-Jun [Korea Forest Research Institute, Seoul (Korea, Republic of)

    2015-08-15

    The torrefaction properties of Acacia (Acacia mangium) and Albasia (Paraserianthes falcataria) were investigated by response surface methodology. Torrefaction was performed at 220-280 .deg. C for 20-80 min depending on severity factor. Carbon content in the torrefied biomass increased with severity factor, whereas hydrogen and oxygen contents decreased both biomass. The calorific value of torrefied Acacia ranged from 20.03 to 21.60 MJ/kg, suggesting that the energy contained in the torrefied biomass increased by 5.09 to 13.62%, when compared with that in the untreated biomass. However, the calorific value of Albasia was relatively low, compared to that of torrefied Acacia. The weight loss of Albasia was higher than that of Acacia under a given torrefaction condition. The reaction temperature for torrefaction was an important factor to obtain high energy yield, whereas the effect of time was considerable lower. High temperature and short torrefaction time is required to obtain the highest energy yield from torrefaction using Acacia and Albasia.

  20. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  1. Natural analogues to the conditions around a final repository for high-level radioactive waste

    International Nuclear Information System (INIS)

    Smellie, J.A.T.

    1984-12-01

    This report documents the proceedings resulting from a Workshop held at Lake Geneva, Wisconsin, USA, from 1-3 October, 1984. The theme of the Workshop was entitled 'Natural analogues to the conditions around a final repository for high-level radioactive waste', and was restricted to ultimate disposal in a crystalline bedrock environment. The Workshop provided an important first step in co-ordinating and focussing different national and individual interests and approaches towards natural analogue studies. One of the points highlighted at the concluding forum of the meeting was the necessity to first define the geochemical processes which are assumed to occur after disposal of the radioactive waste, and then locate suitable analogue systems which can be used to test the mechanisms of one, or a simple combination of these geochemical processes. Even accepting that the choice of which geochemical process(es) to be selected for validation will be sensitive to individual national disposal strategies, farfield radionuclide retardation mechanisms in the geosphere were considered to be a central topic of importance, and should therefore be given high priority. At this early stage in the development of natural analogue studies it was not possible to cover all the important aspects. In retrospect, the role of the models should have received more attention; bridging the gap between geoscientists and the modellers was seen as being of prime importance in future meetings of this nature. (author)

  2. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  3. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

    Science.gov (United States)

    Wang, Yan; Yu, Biting; Wang, Lei; Zu, Chen; Lalush, David S; Lin, Weili; Wu, Xi; Zhou, Jiliu; Shen, Dinggang; Zhou, Luping

    2018-07-01

    Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state

  4. Progress toward fully noninductive, high beta conditions in DIII-D

    International Nuclear Information System (INIS)

    Murakami, M.; Wade, M.R.; Greenfield, C.M.; Luce, T.C.; Ferron, J.R.; St John, H.E.; DeBoo, J.C.; Osborne, T.H.; Petty, C.C.; Politzer, P.A.; Burrell, K.H.; Gohil, P.; Gorelov, I.A.; Groebner, R.J.; Hyatt, A.W.; Kajiwara, K.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lohr, J.

    2006-01-01

    The DIII-D Advanced Tokamak (AT) program in the DIII-D tokamak [J. L. Luxon, Plasma Physics and Controlled Fusion Research, 1986, Vol. I (International Atomic Energy Agency, Vienna, 1987), p. 159] is aimed at developing a scientific basis for steady-state, high-performance operation in future devices. This requires simultaneously achieving 100% noninductive operation with high self-driven bootstrap current fraction and toroidal beta. Recent progress in this area includes demonstration of 100% noninductive conditions with toroidal beta, β T =3.6%, normalized beta, β N =3.5, and confinement factor, H 89 =2.4 with the plasma current driven completely by bootstrap, neutral beam current drive, and electron cyclotron current drive (ECCD). The equilibrium reconstructions indicate that the noninductive current profile is well aligned, with little inductively driven current remaining anywhere in the plasma. The current balance calculation improved with beam ion redistribution that was supported by recent fast ion diagnostic measurements. The duration of this state is limited by pressure profile evolution, leading to magnetohydrodynamic (MHD) instabilities after about 1 s or half of a current relaxation time (τ CR ). Stationary conditions are maintained in similar discharges (∼90% noninductive), limited only by the 2 s duration (1τ CR ) of the present ECCD systems. By discussing parametric scans in a global parameter and profile databases, the need for low density and high beta are identified to achieve full noninductive operation and good current drive alignment. These experiments achieve the necessary fusion performance and bootstrap fraction to extrapolate to the fusion gain, Q=5 steady-state scenario in the International Thermonuclear Experimental Reactor (ITER) [R. Aymar et al., Fusion Energy Conference on Controlled Fusion and Plasma Physics, Sorrento, Italy (International Atomic Energy Agency, Vienna, 1987), paper IAEA-CN-77/OV-1]. The modeling tools that have

  5. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

    Directory of Open Access Journals (Sweden)

    Liu Chen-Guang

    2012-08-01

    Full Text Available Abstract Background Very high gravity (VHG fermentation using medium in excess of 250 g/L sugars for more than 15% (v ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. Results Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at −100 mV, ethanol fermentation with the high gravity (HG media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at −150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. Conclusions No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at −150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG

  6. Experience with High Voltage Tests of the W7-X Magnets in Paschen-Minimum Conditions

    International Nuclear Information System (INIS)

    Petersen-Zarling, B.M.; Risse, K.; Viebke, H.; Gustke, D.; Ehmler, H.; Baldzuhn, J.; Sborchia, C.; Scheller, H.

    2006-01-01

    The W7-X machine is a low-shear stellarator of the Wendelstein line, which is being assembled at the IPP Branch Institute of Greifswald, Germany. The machine features a superconducting magnet system with 50 non-planar and 20 planar magnets operated at about 6 T and discharged with peak voltage levels up to 6 kV. Following the factory tests, the magnets are delivered to CEA Saclay, France, for the final acceptance tests at cryogenic condition. A series of high voltage tests in air and vacuum are part of the final acceptance test. During these tests the quality of the insulation, especially the hand-wrapped ground insulation in the termination area, has proven not to be adequate. In order to improve the reliability of the insulation system and detect defects for early repair, high voltage tests in reduced pressure of air (Paschen-minimum conditions) have been added as part of the factory acceptance procedure. This has been implemented in the vacuum chambers of BNN/Ansaldo for the test of the 50 non-planar coils, while other tests have been carried out at CEA/Saclay after cold testing. IPP has also installed a vacuum tank to perform Paschen tests during the preparation of all the coils for assembly, including also the 20 planar coils which cannot be tested at the manufacturer Tesla. These tests have proven to be a powerful tool to detect hidden insulation defects and void/cavities in the primary impregnation system, which could not be detected otherwise with the standard high voltage tests. This paper will summarize the background and experience accumulated in about 2 years of Paschen tests on the W7-X coils, including a description of the equipment, main results and statistics, weak points detected and repaired on the coils, and possibilities of improvements in the development and production of the W7-X magnets. The importance and the need of Paschen tests as part of the acceptance procedure for superconducting magnets to be used in future projects will also be

  7. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    Science.gov (United States)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    observed that Nash-Sutcliffe (NS) coefficients obtained by the ETI significantly change from 0.96 to 0.72 on sites were sublimation percentages vary from 1.1 to 8.7%, respectively. We think that the performance of the ETI model decrease because a large share of short and longwave radiation is required to balance the snowpack temperature decrease generated by the loss of energy from latent heat fluxes in areas with significant sublimation. We identify meteorological and environmental conditions under which the ETI model can be used to calculate melt at high elevation sites in arid environments, and when its use would result in errors that would affect their parameters and simulation of the water balance of such catchments.

  8. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions

    Science.gov (United States)

    Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu

    2013-06-01

    The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size

  9. Patient Perception of Treatment Burden is High in Celiac Disease Compared to Other Common Conditions

    Science.gov (United States)

    Shah, Sveta; Akbari, Mona; Vanga, Rohini; Kelly, Ciaran P.; Hansen, Joshua; Theethira, Thimmaiah; Tariq, Sohaib; Dennis, Melinda; Leffler, Daniel A.

    2014-01-01

    Introduction The only treatment for celiac disease (CD) is life-long adherence to a gluten-free diet (GFD). Noncompliance is associated with signs and symptoms of celiac disease, yet long-term adherence rates are poor. It is not known how the burden of the GFD compares to other medical treatments, and there are limited data on the socio-economic factors influencing treatment adherence. In this study we compared treatment burden and health state in CD compared with other chronic illnesses and evaluated the relationship between treatment burden and adherence. Methods A survey was mailed to participants with: CD, gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), hypertension (HTN), diabetes mellitus (DM), congestive heart failure (CHF), and end stage renal disease on dialysis (ESRD). Surveys included demographic information and visual analog scales measuring treatment burden, importance of treatment, disease-specific and overall health status. Results We collected surveys from 341 celiac and 368 non-celiac participants. Celiac participants reported high treatment burden, greater than participants with GERD or HTN and comparable to ESRD. Conversely, patients with CD reported the highest health state of all groups. Factors associated with high treatment burden in CD included poor adherence, concern regarding food cost, eating outside the home, higher income, lack of college education and time limitations in preparing food. Poor adherence in CD was associated with increased symptoms, income, and low perceived importance of treatment. Discussion Participants with CD have high treatment burden but also excellent overall health status in comparison with other chronic medical conditions. The significant burden of dietary therapy for celiac disease argues for the need for safe adjuvant treatment as well as interventions designed to lower the perceived burden of the GFD. PMID:24980880

  10. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  11. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  12. Conditions of rib design for polycarbonate resin with high glossy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Won [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  13. Conditions of rib design for polycarbonate resin with high glossy surfaces

    International Nuclear Information System (INIS)

    Jeong, Seong Won

    2013-01-01

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  14. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  15. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  16. Subaqueous ice-contact fans: Depositional systems characterised by highly aggradational supercritical flow conditions

    Science.gov (United States)

    Lang, Joerg; Winsemann, Jutta

    2015-04-01

    Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as

  17. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  18. Seasonal dependence of pigments number in Alhagi pseudalgahi leaves forming in conditions of high radiarion phone

    International Nuclear Information System (INIS)

    Orujova, J.R.; Dzhafarov, E.S.

    2006-01-01

    Full text: The activity circle of man includes also change of the radio ecological situation of environment, global increase of natural radiation phone, appearance of the local territories polluted with radio nuclides in result of technological processes, chemical pollution of air, water, land etc. As it's known, reaction of different plants to the impact of both natural, and anthropogenic stress factors isn't identical. This time change of the biometrical measures of plants' different organs, growth of their reproduction features, acceleration of biologically active matters synthesis etc. facts we elucidated in many works. The research works show that under external influence biological parameters don't change identically. Taking into account different character of the dependence of biochemical processes in plants on the external effects, and scarceness of research works on territories polluted by radio active industrial waste products, we can say that, respective experiments are needed. In the present work territory of iodine plant in Rome polluted with radio nuclides has been regarded as the experimental one. Within the plant area there was registered radiation phone totaling 800-1000 mkR/h. Ra 226, Th 232, U 238 and K 40 were detected as radio nucleids polluting the area. The work has spectrometrically identified number of the photosynthetic pigments of Alhagi Pseudalhagi plant formed both in conditions of high radiation phone, and in the control area in wild conditions. In result of measures there were calculated individual number of chlorophyllum a and b pigments playing photoreceptor role in photosynthesis process and having big importance for superior plants, ratio of chlorophyllum a to chlorophyllum b and the total. Besides, there has been designated number of carotinoids executing defensive function in chloroplasts. Results received show that in comparison with control in autumn season total number of green pigments is approximately two times lower than

  19. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  20. Clinical heterogeneity among people with high functioning autism spectrum conditions: evidence favouring a continuous severity gradient

    Directory of Open Access Journals (Sweden)

    Woodbury-Smith Marc

    2008-02-01

    Full Text Available Abstract Background Autism Spectrum Conditions (ASCs are characterized by a high degree of clinical heterogeneity, but the extent to which this variation represents a severity gradient versus discrete phenotypes is unclear. This issue has complicated genetic studies seeking to investigate the genetic basis of the high hereditability observed clinically in those with an ASC. The aim of this study was to examine the possible clustering of symptoms associated with ASCs to determine whether the observed distribution of symptom type and severity supported either a severity or a symptom subgroup model to account for the phenotypic variation observed within the ASCs. Methods We investigated the responses of a group of adults with higher functioning ASCs on the fifty clinical features examined in the Autism Spectrum Quotient, a screening questionnaire used in the diagnosis of higher functioning ASCs. In contrast to previous studies we have used this instrument with no a priori assumptions about any underlying factor structure of constituent items. The responses obtained were analyzed using complete linkage hierarchical cluster analysis. For the members of each cluster identified the mean score on each Autism Spectrum Quotient question was calculated. Results Autism Spectrum Quotient responses from a total of 333 individuals between the ages of 16.6 and 78.0 years were entered into the hierarchical cluster analysis. The four cluster solution was the one that generated the largest number of clusters that did not also include very small cluster sizes, defined as a membership comprising 10 individuals or fewer. Examination of these clusters demonstrated that they varied in total Autism Spectrum Quotient but that the profiles across the symptoms comprising the Autism Spectrum Quotient did not differ independently of this severity factor. Conclusion These results are consistent with a unitary spectrum model, suggesting that the clinical heterogeneity observed

  1. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  2. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.

    2017-12-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of

  3. Assessment of Body Condition in African (Loxodonta africana and Asian (Elephas maximus Elephants in North American Zoos and Management Practices Associated with High Body Condition Scores.

    Directory of Open Access Journals (Sweden)

    Kari A Morfeld

    Full Text Available Obesity has a negative effect on health and welfare of many species, and has been speculated to be a problem for zoo elephants. To address this concern, we assessed the body condition of 240 elephants housed in North American zoos based on a set of standardized photographs using a 5-point Body Condition Score index (1 = thinnest; 5 = fattest. A multi-variable regression analysis was then used to determine how demographic, management, housing, and social factors were associated with an elevated body condition score in 132 African (Loxodonta africana and 108 Asian (Elephas maximus elephants. The highest BCS of 5, suggestive of obesity, was observed in 34% of zoo elephants. In both species, the majority of elephants had elevated BCS, with 74% in the BCS 4 (40% and 5 (34% categories. Only 22% of elephants had BCS 3, and less than 5% of the population was assigned the lowest BCS categories (BCS 1 and 2. The strongest multi-variable model demonstrated that staff-directed walking exercise of 14 hours or more per week and highly unpredictable feeding schedules were associated with decreased risk of BCS 4 or 5, while increased diversity in feeding methods and being female was associated with increased risk of BCS 4 or 5. Our data suggest that high body condition is prevalent among North American zoo elephants, and management strategies that help prevent and mitigate obesity may lead to improvements in welfare of zoo elephants.

  4. Array-type sensor to determine corrosive conditions in high temperature water under gamma rays irradiation

    International Nuclear Information System (INIS)

    Satoh, T.; Tsukada, T.; Uchida, S.; Katoh, C.

    2010-01-01

    One of the problems to determine electrochemical corrosion potential (ECP) in high temperature water under irradiation is to apply long-lived and reliable reference electrodes. In order to avoid troubles due to the reference electrode, a new concept to determine ECP without the reference electrode has been proposed. Several metal plates are applied as working electrodes and at the same time as the reference electrodes. Potential of the metal plates with stable oxide films on their surfaces show stable values in high temperature water. As a result of the combination of their potential values, ECP of each metal can be determined without any specific reference electrode. Array-type sensors consisting of several metal plates, e.g., Fe, Ni, Cr, Zr, Pt, Pd, Re, Ir, with well developed oxide films on their surface were prepared for ECP measurement in high temperature water under neutron/gamma ray irradiations. In order to confirm the feasibility of this concept, responses of the redox potentials of the pure metals to changes in the simulated BWR reactor water conditions were measured and the ECP was determined by the differences in potentials between a couple of metal plates. Major conclusions of the study are as follows: 1) The redox potentials of the Fe, Pt, Zr, Ir, Pd, and Re electrodes showed the different dependences on the changes in O 2 and H 2 O 2 concentrations. The redox potentials of the electrodes increased as the oxidant concentrations increased except for Zr electrode. The potential of the Zr electrode was kept the very low potential at the wide range of O 2 and H 2 O 2 concentrations differed form the other electrodes. 2) It was estimated that the redox potential of highly soluble metal may be increased, while that of low soluble metal may be decreased by an oxide film. The stable oxide film would cause the stable potential response of the electrode with oxide film. 3) The relationship between the oxidant concentrations and the redox potentials of the

  5. Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A., E-mail: ono.ayako@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan); Kimura, N.; Kamide, H.; Tobita, A. [Oarai Research and Development Center, Japan Atomic Energy Agency, Narita 4002, Oarai, Ibaraki 311-1393 (Japan)

    2011-11-15

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2 Multiplication-Sign 10{sup 7}. Moreover, a short-elbow is adopted in the hot leg pipe in order to achieve compact plant layout and to reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation source which is caused by the pressure fluctuation in the pipe. The pressure fluctuation in the pipe is closely related with the velocity fluctuation. As the first step of clarification of the FIV mechanism, it is important to grasp the mechanism of flow fluctuation in the elbow. In this study, water experiments with two types of elbows with different curvature ratios were conducted in order to investigate the interaction between flow separation and the secondary flow due to the elbow curvature. The experiments were conducted with the short-elbow and the long-elbow under Re = 1.8 Multiplication-Sign 10{sup 5} and 5.4 Multiplication-Sign 10{sup 5} conditions. The velocity fields in the elbows were measured using a high-speed Particle Image Velocimetry (PIV). The time-series of axial velocity fields and the cross-section velocity fields obtained by the high-speed PIV measurements revealed the unsteady and complex flow structure in the elbow. The flow separation always occurred in the short-elbow while the flow separation occurred intermittently in the long-elbow case. The circumferential secondary flows in clockwise and counterclockwise directions flowed forward downstream of reattachment point alternately in both elbows.

  6. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  7. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  8. Measurements of mixtures with carbon dioxide under supercritical conditions using commercial high pressure equipment

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luciana L.P.R. de; Rutledge, Luis Augusto Medeiros; Moreno, Eesteban L.; Hovell, Ian; Rajagopal, Krishnaswamy [Universidade Federal do Rio de Janeiro (LATCA-EQ-UFRJ), RJ (Brazil). Escola de Quimica. Lab. de Termodinamica e Cinetica Aplicada

    2012-07-01

    There is a growing interest in studying physical properties of binary and multicomponent fluid mixtures with supercritical carbon dioxide (CO{sub 2}) over an extended range of temperature and pressure. The estimation of properties such as density, viscosity, saturation pressure, compressibility, solubility and surface tension of mixtures is important in design, operation and control as well as optimization of chemical processes especially in extractions, separations, catalytic and enzymatic reactions. The phase behaviour of binary and multicomponent mixtures with supercritical CO{sub 2} is also important in the production and refining of petroleum where mixtures of paraffin, naphthene and aromatics with supercritical fluids are often encountered. Petroleum fluids can present a complex phase behaviour in the presence of CO{sub 2}, where two-phase (VLE and LLE) and three phase regions (VLLE) might occur within ranges of supercritical conditions of temperature and pressure. The objective of this study is to develop an experimental methodology for measuring the phase behaviour of mixtures containing CO{sub 2} in supercritical regions, using commercial high-pressure equipment. (author)

  9. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  10. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Forest decline caused by high soil water conditions in a permafrost region

    Directory of Open Access Journals (Sweden)

    H. Iwasaki

    2010-02-01

    Full Text Available In the permafrost region near Yakutsk, eastern Siberia, Russia, annual precipitation (June–May in 2005–2006 and 2006–2007 exceeded the 26-year (1982–2008 mean of 222±68 mm by 185 mm and 128 mm, respectively, whereas in 2007–2008 the excedent was only 48 mm, well within the range of variability. Yellowing and browning of larch (Larix cajanderi Mayr. trees occurred in an undisturbed forest near Yakutsk in the 2007 summer growing season. Soil water content at a depth of 0.20 m was measured along a roughly 400 m long line transect running through areas of yellowing and browning larch trees (YBL and of normal larch trees (NL. In the two years of supranormal precipitation, soil water content was very high compared to values recorded for the same area in previous studies. For both wet years, the mean degree of saturation (s was significantly greater in YBL than NL areas, whereas the converse was the case for the gas diffusivity in soil. This implies that rather than mitigating water stress suffered during normal precipitation years, elevated soil water conditions adversely affected the growth of larch trees. Eastern Siberia's taiga forest extends widely into the permafrost region. Was such supranormal annual precipitation to extend for more than two years, as might be expected under impending global climate changes, forest recovery may not be expected and emission of greenhouse gas might continue in future.

  12. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  13. High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions

    Directory of Open Access Journals (Sweden)

    Antoine Rouilly

    2013-05-01

    Full Text Available Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.

  14. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  15. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    Science.gov (United States)

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.

  16. Behavior of ruthenium, cesium and antimony in high temperature processes for waste conditioning

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.

    1985-01-01

    The fission products and the actinides of high level radioactive liquid wastes can be immobilized by incorporation into a glass matrix prior to disposal. The behaviour of so-called semi-volatile products during the vitrification process has been studied by the C.E.N./S.C.K. in Mol since 1979 in the framework of a contract with DWK of Germany in support to the HAW technological program PAMELA. The experiments were performed on laboratory and semi-pilot scale using simulated LEWC solutions tagged with radioisotopes of three suspected volatile fission products, namely ruthenium, cesium and antimony. The releases of these semi-volatile compounds to the off-gases have been investigated for a liquid fed melter as a function of the operational conditions. The study of a wet purification system, comprising in series of a dust scrubber, a condensor, an ejector venturi and an NOsub(x) column, has shown that cesium appears to be the reference isotope for the volatile elements released from the melter. Ruthenium seems not to be a problem from the point of view of gas purification although local radiation problems caused by deposits on metal surfaces cannot be excluded. (Auth.)

  17. Solar wind fluctuations at large scale: A comparison between low and high solar activity conditions

    International Nuclear Information System (INIS)

    Bavassano, B.; Bruno, R.

    1991-01-01

    The influence of the Sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU, Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. On the whole, the Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. At scales from 0.5 to 3 days the most important feature is the growth, as the solar wind expansion develops, of strong positive correlations between magnetic and thermal pressures. These structures are progressively built up by the interaction between different wind flows. This effect is more pronounced at low than at high activity. Our findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations

  18. Pharmacological Correction of the Human Functional State in High Altitude Conditions

    Science.gov (United States)

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ...Cholesterol, Adaptation Paper presented at the RTO HFM Symposium on "Operational Medical Issues in Hypo- and Hyperbaric Conditions", held in Toronto...T.D., 1986, Recovery after Extreme Hypobaric Hypoxia as a Method of Study of Antihypoxic Activity of Chemical Compounds. In: Farmakologicheskaya

  19. Condition for a single bunch high frequency fast blow-up

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1980-01-01

    We study the longitudinal stability of a single particle bunch in a storage ring using Vlasov equation. We show that the Vlasov equation has solutions corresponding to a fast, microwave instability if a condition on the beam current, qualitatively similar to the stability condition for a coasting beam, is satisfied. This condition can be used to define a threshold current, and to discuss its dependence on the longitudinal coupling impedance

  20. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions

    OpenAIRE

    Jodeau , M.; Hauet , A.; Paquier , A.; Le Coz , J.; Dramais , G.

    2008-01-01

    Large Scale Particle Image Velocimetry (LS-PIV) is used to measure the surface flow velocities in a mountain stream during high flow conditions due to a reservoir release. A complete installation including video acquisition from a mobile elevated viewpoint and artificial flow seeding has been developed and implemented. The LS-PIV method was adapted in order to take into account the specific constraints of these high flow conditions. Using a usual LS-PIV data processing, significant variations...

  1. Physical conditions of the interstellar medium in high-redshift submillimetre bright galaxies

    Science.gov (United States)

    Yang, Chentao

    2017-12-01

    The discovery of a population of high- redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects. We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submillimeter flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry. Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM 30m telescope. By analysing the CO line profile, we discovered a significant differential

  2. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.

    Science.gov (United States)

    Xue, Ning; Wang, Chao; Liu, Cunxiu; Sun, Jianhai

    2018-01-02

    In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interface ASICs were first designed and fabricated based on a 0.18-μm 1.8-V CMOS (complementary metal-oxide-semiconductor) process. The oxygen sensor and pressure sensor were fabricated by the standard CMOS process and subsequent CMOS-compatible MEMS (micro-electromechanical systems) post-processing. The multi-sensor single chip was completely sealed by the nafion, parylene, and PDMS (polydimethylsiloxane) layers for biocompatibility study. The size of the compact sensor chip is only 3.65 mm × 1.65 mm × 0.72 mm. The functionality, stability, and sensitivity of the multi-functional sensor was tested ex vivo. Cytotoxicity assessment was performed to verify that the bio-compatibility of the device is conforming to the ISO 10993-5:2009 standards. The measured sensitivities of the sensors for the temperature, pressure, and oxygen concentration are 10.2 mV/°C, 5.58 mV/kPa, and 20 mV·L/mg, respectively. The measurement results show that the proposed multi-sensor single chip is suitable to sense the temperature, pressure, and oxygen concentration of human tissues for intracorporeal physiological condition monitoring.

  3. A behavioral comparison of male and female adults with high functioning autism spectrum conditions.

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Lai

    Full Text Available Autism spectrum conditions (ASC affect more males than females in the general population. However, within ASC it is unclear if there are phenotypic sex differences. Testing for similarities and differences between the sexes is important not only for clinical assessment but also has implications for theories of typical sex differences and of autism. Using cognitive and behavioral measures, we investigated similarities and differences between the sexes in age- and IQ-matched adults with ASC (high-functioning autism or Asperger syndrome. Of the 83 (45 males and 38 females participants, 62 (33 males and 29 females met Autism Diagnostic Interview-Revised (ADI-R cut-off criteria for autism in childhood and were included in all subsequent analyses. The severity of childhood core autism symptoms did not differ between the sexes. Males and females also did not differ in self-reported empathy, systemizing, anxiety, depression, and obsessive-compulsive traits/symptoms or mentalizing performance. However, adult females with ASC showed more lifetime sensory symptoms (p = 0.036, fewer current socio-communication difficulties (p = 0.001, and more self-reported autistic traits (p = 0.012 than males. In addition, females with ASC who also had developmental language delay had lower current performance IQ than those without developmental language delay (p<0.001, a pattern not seen in males. The absence of typical sex differences in empathizing-systemizing profiles within the autism spectrum confirms a prediction from the extreme male brain theory. Behavioral sex differences within ASC may also reflect different developmental mechanisms between males and females with ASC. We discuss the importance of the superficially better socio-communication ability in adult females with ASC in terms of why females with ASC may more often go under-recognized, and receive their diagnosis later, than males.

  4. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  5. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    Science.gov (United States)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  6. Conditional probability of intense rainfall producing high ground concentrations from radioactive plumes

    International Nuclear Information System (INIS)

    Wayland, J.R.

    1977-03-01

    The overlap of the expanding plume of radioactive material from a hypothetical nuclear accident with rainstorms over dense population areas is considered. The conditional probability of the occurrence of hot spots from intense cellular rainfall is presented

  7. Characterization of metal powder based rapid prototyping components under aluminium high pressure die casting process conditions

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2009-11-01

    Full Text Available periodic inspections, monitoring crack formation and evidence of surface washout. At the end of the thermal tests, mechanical strength and hardness tests were performed to assess toughness and core resistance variations in relation to the initial conditions...

  8. Older adults in jail: high rates and early onset of geriatric conditions.

    Science.gov (United States)

    Greene, Meredith; Ahalt, Cyrus; Stijacic-Cenzer, Irena; Metzger, Lia; Williams, Brie

    2018-02-17

    The number of older adults in the criminal justice system is rapidly increasing. While this population is thought to experience an early onset of aging-related health conditions ("accelerated aging"), studies have not directly compared rates of geriatric conditions in this population to those found in the general population. The aims of this study were to compare the burden of geriatric conditions among older adults in jail to rates found in an age-matched nationally representative sample of community dwelling older adults. This cross sectional study compared 238 older jail inmates age 55 or older to 6871 older adults in the national Health and Retirement Study (HRS). We used an age-adjusted analysis, accounting for the difference in age distributions between the two groups, to compare sociodemographics, chronic conditions, and geriatric conditions (functional, sensory, and mobility impairment). A second age-adjusted analysis compared those in jail to HRS participants in the lowest quintile of wealth. All geriatric conditions were significantly more common in jail-based participants than in HRS participants overall and HRS participants in the lowest quintile of net worth. Jail-based participants (average age of 59) experienced four out of six geriatric conditions at rates similar to those found in HRS participants age 75 or older. Geriatric conditions are prevalent in older adults in jail at significantly younger ages than non-incarcerated older adults suggesting that geriatric assessment and geriatric-focused care are needed for older adults cycling through jail in their 50s and that correctional clinicians require knowledge about geriatric assessment and care.

  9. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  10. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  11. High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis hypogaea (L.)).

    Science.gov (United States)

    Vadez, Vincent; Ratnakumar, Pasala

    2016-07-01

    Water limitation is a major yield limiting factor in groundnut and transpiration efficiency (TE) is considered the main target for improvement, but TE being difficult to measure it has mostly been screened with surrogates. The paper re-explore the contribution of TE to grain yield in peanut by using a novel experimental approach in which TE is measured gravimetrically throughout the crop life cycle, in addition to measurement of TE surrogates. Experimentation was carried out with the groundnut reference collection (n = 288), across seasons varying for the evaporative demand (vapor pressure deficit, VPD) and across both fully irrigated and intermittent water stress conditions. There was large genotypic variation for TE under water stress in both low and high VPD season but the range was larger (5-fold) in the high- than in the low-VPD season (2-fold). Under water stress in both seasons, yield was closely related to the harvest index (HI) while TE related directly to yield only in the high VPD season. After discounting the direct HI effect on yield, TE explained a large portion of the remaining yield variations in both seasons, although marginally in the low VPD season. By contrast, the total water extracted from the soil profile, which varied between genotypes, did not relate directly to pod yield and neither to the yield residuals unexplained by HI. Surrogates for TE (specific leaf area, SLA, and SPAD chlorophyll meter readings, SCMR) never showed any significant correlation to TE measurements. Therefore, TE is an important factor explaining yield differences in groundnut under high VPD environments, suggesting that stomatal regulation under high VPD, rather than high photosynthetic rate as proposed earlier, may have a key role to play in the large TE differences found, which open new opportunities to breed improved groundnut for high VPD.

  12. Effects of Different Conditioning Activities on 100-m Dash Performance in High School Track and Field Athletes.

    Science.gov (United States)

    Ferreira-Júnior, João B; Guttierres, Ana P M; Encarnação, Irismar G A; Lima, Jorge R P; Borba, Diego A; Freitas, Eduardo D S; Bemben, Michael G; Vieira, Carlos A; Bottaro, Martim

    2018-01-01

    This study compared the effects of different conditioning activities on the 100-m dash performance of 11 male, high school track and field athletes (mean age = 16.3; SD = 1.2 years). Participants performed a 100-m dash seven minutes after each of four randomized conditioning protocols, with each condition and 100-m dash separated by 3-10 days. The conditioning protocols were (a) control, no conditioning activity; (b) weighted plyometric, three sets of 10 repetitions of alternate leg bounding with additional load of 10% of the body mass; (c) free sprint, two 20-m sprints; and (d) resisted sprint (RS), two 20-m resisted sprints using an elastic tubing tool. We obtained session ratings of perceived exertion (SRPE) immediately after each conditioning protocol. There were no significant differences between any of the three experimental conditioning activities on 100-m sprint time, but the RS protocol improved 100-m sprint time compared with the control (no conditioning) protocol ( p < .001). The RS also led to greater sprint velocity and higher SRPE compared with the control condition ( p < .01). There was no significant association between SRPE and 100-m performance ( p = .77, r = .05). These results suggest a benefit for young male track and field athletes to the elastic tubing warm-up activities prior to the 100-m dash.

  13. French analytic experiment on the high specific burnup of PWR fuels in normal conditions

    International Nuclear Information System (INIS)

    Bruet, M.; Atabek, R.; Houdaille, B.; Baron, D.

    1982-04-01

    Hydrostatic density determinations made on UO 2 pellets of different kinds irradiated in conditions representative of PWR conditions enable the internal swelling rate of the UO 2 to be ascertained. A mean value of 0.8% per 10 4 MWdt -1 (u) up to a specific burnup of 45000 MWdt -1 (u) may be deduced from this experimental basis. These results agree well with those obtained in the TANGO experiments in which UO 2 balls were irradiated in quasi isothermal conditions and without stress. Further, the open porosity of oxide closes progressively and the change in the total porosity is thus very limited (under 1% at 45000 MWdt -1 (u)). With respect to the swelling of the pellets the rise in the specific burnup would not appear therefore to be a problem. The behaviour of recrystallized zircaloy 4 claddings remains satisfactory with respect to creep and growth during irradiation [fr

  14. No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients

    OpenAIRE

    Thiel, U.; Wawer, A.; Wolf, P.; Badoglio, M.; Santucci, A.; Klingebiel, T.; Basu, O.; Borkhardt, A.; Laws, H.-J; Kodera, Y.; Yoshimi, A.; Peters, C.; Ladenstein, R.; Pession, A.; Prete, A.

    2017-01-01

    Background: Outcomes of Ewing tumor (ET) patients treated with allogeneic stem cell transplantation (allo-SCT) were compared regarding the use of reduced-intensity conditioning (RIC) and high-intensity conditioning (HIC) regimens as well as human leukocyte antigen (HLA)-matched and HLA-mismatched grafts. Patients and methods: We retrospectively analyzed data of 87 ET patients from the European Group for Blood and Marrow Transplantation, Pediatric Registry for Stem Cell Transplantations, Asia ...

  15. Can conditional cash transfer programs generate equality of opportunity in highly unequal societies? Evidence from Brazil

    Directory of Open Access Journals (Sweden)

    Simone Bohn

    2014-09-01

    Full Text Available This article examines whether the state, through conditional cash transfer programs (CCT, can reduce the poverty and extremely poverty in societies marred by high levels of income concentration. We focus on one of the most unequal countries in the globe, Brazil, and analyze the extent to which this country's CCT program - Bolsa Família (BF, Family Grant program - is able to improve the life chances of extremely poor beneficiaries, through the three major goals of PBF: First, to immediately end hunger; second, to create basic social rights related to healthcare and education; finally, considering also complementary policies, to integrate adults into the job market. The analysis relies on a quantitative survey with 4,000 beneficiaries and a qualitative survey comprised of in-depth interviews with 38 program's participants from all the regions of the country in 2008, it means that this study is about the five first years of the PBF. In order to answer the research questions, we ran four probit analyses related: a the determinants of the realization of prenatal care; b the determinants of food security among BF beneficiaries, c the determinants that adult BF recipients will return to school, d the determinants that a BF beneficiary will obtain a job. Important results from the study are: First, those who before their participation on PBF were at the margins have now been able to access healthcare services on a more regular basis. Thus, the women at the margins who were systematically excluded - black women, poorly educated and from the North - now, after their participation in the CCT program, have more access to prenatal care and can now count with more availability of public healthcare network. Second, before entering the Bolsa Família program, 50.3% of the participants faced severe food insecurity. This number went down to 36.8% in very five years. Men are more likely than women; non-blacks more likely than blacks; and South and Centre

  16. The high price of depression: Family members' health conditions and health care costs.

    Science.gov (United States)

    Ray, G Thomas; Weisner, Constance M; Taillac, Cosette J; Campbell, Cynthia I

    2017-05-01

    To compare the health conditions and health care costs of family members of patients diagnosed with a Major Depressive Disorder (MDD) to family members of patients without an MDD diagnosis. Using electronic health record data, we identified family members (n=201,914) of adult index patients (n=92,399) diagnosed with MDD between 2009 and 2014 and family members (n=187,011) of matched patients without MDD. Diagnoses, health care utilization and costs were extracted for each family member. Logistic regression and multivariate models were used to compare diagnosed health conditions, health services cost, and utilization of MDD and non-MDD family members. Analyses covered the 5years before and after the index patient's MDD diagnosis. MDD family members were more likely than non-MDD family members to be diagnosed with mood disorders, anxiety, substance use disorder, and numerous other conditions. MDD family members had higher health care costs than non-MDD family members in every period analyzed, with the highest difference being in the year before the index patient's MDD diagnosis. Family members of patients with MDD are more likely to have a number of health conditions compared to non-MDD family members, and to have higher health care cost and utilization. Copyright © 2017. Published by Elsevier Inc.

  17. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    NARCIS (Netherlands)

    Gryning, S.E.; Batchvarova, E.; DeBruin, H.A.R.

    2001-01-01

    Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day

  18. Perceptions of Friendship among Adolescents with Autism Spectrum Conditions in a Mainstream High School Resource Provision

    Science.gov (United States)

    O'Hagan, Siobhan; Hebron, Judith

    2017-01-01

    Establishing and maintaining friendships is frequently challenging for young people with autism spectrum conditions (ASC). However, few studies have explored influences on friendship development, meaning that knowledge of friendship formation processes remains limited at a critical point in social development. As friendship can impact on…

  19. High altitude C4 grasslands in the northern Andes: relicts from glacial conditions?

    NARCIS (Netherlands)

    Boom, A.; Mora, G.; Cleef, A.M.; Hooghiemstra, H.

    2001-01-01

    The altitudinal vegetation distribution in the northern Andes during glacial time differed from the present-day conditions as a result of temperature and precipitation change. New evidence indicate that as a response to a reduced atmospheric partial CO2 pressure (pCO2), the competitive balance

  20. Psychological distress is associated with a range of high-priority health conditions affecting working Australians.

    Science.gov (United States)

    Holden, Libby; Scuffham, Paul; Hilton, Michael; Vecchio, Nerina; Whiteford, Harvey

    2010-06-01

    Psychological distress is growing in prevalence in Australia. Comorbid psychological distress and/or depressive symptoms are often associated with poorer health, higher healthcare utilisation and decreased adherence to medical treatments. The Australian Work Outcomes Research Cost-benefit (WORC) study cross-sectional screening dataset was used to explore the association between psychological distress and a range of health conditions in a sample of approximately 78,000 working Australians. The study uses the World Health Organization Health and Productivity Questionnaire (HPQ), to identify self-reported health status. Within the HPQ is the Kessler 6 (K6), a six-item scale of psychological distress which strongly discriminates between those with and without a mental disorder. Potential confounders of age, sex, marital status, number of children, education level and annual income were included in multivariate logistic regression models. Psychological distress was significantly associated with all investigated health conditions in both crude and adjusted estimates. The conditions with the strongest adjusted association were, in order from highest: drug and alcohol problems, fatigue, migraine, CVD, COPD, injury and obesity. Psychological distress is strongly associated with all 14 health conditions or risk factors investigated in this study. Comorbid psychological distress is a growing public health issue affecting Australian workers.

  1. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  2. High voltage with little current as an unconditional stimulus for taste avoidance conditioning in Lymnaea stagnalis.

    Science.gov (United States)

    Takigami, Satoshi; Sunada, Hiroshi; Lukowiak, Ken; Sakakibara, Manabu

    2013-10-25

    A new and better taste avoidance conditioning paradigm for Lymnaea has been developed that replaces the previously used tactile unconditional stimulus (US) with an brief electrical stimulus (1000V, 80μA), while continuing to use a sucrose application to the lips as the conditional stimulus (CS). With 15 paired CS-US presentations on a single day, we were able to elicit both short-term memory (STM) and long-term memory (LTM). The LTM persisted for at least one week. While STM was elicited with 5, 8, or 10 paired presentations of the CS-US on a single day, LTM was not. The new US used here was more consistent than the previously used US, and this stimulus consistency may explain why 15 paired CS-US presentations now result in LTM formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

    Science.gov (United States)

    Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.

    A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.

  4. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.; Bruin, H.A.R. de

    2001-01-01

    was simulated for a three month period. For conditions with a cloud cover of less than 7 oktas good agreement between model predictions and measurements were found. For cloud cover 7 and 8 oktas a considerable spread can be observed. To apply the proposed energy balance model, the global radiation must......Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day...... and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m(-2...

  5. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection...Temperature (K) 363 Ambient temperature (K) 900 Nozzle Diameter (mm) 0.09 Ambient density (kg/m3) 22.8 Injection Duration (ms) 1.5 Number of injector holes

  6. Boundary Conditions of the High-Investment Human Resource Systems-Small-Firm Labor Productivity Relationship

    Science.gov (United States)

    Chadwick, Clint; Way, Sean A.; Kerr, Gerry; Thacker, James W.

    2013-01-01

    Although a few published, multiindustry, firm-level, empirical studies have linked systems of high-investment or high-performance human resource management practices to enhanced small-firm performance, this stream of strategic human resource management research is underdeveloped and equivocal. Accordingly, in this study, we use a sample of…

  7. The Conditional Nature of High Impact/Good Practices on Student Learning Outcomes

    Science.gov (United States)

    Seifert, Tricia A.; Gillig, Benjamin; Hanson, Jana M.; Pascarella, Ernest T.; Blaich, Charles F.

    2014-01-01

    Using a multi-institutional sample of undergraduate students, this study found that the relationships between engaging in high impact/good practices and liberal arts outcomes differ based on students' precollege and background characteristics. Findings suggest that high impact/good practices are not a panacea and require a greater degree of…

  8. Optimization of nitridation conditions for high quality inter-polysilicon dielectric layers

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; van Kranenburg, H.; Woerlee, P.H.; Wallinga, Hans

    1996-01-01

    Nitridation of deposited high temperature oxides (HTO) was studied to form high quality inter-polysilicon dielectric layers for embedded non volatile memories. Good quality dielectric layers were obtained earlier by using an optimized deposition of polysilicon and by performing a post-dielectric

  9. Robustness of Multiple High Speed TCP CUBIC Connections Under Severe Operating Conditions

    DEFF Research Database (Denmark)

    Pilimon, Artur; Ruepp, Sarah Renée; Berger, Michael Stübert

    2015-01-01

    We study the adaptation capabilities and robustness of the high-speed TCP CUBIC algorithm. For this purpose we consider a network environment with variable and high random packet loss and a large Bandwidth-Delay product, shared by multiple heterogeneous TCP connections. The analysis is based on a...

  10. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  11. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  12. Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.

    Science.gov (United States)

    Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2017-09-05

    We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.

  13. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott; Lee, Bok Jik; Shepherd, Joseph E.

    2016-01-01

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane

  14. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    Science.gov (United States)

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  15. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    International Nuclear Information System (INIS)

    Yamamoto, K; Müller, A; Favrel, A; Landry, C; Avellan, F

    2014-01-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated

  16. Large scale network management. Condition indicators for network stations, high voltage power conductions and cables

    International Nuclear Information System (INIS)

    Eggen, Arnt Ove; Rolfseng, Lars; Langdal, Bjoern Inge

    2006-02-01

    In the Strategic Institute Programme (SIP) 'Electricity Business enters e-business (eBee)' SINTEF Energy research has developed competency that can help the energy business employ ICT systems and computer technology in an improved way. Large scale network management is now a reality, and it is characterized by large entities with increasing demands on efficiency and quality. These are goals that can only be reached by using ICT systems and computer technology in a more clever way than what is the case today. At the same time it is important that knowledge held by experienced co-workers is consulted when formal rules for evaluations and decisions in ICT systems are developed. In this project an analytical concept for evaluation of networks based information in different ICT systems has been developed. The method estimating the indicators to describe different conditions in a network is general, and indicators can be made to fit different levels of decision and network levels, for example network station, transformer circuit, distribution network and regional network. Moreover, the indicators can contain information about technical aspects, economy and HSE. An indicator consists of an indicator name, an indicator value, and an indicator colour based on a traffic-light analogy to indicate a condition or a quality for the indicator. Values on one or more indicators give an impression of important conditions in the network, and make up the basis for knowing where more detailed evaluations have to be conducted before a final decision on for example maintenance or renewal is made. A prototype has been developed for testing the new method. The prototype has been developed in Excel, and especially designed for analysing transformer circuits in a distribution network. However, the method is a general one, and well suited for implementation in a commercial computer system (ml)

  17. Analysis of high signal intensities of nontumorous conditions of corpus callosum on magnetic resonance T2-weighted images

    International Nuclear Information System (INIS)

    Kang, Moo Song; Kim, Chul Min; Chung, Chun Phil

    1995-01-01

    To evaluate high signal intensity of nontumorous conditions of corpus callosum on T2-weighted MR images. Forty nine patients with nontumorous high signal intensities involving corpus callosum on sagittal T2-weighted image were retrospectively analyzed. Nontumorous condition of corpus callosum were diffuse axonal injury (DAI, 19 cases), cerebral infarctions (16 cases), multiple sclerosis (MS, 5 cases), Wilson's disease (2 cases) and hydrocephalus (7 cases) that were diagnosed by clinical and MR findings. Numbers, configuration, involved thickness and sites of high signal intensities of corpus callosum were analyzed. DAI and infarctions showed either single or multiple lesions. MS and hydrocephalus showed multiple lesions, but Wilson's diseases showed single lesion. In DAI, infarctions and MS the lesions involved any part of corpus callosum, splenium in Wilson's disease, and all parts of corpus callosum in hydrocephalus. Wilson's disease showed only partial thickness involvement, and others involved partial or full thickness of corpus callosum. Configuration of high signal intensity was linear in most cases of hydrocephalus, and oval in Wilson's disease, and oval and confluent in MS, and variable in DAI and infarctions. High signal intensities of nontumorous conditions of corpus callosum revealed variable findings, and therefore, analysis of nontumorous high signal intensities of corpus callosum is not made by only MR findings but by conjuction with clinical aspects

  18. Safety conditions of using structural steels under high temperature and pressures in hydrogen containing environment

    International Nuclear Information System (INIS)

    Asviyan, M.B.

    1984-01-01

    The method for establishing full-strength conditions was suggested on the base of results of creep-rupture test of tube samples under hydrogen pressure and according to permissible stresses in neutral medium. Applicability of the method was considered taking St3 and 12KhM steels as examples. It was shown that the use of suggested dependences and special efficiency factors enables to forecast endurance limit for the given steel grade and assigned partial hydrogen pressure without labour-intensive test conducting

  19. Addition of Pullulan to Trehalose Glasses Improves the Stability of β-Galactosidase at High Moisture Conditions

    NARCIS (Netherlands)

    Teekamp, Naomi; Tian, Yu; Visser, J. Carolina; Olinga, Peter; Frijlink, Henderik W.; Woerdenbag, Herman J.; Hinrichs, Wouter L. J.

    2017-01-01

    Incorporation of therapeutic proteins in a matrix of sugar glass is known to enhance protein stability, yet protection is often lost when exposed to high relative humidity (RH). We hypothesized that especially in these conditions the use of binary glasses of a polysaccharide and disaccharide might

  20. Heat and Mass Transfer in a High-Porous Low-Temperature Thermal Insulation in Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2015-01-01

    Full Text Available The results of numerical simulation of heat and mass transfer in a high-porous low-temperature insulation in conditions of insulation freezing, a moisture migration to the front of phase transition and a condensation forming on an outer contour of interaction were obtained. Values of heat leakage were established.

  1. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru

    2008-06-27

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.

  2. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    International Nuclear Information System (INIS)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L

    2008-01-01

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus

  3. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  4. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  5. Implementation of high fidelity models for the conditions of operation in stop in PWR simulators

    International Nuclear Information System (INIS)

    Gonzalez Sevillano, I.; Jimenez Bogarin, R.; Ortega Pascual, F.

    2014-01-01

    The operation in stop cold conditions and in particular the States of operation with reduced inventory, the call of half loop or half nozzle, is becoming increasingly more important. These States of operation are characterized by having the coolant level approximately on the generatrix of the branches, so that any deviation in the level or malfunction of the system for the disposal of waste heat could lead to compromising situations. The importance of this type of situation is reflected in the APS in other modes (APSOM), which show that the risk in these conditions may be comparable to the power. Hence the importance that the simulator training programmes include scenarios that cover these States of operation. The article describes on the one hand, the difficulties encountered in the simulation of situations characterized by low pressure and presence of Non-Condensable and, on the other hand, its implementation, not only in the field of training of plant personnel, but also in the field of review/validation of operating procedures. (Author)

  6. Birds achieve high robustness in uneven terrain through active control of landing conditions.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Daley, Monica A

    2012-06-15

    We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust stability, and address whether strategies vary with obstacle height. We found that control of landing conditions was crucial for minimising fluctuations in stance leg loading and work in uneven terrain. Variation in touchdown leg angle (θ(TD)) was correlated with the orientation of ground force during stance, and the angle between the leg and body velocity vector at touchdown (β(TD)) was correlated with net limb work. Pheasants actively targeted obstacles to control body velocity and leg posture at touchdown to achieve nearly steady dynamics on the obstacle step. In the approach step to an obstacle, the birds produced net positive limb work to launch themselves upward. On the obstacle, body dynamics were similar to uniform terrain. Pheasants also increased swing leg retraction velocity during obstacle negotiation, which we suggest is an active strategy to minimise fluctuations in peak force and leg posture in uneven terrain. Thus, pheasants appear to achieve robustly stable locomotion through a combination of path planning using visual feedback and active adjustment of leg swing dynamics to control landing conditions. We suggest that strategies for robust stability are context specific, depending on the quality of sensory feedback available, especially visual input.

  7. Measures of extents of laterality for high-frequency ``transposed'' stimuli under conditions of binaural interference

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-09-01

    Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.

  8. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    Bazza, M.

    1996-01-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13 C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high ( ** ). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  9. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bazza, M [Rabat-Institus, Rabat (Morocco). Inst. Agronomique et Veterinaire Hassan II

    1996-07-01

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using {sup 13}C discrimination {Delta} as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as {Delta} were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in {Delta}. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with {Delta} although the correlation coefficient of grain yield versus {Delta} was not high (< 0.45{sup **}). The data suggest that while a high {Delta} value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in {Delta} and the yield of a cultivar. But, {Delta} of a genotype can also provide valuable information with respect to plant parameters responsible for the control of {Delta} and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs,2figs,2tabs.

  10. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    Science.gov (United States)

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  11. Simple PVT quantitative method of Kr under high pure N2 condition

    International Nuclear Information System (INIS)

    Li Xuesong; Zhang Zibin; Wei Guanyi; Chen Liyun; Zhai Lihua

    2005-01-01

    A simple PVT quantitative method of Kr in the high pure N 2 was studied. Pressure, volume and temperature of the sample gas were measured by three individual methods to obtain the sum sample with food uncertainty. The ratio of Kr/N 2 could measured by GAM 400 quadrupole mass spectrometer. So the quantity of Kr could be calculated with the two measured data above. This method can be suited for quantitative analysis of other simple composed noble gas sample with high pure carrying gas. (authors)

  12. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    Science.gov (United States)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  13. Comparison of a classical with a highly formularized body condition scoring system for dairy cattle.

    Science.gov (United States)

    Isensee, A; Leiber, F; Bieber, A; Spengler, A; Ivemeyer, S; Maurer, V; Klocke, P

    2014-12-01

    Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), 'independent BCS' (iBCS) and 'dependent BCS' (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where - besides the decision tree - the overall impression of the cow's physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion

  14. Conditioning of high activity solid waste: fuel claddings and dissolution residues

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This chapter reports on experimental studies of embedding into matrix material, the melting and conversion of zircaloy, and waste properties and characterization. Methods are developed for embedding the waste scrap into a solid and resistant matrix material in order to confine the radioactivity and to prevent it from dispersion. The matrix materials investigated are lead alloys, ceramics and compacted graphite or aluminium powder. The treatment of fuel hulls by melting or chemical conversion is described. Cemented hulls are characterized and the pyrophoricity of zircaloy fines is investigated. Topics considered include the embedding of hulls into graphite and aluminium, the embedding of hulls and dissolution residues into alumino-ceramics, the solidification of alpha-bearing wastes into a ceramic matrix, and the conditioning of cladding waste by eutectoidic melting and by embedding in glass

  15. Waste management from reprocessing: a stringent regulatory requirements for high quality conditioned residues

    International Nuclear Information System (INIS)

    Bordier, J. C.; Greneche, D.; Devezeaux, J. G.; Dalcorso, J.

    2000-01-01

    Nuclear waste production and management in France is governed by safety requirements imposed to all operators. French nuclear safety relies on two basic principles: · Responsibility of the nuclear operator, which expands to waste generated, · Safety basic objectives issued by national Safety Authority. For a long time the regulatory framework for waste production and management has been satisfactorily applied and has benefited to each actor of the process. LLW/MLW and HLW nuclear waste are currently conditioned in safe matrices or packages either likely to be disposed in surface repositories or designed with the intention to be disposed underground according to their radioactive content. France is looking into the case of VLLW and has already carried out a design for future disposal, the design being in the pipe. Other types of waste (i. e. radium bearing waste, graphite, and tritium content waste) are also considered in the whole framework of French waste management. (author)

  16. Sorption activity investigation of ultrafine powders of high temperature melting point compounds in atmospheric pressure conditions

    International Nuclear Information System (INIS)

    Rudneva, V.V.

    2006-01-01

    A study is made in saturation with gas in the air for ultradispersed chromium carbonitride and boride powders synthesized in a nitrogen plasma jet according to three variants: from elements, from oxides, from chromium trichloride. It is established that in the air on temperature increasing the powders adsorb considerable amounts of oxygen and water vapor. This results in surface oxidation of powder particles and a loss in specific combination of properties. Preliminary vacuum heat treatment is shown to decrease sharply the rate of atmospheric gas adsorption. The quantity of adsorbed gases is dependent on a carbon monoxide concentration in a particle surface layer and the availability of adsorption centers. The number of such centers in the layer can be controlled by vacuum heat treatment conditions. The interaction of the powders with atmospheric gases is concluded to be of adsorption-diffusion nature [ru

  17. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  18. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...

  19. High-resolution boundary conditions of an old ice target near Dome C, Antarctica

    Science.gov (United States)

    Young, Duncan A.; Roberts, Jason L.; Ritz, Catherine; Frezzotti, Massimo; Quartini, Enrica; Cavitte, Marie G. P.; Tozer, Carly R.; Steinhage, Daniel; Urbini, Stefano; Corr, Hugh F. J.; van Ommen, Tas; Blankenship, Donald D.

    2017-08-01

    A high-resolution (1 km line spacing) aerogeophysical survey was conducted over a region near the East Antarctic Ice Sheet's Dome C that may hold a 1.5 Myr climate record. We combined new ice thickness data derived from an airborne coherent radar sounder with unpublished data that was in part unavailable for earlier compilations, and we were able to remove older data with high positional uncertainties. We generated a revised high-resolution digital elevation model (DEM) to investigate the potential for an old ice record in this region, and used laser altimetry to confirm a Cryosat-2 derived DEM for inferring the glaciological state of the candidate area. By measuring the specularity content of the bed, we were able to find an additional 50 subglacial lakes near the candidate site, and by Doppler focusing the radar data, we were able to map out the roughness of the bed at length scales of hundreds of meters. We find that the primary candidate region contains elevated rough topography interspersed with scattered subglacial lakes and some regions of smoother bed. Free subglacial water appears to be restricted from bed overlain by ice thicknesses of less than 3000 m. A site near the ice divide was selected for further investigation. The high resolution of this ice thickness data set also allows us to explore the nature of ice thickness uncertainties in the context of radar geometry and processing.

  20. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene

    CSIR Research Space (South Africa)

    Heveling, J

    1998-10-11

    Full Text Available The oligomerisation of ethylene into products in the C-4-C-20 range over heterogeneous nickel catalysts in a fixed-bed reactor at low temperature and high pressure (LT-HP) is reported. The catalysts were obtained by Ni (II) exchange or impregnation...

  1. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  2. Self-consistency condition and high-density virial theorem in relativistic many-particle systems

    International Nuclear Information System (INIS)

    Kalman, G.; Canuto, V.; Datta, B.

    1976-01-01

    In order for the thermodynamic and kinetic definitions of the chemical potential and the pressure to lead to identical results a nontrivial self-consistency criterion has to be satisfied. This, in turn, leads to a virial-like theorem in the high-density limit

  3. Highly Adaptable but Not Invulnerable: Necessary and Facilitating Conditions for Research in Evolutionary Developmental Biology

    NARCIS (Netherlands)

    Laudel, Grit; Benninghoff, Martin; Lettkemann, Eric; Håkansson, Elias; Whitley, Richard; Gläser, Jochen

    2014-01-01

    Evolutionary developmental biology is a highly variable scientific innovation because researchers can adapt their involvement in the innovation to the opportunities provided by their environment. On the basis of comparative case studies in four countries, we link epistemic properties of research

  4. High throughput olfactory conditioning and memory retention test reveal variation in Nasonia parasitic wasps

    NARCIS (Netherlands)

    Hoedjes, K.M.; Steidle, J.L.M.; Werren, J.H.; Vet, L.E.M.; Smid, H.M.

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of

  5. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps.

    NARCIS (Netherlands)

    Hoedjes, K.M.; Steidle, J.L.M.; Werren, J.H.; Vet, L.E.M.; Smid, H.M.

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of

  6. High-intensity stepwise conditioning programme for improved exercise responses and agility performance of a badminton player with knee pain.

    Science.gov (United States)

    Chen, Bob; Mok, Damon; Lee, Winson C C; Lam, Wing Kai

    2015-02-01

    To examine the effect of a high-intensity stepwise conditioning programme combined with multiple recovery measures on physical fitness, agility, and knee pain symptoms of an injured player. A single case study. University-based conditioning training laboratory. One 26-year-old male world-class badminton player (height, 190.0 cm; weight, 79.3 kg; left dominant hand; playing experience, 16 years; former world champion) with patellar tendinosis and calcification of his left knee. The player received seven conditioning sessions over three weeks. During the programme, there was a gradual increase in training duration and load across sessions while cold therapy, manual stretches and massage were administered after each session to minimise inflammation. The training outcome was evaluated with three different testing methods: standard step test, badminton-specific agility test, and tension-pain rating. The conditioning programme reduced knee pain symptoms and improved actual performance and cardiopulmonary fitness during the agility task. The player was able to return to sport and compete within a month. A high-intensity stepwise conditioning programme improved the physical fitness while sufficient recovery measures minimised any possible undesirable effects and promoted faster return to elite level competition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    Science.gov (United States)

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions. © 2013.

  8. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Rathborne, J. M.; Contreras, Y.; Longmore, S. N.; Bastian, N.; Jackson, J. M.; Kruijssen, J. M. D.; Alves, J. F.; Bally, J.; Foster, J. B.; Garay, G.; Testi, L.; Walsh, A. J.

    2014-01-01

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10 5 K cm –3 ) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10 7 K cm –3 ) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe

  9. TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Rathborne, J. M.; Contreras, Y. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 (Australia); Longmore, S. N.; Bastian, N. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Jackson, J. M. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Kruijssen, J. M. D. [Max-Planck Institut fur Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748, Garching (Germany); Alves, J. F. [University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Bally, J. [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 8030 (United States); Foster, J. B. [Department of Astronomy, Yale University, P.O. Box 208101 New Haven, CT 06520-8101 (United States); Garay, G. [Universidad de Chile, Camino El Observatorio1515, Las Condes, Santiago (Chile); Testi, L. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Walsh, A. J., E-mail: Jill.Rathborne@csiro.au [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth (Australia)

    2014-11-10

    Despite the simplicity of theoretical models of supersonically turbulent, isothermal media, their predictions successfully match the observed gas structure and star formation activity within low-pressure (P/k < 10{sup 5} K cm{sup –3}) molecular clouds in the solar neighborhood. However, it is unknown whether or not these theories extend to clouds in high-pressure (P/k > 10{sup 7} K cm{sup –3}) environments, like those in the Galaxy's inner 200 pc central molecular zone (CMZ) and in the early universe. Here, we present Atacama Large Millimeter/submillimeter Array 3 mm dust continuum emission within a cloud, G0.253+0.016, which is immersed in the high-pressure environment of the CMZ. While the log-normal shape and dispersion of its column density probability distribution function (PDF) are strikingly similar to those of solar neighborhood clouds, there is one important quantitative difference: its mean column density is one to two orders of magnitude higher. Both the similarity and difference in the PDF compared to those derived from solar neighborhood clouds match predictions of turbulent cloud models given the high-pressure environment of the CMZ. The PDF shows a small deviation from log-normal at high column densities confirming the youth of G0.253+0.016. Its lack of star formation is consistent with the theoretically predicted, environmentally dependent volume density threshold for star formation which is orders of magnitude higher than that derived for solar neighborhood clouds. Our results provide the first empirical evidence that the current theoretical understanding of molecular cloud structure derived from the solar neighborhood also holds in high-pressure environments. We therefore suggest that these theories may be applicable to understand star formation in the early universe.

  10. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  11. Assimilation and High Resolution Forecasts of Surface and Near Surface Conditions for the 2010 Vancouver Winter Olympic and Paralympic Games

    Science.gov (United States)

    Bernier, Natacha B.; Bélair, Stéphane; Bilodeau, Bernard; Tong, Linying

    2014-01-01

    A dynamical model was experimentally implemented to provide high resolution forecasts at points of interests in the 2010 Vancouver Olympics and Paralympics Region. In a first experiment, GEM-Surf, the near surface and land surface modeling system, is driven by operational atmospheric forecasts and used to refine the surface forecasts according to local surface conditions such as elevation and vegetation type. In this simple form, temperature and snow depth forecasts are improved mainly as a result of the better representation of real elevation. In a second experiment, screen level observations and operational atmospheric forecasts are blended to drive a continuous cycle of near surface and land surface hindcasts. Hindcasts of the previous day conditions are then regarded as today's optimized initial conditions. Hence, in this experiment, given observations are available, observation driven hindcasts continuously ensure that daily forecasts are issued from improved initial conditions. GEM-Surf forecasts obtained from improved short-range hindcasts produced using these better conditions result in improved snow depth forecasts. In a third experiment, assimilation of snow depth data is applied to further optimize GEM-Surf's initial conditions, in addition to the use of blended observations and forecasts for forcing. Results show that snow depth and summer temperature forecasts are further improved by the addition of snow depth data assimilation.

  12. Anti-angiogenic mechanism of cordycepin on rhesus macaque choroid-retinal endothelial cell line cultured in high glucose condition

    Directory of Open Access Journals (Sweden)

    Xiao-Li Zhu*

    2016-07-01

    Full Text Available AIM: To investigate the angiogenesis effect and protective mechanism of cordycepin on rhesus macaque choroid-retinal endothelial(RF/6Acell line cultured in high glucose condition. METHODS: Cultured RF/6A cells were divided into normal control group, high glucose group and high glucose(HG+ different concentration cordycepin groups(HG+10μg/mL group, HG+50μg/mL group, HG+100μg/mL group. The cell proliferation was assessed using cholecystokinin octapeptide dye after treated for 48h. The cell migration was investigated by a Transwell assay. The tube formation was measured on Matrigel. Furthermore, the impact of cordycepin on high glucose-induced activation of VEGF and VEGF receptor 2(VEGFR-2was tested by Western blot analysis. RESULTS: Compared with normal control group, cell viability markedly increased in high glucose group(PPPPPPvs normal control group, oppositely gradually decreased with the increase of cordycepin concentrations, and had a statistically significant difference vs high glucose group(PCONCLUSION: Cordycepin can suppress the proliferation, migration and tubu formation of RF/6A in high glucose condition, might via inhibiting expression of VEGF and VEGFR-2.

  13. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  14. Is the Modern High Potential Dairy Cow Suitable for Organic Farming Conditions?

    Directory of Open Access Journals (Sweden)

    Harðarson Grétar H

    2002-03-01

    Full Text Available It is not acceptable to compromise animal welfare in any system of farming. Feeding should be aimed at meeting the nutritional requirements at the various stages of production. This paper deals with the detrimental effects that organic, extensive or low input farming systems may have on the energy status in early lactation of the high potential dairy cow. Bovine ketosis is the most important disease resulting from insufficient energy intake in early lactation. It is also important to realize that ketosis is a part of the so-called periparturient disease complex, which includes milk fever, mastitis, retained placenta, endometritis and poor fertility also. All these diseases are interrelated and reflect to a large extent the nutritional status of the animal. If organic dairy farming is to be successful the breeding programmes have to divert from selection for high yields as a main goal, to more emphasis on a flatter lactation curve, less production diseases and longevity.

  15. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  16. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions.

    Science.gov (United States)

    Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y

    2012-01-01

    Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the

  17. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6% and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged

  18. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E

    2010-07-01

    The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy; Roberts, William L.

    2017-01-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  20. Experimental study of a single fuel jet in conditions of highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lille, Simon; Blasiak, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Highly Preheated Air Combustion (HPAC) is a technique to reduce consumption of fuel and decrease NO{sub x} formation in furnaces. The main change that occur in the furnace chamber is that the flow pattern of flue gases changes dramatically resulting in a more uniform heat transfer. The usefulness of regenerative combustion is very clear, but the advantages have so far been accompanied by high levels of pollutants, such as NO{sub x}. The combination of the regeneration technique and internal flue gas recirculation, thus decreasing NO{sub x} and keeping the other advantages, has made HPAC a very attractive combustion technology with application to heat treatment reheating and melting processes. This work gives an introduction to regenerative combustion with diluted air, including theory on flame stabilization. Furthermore, a description of a new test furnace is given with results from a parametric study and from tests using schlieren color visualization, direct photography, and laser Doppler anemometry. In the parametric study NO{sub x}-emission, CO-emission, lift-off, fluctuations, and some flame characteristics are related to nozzle diameter, oxygen concentration, and preheat temperature. For the schlieren technique and direct photography, both still and high-speed cameras were used.

  1. Numerical Modeling of MILD Combustion at High Pressure to Predict the Optimal Operating Conditions

    KAUST Repository

    Vanteru, Mahendra Reddy

    2017-02-01

    This Chapter presents numerical simulation on MILD combustion operating at high pressure. Influence of preheat and dilution of oxidizer and operating pressure on stabilization of MILD combustion are presented. Three different preheat temperatures (1100, 1300 and 1500 K) and three different dilution levels (3, 6 and 9% O2) are simulated over an operating pressure variation from 1 atm to 16 atm. A classical jet in hot coflow burner is considered for this study. Total of 45 cases are simulated and analyzed. Essential characteristics of MILD combustion, i.e., maximum temperature (Tmax), temperature rise (ΔT) and temperature distributions, are analyzed. The distribution of emissions OH and CO are also studied and presented. Well-stabilized MILD combustion is observed for all cases except for two cases with high preheated (1500 K). Peak temperature is observed to decrease with increasing operating pressure for a given level of preheat and dilution. OH mass faction is reduced with increasing pressure. The CO emissions show little sensitivity to operating pressure. However, CO mass fraction is slightly higher at 1 atm operating pressure as compared to 4 to 16 atm. Since the residence time of reactants increases as the operating pressure increases, well-stabilized MILD combustion is observed for all highly diluted and low temperature preheat cases (3% O2 and 1100 K).

  2. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  3. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  4. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  5. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  6. The problems of material pairs under the specific conditions of high-temperature reactors

    International Nuclear Information System (INIS)

    Schoening, J.

    1981-01-01

    This dissertation gives a detailed descirption of the problems of friction and solid lubrication of slide and ball bearings under HTR conditions. The first part is concerned with an analysis of established approaches for determining the friction factor and the development of a mathematical model on this basis, taking particular account of the following parameters. (1) Surface characteristics (peak-to-valley height, pressure angles of roughness elevations) and, (2) material properties of the friction partner (ductility, brittleness, crystal structure). The formula for friction factor thus arrived at incorporates the microscopic and sub-microscopic influence of the surface grain structure. In addition, the effects of elastic and plastic properties at the region of contact was studied. The derived equation is used to characterise frictional properties and enables a suitable and economic friction pair to be selected. The second part deals with the application of solid lubrication and the effect of the solid lubricant film on the mechanicsm and kinematics of ball bearings. In the final part of this investigation an evaluation of experimental results is carried out on the basis of the preceding theoretical studies in order to confirm the theoretical approach and to provide information of practical use on limits of application, cost details and aids to construction. (orig./IHOE) [de

  7. Unsteady hydraulic characteristics in pipe with elbow under high Reynolds condition

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A.; Kimura, N.; Kamide, H.; Tobita, A. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2011-07-01

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2x10{sup 7}. Moreover, a short-elbow (r/D=1.0, r: curvature radius, D: pipe diameter) is adopted in the hot leg pipe in order to achieve compact plant layout and reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation force which is caused by the pressure fluctuation on the wall. The pressure fluctuation on the pipe wall is closely related with the flow fluctuation. In this study, water experiments using two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0 and 1.5 (short-elbow and long-elbow), were conducted in order to investigate the mechanism of velocity and pressure fluctuation in the elbow and its downstream. The experiments were carried out at Re=5.4x10{sup 5} conditions. Measurement of velocity fluctuation and pressure fluctuation in two types of elbows with different curvature revealed that behavior of separation region and the circumferential secondary flow affected the pressure fluctuation on the wall of the elbow greatly. (author)

  8. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    Science.gov (United States)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  9. Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions

    Science.gov (United States)

    De Michelis, P.; Consolini, G.; Tozzi, R.

    2016-12-01

    The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08

  10. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    International Nuclear Information System (INIS)

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-01-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF 3 medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  11. Effect of processing conditions on the interfacial zone of high performances thermoplastic composites

    International Nuclear Information System (INIS)

    Verdeau, Caroline

    1988-01-01

    This study concerns the microstructural and mechanical characterization performances thermoplastic unidirectional composites. Two semi-crystalline composites, APC2 (Peek/Carbon) and AC 40.60 (Pps/carbon) and one amorphous composite FC.PEI (PEI/Carbon) have been studied. Different processing conditions for the APC2 and AC 40.60 specimens have been employed. Amorphous matrix composites (fast cooling rates), crystalline matrix composites (slow cooling rates) and the effects of heat treatments on the matrix (lengthy hold time at the melting point followed by slow cooling) have been studied. Static test (3 points bending tests, transverse tensile tests - ±45 deg., tensile tests) allowed the different interfacial qualities to be revealed. If the fiber/matrix adhesion is excellent for APC2, it is poor for the FCPEI and AC 40.60 composites. The dynamic tests conducted on the torsion pendulum (forced oscillations; low frequencies) have shown for APC2 the existence of trans-crystallinity (mono-dimensional growth, perpendicular to the fiber surface) in the vicinity of the fiber. It has been shown that the fraction of trans-crystallinity is most important for treated specimens. In this study, an approach of the modelization of the viscoelastic behaviour of composites materials has been proposed. (author) [fr

  12. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  13. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  14. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  15. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production.

    Science.gov (United States)

    Cheng, Xiaoliang; Hiras, Jennifer; Deng, Kai; Bowen, Benjamin; Simmons, Blake A; Adams, Paul D; Singer, Steven W; Northen, Trent R

    2013-01-01

    Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS)-based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC), Medium 84 + rolled oats, and M9TE + MCC at 45°C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45°C than at all other temperatures. While T. bispora is reported to grow optimally at 60°C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45°C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  16. High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal β-glucosidase production

    Directory of Open Access Journals (Sweden)

    Xiaoliang eCheng

    2013-12-01

    Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.

  17. Conditioning the gamma spectrometer for activity measurement at very high background

    OpenAIRE

    Yan, Weihua; Zhang, Liguo; Zhang, Zhao; Xiao, Zhigang

    2013-01-01

    The application of a high purity germanium (HPGe) gamma spectrometer in determining the fuel element burnup in a future reactor is studied. The HPGe detector is exposed by a Co60 source with varying irradiation rate from 10 kcps to 150 kcps to simulate the input counting rate in real reactor environment. A Cs137 and a Eu152 source are positioned at given distances to generate certain event rate in the detector with the former being proposed as a labeling nuclide to measure the burnup of fuel ...

  18. Modelling switching-time effects in high-frequency power conditioning networks

    Science.gov (United States)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.

    1979-01-01

    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  19. Combined conditioning in the high-temperature experimental nuclear reactor (AVR) at Juelich

    International Nuclear Information System (INIS)

    Nieder, R.; Vey, K.; Ivens, G.

    1984-01-01

    The high temperature experimental nuclear reactor (AVR) is the first nuclear power plant in which combined cycle operation has been introduced. The water-steam cycle has been operated for about 15 years according to the alkali method of working with ammonia and hydrazine. The VGB-guidelines have been adhered to througout. Since January 1983 cobined cycle operation has been employed, and in this process a pH-value of about 8.5 and an oxygen concentration of about 200 μg/kg in the feedwater have been used. A distinct reduction of tritium concentration in the water-steam cycle was the outstanding new result. (orig.) [de

  20. The radiological evaluation of a prototype posting-in hatch under conditions of high alpha activity

    International Nuclear Information System (INIS)

    Smith, D.I.; Hollick, R.C.

    1987-07-01

    A prototype posting-in hatch, mounted vertically in the top panel of a highly active glovebox has been radiologically evaluated in the Fuels Laboratory, AEEW. This simple, air-lock type system of 100 mm diameter has pneumatically operated and interlocked lids and a low velocity, inward purge, supplied by the glovebox depression. The hatch proved extremely reliable and very easy to operate. More than 1200 simulated posting movements were carried out and a > 8 order of magnitude reduction in aerosol concentration was recorded from the active glovebox to the monitoring environment. (author)

  1. High energy x-radiographic assessment of conditioned intermediate level waste blocks

    International Nuclear Information System (INIS)

    Lewcock, A.I.; Burch, S.F.; Reynolds, W.N.; Pullen, D.A.W.; Smith, D.

    1985-07-01

    This report describes an effective technique for examining the quality of the solidification matrix material in a 500 litre waste drum, testing for homogeneity and major cracks and the confirmation of set. A high energy x-ray source, (an 8 MeV Linac) and a special x-ray TV system, were used to examine several different types of solidified waste form, with and without background radiation, simulated by the use of an uncollimated radiographic isotope. The system as tested showed no discernable image degradation when the isotope was positioned to give a representative background dose as experienced with active ILW monoliths. (author)

  2. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    An Hongxiang; Fan Zhiwen; Al-Mughrabi, M.

    2011-01-01

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 10 13 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  3. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  4. Motion-blurred star acquisition method of the star tracker under high dynamic conditions.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wei, Minsong

    2013-08-26

    The star tracker is one of the most promising attitude measurement devices used in spacecraft due to its extremely high accuracy. However, high dynamic performance is still one of its constraints. Smearing appears, making it more difficult to distinguish the energy dispersive star point from the noise. An effective star acquisition approach for motion-blurred star image is proposed in this work. The correlation filter and mathematical morphology algorithm is combined to enhance the signal energy and evaluate slowly varying background noise. The star point can be separated from most types of noise in this manner, making extraction and recognition easier. Partial image differentiation is then utilized to obtain the motion parameters from only one image of the star tracker based on the above process. Considering the motion model, the reference window is adopted to perform centroid determination. Star acquisition results of real on-orbit star images and laboratory validation experiments demonstrate that the method described in this work is effective and the dynamic performance of the star tracker could be improved along with more identified stars and guaranteed position accuracy of the star point.

  5. Development of Kinetics for Soot Oxidation at High Pressures Under Fuel-Lean Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Vander Wal, Randy [Pennsylvania State Univ., University Park, PA (United States)

    2014-04-21

    The focus of the proposed research was to develop kinetic models for soot oxidation with the hope of developing a validated, predictive, multi-­scale, combustion model to optimize the design and operation of evolving fuels in advanced engines for transportation applications. The work focused on the relatively unstudied area of the fundamental mechanism for soot oxidation. The objectives include understanding of the kinetics of soot oxidation by O2 under high pressure which require: 1) development of intrinsic kinetics for the surface oxidation, which takes into account the dependence of reactivity upon nanostructure and 2) evolution of nanostructure and its impact upon oxidation rate and 3) inclusion of internal surface area development and possible fragmentation resulting from pore development and /or surface oxidation. These objectives were explored for a variety of pure fuel components and surrogate fuels. This project was a joint effort between the University of Utah (UU) and Pennsylvania State University (Penn State). The work at the UU focuses on experimental studies using a two-­stage burner and a high- pressure thermogravimetric analyzer (TGA). Penn State provided HRTEM images and guidance in the fringe analysis algorithms and parameter quantification for the images. This report focuses on completion done under supplemental funding.

  6. Coefficients of sliding friction of single crystals of high explosives under different rubbing conditions

    International Nuclear Information System (INIS)

    Wu, Y Q; Chaudhri, M Munawar

    2013-01-01

    The coefficients of sliding friction of single crystals of commonly used high explosives pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX) and beta-cyclotetramethylene tetranitramine (β-HMX) under several rubbing configurations and at a relative sliding speed of 0.22 mm s -1 were measured. The sliding configurations were (1) crystal-polished steel pairs, (2) like-crystal pairs and (3) unlike-crystal pairs. For every rubbing configuration the friction force showed oscillations, which are thought to be caused by the formation and shearing of the adhesive junctions formed at the surface of the rubbing crystals. This shearing of the adhesive junctions led to the formation of microscopic and sub-microscopic particles, which were confirmed by an environmental scanning electron microscope study. For every rubbing configuration and for relatively high normal loads pressing the rubbing crystals together, the coefficient of friction was generally in the range 0.2-0.25 and it has been concluded that the coefficient of friction is controlled by the adhesion with almost negligible contribution from the ploughing component. From a knowledge of the coefficient of friction and the uniaxial yield stress values of single crystals of RDX and β-HMX, the shear strength of these crystals were determined to be ∼13.4 MPa and ∼16.8 MPa, respectively.

  7. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    Science.gov (United States)

    Neu, R.

    2006-04-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures.

  8. High-Z plasma facing components in fusion devices: boundary conditions and operational experiences

    International Nuclear Information System (INIS)

    Neu, R.

    2006-01-01

    In present day fusion devices optimization of the performance and experimental freedom motivates the use of low-Z plasma facing materials (PFMs). However, in a future fusion reactor, for economic reasons, a sufficient lifetime of the first wall components is essential. Additionally, tritium retention has to be small to meet safety requirements. Tungsten appears to be the most realistic material choice for reactor plasma facing components (PFCs) because it exhibits the lowest erosion. But besides this there are a lot of criteria which have to be fulfilled simultaneously in a reactor. Results from present day devices and from laboratory experiments confirm the advantages of high-Z PFMs but also point to operational restrictions, when using them as PFCs. These are associated with the central impurity concentration, which is determined by the sputtering yield, the penetration of the impurities and their transport within the confined plasma. The restrictions could exclude successful operation of a reactor, but concomitantly there exist remedies to ameliorate their impact. Obviously some price has to be paid in terms of reduced performance but lacking of materials or concepts which could substitute high-Z PFCs, emphasis has to be put on the development and optimization of reactor-relevant scenarios which incorporate the experiences and measures

  9. Method for the conditioning of high level radioactive wastes for their safe storage and disposal

    International Nuclear Information System (INIS)

    Geel, J. van; Eschrich, H.; Detilleux, E.

    1976-01-01

    A method is described for the treatment of solidified high level radioactive wastes to enable them to be safely stored or disposed of in an approved manner. The solidified waste is embedded in a matrix of pure metals or metal alloys. The metals may be Pb, Pb/Sb alloys, Pb/Sn alloys, Pb/Bi alloys, Pb/Zn alloys, or mixtures of these, or Al, Al/Si alloys, Al/Mg alloys, Al/Cu alloys, or mixtures. The matrix is clad with non-corrosive material, selected from stainless steel, Ti, Pb, Pb alloys, Al, Al alloys, or mixtures of same. A non-corrosive container is filled with the solidified waste and is heated to above the melting temperature of the metallic matrix material used to embed the waste. The matrix material is then added and the container is cooled. The container may then be degassed. The solidified waste feed may be in the form of a vitreous material containing the high level waste; this vitreous material may consist of a lead borosilicate or a mixture of non-lead borosilicates and phosphate glasses, and the method of preparing it is described. (U.K.)

  10. Development of autonomous controller system of high speed UAV from simulation to ready to fly condition

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-02-01

    The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.

  11. A high molybdenum stainless steel and its resistance to chloride environments in the welded condition

    International Nuclear Information System (INIS)

    Coppolecchia, V.D.; Jasner, M.; Rockel, M.B.

    1988-01-01

    Highly alloyed stainless steels, such as 1925 hMo UNS N08925 with 6 percent molybdenum, are finding widespread use in high chloride cooling water and process environments. This alloy has good general corrosion resistance to a variety of chloride environments but it's main attraction is excellent resistance to all forms of localized corrosion. In aggressive chloride environments weldments are generally the area of concern with regard to localized corrosion. Temperature-time-sensitization diagrams are presented that demonstrate the resistance of 1925 hMo weldments to intergranular attack. Immersion tests in 10% ferric chloride substantiate that autogenous tube welds, also have excellent pitting resistance. Various filler metals are compared both electrochemically and in immersion tests. These comparisons reveal that an overalloyed filler metal is required to achieve pitting and crevice corrosion resistance equal or better than that of the base metal. Alloy 625 (UNS NO6625) has been selected. Constant extension rate tests in boiling 62% calcium chloride reveal that 1925 hMo weldments are immune to stress corrosion cracking in this environment which virtually guarantees absence of SCC in seawater regardless of temperature as well as in most commercial chemical environments

  12. Optimized extraction conditions from high power-ECRIS by dedicated dielectric structures

    International Nuclear Information System (INIS)

    Schachter, L.; Dobrescu, S.; Stiebing, K.E.

    2012-01-01

    The MD-method of enhancing the ion output from ECR ion sources is well established and basically works via two mechanisms, the regenerative injection of cold electrons from an emissive dielectric layer on the plasma chamber walls and via the cutting of compensating wall currents, which results in an improved ion extraction from the plasma. As this extraction from the plasma becomes a more and more challenging issue for modern ECRIS installations with high microwave power input, a series of experiments was carried out at the 14 GHz ECRIS of the Institut fuer Kernphysik in Frankfurt/Main, Germany (IKF). In contrast to our earlier work, in these experiments emphasis was put on the second of the above mechanisms namely to influence the sheath potential at the extraction by structures with special dielectric properties. Two different types of dielectric structures, Tantalum-oxide and Aluminium oxide (the latter also being used for the MD-method) with dramatically different electrical properties were mounted on the extraction electrode of the IKF-ECRIS, facing the plasma. For both structures an increase of the extracted ion beam currents for middle and high charge states by 60-80 % was observed. The method can also be applied to other ECR ion sources for increasing the extracted ion beam performances. The paper is followed by the slides of the presentation. (authors)

  13. Experimental Simulation of Methane Hydrate Extraction at High Pressure Conditions: Influence of the Sediment Bed

    Science.gov (United States)

    Agudo, J. R.; Park, J.; Luzi, G.; Williams, M.; Rauh, C.; Wierschem, A.; Delgado, A.

    2017-10-01

    Being a clean alternative to other fossil fuels, Methane Hydrate (MH) is currently considered as one of the most important potential sources for hydrocarbon fuels [1]. In addition, the high energy density of MH and its stability at higher temperatures as compared to LNG (Liquefied Natural Gas) makes MH a potential greener method for energy transportation. At the same time, the low thermodynamic stability of MH strongly questions the future exploitation of gas hydrate deposits, turning its extraction into a possible geohazard [2]. Fluctuations in pressure, temperature, salinity, degree of saturation or sediment bed properties may cause methane gas release from the water lattice. We experimentally study the influence of the sediment bed geometry during formation-dissociation of MH. For this purpose, MH is synthesized within regular substrates in a 93 cm3 high pressure vessel. The regular substrates are triangular and quadratic arrangements of identical glass spheres with a diameter of 2 and 5 mm, respectively. MH formation within regular substrate reduces the possibility of spontaneous nucleation to a unique geometrical configuration. This fact permits us to characterize the kinetics of MH formation-dissociation as a function of the sediment bed geometry. Preliminary experimental results reveal a strong dependence of MH formation on the geometry of the regular substrate. For instance, under the same pressure and temperature, the kinetics of MH production is found to change by a factor 3 solely depending on the substrate symmetry, i.e. triangular or quadratic.

  14. Spanish experience of fuel performance under zinc injection conditions in high duty plants

    International Nuclear Information System (INIS)

    Sanchez, Alicia; Doncel, Nuria

    2008-01-01

    Zinc is being added to the reactor coolant system in three Spanish PWRs (Vandellos II, Asco I and Asco II), owned by Association Nuclear Asco Vandellos AIE (ANAV), to delay Primary Water Stress Corrosion Cracking (PWSCC) initiation. Although additional advantages from zinc addition are expected, in the short term some concern exists concerning fuel performance during the first cycles of zinc addition due to a possible elevation of corrosion products from system materials when zinc is initially added. Elevated corrosion product levels in a high duty plant may cause an enhancement on crud deposited on fuel, increasing Axial Offset Anomaly (AOA) risk and accelerated cladding corrosion. To demonstrate the acceptable performance of ZIRLOTM clad fuel under zinc chemistry at a high duty plant, EPRI's Fuel Reliability Program (FRP) has chosen Vandellos II as a zinc demonstration plant to perform oxide thickness measurements and crud scraping and analysis. This paper presents the results from Vandellos II and Asco II oxide measurements as well as the conclusions from the crud samples analyses performed at Vandellos II. Furthermore, the effect of zinc addition on corrosion product behavior and dose rates are be discussed

  15. Ruthenium release at high temperature from irradiated PWR fuels in various oxidising conditions. Main findings from the VERCORS program

    International Nuclear Information System (INIS)

    Ducros, G.; Pontillon, Y.; Malgouyres, P.P.; Taylor, P.; Dutheillet, Y.

    2005-01-01

    Fission product release and transport in case of PWR severe accident is a major topic in reactor safety assessment due to the potential radiological consequences for surrounding populations and the environment. In this context, the Institute for Radiological Protection and Safety (IRSN) and Electricite de France (EDF) have supported the VERCORS analytical test program which was performed by the ''Commissariat a l'Energie Atomique'' (CEA). It is usually considered as complementary to the PHEBUS FP in-pile integral experimental program. 25 annealing tests were performed between 1983 and 2002 on irradiated PWR fuels under various conditions of temperature and atmospheres (oxidising or reducing conditions).The influence of the nature of the fuel (UO 2 versus MOX, burn-up) and the fuel morphology (initially intact or fragmented fuels) have also been investigated. These led to an extended data base allowing on the one hand to study mechanisms which promote fission products release, and on the other hand to enhance models implemented in severe accident codes. Among all the fission products investigated, ruthenium is of specific concern because of its high radiological effects due essentially to the combination of both its short and long half-life isotopes (i.e. 103 Ru and 106 Ru respectively), but also by its ability to generate volatile gaseous oxides (RuO 3 , RuO 4 ) in very oxidising conditions, in particular in the case of air ingress accidents. Important uncertainties still remain on the release and transport of this element in such situations, and investigations on this open issue are notably carried out in the SARNET European framework. The present communication gives a general overview of the VERCORS program and presents more deeply the main findings concerning the ruthenium release. Its global behaviour is analysed on the basis of several comparative tests: same UO 2 sample (35 and 50 GWd/t) under hydrogen or steam conditions, similar MOX sample (40 GWd/t) under

  16. High-resolution numerical modeling of meteorological and hydrological conditions during May 2014 floods in Serbia

    Science.gov (United States)

    Vujadinovic, Mirjam; Vukovic, Ana; Cvetkovic, Bojan; Pejanovic, Goran; Nickovic, Slobodan; Djurdjevic, Vladimir; Rajkovic, Borivoj; Djordjevic, Marija

    2015-04-01

    In May 2014 west Balkan region was affected by catastrophic floods in Serbia, Bosnia and Herzegovina and eastern parts of Croatia. Observed precipitation amount were extremely high, on many stations largest ever recorded. In the period from 12th to 18th of May, most of Serbia received between 50 to 100 mm of rainfall, while western parts of the country, which were influenced the most, had over 200 mm of rainfall, locally even more than 300 mm. This very intense precipitation came when the soil was already saturated after a very wet period during the second half of April and beginning of May, when most of Serbia received between 120 i 170 mm of rainfall. New abundant precipitation on already saturated soil increased surface and underground water flow, caused floods, soil erosion and landslides. High water levels, most of them record breaking, were measured on the Sava, Drina, Dunav, Kolubara, Ljig, Ub, Toplica, Tamnava, Jadar, Zapadna Morava, Velika Morava, Mlava and Pek river. Overall, two cities and 17 municipals were severely affected by the floods, 32000 people were evacuated from their homes, while 51 died. Material damage to the infrastructure, energy power system, crops, livestock funds and houses is estimated to more than 2 billion euro. Although the operational numerical weather forecast gave in generally good precipitation prediction, flood forecasting in this case was mainly done through the expert judgment rather than relying on dynamic hydrological modeling. We applied an integrated atmospheric-hydrologic modelling system to some of the most impacted catchments in order to timely simulate hydrological response, and examine its potentials as a flood warning system. The system is based on the Non-hydrostatic Multiscale Model NMMB, which is a numerical weather prediction model that can be used on a broad range of spatial and temporal scales. Its non-hydrostatic module allows high horizontal resolution and resolving cloud systems as well as large

  17. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott

    2016-03-24

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane-oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half of the Chapman-Jouguet detonation velocity (DCJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3-2.0 m or 317-488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 DCJ and 0.95 DCJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas

  18. Nondestructive detection of total viable count changes of chilled pork in high oxygen storage condition based on hyperspectral technology

    Science.gov (United States)

    Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.

  19. High-Order Finite-Difference Solution of the Poisson Equation with Interface Jump Conditions II

    Science.gov (United States)

    Marques, Alexandre; Nave, Jean-Christophe; Rosales, Rodolfo

    2010-11-01

    The Poisson equation with jump discontinuities across an interface is of central importance in Computational Fluid Dynamics. In prior work, Marques, Nave, and Rosales have introduced a method to obtain fourth-order accurate solutions for the constant coefficient Poisson problem. Here we present an extension of this method to solve the variable coefficient Poisson problem to fourth-order of accuracy. The extended method is based on local smooth extrapolations of the solution field across the interface. The extrapolation procedure uses a combination of cubic Hermite interpolants and a high-order representation of the interface using the Gradient-Augmented Level-Set technique. This procedure is compatible with the use of standard discretizations for the Laplace operator, and leads to modified linear systems which have the same sparsity pattern as the standard discretizations. As a result, standard Poisson solvers can be used with only minimal modifications. Details of the method and applications will be presented.

  20. Fission product release from high gap-inventory LWR fuel under LOCA conditions

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.

    1980-01-01

    Fission product release tests were performed with light water reactor (LWR) fuel rod segments containing large amounts of cesium and iodine in the pellet-to-cladding gap space in order to check the validity of the previously published Source Term Model for this type of fuel. The model describes the release of fission product cesium and iodine from LWR fuel rods for controlled loss-of-coolant accident (LOCA) transients in the temperature range 500 to 1200 0 C. The basis for the model was test data obtained with simulated fuel rods and commercial fuel irradiated to high burnup but containing relatively small amounts of cesium and iodine in the pellet-to-cladding gap space

  1. Optimization analysis of high temperature heat pump coupling to desiccant wheel air conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Fang, Lei

    2014-01-01

    The high temperature heat pump and desiccant wheel (HTHP&DW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHP&DW system was investigated experimentally, and the optimization analysis...... of HTHP&DW system was carried out. The performance of DW had influence on the dehumidification (evaluated by dehumidification and regeneration effectiveness) and cooling load (evaluated by thermal and adiabatic effectiveness). The results show that the enthalpy increase occurred in all the experiments...... of the system. When the regeneration temperature is 63°C, the maximal dehumidification effectiveness is 35.4% and the satisfied adiabatic effectiveness is 88%, which contributes to the optimal balance between dehumidification and cooling. © 2014 Tianjin University and Springer-Verlag Berlin Heidelberg....

  2. [Health and working conditions of high school and university teachers in Mendoza: between commitment and emotional distress].

    Science.gov (United States)

    Collado, Patricia Alejandra; Soria, Cecilia Beatriz; Canafoglia, Eliana; Collado, Sandra Alicia

    2016-01-01

    With the objective of analyzing aspects related to the perception of working conditions and their impact on health in the teachers and professors who work for the Universidad Nacional de Cuyo (UNCuyo) in Mendoza, Argentina, this work analyzes the results of the Primer Censo de Condiciones y Salud Laboral [First Census on Health and Working Conditions]. The census was conducted in late 2013 in two academic units (one at the high school level and the other at the university level), including 193 educators. The exploration set out to characterize the teaching staff and the conditions affecting their health, primarily with respect to psycho-social health. In order to do, so a self-administered questionnaire was applied, the dimensions of which were discussed in sensitivity workshops with educators who helped to formulate the data collection instrument. Among the primary results emerge the physical and emotional burnout of these highly skilled workers, owing to the combined effect of their committed response to the demands of their work and the deterioration (both material and symbolic) of the conditions in which they carry out that work.

  3. Mutation and screening of high-alcoholic-yield yeast by HEPE and optimization of the fermentation condition

    International Nuclear Information System (INIS)

    Han Jingjing; Lu Jiangtao; Zhang Qin; Wang Yan; Fu Yujie; Wang Shilong; Fu Haiying

    2011-01-01

    The Saccharomyces Cerevisiae YE0 was mutated using high-energy-pulse-electron (HEPE) beam. After ethanol stress and determination of the alcohol yield by gas chromatograph, the mutant YF1 with high alcoholic yield was obtained. The results showed that under the optimized fermentation conditions (34 degree C as the fermentation temperature, 72 h as the fermentation time and 30% as the glucose concentration), the alcoholic yield of YF1 was 15.57% which was 58.23% higher than that of the original strain YE0 (9.84%) under the same conditions. The growth rate and lethal temperature of the mutant YF1 were obviously enhanced to the original strain YE0. The mutant YF1 has a great potential application in industrial production of alcohol. And it can also be used as the original strain for further mutagenesis to get the strain of higher alcoholic yield. (authors)

  4. The relationship between stressful working conditions and high alcohol consumption and severe alcohol problems in an urban general population

    DEFF Research Database (Denmark)

    Romelsjö, A; Hasin, D; Hilton, M

    1992-01-01

    The relationship between 15 measures of stressful working conditions and high alcohol consumption (35 g 100% ethanol per day or more for men and 25 g or more for women) was studied, using cross-sectional data from a general population survey of 1344 males and 1494 females; the ages 25-64 years......-adjusted odds ratios, were positive and some were negative when high alcohol consumption was the endpoint, but there was a clear variation by sex and social class. Generally the positive associations were stronger among male non-manual employees. Among males, there was a clear association between stressful...... increased odds ratios were lower when subjects with an alcohol diagnosis at inpatient care during 1980-84 were excluded in the analyses. On the whole, our findings are not conclusive. The strong, but imprecise associations between stressful working conditions and severe alcohol problems, are however...

  5. Continued conditioning of the Fermilab 400 MeV linac high-gradient side-coupled cavities

    International Nuclear Information System (INIS)

    Kroc, Thomas; McCrory, Elliott; Moretti, Alfred; Popovic, Milorad

    1996-01-01

    The high-energy portion of the Fermilab 400 MeV Linac is made of high gradient (37 MV/meter surface field) side-coupled cavity sections which were conditioned over a 10 month period before their installation in August of 1993. We have continued to monitor the conditioning of these cavities since that time while the cavities have been in operation, and those results are presented here. The sparking rate and the X-ray production are measured and compared with the 1992/3 pre-operational and 1993/4 early operational measurements. These rates are consistent with a continued diminishing of these phenomena. Predictions and spark management strategies presented in earlier reports are evaluated in light of present experiences. We also have been measuring the sparking rate within this structure with and without our 50 mA peak beam. We find that the sparking rate is 20% higher with beam in the accelerator. (author)

  6. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  7. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  8. Global agricultural land resources--a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Florian Zabel

    Full Text Available Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981-2010, considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071-2100 with 1981-2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia. Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.

  9. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  10. Thermotechnical comparison of possible operation variants for air conditioning system of mine air with high pressure heat exchanger and hydrodistributor

    OpenAIRE

    Korsun, F. O.

    2015-01-01

    Problem. There are vast losses of cold that take place during the transition of cold to deep horizons of shafts by the mine air conditioning system (MASC) with high pressure heat exchanger. Cold is transferred by the recuperative way. Vast losses of cold mean vast losses of electricity to in order to supply it. Any enterprise requires the reduction of electricity consumption. This article gives proposals on how to replace HPHE into hydrodistributor which will considerably reduce cold losses. ...

  11. Analysis on regional hydrogeological condition of Beishan preselected area for high level radioactive waste disposal repository in Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Su Rui; Liu Shufen; Lu Chuanhe

    2004-01-01

    Based on the field investigation which has been carried out in the Beishan preselected area for high level radioactive waste repository in Gansu province during the last few years and the previous hydrogeological investigation results, the different groundwater types are divided initially and the hydrogeological features of different water-bearing media are described in this paper. Meanwhile, the preliminary evaluation of the regional hydrogeological condition of the study area is carried out. (author)

  12. Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions

    OpenAIRE

    Fernández Domene, Ramón Manuel; Sánchez Tovar, Rita; SEGURA SANCHIS, ELENA; Garcia-Anton, Jose

    2016-01-01

    In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area expose...

  13. Fabrication of 4-cylinder transparent engine and measurement of the flame propagation behavior with high speed camera at idle condition

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.H. [Yonsei University Graduate School, Seoul (Korea, Republic of); Chun, K.M. [Yonse University, Seoul (Korea, Republic of)

    1998-04-01

    A transparent engine for visualization study is made using a production 4 cylinder engine. Flame propagation results from individual combustion cycles with high-speed cinematography are presented and discussed for idle condition. The flame propagation image and the in-cylinder pressure were obtained simultaneously, and the image processing software which can calculate the flame area and the flame center was developed. The flame propagation behavior of each cycle shows high cyclic variations, and there are linear correlation between flame area and the in-cylinder pressure. (author). 4 refs., 6 figs., 1 tab.

  14. Modal analysis of main steam line piping under high energy line break condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Jin; Kim, Seung Hyun; Je, Sang-Yun; Chang, Yoon-Suk [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    If HELB (High Energy Line Break) occurs in NPPs (Nuclear Power Plants), not only environmental effect like release of radioactive material but also secondary structural defects should be considered. Jet impingement phenomenon caused by sudden pipe rupture may lead to severe damage on neighboring safe-related components and other structure. Lots of studies have been conducted to assess dynamic behaviors of the SG and MSL piping while pipe whip restraints and jet impingement shields are taken into account during design stage. Arroyo et al. performed modal analyses of a simple square component to examine the jet impingement phenomenon. Also, structural characteristics were predicted to assure structural integrity against the HELB. In this study, we examined dynamic characteristics of SG and MSL piping in a typical 1000MWe NPP. Simulation was performed by using two commercial computational softwares. In particular, modal analyses were conducted to determine mode shapes and natural frequencies of the structure and maximum displacements. The data obtain from each software were compared and observation was discussed in relation to the jet impingement phenomenon. In this research, modal analyses on the SG and MSL piping were carried out to get natural frequencies, vibration mode shapes and maximum displacements. Thereby, the following key finding was observed. (1) Maximum displacement was calculated at the top of SG outlet nozzle with y-directional bending at the third mode. (2) The differences between two models were respectively 7% in natural frequencies and less than 1% in maximum displacements.

  15. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  16. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  17. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  18. Ultra-High Speed Visualization of the Flashing Instability in Micron Size Nozzles under Vacuum Conditions

    KAUST Repository

    Alghamdi, Tariq A.

    2017-11-01

    I visualized the flash-boiling atomization of liquid jets released into a low pressure environment at frame rates of up to five million frames per second. Such a high temporal resolution allowed us to observe for the first time the bubble expansion mechanism that atomizes the jet. To visualize the dynamics in detail, I focused closely to the outflow of the nozzle using a long distance microscope objective. I documented an abrupt transition from a laminar to a fully external flashing jet by systematically reducing the ambient pressure. I performed experiments with different volatile liquids and using nozzles with different inner diameters. The inner diameters of the nozzles varied from 30 to 480 . Perfluorohexane (PFnH) was our main working fluid, but also methanol, ethanol and 1-bromopropane were tested. Surprisingly, minimum intensity profiles revealed spray angles close to ~360°, meaning drops are ejected in all directions. Also, I measured speeds of bubble expansion up to 140 m/s. That is 45 times faster than the upper bound for inertial growth speed in complete vacuum from the Rayleigh-Plesset equation. I also calculated the trajectories of the ejected droplets as well as the drop speed distribution using particle tracking. I expect that our results bring new insight into the flash-boiling atomization mechanism.

  19. Computer-Aided Design of Materials for use under High Temperature Operating Condition

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K. R.; Rao, I. J.

    2010-01-31

    The procedures in place for producing materials in order to optimize their performance with respect to creep characteristics, oxidation resistance, elevation of melting point, thermal and electrical conductivity and other thermal and electrical properties are essentially trial and error experimentation that tend to be tremendously time consuming and expensive. A computational approach has been developed that can replace the trial and error procedures in order that one can efficiently design and engineer materials based on the application in question can lead to enhanced performance of the material, significant decrease in costs and cut down the time necessary to produce such materials. The work has relevance to the design and manufacture of turbine blades operating at high operating temperature, development of armor and missiles heads; corrosion resistant tanks and containers, better conductors of electricity, and the numerous other applications that are envisaged for specially structured nanocrystalline solids. A robust thermodynamic framework is developed within which the computational approach is developed. The procedure takes into account microstructural features such as the dislocation density, lattice mismatch, stacking faults, volume fractions of inclusions, interfacial area, etc. A robust model for single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model is developed. Having developed the model, we then implement in a computational scheme using the software ABAQUS/STANDARD. The results of the simulation are compared against experimental data in realistic geometries.

  20. Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions

    Science.gov (United States)

    Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew

    2012-08-01

    A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

  1. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    International Nuclear Information System (INIS)

    Chu, W.; Univ. of Chinese Academy of Sciences, Beijing; Qin, G.

    2016-01-01

    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  2. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  3. Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions

    Science.gov (United States)

    Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.

    2015-12-01

    In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).

  4. Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity.

    Science.gov (United States)

    Lü, Fan; Bize, Ariane; Guillot, Alain; Monnet, Véronique; Madigou, Céline; Chapleur, Olivier; Mazéas, Laurent; He, Pinjing; Bouchez, Théodore

    2014-01-01

    Cellulose is the most abundant biopolymer on Earth. Optimising energy recovery from this renewable but recalcitrant material is a key issue. The metaproteome expressed by thermophilic communities during cellulose anaerobic digestion was investigated in microcosms. By multiplying the analytical replicates (65 protein fractions analysed by MS/MS) and relying solely on public protein databases, more than 500 non-redundant protein functions were identified. The taxonomic community structure as inferred from the metaproteomic data set was in good overall agreement with 16S rRNA gene tag pyrosequencing and fluorescent in situ hybridisation analyses. Numerous functions related to cellulose and hemicellulose hydrolysis and fermentation catalysed by bacteria related to Caldicellulosiruptor spp. and Clostridium thermocellum were retrieved, indicating their key role in the cellulose-degradation process and also suggesting their complementary action. Despite the abundance of acetate as a major fermentation product, key methanogenesis enzymes from the acetoclastic pathway were not detected. In contrast, enzymes from the hydrogenotrophic pathway affiliated to Methanothermobacter were almost exclusively identified for methanogenesis, suggesting a syntrophic acetate oxidation process coupled to hydrogenotrophic methanogenesis. Isotopic analyses confirmed the high dominance of the hydrogenotrophic methanogenesis. Very surprising was the identification of an abundant proteolytic activity from Coprothermobacter proteolyticus strains, probably acting as scavenger and/or predator performing proteolysis and fermentation. Metaproteomics thus appeared as an efficient tool to unravel and characterise metabolic networks as well as ecological interactions during methanisation bioprocesses. More generally, metaproteomics provides direct functional insights at a limited cost, and its attractiveness should increase in the future as sequence databases are growing exponentially.

  5. Features, present condition of development and future scope on the high temperature gas reactor as an innovative one

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2001-01-01

    The high temperature gas reactor has some features without previous reactors such as high temperature capable of taking-out, high specific safety, feasibility adaptable to versatile fuel cycle, and so on. Then, it is expected to be an innovative reactor to contribute to diversification of energy supply and expansion of energy application field. In Japan, under the HTTR (high temperature engineering test reactor) plan, construction of HTTR, which is the first high temperature gas reactor in Japan, was finished and its output upgrading test has been promoted. And, on the HTTR plan, together with promotion of full power operation, reactor performance tests, safety proof test, and so on, it is planned to carry out study on application of the high temperature heat such as hydrogen production and so on to aim to practise establishment and upgrading of technologies on high temperature gas reactor in Japan. Here were introduced features and present condition of development of the high temperature gas reactor as an innovative type reactor and described role and future scope in Japan. (G.K.)

  6. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  7. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  8. A Status of Art-Report on the Fission Products Behavior Released from Spent Fuel at High Temperature Conditions

    International Nuclear Information System (INIS)

    Park, Geun Il; Kim, J. H.; Lee, J. W.

    2003-04-01

    The experiments on the fission products release behavior from spent fuel at high temperature assuming reactor accident conditions have been carried out at Oak Ridge Nation Laboratory of USA in HI/VI tests, CEA of France in HEVA/VERCOS tests, AEA of England and CRNL of Canada in HOX test. The VEGA program to study the fission product release behavior from LWR irradiated fuel was recently initiated at JAERI. The key parameter affecting the fission product(FP) release behavior is temperature. In addition, other parameters such as fuel oxidation, burnup, pre-transient conditions are found to affect the FP releases considerably in the earlier tests. The atmosphere conditions such as oxidizing atmosphere (steam or air) or reducing atmosphere (hydrogen) can cause significant change of FPs release and transport behavior due to chemical forms of the reactive FPs which is dependent on the oxidation potential. The effect of fuel burnup on the Kr-85 or Cs-137 release showed that the release rates of these radionuclides increased with the increase of burnup, meaning that release rates are dominated by the atomic diffusions in the grains and they are primarily a function of temperature. However, the data on FPs release behavior using higher burnups above 50,000 MWD/MTU are not so many reported up to now. This report summarizes the test results of FPs release behavior in reactor accident conditions produced from other countries mentioned above. This review and analysis on earlier studies would be useful for predicting the release characteristics of FPs from domestic spent fuel. The release rates of fission gas or FPs from spent fuel at high temperature conditions during fabrication process of dry recycling fuel were also analyzed using many data obtained from earlier tests

  9. Changes in the blood indicators and body condition of high yielding Holstein cows with retained placenta and ketosis

    Directory of Open Access Journals (Sweden)

    Zenon Nogalski

    2012-01-01

    Full Text Available The aim of this study was to determine the effect of changes in body condition in the dry period and the early lactation period on the incidence of retained placenta and ketosis in 94 high-yielding Holstein-Friesian cows. Body condition scoring was performed every two weeks from the beginning of the dry period until week 18 of lactation. Blood for the measuring of indicators of metabolism was sampled in weeks 1 and 2 ante partum and in weeks 1, 2, 3, 7 and 15 post partum. Retained placenta was reported in 11 cows, and ketosis was diagnosed in 18 animals. One week ante partum, the serum profile of cows diagnosed with ketosis during lactation revealed 0.52 mmol/l β-hydroxybutyric acid and 0.29 mmol/l non-esterified fatty acids on average. One week post partum, the serum profile of cows with ketosis revealed 1.59 mmol/l β-hydroxybutyric acid and 1.09 mmol/l non-esterified fatty acids and cows with retained placenta 1.65 and 1.41, respectively. From the week 5 ante partum to the point of lowest body condition the average body condition loss reached 1.4 points in cows with retained placenta, 1.1 points in cows with ketosis, and 0.8 points in healthy cows. Retained placenta and ketosis increased significantly conception rates by 0.47 and 0.50, respectively. Our results show that monitoring changes in the body condition and non-esterified fatty acids and β-hydroxybutyric acid blood levels in high-yielding cows in the transition period, followed by taking relevant disease-control measures, may be effective in reducing the incidence of retained placenta and ketosis in dairy cattle herds.

  10. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.

    Science.gov (United States)

    Balfagón, Damián; Zandalinas, Sara I; Baliño, Pablo; Muriach, María; Gómez-Cadenas, Aurelio

    2018-06-01

    Usually several environmental stresses occur in nature simultaneously causing a unique plant response. However, most of the studies until now have focused in individually-applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus rootstocks with contrasting tolerance to drought and heat stress and have been used in this work as a model for the study of plant tolerance to the combination of drought and high temperatures. According to our results, leaf integrity and photosynthetic machinery are less affected in Carrizo than in Cleopatra under combined conditions of drought and heat stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) involved in abiotic stress tolerance shows that they do not accumulate under water stress conditions individually applied. However, contents of APX and HSP101 are higher in Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar behavior in both types of plants. This, together with a better stomatal control and a higher APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the combination of stresses and point to it as a better rootstock than Cleopatra (traditionally used in areas with scare water supplies) under the predictable future climatic conditions with frequent periods of drought combined with high temperatures. This work also provides the basis for testing the tolerance of different citrus varieties grafted on these rootstocks and growing under different field conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. High-speed PIV applied to the wake of the NASA CRM model in ETW at high Re-number stall conditions for sub- and transonic speeds

    OpenAIRE

    Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen

    2015-01-01

    Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...

  12. Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalez-Dugo

    2015-10-01

    Full Text Available There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI, but using approaches related with the crop physiology are rare. High-resolution hyperspectral remote sensing imagery provides optical indices related to physiological condition through the quantification of photosynthetic pigment and chlorophyll fluorescence emission. This study demonstrates the use of narrow-band indicators of stress as a potential tool for phenotyping under rainfed conditions using two airborne datasets acquired over a wheat experiment with 150 plots comprising two species and 50 varieties (bread and durum wheat. The flights were performed at the early stem elongation stage and during the milking stage. Physiological measurements made at the time of flights demonstrated that the second flight was made during the terminal stress, known to largely determine final yield under rainfed conditions. The hyperspectral imagery enabled the extraction of thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the calculation of indices related to photosynthetic pigment absorption in the visible and red-edge regions, the quantification of chlorophyll fluorescence emission, as well as structural indices related to canopy structure. Under the conditions of this study, the structural indices (i.e., NDVI did not show a good performance at predicting yield, probably because of the large effects of terminal water stress. Thermal indices, indices related to chlorophyll fluorescence (calculated using the FLD method, and carotenoids pigment indices (PRI and CAR demonstrated to be better suited for screening complex traits such as crop yield. The study concludes that the indicators derived from high

  13. Plyometric Training Improves Sprinting, Jumping and Throwing Capacities of High Level Female Volleyball Players Better Than Skill-Based Conditioning

    Directory of Open Access Journals (Sweden)

    Bahri Gjinovci, Kemal Idrizovic, Ognjen Uljevic, Damir Sekulic

    2017-12-01

    Full Text Available There is an evident lack of studies on the effectiveness of plyometric- and skill-based-conditioning in volleyball. This study aimed to evaluate effects of 12-week plyometric- and volleyball-skill-based training on specific conditioning abilities in female volleyball players. The sample included 41 high-level female volleyball players (21.8 ± 2.1 years of age; 1.76 ± 0.06 cm; 60.8 ± 7.0 kg, who participated in plyometric- (n = 21, or skill-based-conditioning-program (n = 20. Both programs were performed twice per week. Participants were tested on body-height, body-mass (BM, countermovement jump (CMJ, standing broad jump (SBJ, medicine ball throw, (MBT and 20-m sprint (S20M. All tests were assessed at the study baseline (pre- and at the end of the 12-week programs (post-testing. Two-way ANOVA for repeated measurements showed significant (p<0.05 “Group x Time” effects for all variables but body-height. Plyometric group significantly reduced body-mass (trivial effect size [ES] differences; 1% average pre- to post-measurement changes, and improved their performance in S20M (moderate ES; 8%, MBT (very large ES; 25%, CMJ (large ES; 27%, and SBJ (moderate ES; 8%. Players involved in skill-based-conditioning significantly improved CMJ (large ES; 18%, SBJ (small ES; 3%, and MBT (large ES; 9%. The changes which occurred between pre- and post-testing were more inter-correlated in plyometric-group. Although both training-modalities induced positive changes in jumping- and throwing-capacities, plyometric-training is found to be more effective than skill-based conditioning in improvement of conditioning capacities of female senior volleyball players. Future studies should evaluate differential program effects in less experienced and younger players.

  14. Plyometric Training Improves Sprinting, Jumping and Throwing Capacities of High Level Female Volleyball Players Better Than Skill-Based Conditioning

    Science.gov (United States)

    Gjinovci, Bahri; Idrizovic, Kemal; Uljevic, Ognjen; Sekulic, Damir

    2017-01-01

    There is an evident lack of studies on the effectiveness of plyometric- and skill-based-conditioning in volleyball. This study aimed to evaluate effects of 12-week plyometric- and volleyball-skill-based training on specific conditioning abilities in female volleyball players. The sample included 41 high-level female volleyball players (21.8 ± 2.1 years of age; 1.76 ± 0.06 cm; 60.8 ± 7.0 kg), who participated in plyometric- (n = 21), or skill-based-conditioning-program (n = 20). Both programs were performed twice per week. Participants were tested on body-height, body-mass (BM), countermovement jump (CMJ), standing broad jump (SBJ), medicine ball throw, (MBT) and 20-m sprint (S20M). All tests were assessed at the study baseline (pre-) and at the end of the 12-week programs (post-testing). Two-way ANOVA for repeated measurements showed significant (pvolleyball players. Future studies should evaluate differential program effects in less experienced and younger players. Key points Plyometric- and skill-based-conditioning resulted in improvements in jumping and throwing capacities, but plyometric training additionally induced positive changes in anthropometrics and sprint-capacity The changes induced by plyometric training were larger in magnitude than those achieved by skill-based conditioning. The higher intensity together with possibility of more accurate adjustment of training load in plyometric training are probably the most important determinant of such differential influence. It is likely that the skill-based conditioning program did not result in changes of higher magnitude because of the players’ familiarity with volleyball-related skills. PMID:29238253

  15. Plyometric Training Improves Sprinting, Jumping and Throwing Capacities of High Level Female Volleyball Players Better Than Skill-Based Conditioning.

    Science.gov (United States)

    Gjinovci, Bahri; Idrizovic, Kemal; Uljevic, Ognjen; Sekulic, Damir

    2017-12-01

    There is an evident lack of studies on the effectiveness of plyometric- and skill-based-conditioning in volleyball. This study aimed to evaluate effects of 12-week plyometric- and volleyball-skill-based training on specific conditioning abilities in female volleyball players. The sample included 41 high-level female volleyball players (21.8 ± 2.1 years of age; 1.76 ± 0.06 cm; 60.8 ± 7.0 kg), who participated in plyometric- (n = 21), or skill-based-conditioning-program (n = 20). Both programs were performed twice per week. Participants were tested on body-height, body-mass (BM), countermovement jump (CMJ), standing broad jump (SBJ), medicine ball throw, (MBT) and 20-m sprint (S20M). All tests were assessed at the study baseline (pre-) and at the end of the 12-week programs (post-testing). Two-way ANOVA for repeated measurements showed significant (pPlyometric group significantly reduced body-mass (trivial effect size [ES] differences; 1% average pre- to post-measurement changes), and improved their performance in S20M (moderate ES; 8%), MBT (very large ES; 25%), CMJ (large ES; 27%), and SBJ (moderate ES; 8%). Players involved in skill-based-conditioning significantly improved CMJ (large ES; 18%), SBJ (small ES; 3%), and MBT (large ES; 9%). The changes which occurred between pre- and post-testing were more inter-correlated in plyometric-group. Although both training-modalities induced positive changes in jumping- and throwing-capacities, plyometric-training is found to be more effective than skill-based conditioning in improvement of conditioning capacities of female senior volleyball players. Future studies should evaluate differential program effects in less experienced and younger players.

  16. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  17. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  18. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  19. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  20. Investigations of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    International Nuclear Information System (INIS)

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-01-01

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures

  1. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  2. A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions

    International Nuclear Information System (INIS)

    Kavuri, Chaitanya; Paz, Jordan; Kokjohn, Sage L.

    2016-01-01

    Highlights: • Targeting high load-low speed, optimizations of RCCI and GCI strategies were performed. • The two strategies were compared in terms of performance, controllability and stability. • The optimum cases had high gross indicated efficiency (∼47%) and low NOx emissions. • RCCI strategy showed better combustion control but had higher soot emissions. • GCI strategy was relatively more sensitive to fluctuations in charge conditions. - Abstract: Past research has shown that Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) combustion are promising approaches to improve efficiency and reduce pollutant emissions. However, the benefits have generally been confined to mid-load operating conditions. To enable practical application, these approaches must be able to operate over the entire engine map. A particularly challenging area is high load, low speed operation. Accordingly, the present work uses detailed CFD modeling and engine experiments to compare RCCI and GCI combustion strategies at a high load, low speed condition. Computational optimizations of RCCI and GCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The optimum points from the two combustion strategies were verified using engine experiments and were used to make the comparisons between RCCI and GCI combustion. The comparison showed that both the strategies had very similar combustion characteristics with a near top dead center injection initiating combustion. A parametric study was performed to identify the key input parameters that control combustion for the RCCI and GCI strategies. For both strategies, the combustion phasing could be controlled by the start of injection (SOI) timing of the near TDC injection. The short ignition delay of diesel fuel gave the RCCI strategy better control over combustion than the GCI strategy, but also had a simultaneous tradeoff with soot emissions. With the GCI

  3. The sensitivity of particle pH to NH3: Can high NH3 cause London Fog conditions?

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Nenes, A.

    2017-12-01

    High ammonia emissions from agriculture or other sources have been suggested to elevate ambient particle pH levels to near neutral acidity (pH=7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This mechanism has been used to explain pollution haze events in China. Predicted pH for locations in the US and Europe show fine particles are highly acidic with pH typically less than 2. The results are consistent with measured ammonia and nitric acid gas-particle partitioning, validating predicted pH levels. Using these data sets from representative sites around the world we conduct a thermodynamic analysis of aerosol pH and its sensitivity to ammonia levels. We find that particle pH, regardless of ammonia levels, is always acidic even for the unusually high ammonia levels found in highly polluted Asian cities, Beijing (pH=4.5) and Xi'an (pH=5), locations where sulfate production from NOx is proposed. These results indicate that sulfur dioxide oxidation through a NO2-mediated pathway is not likely in China, nor any other region of the world (e.g., US, Mediterranean) since the fine aerosol is consistently acidic. The mildly acidic conditions would, however, permit rapid oxidation of sulfur dioxide through transition metal chemistry. The limited alkalinity from the carbonate buffer in dust and seasalt can provide the only likely set of conditions where NO2-mediated oxidation of SO2 outcompetes with other well-established pathways.

  4. Effects of long-term exposure of tuffs to high-level nuclear waste-repository conditions. Preliminary report

    International Nuclear Information System (INIS)

    Blacic, J.; Carter, J.; Halleck, P.; Johnson, P.; Shankland, T.; Andersen, R.; Spicochi, K.; Heller, A.

    1982-02-01

    Tests have been performed to explore the effects of extended exposure of tuffs from the southwestern portion of the Nevada Test Site to temperatures and pressures similar to those that will be encountered in a high-level nuclear waste repository. Tuff samples ranging from highly welded, nonzeolitized to unwelded, highly zeolitized varieties were subjected to temperatures of 80, 120, and 180 0 C; confining pressures of 9.7 and 19.7 MPa; and water-pore pressures of 0.5 to 19.7 MPa for durations of 2 to 6 months. The following basic properties were measured before and after exposure and compared: tensile strength, uniaxial compressive strength, grain density, porosity, mineralogy, permeability, thermal expansion, and thermal conductivity. Depending on rock type and exposure conditions, significant changes in ambient tensile strength, compressive strength, grain density, and porosity were measured. Mineralogic examination, permeability, and thermal property measurements remain to be completed

  5. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J. [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R. [Department of Engineering Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  6. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  7. [Study on the psychological health condition among junior and senior high school students in Beijing, Shanghai and Guangzhou].

    Science.gov (United States)

    Tao, Longxiang; Zhang, Qian; Du, Songming; Guo, Jing; Liu Weijia; Pan, Hui; Hu, Xiaoqi; Ma, Guansheng; Sun, Xiaohong

    2015-01-01

    To describe the status and difference of students' mental health in junior high school, ordinary high school and vocational high school in Beijing, Shanghai and Guangzhou. 135 schools and 14 473 students were randomly selected and stratified to draw the sample. Mental Health Test (MHT) was used to measure the status of students' mental health. Among 13 286 valid questionnaire, 2.1% students were mentally disabled, more females reported their mental problems (2.1%) than males (1.9%). Students from Shanghai (2.5%) and Beijing (2.3%) were more likely to report their mental problems than students from Guangzhou (1.6%), which were statistically significant. The top three mental problems includes anxiety (42.6%), physical condition (11.1%) and self - blame tendency (9.7%), etc. Students from Beijing, Shanghai and Guangzhou got different extend of mental problems.

  8. On the Breeding of Bivoltine Breeds of the Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae, Tolerant to High Temperature and High Humidity Conditions of the Tropics

    Directory of Open Access Journals (Sweden)

    Harjeet Singh