WorldWideScience

Sample records for high bandwidth optical

  1. Modulator-Based, High Bandwidth Optical Links for HEP Experiments

    CERN Document Server

    Underwood, D G; Fernando, W S; Stanek, R W

    2012-01-01

    As a concern with the reliability, bandwidth and mass of future optical links in LHC experiments, we are investigating CW lasers and light modulators as an alternative to VCSELs. These links will be particularly useful if they utilize light modulators which are very small, low power, high bandwidth, and are very radiation hard. We have constructed a test system with 3 such links, each operating at 10 Gb/s. We present the quality of these links (jitter, rise and fall time, BER) and eye mask margins (10GbE) for 3 different types of modulators: LiNbO3-based, InP-based, and Si-based. We present the results of radiation hardness measurements with up to ~1012 protons/cm2 and ~65 krad total ionizing dose (TID), confirming no single event effects (SEE) at 10 Gb/s with either of the 3 types of modulators. These optical links will be an integral part of intelligent tracking systems at various scales from coupled sensors through intra-module and off detector communication. We have used a Si-based photonic transceiver to...

  2. High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology.

    Science.gov (United States)

    Orłowska, Karolina; Świątkowski, Michał; Kunicki, Piotr; Kopiec, Daniel; Gotszalk, Teodor

    2016-08-01

    We report on the design, properties, and applications of a high-resolution and wide-bandwidth light intensity fiber optic displacement sensor for microelectromechanical system (MEMS) metrology. There are two types of structures that the system is dedicated to: vibrating with both high and low frequencies. In order to ensure high-frequency and high-resolution measurements, frequency down mixing and selective signal processing were applied. The obtained effective measuring bandwidth ranges from single hertz to 1 megahertz. The achieved resolution presented here is 116  pm/Hz1/2 and 138  pm/Hz1/2 for low-frequency and high-frequency operation modes, respectively, whereas the measurement of static displacement is 100 μm.

  3. High bandwidth all-optical 3×3 switch based on multimode interference structures

    Science.gov (United States)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  4. Wide bandwidth optical signals for high range resolution measurements in water

    Science.gov (United States)

    Nash, Justin; Lee, Robert; Mullen, Linda

    2016-05-01

    Measurements with high range resolution are needed to identify underwater threats, especially when two-dimensional contrast information is insufficient to extract object details. The challenge is that optical measurements are limited by scattering phenomena induced by the underwater channel. Back-scatter results in transmitted photons being directed back to the receiver before reaching the target of interest which induces a clutter signal for ranging and a reduction in contrast for imaging. Multiple small-angle scattering (forward-scatter) results in transmitted photons being directed to unintended regions of the target of interest (spatial spreading), while also stretching the temporal profile of a short optical pulse (temporal spreading). Spatial and temporal spreading of the optical signal combine to cause a reduction in range resolution in conventional laser imaging systems. NAVAIR has investigated ways in which wide bandwidth, modulated optical signals can be utilized to improve ranging and imaging performance in turbid water environments. Experimental efforts have been conducted to investigate channel effects on the propagated frequency content, as well as different filtering and processing techniques on the return signals to maximize range resolution. Of particular interest for the modulated pulses are coherent detection and processing techniques employed by the radar community, including methods to reduce sidelobe clutter. This paper will summarize NAVAIR's work and show that wideband optical signals, in combination with the CLEAN algorithm, can indeed provide enhancements to range resolution and 3D imagery in turbid water environments.

  5. Polybinary modulation for bandwidth limited optical links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Jurado-Navas, Antonio

    2015-01-01

    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards...... the recent results on poly binary modulation, comprising both binary and multilevel signals as seed signals. The results will show how poly binary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  6. Controllable high bandwidth storage of optical information in a Bose-Einstein Condensate

    Science.gov (United States)

    Jayaseelan, Maitreyi; Schultz, Justin T.; Murphree, Joseph D.; Hansen, Azure; Bigelow, Nicholas P.

    2016-05-01

    The storage and retrieval of optical information has been of interest for a variety of applications including quantum information processing, quantum networks and quantum memories. Several schemes have been investigated and realized with weak, narrowband pulses, including techniques using EIT in solid state systems and both hot and cold atomic vapors. In contrast, we investigate the storage and manipulation of strong, high bandwidth pulses in a Bose-Einstein Condensate (BEC) of ultracold 87 Rb atoms. As a storage medium for optical pulses, BECs offer long storage times and preserve the coherence properties of the input information, suppressing unwanted thermal decoherence effects. We present numerical simulations of nanosecond pulses addressing a three-level lambda system on the D2 line of 87 Rb. The signal pulse is stored as a localized spin excitation in the condensate and can be moved or retrieved by reapplication of successive control pulses. The relative Rabi frequencies and areas of the pulses and the local atomic density in the condensate determine the storage location and readout of the signal pulse. Extending this scheme to use beams with a variety of spatial modes such as Hermite- and Laguerre-Gaussian modes offers an expanded alphabet for information storage.

  7. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    Science.gov (United States)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  8. Silicon Photonics for All-Optical Processing and High-Bandwidth-Density Interconnects

    Science.gov (United States)

    Ophir, Noam

    The first chapter of the thesis provides motivation for the integration of silicon photonic modules into compute systems and surveys some of the recent developments in the field. The second chapter then proceeds to detail a technical case study of silicon photonic microring-based WDM links' scalability and power efficiency for these chip I/O applications which could be developed in the intermediate future. The analysis, initiated originally for a workshop on optical and electrical board and rack level interconnects, looks into a detailed model of the optical power budget for such a link capturing both single-channel aspects as well as WDM-operation-related considerations which are unique for a microring physical characteristics. The third chapter, while continuing on the theme silicon photonic high bandwidth density links, proceeds to detail the first experimental demonstration and characterization of an on-chip spatial division multiplexing (SDM) scheme based on microrings for the multiplexing and demultiplexing functionalities. In the context of more forward looking optical network-on-chip environments, SDM-enabled WDM photonic interconnects can potentially achieve superior bandwidth densities per waveguide compared to WDM-only photonic interconnects. The microring-based implementation allows dynamic tuning of the multiplexing and demultiplexing characteristic of the system which allows operation on WDM grid as well device tuning to combat intra-channel crosstalk. The characterization focuses on the first reported power penalty measurements for on-chip silicon photonic SDM link showing minimal penalties achievable with 3 spatial modes concurrently operating on a single waveguide with 10-Gb/s data carried by each mode. The fourth, fifth, and sixth chapters shift in topic from the application of silicon photonics to communication links to the evolving use of silicon waveguides for nonlinear all-optical processing. Chapter four primarily introduces and motivates

  9. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  10. Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine; Peterman, Erwin J G; Weber, Tom

    2006-01-01

    In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasicit effect is due...... this detection system of optical tweezers a bandwidth, accuracy, and precision that are limited only by the data acquisition board's bandwidth and bandpass ripples, here 96.7 kHz and 0.005 dB, respectively. ©2006 American Institute of Physics...

  11. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  12. Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso; Madsen, Peter

    2016-01-01

    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards...... of the current research status of the key building blocks in polybinary systems. The results clearly show how polybinary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  13. Electro-optic prism-pair setup for efficient high bandwidth isochronous CEP phase shift or group delay generation

    Science.gov (United States)

    Gobert, Olivier; Mennerat, Gabriel; Cornaggia, Christian; Lupinski, Dominique; Perdrix, Michel; Guillaumet, Delphine; Lepetit, Fabien; Oksenhendler, Thomas; Comte, Michel

    2016-05-01

    We report the experimental demonstration of an electro-optic prism pair pure carrier-envelope phase (CEP) shifter at low voltage (shift of 1 rad for a voltage of 90 V, applied to a crystal of 5 mm aperture). Validating our mathematical model, the experiments prove that this set-up which uses two rubidium titanyl phosphate (RTP) crystals, can be used either as an efficient high bandwidth CEP shifter without modifying the group delay of an ultrashort pulse (isochronous CEP shifter) or alternatively as a group delay generator with quasi-constant CEP (Pure Group Delay generator). These two configurations which correspond to specific geometries are characterized by spectral interferometry with a 800 nm mode-locked Ti:sapphire laser. The results are in very good agreement with the model. In the pure group delay mode, a group delay of 2.3 fs is obtained at 1000 V/cm without significant CEP shift. In the isochronous mode, a shift of 5.5 rad at 1000 V/cm is generated without significant delay. The applied voltage is also lowered by a factor of nearly three in this configuration, compared to the case of an RTP rectangular slab of the same total length.

  14. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition.

    Science.gov (United States)

    Ta Phuoc, V; Vaju, C; Corraze, B; Sopracase, R; Perucchi, A; Marini, C; Postorino, P; Chligui, M; Lupi, S; Janod, E; Cario, L

    2013-01-18

    The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems.

  16. High-Bandwidth Hybrid Sensor (HYSENS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA has demonstrated the primary innovation of combining a precision MEMS gyro (BAE SiRRS01) with a high bandwidth angular rate sensor, ATA's ARS-14 resulting in a...

  17. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  18. Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers

    Science.gov (United States)

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2017-01-01

    Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO2, Nb2O5, and Ta2O5, can be used to achieve broader bandwidths compared to coatings that contain HfO2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO2, Nb2O5, and Ta2O5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO2 as the low index material to create broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. High reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta2O5/SiO2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO2/SiO2 and Nb2O5/SiO2 coatings.

  19. Simple High-Bandwidth Sideband Locking with Heterodyne Readout

    CERN Document Server

    Reinhardt, Christoph; Sankey, Jack C

    2016-01-01

    We present a robust sideband laser locking technique that is ideally suited for applications requiring low probe power and heterodyne readout. By feeding back to a high-bandwidth voltage controlled oscillator, we lock a first-order phase-modulation sideband to a table-top high-finesse Fabry-Perot cavity, achieving a feedback bandwidth of 3.5 MHz with a single integrator, limited fundamentally by the signal delay. The directly measured transfer function of the closed feedback loop agrees with a model assuming ideal system components, and from this we suggest a modified design that should realistically achieve a bandwidth exceeding 6 MHz with a near-causally limited feedback gain of $4\\times 10^7$ at 1 kHz. The off-resonance optical carrier is used for alignment-free heterodyne readout, alleviating the need for a second laser or additional optical modulators.

  20. BANDWIDTH OF QUANTUM OPTICAL COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    I. R. Gulakov

    2012-01-01

    Full Text Available Impact of registered optical radiation intensity, overvoltage, dimensions of photosensitive surface, structure of p-n junction and avalanche photodetectors dead time operating in the photon counting mode on quantum optical system capacity has been carried out in this investigation. As a result, the quantum optical system maximum capacity of 81 kbit/s has been obtained.

  1. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...... of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different...

  2. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing

    Science.gov (United States)

    Preussler, Stefan; Schneider, Thomas

    2016-03-01

    Stimulated Brillouin scattering (SBS) is one of the most dominant nonlinear effects in standard single-mode fibers and its unique spectral characteristics, especially the narrow bandwidth, enable many different applications. Most of the applications would benefit from a narrower bandwidth. Different methods for the bandwidth reduction of SBS in optical fibers are presented and discussed. A bandwidth reduction down to 17% of the natural gain can be achieved by the superposition of the gain with two losses or the utilization of a multistage system. Furthermore, applications in the field of microwave photonics and optical signal processing like high-resolution spectroscopy of communication signals, the storage of optical data packets as well as the processing of frequency combs including generation of millimeter waves and ideal sinc-shaped Nyquist pulses are presented.

  3. Bandwidth enhancement and time-delay signature suppression of chaotic signal from an optical feedback semiconductor laser by using cross phase modulation in a highly nonlinear fiber loop mirror

    Science.gov (United States)

    Wang, Liang-Yan; Zhong, Zhu-Qiong; Wu, Zheng-Mao; Lu, Dong; Chen, Xi; Chen, Jun; Xia, Guang-Qiong

    2016-11-01

    Based on a nonlinear fiber loop mirror (NOLM) composed of a fiber coupler (FC) and a highly nonlinear fiber (HNLF), a scheme is proposed to simultaneously realize the bandwidth enhancement and the time-delay signature (TDS) suppression of a chaotic signal generated from an external cavity optical feedback semiconductor laser. The simulation results show that, after passing through the NOLM, the bandwidth of chaotic signal can be efficiently enhanced and the TDS can be well suppressed under suitable operation parameters. Furthermore, the influences of the power-splitting ratio of the FC, the averaged power of the chaotic signal entering into the FC and the length of the HNLF on the chaotic bandwidth and TDS are analyzed, and the optimized parameters are determined.

  4. GHz bandwidth noise eater hybrid optical amplifier: design guidelines.

    Science.gov (United States)

    Danion, Gwennaël; Bondu, François; Loas, Goulc'hen; Alouini, Mehdi

    2014-07-15

    This Letter describes the design of an optical amplifier system optimized to reduce the relative intensity noise (RIN) of the input signal, and discloses its performance in terms of intensity noise reduction and bandwidth, without phase noise degradation. This polarization-maintaining amplifier is composed of an erbium-doped fiber amplifier (EDFA) cascaded with a semiconductor optical amplifier (SOA). The EDFA is sized to feed the SOA with a constant power corresponding to the optimal saturation level for noise reduction, through coherent population oscillations. When properly optimized, such an amplifier provides, simultaneously, 17 dB optical gain, 5.4 dB noise factor, and 20 dB reduction of the input-RIN across a 3 GHz bandwidth, without any electronics feedback loop.

  5. Bandwidth-enhanced photopolymer waveguide hologram-based optical backplane

    Science.gov (United States)

    Bi, Hai; Tian, Chuhua; Chen, Ray T.; Han, Xuliang

    2005-01-01

    As multiprocessing comes into the mainstream, the board-to-board interconnects become even more critical. In a shared-memory multiprocessing system, the shared bus topology is the preferred interconnect scheme because its broadcast nature can be effectively utilized to reduce communication latency, lessen networking complexity, and support cache coherence. In the electrical domain, however, a major performance bottleneck is anticipated due to the restricted bus bandwidth. In this paper, an innovative architecture, optical centralized shared bus, is proposed for use in the multiprocessing systems. This architecture utilizes the terascale bandwidth capacity of substrate-guided optical interconnects, while at the same time, retaining the essential merits of the shared bus topology. Thus, a smooth migration with substantial multiprocessing performance improvement is expected. A conceptual emulation of the shared-memory multiprocessing scheme is demonstrated on a generic PCI subsystem with an optical centralized shared bus. The objective of this effort is to prove the technical feasibility from the architecture standpoint.

  6. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  7. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  8. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-01-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment. PMID:27734921

  9. Global path and bandwidth scheduling in inter-data-center IP/optical transport network

    Science.gov (United States)

    Zhao, Yang; Wang, Lei; Chen, Xue; Yang, Futao; Shi, Sheping; Wang, Huitao

    2016-07-01

    We propose a flow-oriented global path and bandwidth scheduling scheme for inter-data-center IP/optical network. To improve the throughput of network and reduce the mutual impact between flows, we allow each flow to be carried by a multi-path optical channel data unit (ODU) channel. In addition bandwidth is allocated to flows fairly according to weight. Simulation results reveal that compared to high-priority-first mechanism, the method proposed improves average bandwidth allocation ratio by about 15% and allocation fairness between flows by 30%. Furthermore, compared to pure IP network, router ports are significantly saved and network cost can be reduced by up to 40% with scheme proposed in unified controlled IP/optical network.

  10. VISA IB Ultra-High Bandwidth, High Gain SASE FEL

    CERN Document Server

    Andonian, Gerard; Murokh, Alex; Pellegrini, Claudio; Reiche, Sven; Rosenzweig, J B; Travish, Gil

    2004-01-01

    The results of a high energy-spread SASE FEL experiment, the intermediary experiment linking the VISA I and VISA II projects, are presented. A highly chirped beam (~1.7%) was transported without correction of longitudinal aberrations in the ATF dogleg, and injected into the VISA undulator. The output FEL radiation displayed an uncharacteristicly large bandwidth (~11%) with extremely stable lasing and measured energy of about 2 microJoules. Start-to-end simulations reproduce key features of the measured results and provide an insight into the mechanisms giving rise to such a high bandwidth. These analyses are described as they relate to important considerations for the VISA II experiment.

  11. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  12. Optimization Design Parameters of Electro-optic Modulators for Low Loss Wide Bandwidth Capability of Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-06-01

    Full Text Available The effects of temperature, and operating signal wavelength on high frequency radio frequency transmission characteristics are deeply investigated against various materials based electro optic modulator devices such as lithium Niobate (LiNbO3, polymer, and semiconductor materials. On the other hand, we have developed the optimization of the electro optic modulator parameters where the effective index plays an essential role in the evaluation of the bandwidth structure. The effects of design parameters on the modulating voltage and optical bandwidth are also investigated for different materials based electro optic modulators by using rigorous transmission modeling techniques. The low loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high capacity optical communication systems has required the use of modulation techniques in optical transmitters and receivers. This paper has presented the low loss wide bandwidth for different electrooptic modulators based on design of optimization parameters for high speed transmission performance.

  13. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  14. Acousto-optical interaction bandwidth of more than 2 GHz

    Science.gov (United States)

    Petrov, Vladimir V.

    1996-12-01

    The way of extension of acousto-optical interaction frequency bandwidth to more than one octave is suggested. The main principle used for this aim is to design the electro-acoustical multi-element transducer with variable, along its length, parameters. In such a case to each frequency point inside chosen band exists the region of the transducer's length where, from one hand, the condition for good excitation of sound waves is fulfilled and from the other hand the Bragg condition is also fulfilled because of closed coincidence of real and necessary frequency dependencies of Bragg angle and of the angle of sound wave front inclination. This window moves from one end of the transducer to the other when frequency changes from minimum to maximum one inside the band. The closer real angle frequency dependence follows to necessary one than larger the length of transducer can be done and than more higher the diffraction efficiency can be reached.

  15. Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    NARCIS (Netherlands)

    Benko, C.; Ruehl, A.; Martin, M.J.; Eikema, K.S.E.; Fermann, M.E.; Hartl, I.; Ye, J.

    2012-01-01

    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fi

  16. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes.

    Science.gov (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis

    2008-05-01

    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK.

  17. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  18. Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands.

    Science.gov (United States)

    Lee, Dong-Joon; Whitaker, John F

    2008-09-15

    We demonstrate that harmonic sidebands of an electro-optic modulator's driving frequency can be used as the local oscillator in a photonic down-mixing process in order to significantly enhance the bandwidth of near-field, electro-optic, microwave measurements. The creation of second- and third-order-harmonic modulation sidebands on a laser-diode output are described, with heterodyne down-conversion of microwave signals taking place within an electro-optic sensor crystal. The measurement bandwidth of an electro-optic microwave probe can thus be enhanced by as much as a factor of three with respect to the use of conventional, fundamental-harmonic sidebands. Carrier-sideband analysis from the measured optical spectrum indicates that millimeter-wave-frequency local-oscillator sidebands can be created using a Ku-band electro-optic modulator and that the electro-optic-signal-modulation depth can be enhanced by suppressing the light-beam carrier component. Transverse near-field distributions from high frequency patch antennas are extracted using both second- and third-order-harmonic sidebands.

  19. Avoiding bandwidth collapse in long chains of coupled optical microresonators.

    Science.gov (United States)

    Mookherjea, Shayan; Schneider, Mark A

    2011-12-01

    Coupled photonic oscillators and resonators are sensitive to unavoidable nanoscale disorder, and localization in periodic structures induced by disorder leads eventually to a complete collapse of the bandwidth, which is generally considered problematic for device applications. Here, we investigate the dependence of bandwidth collapse on the interresonator coupling coefficient, a parameter controllable by lithography or device operation.

  20. On the Bandwidth of High-Impedance Frequency Selective Surfaces

    CERN Document Server

    Costa, Filippo; Monorchio, Agostino; 10.1109/LAWP.2009.2038346

    2010-01-01

    In this letter, the bandwidth of high-impedance surfaces (HISs) is discussed by an equivalent circuit approach. Even if these surfaces have been employed for almost 10 years, it is sometimes unclear how to choose the shape of the frequency selective surface (FSS) on the top of the grounded slab in order to achieve the largest possible bandwidth. Here, we will show that the conventional approach describing the HIS as a parallel connection between the inductance given by the grounded dielectric substrate and the capacitance of the FSS may induce inaccurate results in the determination of the operating bandwidth of the structure. Indeed, in order to derive a more complete model and to provide a more accurate estimate of the operating bandwidth, it is also necessary to introduce the series inductance of the FSS.We will present the explicit expression for defining the bandwidth of a HIS, and we will show that the reduction of the FSS inductance results in the best choice for achieving wide operating bandwidth in c...

  1. High-bandwidth hybrid quantum repeater.

    Science.gov (United States)

    Munro, W J; Van Meter, R; Louis, Sebastien G R; Nemoto, Kae

    2008-07-25

    We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.

  2. MOVING TOWARD SYNCHRONOUS OPTICAL NETWORK STRATEGIES FOR EFFICIENT TELECOMMUNICATIONS TRANSPORT WITH INCREASED CONFIGURATION FLEXIBILITY AND BANDWIDTH AVAILABILITY

    Directory of Open Access Journals (Sweden)

    Dr.S.S.Riaz Ahamed

    2010-07-01

    Full Text Available Optical networks are high-capacity telecommunications networks based on optical technologies and components that provide routing, grooming, and restoration at the wavelength level as well as wavelength-based services. As networks face increasing bandwidth demand and diminishing fiber availability, network providers are moving towards a crucial milestone in network evolution: the optical network. Optical networks, based on the emergence of the optical layer in transport networks, provide higher capacity and reduced costs for new applications such as the Internet, video and multimedia interaction, and advanced digital services. Synchronous optical network (SONET is a standard for optical telecommunications transport. The increased configuration flexibility and bandwidth availability of SONET provides significant advantages over the older telecommunications system.

  3. Optimization of Connector Position Offset for Bandwidth Enhancement of a Multimode Optical Fiber Link

    Science.gov (United States)

    Rawat, Banmali

    2000-01-01

    The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.

  4. Cyclic polling-based dynamic wavelength and bandwidth allocation in wavelength division multiplexing passive optical networks

    Institute of Scientific and Technical Information of China (English)

    Zhengcheng Xie; Hui Li; Yuefeng Ji

    2009-01-01

    Cyclic polling-based dynamic wavelength and bandwidth allocation algorithm supporting differentiated classes of services in wavelength division multiplexing (WDM) passive optical networks (PONs) is proposed. In this algorithm, the optical line terminal (OLT) polls for optical network unit (ONU) requests to transmit data in a cyclic manner. Services are categorized into three classes: expedited forward (EF) priority, assured forwarding (AF) priority, and best effort (BE) priority. The OLT assigns bandwidth for different priorities with different strategies. Simulation results show that the proposed algorithm saves a lot of downstream bandwidth under low load and does not show the light-load penalty compared with the simultaneous and interleaved polling schemes.

  5. Bandwidth manipulation of quantum light by an electro-optic time lens

    CERN Document Server

    Karpinski, Michal; Wright, Laura J; Smith, Brian J

    2016-01-01

    The ability to manipulate the spectral-temporal waveform of optical pulses has enabled a wide range of applications from ultrafast spectroscopy to high-speed communications. Extending these concepts to quantum light has the potential to enable breakthroughs in optical quantum science and technology. However, filtering and amplifying often employed in classical pulse shaping techniques are incompatible with non-classical light. Controlling the pulsed mode structure of quantum light requires efficient means to achieve deterministic, unitary manipulation that preserves fragile quantum coherences. Here we demonstrate an electro-optic method for modifying the spectrum of non-classical light by employing a time lens. In particular we show highly-efficient wavelength-preserving six-fold compression of single-photon spectral intensity bandwidth, enabling over a two-fold increase of single-photon flux into a spectrally narrowband absorber. These results pave the way towards spectral-temporal photonic quantum informati...

  6. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    Science.gov (United States)

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min

    2015-12-01

    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  7. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks

    Science.gov (United States)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng

    2014-06-01

    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  8. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber.

    Science.gov (United States)

    Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng

    2014-09-22

    We propose a rectangular optical filter based on stimulated Brillouin scattering (SBS) in optical fiber with bandwidth tuning from 50 MHz to 4 GHz at less than 15-MHz resolution. The rectangular shape of the filter is precisely achieved utilizing digital feedback control of the comb-like pump spectral lines. The passband ripple is suppressed to ~1 dB by mitigating the nonlinearity influences of the comb-like pump lines generated in electrical and optical components and fibers. Moreover a fiber with a single Brillouin peak is employed to further reduce the in-band ripple and the out-of-band SBS gain at the same time. Finally, we analyze the noise performance of the filter at different bandwidth cases and demonstrate the system performance of the proposed filter with 2.1-GHz bandwidth and 19-dB gain by amplifying a 2-GHz orthogonal frequency-division-multiplexing (OFDM) signal with quadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) on each subscriber.

  9. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  10. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José;

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  11. Modern Fiber Optic Submarine Cable Telecommunication Systems Planning for Explosive Bandwidth Needs at Different Deployment Depths

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-10-01

    Full Text Available The explosive bandwidth needs, especially in the inter data center market, have pushed transmission data rates to 100 Gbit/sec and beyond. Current terrestrial fibers are inadequate for long haul, high bandwidth deployments. To solve these problems a new fiber is introduced for terrestrial high bandwidth deployments: different polymeric core fibers with enlarged effective area with a significant optical signal to noise ratio improvement over other conventional terrestrial single mode fibers. To ensure the new fiber may be deployed robustly a new coating structure was employed. A rigorous cable structure was then chosen for evaluation. Based on experimental data, both the deep ocean water temperature and pressure are tailored as functions of the water depth. As well as the product of the transmitted bit rate and the repeater spacing is processed over wide ranges of the affecting parameters. It is taken into account the estimation of the total cost of the submarine fiber cable system for transmission technique under considerations. The system capacity as well as the spectral losses, and the dispersion effects are parametrically investigated over wide range ranges of the set of affecting parameters {wavelength, ocean depth (and consequently the ocean pressure and temperature, and the chemical structure}.

  12. Modern Fiber Optic Submarine Cable Telecommunication Systems Planning for Explosive Bandwidth Needs at Different Deployment Depths

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-05-01

    Full Text Available The explosive bandwidth needs, especially in the inter data center market, have pushed transmission data rates to 100 Gbit/sec and beyond. Current terrestrial fibers are inadequate for long haul, high bandwidth deployments. To solve these problems a new fiber is introduced for terrestrial high bandwidth deployments: different polymeric core fibers with enlarged effective area with a significant optical signal to noise ratio improvement over other conventional terrestrial single mode fibers. To ensure the new fiber may be deployed robustly a new coating structure was employed. A rigorous cable structure was then chosen for evaluation. Based on experimental data, both the deep ocean water temperature and pressure are tailored as functions of the water depth. As well as the product of the transmitted bit rate and the repeater spacing is processed over wide ranges of the affecting parameters. It is taken into account the estimation of the total cost of the submarine fiber cable system for transmission technique under considerations. The system capacity as well as the spectral losses, and the dispersion effects are parametrically investigated over wide range ranges of the set of affecting parameters {wavelength, ocean depth (and consequently the ocean pressure and temperature, and the chemical structure}.

  13. Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks

    CERN Document Server

    Anquillare, E L; Hsu, C W; DeLacy, B G; Joannopoulos, J D; Johnson, S G; Soljacic, M

    2016-01-01

    Subwavelength resonators, ranging from single atoms to metallic nanoparticles, typically exhibit a narrow-bandwidth response to optical excitations. We computationally design and experimentally synthesize tailored distributions of silver nanodisks to extinguish light over broad and varied frequency windows. We show that metallic nanodisks are two-to-ten-times more efficient in absorbing and scattering light than common structures, and can approach fundamental limits to broadband scattering for subwavelength particles. We measure broadband extinction per volume that closely approaches theoretical predictions over three representative visible-range wavelength windows, confirming the high efficiency of nanodisks and demonstrating the collective power of computational design and experimental precision for developing new photonics technologies.

  14. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    Science.gov (United States)

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  15. High-bandwidth remote flat panel display interconnect system

    Science.gov (United States)

    Peterson, Darrel G.

    1999-08-01

    High performance electronic displays (CRT, AMLCD, TFEL, plasma, etc.) require wide bandwidth electrical drive signals to produce the desired display images. When the image generation and/or image processing circuitry is located within the same line replaceable unit (LRU) as the display media, the transmission of the display drive signals to the display media presents no unusual design problems. However, many aircraft cockpits are severely constrained for available space behind the instrument panel. This often forces the system designer to specify that only the display media and its immediate support circuitry are to be mounted in the instrument panel. A wide bandwidth interconnect system is then required to transfer image data from the display generation circuitry to the display unit. Image data transfer rates of nearly 1.5 Gbits/second may be required when displaying full motion video at a 60 Hz field rate. In addition to wide bandwidth, this interconnect system must exhibit several additional key characteristics: (1) Lossless transmission of image data; (2) High reliability and high integrity; (3) Ease of installation and field maintenance; (4) High immunity to HIRF and electrical noise; (5) Low EMI emissions; (6) Long term supportability; and (7) Low acquisition and maintenance cost. Rockwell Collins has developed an avionics grade remote display interconnect system based on the American National Standards Institute Fibre Channel standard which meets these requirements. Readily available low cost commercial off the shelf (COTS) components are utilized, and qualification tests have confirmed system performance.

  16. An Overview of Optical Network Bandwidth and Fault Management

    Directory of Open Access Journals (Sweden)

    J.A. Zubairi

    2010-09-01

    Full Text Available This paper discusses the optical network management issues and identifies potential areas for focused research. A general outline of the main components in optical network management is given and specific problems in GMPLS based model are explained. Later, protection and restoration issues are discussed in the broader context of fault management and the tools developed for fault detection are listed. Optical networks need efficient and reliable protection schemes that restore the communications quickly on the occurrence of faults without causing failure of real-time applications using the network. A holistic approach is required that provides mechanisms for fault detection, rapid restoration and reversion in case of fault resolution. Since the role of SDH/SONET is diminishing, the modern optical networks are poised towards the IP-centric model where high performance IP-MPLS routers manage a core intelligent network of IP over WDM. Fault management schemes are developed for both the IP layer and the WDM layer. Faults can be detected and repaired locally and also through centralized network controller. A hybrid approach works best in detecting the faults where the domain controller verifies the established LSPs in addition to the link tests at the node level. On detecting a fault, rapid restoration can perform localized routing of traffic away from the affected port and link. The traffic may be directed to pre-assigned backup paths that are established as shared or dedicated resources. We examine the protection issues in detail including the choice of layer for protection, implementing protection or restoration, backup path routing, backup resource efficiency, subpath protection, QoS traffic survival and multilayer protection triggers and alarm propagation. The complete protection cycle is described and mechanisms incorporated into RSVP-TE and other protocols for detecting and recording path errors are outlined. In addition, MPLS testbed

  17. 980-nm VCSELs for optical interconnects at bandwidths beyond 40 Gb/s

    Science.gov (United States)

    Hofmann, W. H.; Moser, P.; Wolf, P.; Larisch, G.; Unrau, W.; Bimberg, D.

    2012-03-01

    The copper-induced communication bottleneck is inhibiting performance and environmental acceptance of today's supercomputers. Vertical-cavity surface-emitting lasers (VCSELs) are ideally suited to solve this dilemma. Indeed global players like Google, Intel, HP or IBM are now going for optical interconnects based on VCSELs. The required bandwidth per link, however, is fixed by the architecture of the data center. According to Google, a bandwidth of 40 Gb/s has to be accommodated. We recently realized ultra-high speed VCSELs suited for optical interconnects in data centers with record-high performance. The 980-nm wavelength was chosen to be able to realize densely-packed, bottom-emitting devices particularly advantageous for interconnects. These devices show error-free transmission at temperatures up to 155°C. Serial data-rates of 40 Gb/s were achieved up to 75° C. Peltier-cooled devices were modulated up to 50 Gb/s. These results were achieved from the sender side by a VCSEL structure with important improvements and from the receiver side by a receiver module supplied by u2t with some 30 GHz bandwidth. The novel VCSELs feature a new active region, a very short laser cavity, and a drastically improved thermal resistance by the incorporation of a binary bottom mirror. As these devices might be of industrial interest we had the epi-growth done by metal-organic chemical-vapor deposition at IQE Europe. Consequently, the devices were fabricated using a three-inch wafer process, and the apertures were formed by proprietary in-situ controlled selective wet oxidation. All device data were measured, mapped and evaluated by our fully automated probe station. Furthermore, these devices enable record-efficient data-transmission beyond 30 Gb/s, which is crucial for green photonics.

  18. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-range optical telecommunications (LROT) impose challenging requirements on detector array sensitivity at 1064nm and arrays timing bandwidth. Large photonic...

  19. Performance of the CMS Tracker Optical Links and Future Upgrade Using Bandwidth Efficient Digital Modulation

    CERN Document Server

    Dris, Stefanos; Troska, J

    2006-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator will begin operation in 2007. The innermost CMS subdetector, the Tracker, comprises ~10 million detector channels read out by ~40 000 analog optical links. The optoelectronic components have been designed to meet the stringent requirements of a high energy physics (HEP) experiment in terms of radiation hardness, low mass and low power. Extensive testing has been performed on the components and on complete optical links in test systems. Their functionality and performance in terms of gain, noise, linearity, bandwidth and radiation hardness is detailed. Particular emphasis is placed on the gain, which directly affects the dynamic range of the detector data. It has been possible to accurately predict the variation in gain that will be observed throughout the system. A simulation based on production test data showed that the average gain would be ~38% higher than the design target at the Tracker operating temperatur...

  20. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system

    Science.gov (United States)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-07-01

    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques.

  1. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  2. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Tilborg, J. van; Matlis, N. H.; Plateau, G. R.; Leemans, W. P.

    2010-06-01

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  3. Simulation of quantum-well slipping effect on optical bandwidth in transistor laser

    Institute of Scientific and Technical Information of China (English)

    Hassan Kaatuzian; Seyed Iman Taghavi

    2009-01-01

    An optical bandwidth analysis of a quantum-well(16 nm)transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region.At constant bias current,the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction.No remarkable resonance peak,limiting factor in laser diodes,is observed during this modification in transistor laser structure.The method can be utilized for transistor laser structure design.

  4. Analog Fiber Optic Link with DC-100 MHz Bandwidth

    Science.gov (United States)

    2008-05-30

    Lohrmann Envisioneering , Inc. King George, VA May 30, 2008 Approved for public release; distribution is unlimited. C.a. SuLLivan Surface Electronic...October 25, 2006 * Envisioneering , Inc., King George, VA 22485 Analog fiber optic link DC Wide band CONTENTS iii Executive Summary

  5. Bandwidth manipulation of quantum light by an electro-optic time lens

    Science.gov (United States)

    Karpiński, Michał; Jachura, Michał; Wright, Laura J.; Smith, Brian J.

    2017-01-01

    The ability to manipulate the spectral-temporal waveform of optical pulses has enabled a wide range of applications from ultrafast spectroscopy to high-speed communications. Extending these concepts to quantum light has the potential to enable breakthroughs in optical quantum science and technology. However, filtering and amplifying often employed in classical pulse shaping techniques are incompatible with non-classical light. Controlling the pulsed mode structure of quantum light requires efficient means to achieve deterministic, unitary manipulation that preserves fragile quantum coherences. Here, we demonstrate an electro-optic method for modifying the spectrum of non-classical light by employing a time lens. In particular, we show highly efficient, wavelength-preserving, sixfold compression of single-photon spectral intensity bandwidth, enabling over a twofold increase of single-photon flux into a spectrally narrowband absorber. These results pave the way towards spectral-temporal photonic quantum information processing and facilitate interfacing of different physical platforms where quantum information can be stored or manipulated.

  6. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  7. Exploit the Bandwidth Capacities of the Perfluorinated Graded Index Polymer Optical Fiber for Multi-Services Distribution

    Directory of Open Access Journals (Sweden)

    Paul Alain Rolland

    2011-06-01

    Full Text Available The study reported here deals with the exploitation of perfluorinated graded index polymer optical fiber bandwidth to add further services in a home/office network. The fiber properties are exhibited in order to check if perfluorinated graded index plastic optical fiber (PFGI-POF is suitable to support a multiplexing transmission. According to the high bandwidth length of plastic fibers, both at 850 nm and 1,300 nm, the extension of the classical baseband existing network is proposed to achieve a dual concept, allowing the indoor coverage of wireless signals transmitted using the Radio over Fiber technology. The simultaneous transmission of a 10 GbE signal and a wireless signal is done respectively at 850 nm and 1,300 nm on a single plastic fiber using wavelength division multiplexing commercially available devices. The penalties have been evaluated both in digital (Bit Error Rate measurement and radiofrequency (Error Vector Magnitude measurement domains.

  8. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Pu, Minhao; Liu, Liu

    2011-01-01

    A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired...... tunability. A detailed analysis and the design of the device are presented. The shape factor and extinction ratio of the filter are optimized by thermally controlling the phase difference between the two arms of the MZI. Simultaneous bandwidth and wavelength tunability with in-band ripple control...

  9. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  10. Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Wu; Markos, Christos;

    2011-01-01

    We report on the inscription and characterization of narrow bandwidth fiber Bragg gratings (FBGs) with 850-nm resonance wavelength in polymer optical fibers (POFs). We use two fibers: an in-house fabricated microstructured POF (mPOF) with relative hole size of 0.5 and a commercial step-index POF......, which supports six modes at 850 nm. The gratings have been written with the phase-mask technique and a 325-nm HeCd laser. The mPOF grating has a full-width at half-maximum (FWHM) bandwidth of 0.29 nm and the step-index POF has a bandwidth of 0.17 nm. For both fibers, the static tensile strain...

  11. High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit.

    Science.gov (United States)

    Marshall, Andrew R J; Ker, Pin Jern; Krysa, Andrey; David, John P R; Tan, Chee Hing

    2011-11-07

    High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

  12. Dynamic Wavelength and Bandwidth Allocation Using Adaptive Linear Prediction in WDM/TDM Ethernet Passive Optical Networks

    Institute of Scientific and Technical Information of China (English)

    LU Yi-yi; GUO Yong; HE Chen

    2009-01-01

    Hybrid wavelength-division-multiplexing (WDM)/time-division-multiplexing (TDM) ethernet passive optical networks (EPONs) can achieve low per-subscriber cost and scalability to increase the number of subscribers. This paper discusses dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM EPONs. Based on the correlation structure of the variable bit rate (VBR) video traffic, we propose a quality-of-service (QoS) supported DWBA using adaptive linear traffic prediction. Wavelength and timeslot are allocated dynamically by optical line terminal (OLT) to all optical network units (ONUs) based on the bandwidth requests and the guaranteed service level agreements (SLA) of all ONUs. Mean square error of the predicted average arriv-ing rate of compound video traffic during waiting period is minimized through Wiener-Hopf equation. Simulation results show that the DWBA-adaptive-linear-prediction (DWBA-ALP) algorithm can significantly improve the QoS performances in terms of low delay and high bandwidth utilization.

  13. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    Science.gov (United States)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  14. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser optical communications offer the potential to dramatically increase the link bandwidth and decrease the emitter power in long-range space communications....

  15. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  16. Highly efficient frequency conversion with bandwidth compression of quantum light

    Science.gov (United States)

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  17. Highly efficient frequency conversion with bandwidth compression of quantum light

    CERN Document Server

    Allgaier, Markus; Sansoni, Linda; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2016-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.

  18. Bandwidth smearing in optical interferometry: Analytic model of the transition to the double fringe packet

    CERN Document Server

    Lachaume, Régis

    2012-01-01

    Bandwidth smearing is a chromatic aberration due to the finite frequency bandwidth. In long-baseline optical interferometry terms, it is when the angular extension of the source is greater than the coherence length of the interferogram. As a consequence, separated parts of the source will contribute to fringe packets that are not fully overlapping; it is a transition from the classical interferometric regime to a double or multiple fringe packet. While studied in radio interferometry, there has been little work on the matter in the optical, where observables are measured and derived in a different manner, and are more strongly impacted by the turbulent atmosphere. We provide here the formalism and a set of usable equations to model and correct for the impact of smearing on the fringe contrast and phase, with the case of multiple stellar systems in mind. The atmosphere is briefly modeled and discussed.

  19. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides....... As a specific example of a switching application, we investigate the demultiplexing of an optical time division multiplexed signal. To quantify the energy-bandwidth trade-off, we introduce a figure of merit for the detection of the demultiplexed signal. In such investigations it is crucial to consider...... patterning effects, which occur on time scales that are longer than the bit period. Our analysis is based on a coupled mode theory, which allows for an extensive investigation of the influence of the system parameters on the switching dynamics. The analysis is shown to provide new insights into the ultrafast...

  20. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  1. On Approaching the Ultimate Limits of Photon-Efficient and Bandwidth-Efficient Optical Communication

    CERN Document Server

    Dolinar, Sam; Erkmen, Baris I; Moision, Bruce

    2011-01-01

    It is well known that ideal free-space optical communication at the quantum limit can have unbounded photon information efficiency (PIE), measured in bits per photon. High PIE comes at a price of low dimensional information efficiency (DIE), measured in bits per spatio-temporal-polarization mode. If only temporal modes are used, then DIE translates directly to bandwidth efficiency. In this paper, the DIE vs. PIE tradeoffs for known modulations and receiver structures are compared to the ultimate quantum limit, and analytic approximations are found in the limit of high PIE. This analysis shows that known structures fall short of the maximum attainable DIE by a factor that increases linearly with PIE for high PIE. The capacity of the Dolinar receiver is derived for binary coherent-state modulations and computed for the case of on-off keying (OOK). The DIE vs. PIE tradeoff for this case is improved only slightly compared to OOK with photon counting. An adaptive rule is derived for an additive local oscillator th...

  2. High Bandwidth Short Stroke Rotary Fast Tool Servo

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  3. Maximizing the bandwidth of coherent, mid-IR supercontinuum using highly nonlinear aperiodic nanofibers

    Science.gov (United States)

    Baili, Amira; Cherif, Rim; Heidt, Alexander; Zghal, Mourad

    2014-05-01

    We describe in detail a new procedure of maximizing the bandwidth of mid-infrared (mid-IR) supercontinuum (SC) in highly nonlinear microstructured As2Se3 and tellurite aperiodic nanofibers. By introducing aperiodic rings of first and secondary air holes into the cross-sections of our microstructured fiber designs, we achieve flattened and all-normal dispersion profiles over much broader bandwidths than would be possible with simple periodic designs. These fiber designs are optimized for efficient, broadband, and coherent SC generation in the mid-IR spectral region. Numerical simulations show that these designs enable the generation of a SC spanning over 2290 nm extending from 1140 to 3430 nm in 8 cm length of tellurite nanofiber with input energy of E = 200 pJ and a SC bandwidth of over 4700 nm extending from 1795 to 6525 nm generated in only 8 mm-length of As2Se3-based nanofiber with input energy as low as E = 100 pJ. This work provides a new type of broadband mid-IR SC source with flat spectral shape as well as excellent coherence and temporal properties by using aperiodic nanofibers with all-normal dispersion suitable for applications in ultrafast science, metrology, coherent control, non-destructive testing, spectroscopy, and optical coherence tomography in the mid-IR region.

  4. An Octave Bandwidth, High PAE, Linear, Class J GaN High Power Amplifier

    Science.gov (United States)

    2012-03-12

    versus the modeled small-signal gain and return loss response of the Class J amplifier using a 45-W CREE GaN HEMT . The amplifier has a gain of 13 to...AFFTC-PA-12055 An Octave Bandwidth, High PAE, Linear, Class J GaN High Power Amplifier Kris Skowronski, Steve Nelson, Rajesh Mongia, Howard...Technical Paper 3. DATES COVERED (From - To) 11/11 – 03/12 (etc.) 4. TITLE AND SUBTITLE An Octave Bandwidth, High PAE, Linear, Class J GaN High

  5. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography.

    Science.gov (United States)

    Unterhuber, A; Povazay, B; Bizheva, K; Hermann, B; Sattmann, H; Stingl, A; Le, T; Seefeld, M; Menzel, R; Preusser, M; Budka, H; Schubert, Ch; Reitsamer, H; Ahnelt, P K; Morgan, J E; Cowey, A; Drexler, W

    2004-04-07

    Novel ultra-broad bandwidth light sources enabling unprecedented sub-2 microm axial resolution over the 400 nm-1700 nm wavelength range have been developed and evaluated with respect to their feasibility for clinical ultrahigh resolution optical coherence tomography (UHR OCT) applications. The state-of-the-art light sources described here include a compact Kerr lens mode locked Ti:sapphire laser (lambdaC = 785 nm, delta lambda = 260 nm, P(out) = 50 mW) and different nonlinear fibre-based light sources with spectral bandwidths (at full width at half maximum) up to 350 nm at lambdaC = 1130 nm and 470 nm at lambdaC = 1375 nm. In vitro UHR OCT imaging is demonstrated at multiple wavelengths in human cancer cells, animal ganglion cells as well as in neuropathologic and ophthalmic biopsies in order to compare and optimize UHR OCT image contrast, resolution and penetration depth.

  6. Evaluation of effective noise bandwidth for broadband optical coherence tomography operation.

    Science.gov (United States)

    Cernat, Ramona; Dobre, George M; Bradu, Adrian; Podoleanu, Adrian Gh

    2009-04-01

    Key noise parameters in optical coherence tomography (OCT) systems employing splitters with a nonflat spectral response are evaluated using a supercontinuum fiber laser source with a spectrum of 450 nm-1700 nm and a time domain OCT architecture based on 1300 nm fiber splitters. The spectral behavior of the splitter leading to balanced detection is measured over a range of 300 nm. Because of spectrally different signals at the balanced detector input a residual excess photon noise term results. A rigorous treatment of this noise term [Appl. Opt.43, 4802 (2004)] introduced two new quantities that take into account the spectral properties of the coupler. In this report, we have evaluated these two noise bandwidth quantities and comparatively assessed the noise behavior predicted by the classical theory with the theory based on the two new noise bandwidths. We show that under certain operating parameters, the additional excess photon noise is twice that predicted for a coupler with a flat spectral response.

  7. Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal

    Science.gov (United States)

    Then, H. W.; Walter, G.; Feng, M.; Holonyak, N.

    2008-10-01

    We report the improvement, from 10.5to22GHz, in the optical modulation bandwidth of a quantum-well (QW) heterojunction bipolar transistor laser (TL) by the use of an ac auxiliary base signal. Because of the three-terminal form of the TL, an auxiliary signal can be used to peak the photon output, e.g., stimulated recombination which simultaneously reduces the operating current gain, β(=ICO/IBO), and increases the laser differential gain. A shorter effective base carrier lifetime, τ, owing to the increased QW recombination rate (stimulated recombination), enhanced carrier transport to the "faster" QW collector (reduced β) and differential gain, result in a higher 3dB bandwidth (f3dB=1/2πτ ).

  8. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    Science.gov (United States)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  9. An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth

    Institute of Scientific and Technical Information of China (English)

    SHAO Yong-Bo; ZHAO Ling-Juan; YU Hong-Yan; QIU Ji-Fang; QIU Ying-Ping; PAN Jiao-Qing; WANG Bao-Jun; ZHU Hong-Liang; WANG Wei

    2011-01-01

    A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550nm is fabricated.The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio.Moreover,the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).The electroabsorption modulator (EAM) is highly desirable as an external electro-optical modulator due to its high speed,low cost and capability of integration with other optical component such as DFB lasers,DBR lasers or semiconductor optical amplifiers.[1-4]So far,EAMs are typically fabricated by using lumped electrodes[1-4] and travelling-wave electrodes.[5-15]%A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).

  10. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  11. A scheme to expand the delay-bandwidth product in the resonator-based delay lines by optical OFDM technique

    DEFF Research Database (Denmark)

    Zhu, Jiangbo; Tao, Li; Zhang, Ziran

    2013-01-01

    We propose a novel scheme to expand the inherent limit in the product of the optical delay and the transmission bandwidth in resonator-based delay lines, with the optical orthogonal frequency division multiplexing (OOFDM) technique. The optical group delay properties of a single ring resonator we...

  12. High speed optical networks

    Science.gov (United States)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  13. Novel secure and bandwidth efficient optical code division multiplexed system for future access networks

    Science.gov (United States)

    Singh, Simranjit

    2016-12-01

    In this paper, a spectrally coded optical code division multiple access (OCDMA) system using a hybrid modulation scheme has been investigated. The idea is to propose an effective approach for simultaneous improvement of the system capacity and security. Data formats, NRZ (non-return to zero), DQPSK (differential quadrature phase shift keying), and PoISk (polarisation shift keying) are used to get the orthogonal modulated signal. It is observed that the proposed hybrid modulation provides efficient utilisation of bandwidth, increases the data capacity and enhances the data confidentiality over existing OCDMA systems. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  14. High bandwidth on-chip capacitive tuning of microtoroid resonators

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sheridan, Eoin; Bowen, Warwick P

    2016-01-01

    We report on the design, fabrication and characterization of silica microtoroid based cavity opto-electromechanical systems (COEMS). Electrodes patterned onto the microtoroid resonators allow for rapid capacitive tuning of the optical whispering gallery mode resonances while maintaining their ultrahigh quality factor, enabling applications such as efficient radio to optical frequency conversion, optical routing and switching applications.

  15. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  16. Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over Ethernet passive optical networks

    Science.gov (United States)

    Luo, Yuanqiu; Ansari, Nirwan

    2005-09-01

    Feature Issue on Optical Access Networks (OAN) As an inexpensive, simple, and scalable solution for broadband access, Ethernet passive optical networks (EPONs) have the capability of delivering integrated broadband services to the end users. A critical issue of EPONs is the utility of a shared upstream channel among the local users, and thus an efficient bandwidth allocation mechanism is required to facilitate statistical multiplexing among the local network traffic. In this paper we propose a dynamic bandwidth allocation scheme, i.e., limited sharing with traffic prediction (LSTP), for upstream channel sharing over EPONs. LSTP enables dynamic bandwidth negotiation between the optical line terminal (OLT) and its associated optical network units (ONUs), alleviates data delay by predicting the traffic arrived during the waiting time and prereserving a portion of bandwidth for delivery, and avoids the aggressive bandwidth competition by upper bounding the allocated bandwidth to each ONU. Theoretical analysis and simulation results verify the feasibility of LSTP by showing that LSTP outperforms other existing schemes with respect to QoS metrics of data delay and data loss.

  17. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

    CERN Document Server

    Ast, Stefan; Schnabel, Roman

    2013-01-01

    We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.

  18. Ionic liquid-based variable focus electrowetting optics with bandwidths spanning the visible to mid-infrared

    CERN Document Server

    Watson, Alexander M; Niederriter, Robert D; Terrab, Soraya; Gopinath, Juliet T; Bright, Victor M

    2016-01-01

    Infrared optical materials and devices are important for a wide range of applications in the defense, scientific, and consumer markets. For imaging, spectroscopy, microscopy and persistent surveillance, adaptive optic systems that span the visible to infrared region are particularly useful. We address this need with novel electrowetting lens and prism elements that operate from 400 to 5000 nm. In contrast to conventional electrowetting devices that use polar liquids, limited by high absorption in the infrared region, we present room-temperature ionic liquid-based (RTIL, N-Propyl-Nmethylpyrrolidinium Bis(fluorosulfonyl)imide, Pyr1333a, Solvionic) lens and prism elements with unprecedented spectral bandwidths. Our electrowetting lenses tune over 20 diopters and have been demonstrated at 588, 1550 and 3000 nm wavelengths. Additionally, we have demonstrated prism elements with a steering angle of 0.56{\\deg} at 1550 nm.

  19. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  20. Full distortion induced by dispersion evaluation and optical bandwidth constraining of fiber Bragg grating demultiplexers over analogue SCM systems.

    Science.gov (United States)

    Martinez, Alfonso; Pastor, Daniel; Capmany, Jose

    2002-12-30

    We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

  1. Calculation of bandwidth from index profiles of optical fibers. 1: Theory.

    Science.gov (United States)

    Marcuse, D

    1979-06-15

    This paper describes a method for calculating the impulse response and bandwidth of multimode optical fibers from measured refractive-index profiles obtained either from the fiber itself or from its preform. The computational method is based on the WKB solution of the guided-mode problem. First, the pulse delay time of each mode is calculated. The different arrival times of impulses carried by the modes are then used to construct the shape of the impulse response curve whose Fourier transform may be used to predict the signal bandwidth of the multimode fiber. By omitting mode groups or weighting the power distribution among the modes, the influence of certain mode groups on pulse distortion can be studied separately. Dispersion of the host material and of one dopant can be taken into account. The method has been used to study the effects of deviations from the desired perfect index profile and the influence of a central dip. The practical value of the computer program is its ability to predict fiber performance from index measurements made on preforms even before the fiber is drawn.

  2. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  3. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Science.gov (United States)

    Malasi, A.; Taz, H.; Ehrsam, M.; Goodwin, J.; Garcia, H.; Kalyanaraman, R.

    2016-10-01

    Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag), its nanoparticles have amongst the highest radiative quantum efficiencies (η), i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  4. Study on Dielectric Resonator Antenna with Annular Patch for High Gain and Large Bandwidth

    Institute of Scientific and Technical Information of China (English)

    FENG Kuisheng; LI Na; MENG Qingwei; WANG Yongfeng; ZHANG Jingwei

    2015-01-01

    A new high-gain cylindrical Dielectric res-onator antenna (DRA) with a large bandwidth is proposed. A cylindrical Dielectric resonator (DR), a double-annular patch and a metallic cylinder are used to obtain a large bandwidth and a high gain. The mode TM12 excited in the patch is used to enhance the gain of the DRA, and the cavity formed by the metallic cylinder provides a further higher gain and a larger bandwidth. The measured results demonstrate that the proposed DRA achieves a large band-width of 23%from 5.3 to 6.8GHz with VSWR less than two and a high gain around 11 dBi.

  5. THE IMPROVEMENT OF COMPUTER NETWORK PERFORMANCE WITH BANDWIDTH MANAGEMENT IN KEMURNIAN II SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Bayu Kanigoro

    2012-05-01

    Full Text Available This research describes the improvement of computer network performance with bandwidth management in Kemurnian II Senior High School. The main issue of this research is the absence of bandwidth division on computer, which makes user who is downloading data, the provided bandwidth will be absorbed by the user. It leads other users do not get the bandwidth. Besides that, it has been done IP address division on each room, such as computer, teacher and administration room for supporting learning process in Kemurnian II Senior High School, so wireless network is needed. The method is location observation and interview with related parties in Kemurnian II Senior High School, the network analysis has run and designed a new topology network including the wireless network along with its configuration and separation bandwidth on microtic router and its limitation. The result is network traffic on Kemurnian II Senior High School can be shared evenly to each user; IX and IIX traffic are separated, which improve the speed on network access at school and the implementation of wireless network.Keywords: Bandwidth Management; Wireless Network

  6. Simulation of broad spectral bandwidth emitters at 1060 nm for optical coherence tomography

    Science.gov (United States)

    Tooley, I. G.; Childs, D. T. D.; Stevens, B. J.; Groom, K. M.; Hogg, R. A.

    2016-03-01

    The simulation of broad spectral bandwidth light sources (semiconductor optical amplifiers (SOA) and superluminescent diodes (SLD)) for application in ophthalmic optical coherence tomography is reported. The device requirements and origin of key device parameters are outlined, and a range of single and double InGaAs/GaAs quantum well (QW) active elements are simulated with a view to application in different OCT embodiments. We confirm that utilising higher order optical transitions is beneficial for single QW SOAs, but may introduce deleterious spectral modulation in SLDs. We show how an addition QW may be introduced to eliminate this spectral modulation, but that this results in a reduction of the gain spectrum width. We go on to explore double QW structures where the roles of the two QWs are reversed, with the narrow QW providing long wavelength emission and gain. We show how this modification in the density of states results in a significant increase in gain-spectrum width for a given current.

  7. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.;

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance......Hz) the SSOA configuration can maintain a significantly higher bandwidth (~50% higher) compared to the MOPA architecture. Correspondingly narrower point spread functions can be generated in a Michelson interferometer.......We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  8. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  9. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CTΔΣ) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  10. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CTΔΣ) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this th

  11. Sleep/doze controlled dynamic bandwidth allocation algorithms for energy-efficient passive optical networks.

    Science.gov (United States)

    Dias, Maluge Pubuduni Imali; Wong, Elaine

    2013-04-22

    In this work, we present a comparative study of two just-in-time (JIT) dynamic bandwidth allocation algorithms (DBAs), designed to improve the energy-efficiency of the 10 Gbps Ethernet passive optical networks (10G-EPONs). The algorithms, termed just-in-time with varying polling cycle times (JIT) and just-in-time with fixed polling cycle times (J-FIT), are designed to achieve energy-savings when the idle time of an optical network unit (ONU) is less than the sleep-to-active transition time. This is made possible by a vertical-cavity surface-emitting laser (VCSEL) ONU that can transit into sleep or doze modes during its idle time. We evaluate the performance of the algorithms in terms of polling cycle time, power consumption, percentage of energy-savings, and average delay. The energy-efficiency of a VCSEL ONU that can transition into sleep or doze mode is compared to an always-ON distributed feedback (DFB) laser ONU. Simulation results indicate that both JIT and J-FIT DBA algorithms result in improved energy-efficiency whilst J-FIT performs better in terms of energy-savings at low network loads. The J-FIT DBA however, results in increased average delay in comparison to the JIT DBA. Nonetheless, this increase in average delay is within the acceptable range to support the quality of service (QoS) requirements of the next-generation access networks.

  12. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode.

    Science.gov (United States)

    Chan, Ming-Che; Su, Yi-Shin; Lin, Ching-Fuh; Sun, Chi-Kuang

    2006-01-01

    We demonstrate 2.2 microm axial resolution optical coherence tomography (OCT) in 1.1-1.7 microm wavelength regime by using a nonidentical multiple-quantum-well (MQW) superluminescent diode (SLD) with record-bandwidth emission. The compact, low-cost, and reliable light source with extreme broadband emission demonstrates significant potentials for spectroscopic and commercial OCT applications requiring ultrahigh spatial resolution.

  13. Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jiang-Tao; Zhou Yun-Song; Wang Fu-He; Gu Ben-Yuan

    2005-01-01

    We present a new type of optical filter with an ultra-narrow bandwidth and a wide field-of-view (FOV). This kind of optical filter consists of one-dimensional photonic crystal (PC) incorporating an anomalous-dispersion-material (ADM) with, for instance, an anomalous dispersion of 6P3/2 ← 6S1/2 hyperfine structure transition of a caesium atom.The transmission spectra of optical filters are calculated by using the transfer-matrix method. The simulation results show that the designed optical filter has a bandwidth narrower than 0.33GHz and a wide FOV of ±30° as well. The response of transmission spectrum to an external magnetic field is also investigated.

  14. International distance education and the transition from ISDN to high-bandwidth Internet connectivity.

    Science.gov (United States)

    Vincent, Dale S; Berg, Benjamin W; Chitpatima, Suwicha; Hudson, Donald

    2002-12-01

    The Thailand Hawaii Assessment of Interactive Healthcare Initiative (THAI-HI) is an international distance-education project between two teaching hospitals in Honolulu and Bangkok that uses videoconferencing over three ISDN lines. A 'morning report' format is used to discuss clinical cases primarily covering infectious disease and critical-care topics. An audience response system is used at both sites to add interactivity. From July 2001 to May 2002, 816 health-care providers attended 20 clinical conferences. Audiences rated the conferences as highly relevant and as having high training value. Since the ISDN connection is expensive, we plan to convert the telecommunications to a high-bandwidth Internet connection. The Honolulu site will use a 45 Mbit/s commercial connection to the Hawaii Intranetwork Consortium, which links to the Abilene Network on the US mainland. The Bangkok hospital will use a 155 Mbit/s wireless optical connection to UNINET Thailand, which has a 45 Mbit/s circuit to Abilene.

  15. Extremelly High Bandwidth Rad Hard Data Acquisition System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analog-to-digital converters (ADCs) are the key components for digitizing high-speed analog data in modern data acquisition systems, which is a critical part of...

  16. Extremelly High Bandwidth Rad Hard Data Acquisition System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in sensors/detectors are needed to support future NASA mission concepts including polarimetry, large format imaging arrays, and high-sensitivity...

  17. Bandwidth-allocated algorithm modeled with matrix theory for traffic-orientated multisubsystem-based virtual passive optical network in metro-access optical network

    Science.gov (United States)

    Xia, Weidong; Gan, Chaoqin; Chen, Bingqin; Xie, Weilun; Zhang, YuChao; Gou, Kaiyu

    2016-09-01

    In a metro-access optical network, a bandwidth-allocated algorithm is proposed for traffic-orientated multisubsystem-based virtual passive optical network (MS-VPON) that can implement the syncretism of multiple systems such as time division multiplexing-PON (TDM-PON), wavelength division multiplexing-PON (WDM-PON), and orthogonal frequency division multiplexing-PON (OFDM-PON). VPONs are constructed based on traffic and different VPONs are separated by different types of traffic. The bandwidth-allocated algorithm is modeled with a matrix theory to determine which VPON can be admitted and then a bandwidth is assigned to these VPONs. With the algorithm, the network value can be maximized. Two cases are investigated to demonstrate the effectiveness of the proposed algorithm in the bandwidth-utilized ratio and VPONs' admission probability.

  18. Plasma Sensor for High Bandwidth Mass-Flow Measurements at High Mach Numbers with RF Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal is aimed at the development of a miniature high bandwidth (1 MHz class) plasma sensor for flow measurements at high enthalpies. This device uses a...

  19. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Device Status Data

    Science.gov (United States)

    2015-09-01

    5.1.1 Basic Components The Hydra data processing framework provides an object - oriented hierarchy for organizing data processing within an HPC...ARL-CR-0780 ● SEP 2015 US Army Research Laboratory High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing...ARL-CR-0780 ● SEP 2015 US Army Research Laboratory High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC

  20. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    Science.gov (United States)

    2007-11-02

    piezo elements mounted on structural members and devices that exhibited aeroacoustic resonance. The former type of actuator ( piezo ) was considered...Raman and Kibens (Raman et al. 2000). These experiments involved high-frequency forcing applied to low-speed flows using wedge piezo actuators and... Subharmonic Interaction and Wall Influence," AIAA- 86-1047, May, 1986. Davis, S. A., 2000, "The manipulation of large and small flow structures in single and

  1. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    Science.gov (United States)

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  2. Using the Sirocco File System for high-bandwidth checkpoints.

    Energy Technology Data Exchange (ETDEWEB)

    Klundt, Ruth Ann; Curry, Matthew L.; Ward, H. Lee

    2012-02-01

    The Sirocco File System, a file system for exascale under active development, is designed to allow the storage software to maximize quality of service through increased flexibility and local decision-making. By allowing the storage system to manage a range of storage targets that have varying speeds and capacities, the system can increase the speed and surety of storage to the application. We instrument CTH to use a group of RAM-based Sirocco storage servers allocated within the job as a high-performance storage tier to accept checkpoints, allowing computation to potentially continue asynchronously of checkpoint migration to slower, more permanent storage. The result is a 10-60x speedup in constructing and moving checkpoint data from the compute nodes. This demonstration of early Sirocco functionality shows a significant benefit for a real I/O workload, checkpointing, in a real application, CTH. By running Sirocco storage servers within a job as RAM-only stores, CTH was able to store checkpoints 10-60x faster than storing to PanFS, allowing the job to continue computing sooner. While this prototype did not include automatic data migration, the checkpoint was available to be pushed or pulled to disk-based storage as needed after the compute nodes continued computing. Future developments include the ability to dynamically spawn Sirocco nodes to absorb checkpoints, expanding this mechanism to other fast tiers of storage like flash memory, and sharing of dynamic Sirocco nodes between multiple jobs as needed.

  3. High-gain, high-bandwidth, rail-to-rail, constant-gm CMOS operational amplifier

    Science.gov (United States)

    Huang, Hong-Yi; Wang, Bo-Ruei

    2013-01-01

    This study presents a high-gain, high-bandwidth, constant-gm , rail-to-rail operational amplifier (op-amp). The constant transconductance is improved with a source-to-bulk bias control of an input pair. A source degeneration scheme is also adapted to the output stage for receiving wide input range without degradation of the gain. Additionally, several compensation schemes are employed to enhance the stability. A test chip is fabricated in a 0.18 µm complementary metal-oxide semiconductor process. The active area of the op-amp is 181 × 173 µm2 and it consumes a power of 2.41 mW at a supply voltage of 1.8 V. The op-amp achieves a dc gain of 94.3 dB and a bandwidth of 45 MHz when the output capacitive load is connected to an effective load of 42.5 pF. A class-AB output stage combining a slew rate (SR) boost circuit provides a sinking current of 6 mA and an SR of 17 V/µs.

  4. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    Science.gov (United States)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  5. High speed single-wavelength modulation and transmission at 2 μm under bandwidth-constrained condition.

    Science.gov (United States)

    Xu, Ke; Wu, Qiong; Xie, Yongqiang; Tang, Ming; Fu, Songnian; Liu, Deming

    2017-02-20

    The 2-μm optical band has gained much attention recently due to its potential applications in optical fiber communication systems. One constraint in this wavelength region is that the electrical bandwidth of components like modulators and photodetectors is limited by the immature manufacturing technologies. Here we experimentally demonstrated the high-speed signal generation and transmission under bandwidth-constrained scenario at 2-μm. It is enabled by the direct-detection optical filter bank multicarrier (FBMC) modulation technique with constant amplitude zero autocorrelation (CAZAC) equalization. We achieved a single wavelength 80 Gbit/s data rate using the 16-QAM FBMC modulation format which is the highest single channel bit rate at 2-μm according to our best knowledge. The signal is transmitted through a 100m-long solid-core fiber designed for single-mode transmission at 2-μm. The measured bit error rates of the signals are below the forward error correction limit of 3.8 × 10-3, and the 100m-fiber transmission brings negligible penalty.

  6. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Montesanti, Richard Clement [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  7. Effect of modulation frequency bandwidth on measurement accuracy and precision for digital diffuse optical spectroscopy (dDOS)

    Science.gov (United States)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren

    2014-03-01

    Near-infrared (NIR) frequency-domain Diffuse Optical Spectroscopy (DOS) is an emerging technology with a growing number of potential clinical applications. In an effort to reduce DOS system complexity and improve portability, we recently demonstrated a direct digital sampling method that utilizes digital signal generation and detection as a replacement for more traditional analog methods. In our technique, a fast analog-to-digital converter (ADC) samples the detected time-domain radio frequency (RF) waveforms at each modulation frequency in a broad-bandwidth sweep (50- 300MHz). While we have shown this method provides comparable results to other DOS technologies, the process is data intensive as digital samples must be stored and processed for each modulation frequency and wavelength. We explore here the effect of reducing the modulation frequency bandwidth on the accuracy and precision of extracted optical properties. To accomplish this, the performance of the digital DOS (dDOS) system was compared to a gold standard network analyzer based DOS system. With a starting frequency of 50MHz, the input signal of the dDOS system was swept to 100, 150, 250, or 300MHz in 4MHz increments and results were compared to full 50-300MHz networkanalyzer DOS measurements. The average errors in extracted μa and μs' with dDOS were lowest for the full 50-300MHz sweep (less than 3%) and were within 3.8% for frequency bandwidths as narrow as 50-150MHz. The errors increased to as much as 9.0% when a bandwidth of 50-100MHz was tested. These results demonstrate the possibility for reduced data collection with dDOS without critical compensation of optical property extraction.

  8. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  9. Bullet: high bandwidth data dissemination using an overlay mesh

    OpenAIRE

    Kostic, D.; Rodriguez, A.; J. Albrecht; Vahdat, A.

    2003-01-01

    In recent years, overlay networks have become an effective alternative to IP multicast for efficient point to multipoint communication across the Internet. Typically, nodes self-organize with the goal of forming an efficient overlay tree, one that meets performance targets without placing undue burden on the underlying network. In this paper, we target high-bandwidth data distribution from a single source to a large number of receivers. Applications include large-file transfers and real-time ...

  10. Automatic high-bandwidth calibration and reconstruction of arbitrarily sampled parallel MRI.

    Directory of Open Access Journals (Sweden)

    Jan Aelterman

    Full Text Available Today, many MRI reconstruction techniques exist for undersampled MRI data. Regularization-based techniques inspired by compressed sensing allow for the reconstruction of undersampled data that would lead to an ill-posed reconstruction problem. Parallel imaging enables the reconstruction of MRI images from undersampled multi-coil data that leads to a well-posed reconstruction problem. Autocalibrating pMRI techniques encompass pMRI techniques where no explicit knowledge of the coil sensivities is required. A first purpose of this paper is to derive a novel autocalibration approach for pMRI that allows for the estimation and use of smooth, but high-bandwidth coil profiles instead of a compactly supported kernel. These high-bandwidth models adhere more accurately to the physics of an antenna system. The second purpose of this paper is to demonstrate the feasibility of a parameter-free reconstruction algorithm that combines autocalibrating pMRI and compressed sensing. Therefore, we present several techniques for automatic parameter estimation in MRI reconstruction. Experiments show that a higher reconstruction accuracy can be had using high-bandwidth coil models and that the automatic parameter choices yield an acceptable result.

  11. Towards Bandwidth Scalable Transceiver Technology for Optical Metro-Access Networks

    DEFF Research Database (Denmark)

    Spolitis, Sandis; Bobrovs, Vjaceslavs; Wagner, Christoph;

    2015-01-01

    Massive fiber-to-the-home network deployment is creating a challenge for telecommunications network operators: exponential increase of the power consumption at the central offices and a never ending quest for equipment upgrades operating at higher bandwidth. In this paper, we report on flexible...

  12. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  13. A Synthetic Bandwidth Method for High-Resolution SAR Based on PGA in the Range Dimension

    Directory of Open Access Journals (Sweden)

    Jincheng Li

    2015-06-01

    Full Text Available The synthetic bandwidth technique is an effective method to achieve ultra-high range resolution in an SAR system. There are mainly two challenges in its implementation. The first one is the estimation and compensation of system errors, such as the timing deviation and the amplitude-phase error. Due to precision limitation of the radar instrument, construction of the sub-band signals becomes much more complicated with these errors. The second challenge lies in the combination method, that is how to fit the sub-band signals together into a much wider bandwidth. In this paper, a novel synthetic bandwidth approach is presented. It considers two main errors of the multi-sub-band SAR system and compensates them by a two-order PGA (phase gradient auto-focus-based method, named TRPGA. Furthermore, an improved cut-paste method is proposed to combine the signals in the frequency domain. It exploits the redundancy of errors and requires only a limited amount of data in the azimuth direction for error estimation. Moreover, the up-sampling operation can be avoided in the combination process. Imaging results based on both simulated and real data are presented to validate the proposed approach.

  14. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  15. Photon Sieve Bandwidth Broadening by Reduction of Chromatic Aberration Effects Using Second-Stage Diffractive Optics

    Science.gov (United States)

    2015-03-26

    Large optical photon sieve,” Optics Letters , 30(22): 2976-2978 (November 2005). 2. Andersen, Geoff. Senior Researcher, Laser and Optics ...EFFECTS USING SECOND-STAGE DIFFRACTIVE OPTICS THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering...SECOND-STAGE DIFFRACTIVE OPTICS Christopher M. Tulip Major, USAF Committee Membership: Lt Col Anthony L. Franz, PhD Chair

  16. Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks

    Institute of Scientific and Technical Information of China (English)

    JasonLee; BillAllcock; 等

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing.From our work develogpin a scalable distributed network cache.we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks(WAN).In this paper,we discuss several hardware and software dsign techniques,and then describe their application to an implementation of an enhanced FTP protocol called GridFTP,We describe results from the Supercomputing 2000 conference.

  17. Designing and implementing Multibeam Smart Antennas for high bandwidth UAV communications using FPGAs

    Science.gov (United States)

    Porcello, J. C.

    Requirements for high bandwidth UAV communications are often necessary in order to move large amounts of mission information to/from Users in real-time. The focus of this paper is antenna beamforming for point-to-point, high bandwidth UAV communications in order to optimize transmit and receive power and support high data throughput communications. Specifically, this paper looks at the design and implementation of Multibeam Smart Antennas to implement antenna beamforming in an aerospace communications environment. The Smart Antenna is contrasted against Fast Fourier Transform (FFT) based beamforming in order to quantify the increase in both computational load and FPGA resources required for multibeam adaptive signal processing in the Smart Antenna. The paper begins with an overall discussion of Smart Antenna design and general beamforming issues in high bandwidth communications. Important design considerations such as processing complexity in a constrained Size, Weight and Power (SWaP) environment are discussed. The focus of the paper is with respect to design and implementation of digital beamforming wideband communications waveforms using FPGAs. A Multibeam Time Delay element is introduced based on Lagrange Interpolation. Design data for Multibeam Smart Antennas in FPGAs is provided in the paper as well as reference circuits for implementation. Finally, an example Multibeam Smart Antenna design is provided based on a Xilinx Virtex-7 FPGA. The Multibeam Smart Antenna example design illustrates the concepts discussed in the paper and provides design insight into Multibeam Smart Antenna implementation from the point of view of implementation complexity, required hardware, and overall system performance gain.

  18. Minimization of the impact of a broad bandwidth high-gain nonlinear preamplifier to the amplified spontaneous emission pedestal of the Vulcan petawatt laser facility.

    Science.gov (United States)

    Musgrave, I O; Hernandez-Gomez, C; Canny, D; Collier, J; Heathcote, R

    2007-10-01

    To generate petawatt pulses using the Vulcan Nd:glass laser requires a broad bandwidth high-gain preamplifier. The preamplifier used is an optical parametric amplifier that provides a total gain of 10(8) in three amplification stages. We report on a detailed investigation of the effect of the Vulcan optical parametric chirped pulse amplification (OPCPA) preamplifier on contrast caused by the amplified spontaneous emission (ASE) pedestal that extends up to 2 ns before the arrival of the main pulse. The contrast after compression is improved to 4x10(8) of the intensity of the main pulse using near-field apertures between the stages of the OPCPA preamplifier. Further reduction of the level of the ASE pedestal can be achieved at the cost of a reduction in amplified bandwidth by solely phosphate glass amplification after initial preamplification rather than a mixed glass amplification scheme.

  19. Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator

    Science.gov (United States)

    Wang, Jianming; Yan, Dapeng; Xiong, Songsong; Huang, Bao; Li, Cheng

    2017-01-01

    The effects of large-mode-area (LMA) fiber Bragg gratings (FBGs) with different reflective bandwidths on bi-directionally pumped ytterbium-doped single-mode all-fiber laser oscillator have been investigated experimentally. The forward laser output power and the backward signal leakage were measured and analyzed. It was found that the laser output power and efficiency depended on the bandwidth of the high-reflection (HR) FBG used in the laser cavity. The broader bandwidth gives higher laser efficiency, especially at high power level.

  20. Narrow-bandwidth high-order harmonics driven by long-duration hot spots

    Science.gov (United States)

    Kozlov, Maxim; Kfir, Ofer; Fleischer, Avner; Kaplan, Alex; Carmon, Tal; Schwefel, Harald G. L.; Bartal, Guy; Cohen, Oren

    2012-06-01

    We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emission from a thermal gas and from a jet of atoms. In both cases, the line shape of a high-order harmonic exhibits a narrow spike with spectral width that is determined by the bandwidth of the driving laser. Finally, we discuss a scheme for producing long-duration laser hot spots with intensity in the range of the intensity threshold for high-harmonic generation. In the proposed scheme, the hot spot is produced by a long laser pulse that is consecutively coupled to a high-quality micro-resonator and a metallic nano-antenna. This system may be used for generating ultra-narrow bandwidth extreme-ultraviolet radiation through frequency up-conversion of a low-cost compact pump laser.

  1. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Paolucci, P. S.; Rossetti, D.; Salamon, A.; Salina, G.; Simula, F.; Tosoratto, L.; Vicini, P.

    2011-12-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera® FPGA, are provided.

  2. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    CERN Document Server

    Ammendola, Roberto; Frezza, Ottorino; Cicero, Francesca Lo; Lonardo, Alessandro; Paolucci, Pier Stanislao; Rossetti, Davide; Salamon, Andrea; Salina, Gaetano; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.

  3. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Science.gov (United States)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  4. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, D. [Fermilab; Bockelman, B. [Nebraska U.; Blomer, J. [CERN; Herner, K. [Fermilab; Levshina, T. [Fermilab; Slyz, M. [Fermilab

    2015-12-23

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached

  5. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-Ji; LUO Bo-Wen; ZHANG Yin; LEI Lei; HUANG De-Xiu; ZHANG Xin-Liang

    2012-01-01

    We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper, which is based on liquid crystal on silicon switching elements, and both amplitude and phase of the spectrum are programmable. By designing specific transfer functions with the optical waveform shaper, we obtain first-, second-, and third-order differentiators for periodic pulses with small average errors. We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.%We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,which is based on liquid crystal on silicon switching elements,and both amplitude and phase of the spectrum are programmable.By designing specific transfer functions with the optical waveform shaper,we obtain first-,second-,and third-order differentiators for periodic pulses with small average errors.We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.

  6. Narrow Bandwidth Faraday Anomalous Dispersion Optical Filter%窄带 Faraday 反常色散光学滤波器

    Institute of Scientific and Technical Information of China (English)

    刘阳; 王健; 王海华; 康智慧; 王磊; 罗梦希; 闫西章; 王潇潇; 高锦岳

    2014-01-01

    研究 Faraday 反常色散光学滤波器,给出其理论计算过程和模拟结果。结果表明, Faraday反常色散光学滤波器有线翼和线芯透过两种工作方式,其中线翼透过单峰谱线线宽约为600 MHz,透过率约为25%,线芯透过谱线线宽约为700 MHz,透过率约为100%。实验结果与理论结果相符。%To obtain the weak signal light from the high background light,a narrow bandwidth Faraday anomalous dispersion optical filter (FADOF)was studied.The theoretical model for the filter was reported.The Faraday anomalous dispersion optical filters have two working modes:two side peak transmission and center peak transmission.The former work mode can get single peak transmission of 25% with a bandwidth of about 600 MHz.The other work mode can get a spectra with a transmission rate of almost 100% and a bandwith of about 700 MHz.The experimental measurements are consistent with theoretical results.

  7. Memory bandwidth efficient two-layer reduced-resolution decoding of high-definition video

    Science.gov (United States)

    Comer, Mary L.

    2000-12-01

    This paper addresses the problem of efficiently decoding high- definition (HD) video for display at a reduced resolution. The decoder presented in this paper is intended for applications that are constrained not only in memory size, but also in peak memory bandwidth. This is the case, for example, during decoding of a high-definition television (HDTV) channel for picture-in-picture (PIP) display, if the reduced resolution PIP-channel decoder is sharing memory with the full-resolution main-channel decoder. The most significant source of video quality degradation in a reduced-resolution decoder is prediction drift, which is caused by the mismatch between the full-resolution reference frames used by the encoder and the subsampled reference frames used by the decoder. to mitigate the visually annoying effects of prediction drift, the decoder described in this paper operates at two different resolutions -- a lower resolution for B pictures, which do not contribute to prediction drift and a higher resolution for I and P pictures. This means that the motion-compensation unit (MCU) essentially operates at the higher resolution, but the peak memory bandwidth is the same as that required to decode at the lower resolution. Storage of additional data, representing the higher resolution for I and P pictures, requires a relatively small amount of additional memory as compared to decoding at the lower resolution. Experimental results will demonstrate the improvement in video quality achieved by the addition of the higher-resolution data in forming predictions for P pictures.

  8. Towards green high capacity optical networks

    Science.gov (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.

    2012-02-01

    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  9. Novel high bandwidth wall shear stress sensor for ultrasonic cleaning applications

    Science.gov (United States)

    Gonzalez-Avila, S. Roberto; Prabowo, Firdaus; Ohl, Claus-Dieter

    2010-11-01

    Ultrasonic cleaning is due to the action of cavitation bubbles. The details of the cleaning mechanisms are not revealed or confirmed experimentally, yet several studies suggest that the wall shear stresses generated are very high, i.e. of the order of several thousand Pascal. Ultrasonic cleaning applications span a wide range from semiconductor manufacturing, to low pressure membrane cleaning, and the in the medical field cleaning of surgical instruments. We have developed a novel sensor to monitor and quantify cleaning activity which is (1) very sturdy, (2) has a high bandwidth of several megahertz, (3) is cheap in manufacturing costs, and (4) of very small size. We analyze the sensor signal by comparing its response time correlated to single laser induced cavitation bubbles using high-speed photography. Additionally, we will present first measurements in ultrasonic cleaning bathes using again high-speed photography. A preliminary discussion on the working mechanism of the sensor will be presented.

  10. Ultrafast wavelength multiplexed broad bandwidth digital diffuse optical spectroscopy for in vivo extraction of tissue optical properties

    Science.gov (United States)

    Torjesen, Alyssa; Istfan, Raeef; Roblyer, Darren

    2017-03-01

    Frequency-domain diffuse optical spectroscopy (FD-DOS) utilizes intensity-modulated light to characterize optical scattering and absorption in thick tissue. Previous FD-DOS systems have been limited by large device footprints, complex electronics, high costs, and limited acquisition speeds, all of which complicate access to patients in the clinical setting. We have developed a new digital DOS (dDOS) system, which is relatively compact and inexpensive, allowing for simplified clinical use, while providing unprecedented measurement speeds. The dDOS system utilizes hardware-integrated custom board-level direct digital synthesizers and an analog-to-digital converter to generate frequency sweeps and directly measure signals utilizing undersampling at six wavelengths modulated at discrete frequencies from 50 to 400 MHz. Wavelength multiplexing is utilized to achieve broadband frequency sweep measurements acquired at over 97 Hz. When compared to a gold-standard DOS system, the accuracy of optical properties recovered with the dDOS system was within 5.3% and 5.5% for absorption and reduced scattering coefficient extractions, respectively. When tested in vivo, the dDOS system was able to detect physiological changes throughout the cardiac cycle. The new FD-dDOS system is fast, inexpensive, and compact without compromising measurement quality.

  11. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  12. Current Trends of High capacity Optical Interconnection Data Link in High Performance Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2013-02-01

    Full Text Available Optical technologies are ubiquitous in telecommunications networks and systems, providing multiple wavelength channels of transport at 2.5 Gbit/sec to 40 Gbit/sec data rates over single fiber optic cables. Market pressures continue to drive the number of wavelength channels per fiber and the data rate per channel. This trend will continue for many years to come as electronic commerce grows and enterprises demand higher and reliable bandwidth over long distances. Electronic commerce, in turn, is driving the growth curves for single processor and multiprocessor performance in data base transaction and Web based servers. Ironically, the insatiable taste for enterprise network bandwidth, which has driven up the volume and pushed down the price of optical components for telecommunications, is simultaneously stressing computer system bandwidth increasing the need for new interconnection schemes and providing for the first time commercial opportunities for optical components in computer systems. The evolution of integrated circuit technology is causing system designs to move towards communication based architectures. We have presented the current tends of high performance system capacity of optical interconnection data transmission link in high performance optical communication and computing systems over wide range of the affecting parameters.

  13. High-Bandwidth Atomic Force Microscopy Reveals A Mechanical spike Accompanying the Action Potential in mammalian Nerve Terminals

    Science.gov (United States)

    Salzberg, Brian M.

    2008-03-01

    Information transfer from neuron to neuron within nervous systems occurs when the action potential arrives at a nerve terminal and initiates the release of a chemical messenger (neurotransmitter). In the mammalian neurohypophysis (posterior pituitary), large and rapid changes in light scattering accompany secretion of transmitter-like neuropeptides. In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential (E-wave) and the release of arginine vasopressin and oxytocin (S-wave). We have used a high bandwidth (20 kHz) atomic force microscope (AFM) to demonstrate that these light scattering signals are associated with changes in nerve terminal volume, detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response, the ``spike'', has duration comparable to that of the action potential (˜2 ms) and probably reflects an increase in terminal volume due to H2O movement associated with Na^+-influx. Elementary calculations suggest that two H2O molecules accompanying each Na^+-ion could account for the ˜0.5-1.0 å increase in the diameter of each terminal during the action potential. Distinguishable from the mechanical ``spike'', a slower mechanical event, the ``dip'', represents a decrease in nerve terminal volume, depends upon Ca^2+-entry, as well as on intra-terminal Ca^2+-transients, and appears to monitor events associated with secretion. A simple hypothesis is that this ``dip'' reflects the extrusion of the dense core granule that comprises the secretory products. These dynamic high bandwidth AFM recordings are the first to monitor mechanical events in nervous systems and may provide novel insights into the mechanism(s) by which excitation is coupled to secretion at nerve terminals.

  14. Bandwidth and gain enhancement of optically transparent 60-GHz CPW-fed antenna by using BSIS-UC-EBG structure

    Science.gov (United States)

    Wang, Ning; Tian, Huiping; Guo, Zheng; Yang, Daquan; Zhou, Jian; Ji, Yuefeng

    2015-06-01

    A method in terms of bandwidth and gain enhancement is presented for optically transparent coplanar waveguide fed (CPW-Fed) antenna, which supports unlicensed 60 GHz band (57-66 GHz) applications. The original antenna and mesh antenna in [8] were designed on a transparent material that is made of a 0.2-mm-thick fused silica 7980 Corning substrate (ɛr: 3.8 and tan δ: 0.0001). However, the peak gains of -5.3 and -5.4 dBi at 60 GHz of those antennas can be further improved. Thus, in this paper, a novel bidirectional symmetric I-shaped slot uniplanar compact electromagnetic band-gap (BSIS-UC-EBG) structure with a reflection phase band of 58.0-62.1 GHz is proposed to improve antenna performance. Based on this BSIS-UC-EBG structure, both transparent BSIS-UC-EBG antenna and transparent mesh BSIS-UC-EBG antenna with enhanced properties are presented and discussed. The analysis results show that the impedance bandwidth (the peak gain) of transparent BSIS-UC-EBG antenna and transparent mesh BSIS-UC-EBG antenna are enhanced to 36.6% (4.7 dBi) and 44.7% (5.8 dBi), respectively. In addition, we also discuss the comparison of radiation patterns at 60 GHz, and the results illustrate that the radiation patterns are basically identical.

  15. High Bandwidth Pickup Design for Bunch Arrival-time Monitors for Free-Electron Laser

    CERN Document Server

    Angelovski, Aleksandar; Hansli, Matthias; Penirschke, Andreas; Schnepp, Sascha M; Bousonville, Michael; Schlarb, Holger; Bock, Marie Kristin; Weiland, Thomas; Jakoby, Rolf

    2012-01-01

    In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor (BAM) designed for high (> 500 pC) and low (20 pC) bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A non-hermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  16. High bandwidth pickup design for bunch arrival-time monitors for free-electron laser

    Directory of Open Access Journals (Sweden)

    Aleksandar Angelovski

    2012-11-01

    Full Text Available In this paper, we present the design and realization of high bandwidth pickup electrodes with a cutoff frequency above 40 GHz. The proposed cone-shaped pickups are part of a bunch arrival-time monitor designed for high (>500  pC and low (20 pC bunch charge operation mode providing for a time resolution of less than 10 fs for both operation modes. The proposed design has a fast voltage response, low ringing, and a resonance-free spectrum. For assessing the influence of manufacturing tolerances on the performance of the pickups, an extensive tolerance study has been performed via numerical simulations. A nonhermetic model of the pickups was built for measurement and validation purposes. The measurement and simulation results are in good agreement and demonstrate the capability of the proposed pickup system to meet the given specifications.

  17. On Bandwidth Efficient Modulation for High-Data-Rate Wireless LAN Systems

    Directory of Open Access Journals (Sweden)

    Stolpman Victor

    2002-01-01

    Full Text Available We address the problem of high-data-rate orthogonal frequency division multiplexed (OFDM systems under restrictive bandwidth constraints. Based on recent theoretic results, multiple-input multiple-output (MIMO configurations are best suited for this problem. In this paper, we examine several MIMO configurations suitable for high rate transmission. In all scenarios considered, perfect channel state information (CSI is assumed at the receiver. In constrast, availability of CSI at the transmitter is addressed separately. We show that powerful space-time codes can be developed by combining some simple well-known techniques. In fact, we show that for certain configurations, these space-time MIMO configurations are near optimum in terms of outage capacity as compared to previously published codes. Performance evaluation of these techniques is demonstrated within the IEEE 802.11a framework via Monte Carlo simulations.

  18. Applied techniques for high bandwidth data transfers across wide area networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-04-30

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference.

  19. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  20. High-bandwidth multimode self-sensing in bimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Michael G. Ruppert

    2016-02-01

    Full Text Available Using standard microelectromechanical system (MEMS processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM, we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode.

  1. Call Admission Control with Bandwidth Reallocation for Adaptive Multimedia in High-Rate Short-Range Wireless Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAIXuping; BIGuangguo; XUPingping

    2005-01-01

    In high-rate short-range wireless networks,CAC (Call admission control) scheme plays an important role in quality of service provisioning for adaptive multimedia services. Three functions, namely bandwidth satisfaction function, revenue rate function and bandwidth reallocation cost function, are firstly introduced. Based on these functions, an efficient CAC scheme, the Rev-RT-BRA (Reservation-based and Revenue test with Bandwidth reallocation) CAC scheme is proposed. The main idea is that it reserves some bandwidth for service classes with higher admission priority. The performance of the Rev-RT-BRA CAC scheme is analyzed by solving a multidimension Markov process. Both the numerical and simulation results are given. The advantages of the proposedRev-RT-BRA CAC scheme are as follows. (1) It maximizes the overall bandwidth satisfaction function at any system state. (2) It solves the unfairness problem in admitting multiple classes of services with different bandwidth requirenlents. (3) The required admission priority level can be guaranteed for various classes of services.

  2. Electromagnetic Propagation in Multimode Optical Fibers, Excited by Sources of Finite Bandwidth.

    Science.gov (United States)

    1980-08-15

    2 treatment generalizes that of Marcuse , since it is ap- plicable to the propagation of a polychromatic signal, a However, it is hardly necessary to...situations. ’D. Marcuse , Theory of Dielectric Optical Waveguides (Aca- demic, New York, 1974). The general case of time-dependent propagation of 2S. D...fibers,",2 the mth and nth mode, that is 1586 J. Opt. Soc. Am., Vol. 68 , No. 11, November 1978 0030-3941178/6811-15800.50 0 1978 Optical Society of

  3. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    Science.gov (United States)

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  4. Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Andrew; Salmassi, Farhad; Liu, Yanwei; Gullikson, Eric M.

    2009-09-09

    Magnesium/silicon carbide (Mg/SiC) multilayers have been fabricated with normal incidence reflectivity in the vicinity of 40% to 50% for wavelengths in the 25 to 50 nm wavelength range. However many applications, for example solar telescopes and ultrafast studies using high harmonic generation sources, desire larger bandwidths than provided by high reflectivity Mg/SiC multilayers. We investigate introducing a third material, Scandium, to create a tri-material Mg/Sc/SiC multilayer allowing an increase the bandwidth while maintaining high reflectivity.

  5. Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth

    Science.gov (United States)

    Barchiesi, Dominique; Grosges, Thomas

    2014-01-01

    The fitting of metal optical properties is a topic that has applications in advanced simulations of spectroscopy, plasmonics, and optical engineering. In particular, the finite difference time domain method (FDTD) requires an analytical model of dispersion that verifies specific conditions to produce a full spectrum in a single run. Combination of Drude and Lorentz models, and Drude and critical points models, are known to be efficient, but the number of parameters to be adjusted for fitting data can prevent accurate results from simulated annealing or Nelder-Mead. The complex number relative permittivities of Au, Ag, Al, Cr, and Ti from either Palik or Johnson and Christy experimental data in the visible domain of wavelengths are successfully fitted by using the result of the particle swarm optimization method with FDTD constraint, as a starting point for the Nelder-Mead method. The results are well positioned compared to those that can be found in the literature. The results can be used directly for numerical simulations in the visible domain. The method can be applied to other materials, such as dielectrics, and to other domain of wavelengths.

  6. Radiation-tolerant, low-mass, high bandwidth, flexible printed circuit cables for particle physics experiments

    Science.gov (United States)

    McFadden, N. C.; Hoeferkamp, M. R.; Seidel, S.

    2016-09-01

    The design of meter long flexible printed circuit cables required for low-mass ultra-high speed signal transmission in the high radiation environment of the High Luminosity Large Hadron Collider is described. The design geometry is a differential embedded microstrip with 100 Ω nominal impedance. Minimal mass and maximal radiation hardness are pre-eminent considerations. Several dielectric materials are compared. To reduce mass, a cross hatched ground plane is applied. The long flexible printed circuit cables are characterized in bit error rate tests, attenuation versus frequency, mechanical response to temperature induced stress, and dimensional implications on radiation length. These tests are performed before and after irradiation with 1 MeV neutrons to 2×1016/cm2 and 800 MeV protons to 2×1016 1-MeV neutron equivalent/cm2. A 1.0 m Kapton cable with cross hatched ground plane, effective bandwidth of 4.976 gigabits per second, 0.0160% of a radiation length, and no detectable radiation-induced mechanical or electrical degradation is obtained.

  7. Radiation-tolerant, low-mass, high bandwidth, flexible printed circuit cables for particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, N.C.; Hoeferkamp, M.R.; Seidel, S.

    2016-09-11

    The design of meter long flexible printed circuit cables required for low-mass ultra-high speed signal transmission in the high radiation environment of the High Luminosity Large Hadron Collider is described. The design geometry is a differential embedded microstrip with 100 Ω nominal impedance. Minimal mass and maximal radiation hardness are pre-eminent considerations. Several dielectric materials are compared. To reduce mass, a cross hatched ground plane is applied. The long flexible printed circuit cables are characterized in bit error rate tests, attenuation versus frequency, mechanical response to temperature induced stress, and dimensional implications on radiation length. These tests are performed before and after irradiation with 1 MeV neutrons to 2×10{sup 16}/cm{sup 2} and 800 MeV protons to 2×10{sup 16} 1-MeV neutron equivalent/cm{sup 2}. A 1.0 m Kapton cable with cross hatched ground plane, effective bandwidth of 4.976 gigabits per second, 0.0160% of a radiation length, and no detectable radiation-induced mechanical or electrical degradation is obtained.

  8. Gbps wireless transceivers for high bandwidth interconnections in distributed cyber physical systems

    Science.gov (United States)

    Saponara, Sergio; Neri, Bruno

    2015-05-01

    In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transceiver including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transceiver architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transceiver can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes

  9. A 750MHz and a 8GHz High Bandwidth Digital FFT Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The scope of this project is to to develop a wide bandwidth, low power, and compact single board digital Fast Fourier Transform spectrometer (FFTS) optimized for the...

  10. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  11. Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Xia; Gu, Guo-Ying; Yang, Mei-Ju; Zhu, Li-Min, E-mail: zhulm@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2013-12-15

    This paper presents the design, analysis, and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage driven by piezoelectric stack actuators. The stage is designed with two kinematic chains. In each kinematic chain, the end-effector of the stage is connected to the base by two symmetrically distributed flexure modules, respectively. Each flexure module comprises a fixed-fixed beam and a parallelogram flexure serving as two orthogonal prismatic joints. With the purpose to achieve high resonance frequencies of the stage, a novel center-thickened beam which has large stiffness is proposed to act as the fixed-fixed beam. The center-thickened beam also contributes to reducing cross-coupling and restricting parasitic motion. To decouple the motion in two axes totally, a symmetric configuration is adopted for the parallelogram flexures. Based on the analytical models established in static and dynamic analysis, the dimensions of the stage are optimized in order to maximize the first resonance frequency. Then finite element analysis is utilized to validate the design and a prototype of the stage is fabricated for performance tests. According to the results of static and dynamic tests, the resonance frequencies of the developed stage are over 13.6 kHz and the workspace is 11.2 μm × 11.6 μm with the cross-coupling between two axes less than 0.52%. It is clearly demonstrated that the developed stage has high resonance frequencies, a relatively large travel range, and nearly decoupled performance between two axes. For high-speed tracking performance tests, an inversion-based feedforward controller is implemented for the stage to compensate for the positioning errors caused by mechanical vibration. The experimental results show that good tracking performance at high speed is achieved, which validates the effectiveness of the developed stage.

  12. Low latency, high bandwidth data communications between compute nodes in a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-11-02

    Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.

  13. Compressive sensing-based channel bandwidth improvement in optical wireless orthogonal frequency division multiplexing link using visible light emitting diode.

    Science.gov (United States)

    Won, Yong-Yuk; Yoon, Sang Min

    2014-08-25

    A new technique, which can compensate for the lack of channel bandwidth in an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a light emitting diode (LED), is proposed. It uses an adaptive sampling and an inverse discrete cosine transform in order to convert an OFDM signal into a sparse waveform so that not only is the important data obtained efficiently but the redundancy one is removed. In compressive sensing (CS), a sparse signal that is sampled below the Nyquist/Shannon limit can be reconstructed successively with enough measurement. This means that the CS technique can increase the data rate of visible light communication (VLC) systems based on LEDs. It is observed that the data rate of the proposed CS-based VLC-OFDM link can be made 1.7 times greater than a conventional VLC-OFDM link (from 30.72 Mb/s to 51.2 Mb/s). We see that the error vector magnitude (EVM) of the quadrature phase shift keying (QPSK) symbol is 31% (FEC limit: EVM of 32%) at a compression ratio of 40%.

  14. A Lowpass Filter with Sharp Roll - off and High Relative Stopband Bandwidth Using Asymmetric High - Low Impedance Patches

    Directory of Open Access Journals (Sweden)

    As. Abdipour

    2015-09-01

    Full Text Available In this letter, a microstrip lowpass filter with -3 dB cut-off frequency at 1.286 GHz is proposed. By using two main resonators which are placed symmetrically around Y axis a sharp roll-off rate (250 dB/GHz is obtained. The proposed resonators are consisted of two asymmetric high-low impedance patches. To achieve a high relative stopband bandwidth (1.82 four high - low impedance resonators and four radial stubs as suppressing cells are employed. Furthermore, a flat insertion loss in the passband and a low return loss in the stopband can prove desired in-band and out-band frequency response. The proposed LPF has a high FOM about 63483.

  15. High-speed optical correlation-domain reflectometry without using acousto-optic modulator

    CERN Document Server

    Shizuka, Makoto; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2015-01-01

    To achieve a distributed reflectivity measurement along an optical fiber, we develop a simplified cost-effective configuration of optical correlation- (or coherence-) domain reflectometry based on a synthesized optical coherence function by sinusoidal modulation. By excluding conventional optical heterodyne detection (practically, without using an acousto-optic modulator) and by exploiting the foot of the Fresnel reflection spectrum, the electrical bandwidth required for signal processing is lowered down to several megahertz. We evaluate the basic system performance and demonstrate its high-speed operation (10 ms for one scan) by tracking a moving reflection point in real time.

  16. High sensitivity optically pumped quantum magnetometer.

    Science.gov (United States)

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.

  17. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  18. ICE-based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    CERN Document Server

    Bandura, Kevin; Dobbs, Matt; Gilbert, Adam; Ittah, David; Parra, Juan Mena; Smecher, Graeme

    2016-01-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2048 digitizer inputs across 400~MHz of bandwidth. Measured in $N^2~\\times $ bandwidth, it is the largest radio correlator that has been built. Its digital back-end must exchange and reorganize the 6.6~terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256-node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. `corner-turn'). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct,...

  19. High speed nonlinear optical components for next-generation optical communications

    OpenAIRE

    Cleary, Ciaran Sean

    2013-01-01

    Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pres...

  20. The effect of conductor loss on half-wave voltage and modulation bandwidth of electro-optic modulators

    Institute of Scientific and Technical Information of China (English)

    Zilong Liu(刘子龙); Daqing Zhu(朱大庆)

    2004-01-01

    In this paper, we theoretically deduce the expressions of half-wave voltage and 3-dB modulation bandwidth in which conductor loss is taken into account. The results suggest that it will affect the theoretical values of half-wave voltage and bandwidth as well as the optimized electrode's dimension whether considering the conductor loss or not. As an example, we present a Mach-Zehnder (MZ) type polymer waveguide amplitude modulator. The half-wave voltage increases by 1 V and the 3-dB bandwidth decreases by 30% when the conductor loss is taken into account. Besides, the effects of impedance mismatching and velocity mismatching between microwave and light wave on the half-wave voltage, and 3-dB bandwidth are discussed.

  1. Remote, Real-time Investigations of Extreme Environments Using High Power and Bandwidth Cabled Observatories: The OOI Regional Scale Nodes

    Science.gov (United States)

    Kelley, D. S.; Delaney, J. R.

    2012-12-01

    Methane hydrate deposits and hydrothermal vents are two of the most extreme environments on Earth. Seismic events and flow of gases from the seafloor support and modulate novel microbial communities within these systems. Although studied intensely for several decades, significant questions remain about the flux of heat, volatiles and microbial material from the subsurface to the hydrosphere in these dynamic environments. Quantification of microbial communities, their structure and abundances, and metabolic activities is in an infant state. To better understand these systems, the National Science Foundation's Ocean Observatory Initiative has installed high power (8 kW), high bandwidth (10 Gb/s) nodes on the seafloor that provide access to active methane seeps at Southern Hydrate Ridge, and at the most magmatically robust volcano on the Juan de Fuca Ridge - Axial Seamount. The real-time interactive capabilities of the cabled observatory are critical to studying gas-hydrate systems because many of the key processes occur over short time scales. Events such as bubble plume formation, the creation of collapse zones, and increased seepage in response to earthquakes require adaptive response and sampling capabilities. To meet these challenges a suite of instruments will be connected to the cable in 2013. These sensors include full resolution sampling by upward-looking sonars, fluid and gas chemical characterization by mass spectrometers and osmo samplers, long-term duration collection of seep imagery from cameras, and in situ manipulation of chemical sensors coupled with flow meters. In concert, this instrument suite will provide quantification of transient and more stable chemical fluxes. Similarly, at Axial Seamount the high bandwidth and high power fiber optic cables will be used to communicate with and power a diverse array of sensors at the summit of the volcano. Real-time high definition video will provide unprecedented views of macrofaunal and microbial communities

  2. High Speed Peltier Calorimeter for the Calibration of High Bandwidth Power Measurement Equipment

    CERN Document Server

    Frost, Damien F

    2015-01-01

    Accurate power measurements of electronic components operating at high frequencies are vital in determining where power losses occur in a system such as a power converter. Such power measurements must be carried out with equipment that can accurately measure real power at high frequency. We present the design of a high speed calorimeter to address this requirement, capable of reaching a steady state in less than 10 minutes. The system uses Peltier thermoelectric coolers to remove heat generated in a load resistance, and was calibrated against known real power measurements using an artificial neural network. A dead zone controller was used to achieve stable power measurements. The calibration was validated and shown to have an absolute accuracy of +/-8 mW (95% confidence interval) for measurements of real power from 0.1 to 5 W.

  3. Integrated high-speed DFB light source and narrow-bandwidth RCE photodetector for WDM fiber communication network application

    Science.gov (United States)

    Wang, Qiming; Li, Cheng; Pan, Zhong; Luo, Yi

    2000-10-01

    Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-xGex/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 micrometer is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/AlAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.

  4. A Novel Dynamic Bandwidth Assignment Algorithm for Multi-Services EPONs

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue; ZHANG Yang; HUANG Xiang; DENG Yu; SUN Shu-he

    2005-01-01

    In this paper we propose a novel Dynamic Bandwidth Assignment (DBA) algorithm for Ethernet-based Passive Optical Networks (EPON) which offers multiple kinds of services. To satisfy crucial Quality of Service (QoS) requirement for Time Division Multiplexing (TDM) service and achieve fair and high bandwidth utilization simultaneously, the algorithm integrates periodic, for TDM service, and polling granting for Ethernet service. Detailed simulation shows that the algorithm guarantees carrier-grade QoS for TDM service, high bandwidth utilization and good fairness of bandwidth assignment among Optical Network Units (ONU).

  5. High-fidelity angle-modulated analog optical link.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2016-07-25

    There has long existed a debate over whether analog or digital optical link is more suitable for wireless convergence applications. Digital link achieves the highest fidelity, with the sacrifice of huge bandwidth due to the high resolution of digitization, and large power consumption due to the exhaustive digital data recovery. Analog link avoids these drawbacks, but it inevitably suffers from the SNR degradation. In this paper, we propose the angle modulation for analog optical link, which successfully breaks the SNR ceiling of amplitude modulation, and achieves ultrahigh link fidelity. Using the digital link (CPRI) equivalent bandwidth, angle modulation exhibits around 30-dB SNR advantage over the conventional amplitude modulation. Combined with its high tolerance on link nonlinearity, angle modulation has great potential in the future SNR-hungry analog optical applications.

  6. A Low Power High Bandwidth Four Quadrant Analog Multiplier in 32 NM CNFET Technology

    Directory of Open Access Journals (Sweden)

    Vitrag Sheth

    2012-05-01

    Full Text Available Carbon Nanotube Field Effect Transistor (CNFET is a promising new technology that overcomes several limitations of traditional silicon integrated circuit technology. In recent years, the potential of CNFET for analog circuit applications has been explored. This paper proposes a novel four quadrant analog multiplier design using CNFETs. The simulation based on 32nm CNFET technology shows that the proposed multiplier has very low harmonic distortion (<0.45%, large input range (±400mV, large bandwidth (~50GHz and low power consumption (~247µW, while operating at a supply voltage of ±0.9V.

  7. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  8. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  9. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    CERN Document Server

    Horie, Yu; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2016-01-01

    We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-P\\'erot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250 nm around {\\lambda} = 1550 nm ({\\Delta}{\\lambda}/{\\lambda} = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.

  10. Ultrawide bandwidth 1.55-um lasers

    Science.gov (United States)

    Morton, Paul A.; Tanbun-Ek, Tawee; Logan, Ralph A.; Ackerman, David A.; Shtengel, Gleb E.; Yadvish, R. D.; Sergent, A. M.; Sciortino, Paul F., Jr.

    1996-04-01

    This paper describes the essential elements for creating a practical wide bandwidth directly modulated laser source. This includes considerations of the intrinsic limitations of the laser structure, due to the resonant frequency and damping of the laser output, together with carrier transport issues to allow carriers in the device active region to be efficiently modulated at high speeds. the use of a P-doped compressively strained multiple-quantum well active region to provide high intrinsic speed and remove transport limitations is described, together with record setting results of 25 GHz modulation bandwidth for a 1.55 micrometer Fabry-Perot laser and 26 GHz bandwidth for a 1.55 micrometer DFB laser. The challenges of providing high bandwidth electrical connections to the laser on a suitable submount, together with fiber attachment and microwave packaging, are discussed. Results of fully packaged 1.55 micrometer DFB lasers with 25 Ghz modulation bandwidth are shown. Digital modulation of the packaged 1.55 micrometer DFB including impedance matching is described, and the transient wavelength chirp is presented. This low chirp is reduced further using an optical filter, to provide a 10 GBit/s source with chirp similar to that of an external electroabsorption modulator.

  11. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product.

    Science.gov (United States)

    Zaoui, Wissem Sfar; Chen, Hui-Wen; Bowers, John E; Kang, Yimin; Morse, Mike; Paniccia, Mario J; Pauchard, Alexandre; Campbell, Joe C

    2009-07-20

    In this work we report a separate-absorption-charge-multiplication Ge/Si avalanche photodiode with an enhanced gain-bandwidth-product of 845 GHz at a wavelength of 1310 nm. The corresponding gain value is 65 and the electrical bandwidth is 13 GHz at an optical input power of -30 dBm. The unconventional high gain-bandwidth-product is investigated using device physical simulation and optical pulse response measurement. The analysis of the electric field distribution, electron and hole concentration and drift velocities in the device shows that the enhanced gain-bandwidth-product at high bias voltages is due to a decrease of the transit time and avalanche build-up time limitation at high fields.

  12. Highly Sensitive Electro-Optic Modulators

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Peter S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  13. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, Anthony M.; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  14. A Broadband, Spectrally Flat, High Rep-rate Frequency Comb: Bandwidth Scaling and Flatness Enhancement of Phase Modulated CW through Cascaded Four-Wave Mixing

    CERN Document Server

    Supradeepa, V R

    2010-01-01

    We demonstrate a scheme to scale the bandwidth by several times while enhancing spectral flatness of frequency combs generated by intensity and phase modulation of CW lasers using cascaded four-wave mixing in highly nonlinear fiber.

  15. High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Melzak; Tim Lieuwen; Adel Mansour

    2012-01-31

    The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

  16. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  17. Experimental demonstration of bandwidth on demand (BoD) provisioning based on time scheduling in software-defined multi-domain optical networks

    Science.gov (United States)

    Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie

    2016-09-01

    A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.

  18. Low-bandwidth authentication.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  19. Low-bandwidth authentication.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Patrick Joseph; McIver, Lauren; Gaines, Brian R.; Anderson, Erik; Collins, Michael Joseph; Thomas,Kurt Adam; McDaniel, Austin

    2007-09-01

    Remotely-fielded unattended sensor networks generally must operate at very low power--in the milliwatt or microwatt range--and thus have extremely limited communications bandwidth. Such sensors might be asleep most of the time to conserve power, waking only occasionally to transmit a few bits. RFID tags for tracking or material control have similarly tight bandwidth constraints, and emerging nanotechnology devices will be even more limited. Since transmitted data is subject to spoofing, and since sensors might be located in uncontrolled environments vulnerable to physical tampering, the high-consequence data generated by such systems must be protected by cryptographically sound authentication mechanisms; but such mechanisms are often lacking in current sensor networks. One reason for this undesirable situation is that standard authentication methods become impractical or impossible when bandwidth is severely constrained; if messages are small, a standard digital signature or HMAC will be many times larger than the message itself, yet it might be possible to spare only a few extra bits per message for security. Furthermore, the authentication tags themselves are only one part of cryptographic overhead, as key management functions (distributing, changing, and revoking keys) consume still more bandwidth. To address this problem, we have developed algorithms that provide secure authentication while adding very little communication overhead. Such techniques will make it possible to add strong cryptographic guarantees of data integrity to a much wider range of systems.

  20. Nonlinear optical signal processing for high-speed, spectrally efficient fiber optic systems and networks

    Science.gov (United States)

    Zhang, Bo

    The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and

  1. Comparison of State-of-the-Art Digital Control and Analogue Control for High Bandwidth Point of Load Converters

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Schneider, Henrik; Andersen, Michael Andreas E.

    2008-01-01

    The purpose of this paper is to present a comparison of state-of-the-art digital and analogue control for a Buck converter with synchronous rectification. The digital control scheme is based on a digital self-oscillating modulator that allows the sampling frequency to be higher than the switching...... frequency of the converter. Voltage mode control is used in both the analogue and digital control schemes. The experimental results show that it is possible to design a digitally controlled Buck converter that has the same performance as can be achieved using commercially available analogue control ICs....... The performance of the analogue system can however be increased by using a separate operational amplifier as error amplifier. Thus analogue control is still the best option if high control bandwidth and fast transient response to load steps are important design parameters....

  2. Highly Linear, Broadband Optical Modulator Based on Electro-optic Polymer

    CERN Document Server

    Zhang, Xingyu; Lin, Che-yun; Wang, Alan X; Hosseini, Amir; Chen, Ray T

    2014-01-01

    In this paper, we present the design, fabrication and characterization of a traveling wave directional coupler modulator based on electro-optic polymer, which is able to provide both high linearity and broad bandwidth. The high linearity is realized by introducing domain-inversion technique in the two-domain directional coupler. A travelling wave electrode is designed to function with bandwidth-length product of 302GHz cm, by achieving low microwave loss, excellent impedance matching and velocity matching, as well as smooth electric field profile transformation. The 3-dB bandwidth of the device is measured to be 10GHz. The spurious free dynamic range of about 110dB Hz^(2/3) is measured over the modulation frequency range 2-8GHz. To the best of our knowledge, such high linearity is first measured at the frequency up to 8GHz. In addition, a 1-to-2 multi-mode interference 3dB-splitter, a photobleached refractive index taper and a quasi-vertical taper are used to reduce the optical insertion loss of the device.

  3. Serialized quantum error correction protocol for high-bandwidth quantum repeaters

    Science.gov (United States)

    Glaudell, A. N.; Waks, E.; Taylor, J. M.

    2016-09-01

    Advances in single-photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code (QECC). Such error-corrected communication is equivalent to a novel quantum repeater scheme, but crucial questions regarding implementation and system requirements remain open. Here we show that long-range entangled bit generation with rates approaching 108 entangled bits per second may be possible using a completely serialized protocol, in which photons are generated, entangled, and error corrected via sequential, one-way interactions with as few matter qubits as possible. Provided loss and error rates of the required elements are below the threshold for quantum error correction, this scheme demonstrates improved performance over transmission of single photons. We find improvement in entangled bit rates at large distances using this serial protocol and various QECCs. In particular, at a total distance of 500 km with fiber loss rates of 0.3 dB km-1, logical gate failure probabilities of 10-5, photon creation and measurement error rates of 10-5, and a gate speed of 80 ps, we find the maximum single repeater chain entangled bit rates of 51 Hz at a 20 m node spacing and 190 000 Hz at a 43 m node spacing for the {[[3,1,2

  4. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Voxtel Inc. proposes to optimize the design of a large area, 1.55?m sensitive HgCdTe avalanche photodiode (APD) that achieves high gain with nearly no excess noise....

  5. Electrothermal impedance spectroscopy measurement on high power LiMO2/Li4Ti5O12 battery cell with low bandwidth test setup

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2015-01-01

    Modern lithium-ion batteries, like LiMO2/Li4Ti5O12 chemistry, are having very high power capability, which drives the need for precise thermal modelling of the battery. Battery thermal models are required to avoid possible safety issues (thermal runaways, high-temperature gradients) but also......-bandwidth and high-current capability for large format battery cells. Thus, this paper evaluates the possibility and accuracy of performing ETIS measurements with a standard battery test station (or bidirectional power supply) with low-bandwidth....

  6. Development of Advanced Low Emission Injectors and High-Bandwidth Fuel Flow Modulation Valves

    Science.gov (United States)

    Mansour, Adel

    2015-01-01

    Parker Hannifin Corporation developed the 3-Zone fuel nozzle for NASA's Environmentally Responsible Aviation Program to meet NASAs target of 75 LTO NOx reduction from CAEP6 regulation. The nozzle concept was envisioned as a drop-in replacement for currently used fuel nozzle stem, and is built up from laminates to provide energetic mixing suitable for lean direct injection mode at high combustor pressure. A high frequency fuel valve was also developed to provide fuel modulation for the pilot injector. Final testing result shows the LTO NOx level falling just shy of NASAs goal at 31.

  7. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Gregory L.; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2016-06-01

    Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  8. An order of magnitude improvement in optical fiber bandwidth using spatial domain multiplexing/space division multiplexing (SDM) in conjunction with orbital angular momentum (OAM)

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Greg; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2014-09-01

    Spatial Domain Multiplexing/Space Division Multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single mode pigtail laser sources of same wavelength into a carrier fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. In this endeavor we launch light from five different single mode pigtail laser sources at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation we get five distinct concentric donut shaped rings with negligible crosstalk at the output end of the fiber. These SDM channels also exhibit Orbital Angular Momentum (OAM), thereby adding an extra degree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  9. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time.......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... to be injected before the position may be estimated. In this paper, a single pulse zero voltage injection method is proposed. The rotor position is directly estimated from the current ripple at half of the switching frequency. No machine parameters are needed and using of filters is avoided. This results...

  10. Achieving High Resolution Measurements Within Limited Bandwidth Via Sensor Data Compression

    Science.gov (United States)

    2013-06-01

    are buffered separately and then saved when peaks are detected. The data are time stamped and inserted into a first-in, first-out ( FIFO ) buffer...16 samples around the peak are saved. These samples are combined with 2 solar sync words and 2 time stamp words, and are buffered into a FIFO for...Output Frame 5 A/D High Speed Fames Low Speed Fames Solar Buffer Peak Detect Time- Stamped Solar Pulse TX Buffer Solar FIFO

  11. Generation of a spectrum with high flatness and high bandwidth in a short length of telecom fiber using microchip laser

    Science.gov (United States)

    Hernandez-Garcia, J. C.; Estudillo-Ayala, J. M.; Pottiez, O.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Gonzalez-Garcia, A.

    2013-04-01

    In this work, we studied experimentally the generation of a supercontinuum spectrum induced in a piece of standard single-mode fiber using pulses from a microchip laser. For different values of fiber length, we obtained spectra with high flatness in visible and IR regions. The possibility to generate a spectrum with a high flatness and spectral width of more than ˜1100 nm (600 nm to over 1700 nm) in relatively short lengths of telecom fiber (˜57 m), using as the pump pulses with no more than a few kW peak power at a non-zero-dispersion wavelength, is attributed to the peculiar properties of the pulses generated by the pump source. The physical processes leading to the formation of the supercontinuum spectrum were studied by monitoring the growth of the spectrum while increasing the input power. The coupling efficiency between the microchip laser and the telecom fiber helped us obtain a very wide spectrum. This work shows that the use of conventional fiber for supercontinuum generation can be viewed as a cheap and efficient option, in particular for applications like optical metrology, coherence tomography and low noise sources for the characterization of devices.

  12. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    Science.gov (United States)

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  13. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  14. Development of Radiation-Tolerant, Low Mass, High Bandwidth Flexible Printed Circuit Cables for Particle Detection Applications

    Science.gov (United States)

    McFadden, Neil

    2016-03-01

    Design options for meter long flexible printed circuit cables required for low mass ultra-high speed signal transmission in the high radiation environment at the High Luminosity run of the Large Hadron Collider (LHC) are described. Two dielectric materials were considered in this study, Kapton and a Kapton/Teflon mixture. The design geometry is a differential embedded microstrip with nominal 100 Ω impedance. Minimal mass and maximal radiation hardness are pre-eminent considerations. The long flexible printed circuit cables are characterized in bit error rate tests (BERT), attenuation versus frequency, mechanical response to stress and temperature change, and RLC decomposition. These tests are performed before and after irradiation with 1 MeV neutrons to 2x1016/cm 2 and 800 MeV protons to 2x1016 1 MeV-neq/cm2. A 1.0 m Kapton cable, with bandwidth of 6.22 gigabits per second, 0.03% of a radiation length, and no radiation induced mechanical or electrical degradation is obtained.

  15. A Novel Multi-carrier Radar for High-speed Wide-bandwidth Stepped-Frequency GPR

    Science.gov (United States)

    Kyoo Kim, Dong; Choi, Young Woo; Kang, Do Wook

    2015-04-01

    Ground Penetrating Radar (GPR) is one of the non-destructive testing methods for studying underground situations by using the electro-magnetic wave radiation effect. Two classical sensing techniques, impulsive GPR and stepped-frequency GPR, are used for a long time in various GPR applications. Signal bandwidths generated by the two techniques ranges from several hundred MHz to several GHz. For the research area of pavement survey the surveying speed is emphasized, thus impulsive GPR has been preferred to stepped-frequency GPR. To make a complete single scan operation, stepped-frequency GPR needs over hundreds of different frequency continuous wave (CW) radiations within its signal bandwidth which is the main time taking process. In case of impulsive GPR, it needs also several repeated pulses, for example from 64 to 512 repeated pulses, to do a complete single scan operation. Although the two techniques need several repeated internal operation processes, impulsive GPR is generally considered to be fast than stepped-frequency GPR. On the other hand, many studies of stepped-frequency GPR emphasizes that high-resolution scanning accuracy can be achieved by controlling each frequency component differently, such as frequency power profile, flexible bandwidth control. In case of pavement survey area, high-accuracy scanning is required within one meter deep as well as high-speed survey. The required accuracy is up to several centimeter in the material where dielectric constant is about 10. When surveying pavement, multi-element array antenna gives advantages to the measurement accuracy enhancement, where the scanning region of a 3 meters wide paved road is divided into several sub-regions as the number of the antenna element. For example, when stepped-frequency GPR requires 6msec for single scan operation and 15-element antenna is considered, the survey speed is limited to 15km/h in order to scan the road every 5cm, which is slow compared with common driving condition on

  16. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  17. Single-side-band optical modulation in SCM systems for high-speed optical transmission

    Institute of Scientific and Technical Information of China (English)

    李忠义; 廖同庆

    2009-01-01

    In order to decrease dispersion penalty and increase the optical bandwidth efficiency,an optical single-side-band modulation(SSBM) scheme in sub-carrier multiplexing(SCM) is proposed.The principle of the SSBM is analytically presented,and a configuration for generating optical SSB signal is proposed using a balanced Mach-Zehnder electro-optic modulator.

  18. High Bandwidth, Multi-Purpose Passive Radar Receiver Design For Aerospace and Geoscience Targets

    Science.gov (United States)

    Vertatschitsch, Laura

    uninterruptible power supply (UPS) for up to 1 hour of continuous operation. In this document we provide technical details of the hardware, firmware, and software of the system and design strategies and decisions. We cover the topic of coherent processing for passive radar, specifically an overview of the cross-ambiguity function as a detection mechanism. While the applications of a system like this are incredibly broad, the initial validation and performance analysis was applied specifically to detection of aircraft using Digital Television (DTV) broadcast as an illuminator. We present results of both stationary and mobile operation. In stationary operation, the same helicopter has been detected using two different DTV transmissions. Early mobile operation results show the Doppler-spread ground clutter and possible detection of aircraft. In addition to the fully-functional aircraft detection signal chain, alternative FPGA designs are presented with modes for fast sampling on two antennas or four antennas, with access to an aggregate 240 MHz of spectrum, with 8-bit samples. At these extremely high data rates, moderate data loss occurs while saving this data to disk, but as detailed within this document, it can be accounted for and the effects minimalized, still allowing for detection of aircraft. With these modes, FM transmission and DTV transmission can be captured synchronously from a single antenna and digitizer feed, an exciting result that offers promise for both aerospace and geoscience applications.

  19. Ultrahigh bandwidth signal processing

    Science.gov (United States)

    Oxenløwe, Leif Katsuo

    2016-04-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, and hence useful for all types of data signals including coherent multi-level modulation formats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signals. In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral magnification of the OFDM signal. Utilising such telescopic arrangements, it has become possible to perform a number of interesting functionalities, which will be described in the presentation. This includes conversion from OFDM to Nyquist WDM, compression of WDM channels to a single Nyquist channel and WDM regeneration. These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platforms like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described.

  20. High Performance Design of 100Gb/s DPSK Optical Transmitter

    DEFF Research Database (Denmark)

    Das, Bhagwan; Abdullah, M.F.L; Shah, Nor Shahihda Mohd;

    2016-01-01

    High performance communication systems require high performance devices for exchanging information at a faster rate. These devices are experiencing several challenges e.g. bandwidth limitations, power limitations, design limitations and etc. The existing techniques are lacking in providing high...... performance output simultaneously by maintaining actual parameters of device. In this work, high performance 100Gb/s optical DPSK transmitter design is realized in Field Programming Gate (FPGA) using time constraint technique. Before applying the proposed technique actual FPGA’s frequency was 0.2 GHz......, high time score and low slack time. The high performance design is realized without disturbing actual bandwidth, power consumption and other parameters of the design. The proposed high performance design of 100Gb/s optical transmitter can be used with existing optical communication system to develop...

  1. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  2. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  3. High-speed analog fiber optic links for satellite communication

    Science.gov (United States)

    Daryoush, A. S.; Herczfeld, P. R.; Kunath, R. R.

    1988-01-01

    Large-aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging. Array elements are comprised of active transmit/receive (T/R) modules which are linked to the central processing unit through a high-speed fiberoptic network. This paper demonstrates optical control of active modules for satellite communication at 24 GHz. An approach called T/R level data mixing, which utilizes fiberoptic transmission of a data signal to individual T/R modules to be upconverted by an optically synchronized local oscillator, is demonstrated at 24 GHz. A free-running HEMT oscillator, used as local oscillator at 24 GHz, is synchronized using indirect subharmonic optical injection locking over a locking range of 14 MHz. Results of data link performance over 500-1000 MHz is also reported in terms of gain-bandwidth, linearity and third-order intercept, sensitivity, and dynamic range.

  4. Weak-quasi-bandwidth and forward-bandwidth of graphs

    Institute of Scientific and Technical Information of China (English)

    原晋江

    1996-01-01

    Concepts of weak-quasi-bandwidth and forward-bandwidth of graphs are introduced. They are used to studythe following problems in graph theory: bandwidth, topological bandwidth, fill-in, profile, path-width, tree-width.

  5. High Speed 1.55 μm Lasers for Fiber Optic Transmission

    Science.gov (United States)

    Morton, Paul A.

    This paper describes the essential elements for creating a practical wide bandwidth directly modulated laser source. This includes considerations of the intrinsic limitations of the laser structure, due to the resonant frequency and damping of the laser output, together with carrier transport issues to allow carriers in the device active region to be efficiently modulated at high speeds. The use of a P-doped compressively strained multiple-quantum well active region to provide high intrinsic speed and remove transport limitations is described, together with record setting results of 25 GHz modulation bandwidth for a 1.55 μm Fabry-Perot laser and 26 GHz bandwidth for a 1.55 μm DFB laser. The challenges of providing high bandwidth electrical connections to the laser on a suitable submount, together with fiber attachment and microwave packaging are discussed. Results of fully packaged 1.55 μm DFB lasers with 25 GHz modulation bandwidth are shown. Digital modulation of the packaged 1.55 μm DFB including impedance matching is described, and the transient wavelength chirp is presented. This low chirp is reduced further using an optical filter, to provide a 10 GBit/s source that can transmit error free over 38.5 km of standard optical fiber.

  6. Meta-instrument: high speed positioning and tracking platform for near-field optical imaging microscopes

    CERN Document Server

    Bijster, R J F; Spierdijk, J P F; Dekker, A; Klop, W A; Kramer, G F IJ; Cheng, L K; Hagen, R A J; Sadeghian, H

    2016-01-01

    High resolution and high throughput imaging are typically mutually exclusive. The meta-instrument pairs high resolution optical concepts such as nano-antennas, superoscillatory lenses and hyperlenses with a miniaturized opto-mechatronic platform for precise and high speed positioning of the optical elements at lens-to-sample separations that are measured in tens of nanometers. Such platform is a necessary development for bringing near-field optical imaging techniques to their industrial application. Towards this purpose, we present two designs and proof-of-principle instruments that are aimed at realizing sub-nanometer positional precision with a 100 kHz bandwidth.

  7. A potassium Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  8. Design of graded refractive index profile for silica multimode optical fibers with improved effective modal bandwidth for short-distance laser-based multi-Gigabit data transmission over "O"-band

    Science.gov (United States)

    Bourdine, Anton V.; Zhukov, Alexander E.

    2017-04-01

    High bit rate laser-based data transmission over silica optical fibers with enlarged core diameter in comparison with standard singlemode fibers is found variety infocommunication applications. Since IEEE 802.3z standard was ratified on 1998 this technique started to be widely used for short-range in-premises distributed multi-Gigabit networks based on new generation laser optimized multimode fibers 50/125 of Cat. OM2…OM4. Nowadays it becomes to be in demand for on-board cable systems and industrial network applications requiring 1Gps and more bit rates over fibers with extremely enlarged core diameter up to 100 μm. This work presents an alternative method for design the special refractive index profiles of silica few-mode fibers with extremely enlarged core diameter, that provides modal bandwidth enhancing under a few-mode regime of laser-based data optical transmission. Here some results are presented concerning with refractive index profile synthesis for few-mode fibers with reduced differential mode delay for "O"-band central region, as well as computed differential mode delay spectral curves corresponding to profiles for fibers 50/125 and 100/125 for in-premises and on-board/industrial cable systems.

  9. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  10. High power, picosecond green laser based on a frequency-doubled, all-fiber, narrow-bandwidth, linearly polarized, Yb-doped fiber laser

    Science.gov (United States)

    Tian, Wenyan; Isyanova, Yelena; Stegeman, Robert; Huang, Ye; Chieffo, Logan R.; Moulton, Peter F.

    2016-03-01

    We report on the development of an all-fiber, 68-kW-peak-power, 16-ps-pulse-width, narrow-bandwidth, linearly polarized, 1064-nm fiber laser suitable for high-power, picosecond-pulse-width, green-light generation. Our 1064-nm fiber laser delivered an average power of up to 110 W at a repetition of 100- MHz in a narrow bandwidth, with minimal nonlinear distortion. We developed a high-power, picosecond green source at 532 nm through use of single-pass frequency-doubling of our 1064-nm fiber laser in lithium triborate (LBO). Using a 15-mm long LBO crystal, we have generated 30 W of average power in the second harmonic with 73-W of fundamental average power, for a conversion efficiency of 41%.

  11. High speed optical wireless data transmission system for particle sensors in high energy physics

    Science.gov (United States)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  12. High-Power and High-Efficiency 1.3- µm Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2015-02-01

    We report on a flat-top and ultrawide emission bandwidth of 125 nm from InGaAsP/InP multiple quantum-well (MQW) superluminescent diode with antireflection coated and tilted ridge-waveguide device configuration. A total output power in excess of 70 mW with an average power spectral density of 0.56 mW/nm and spectral ripple ≤ 1.2 ± 0.5 dB is measured from the device. Wall-plug efficiency and output power as high as 14% and 80 mW, respectively, is demonstrated from this batch of devices. We attribute the broad emission to the inherent inhomogeneity of the electron-heavy-hole (e-hh) and electron-light-hole (e-lh) recombination of the ground state and the first excited state of the MQWs and their simultaneous emission.

  13. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    Science.gov (United States)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  14. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  15. Classically entangled optical beams for high-speed kinematic sensing

    CERN Document Server

    Berg-Johansen, Stefan; Stiller, Birgit; Banzer, Peter; Ornigotti, Marco; Giacobino, Elisabeth; Leuchs, Gerd; Aiello, Andrea; Marquardt, Christoph

    2015-01-01

    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.

  16. Novel uninterruptible self-determinate hybrid high-speed multimedia fiber optic wireless secure digital network

    Science.gov (United States)

    Lindsey, Lonnie

    2000-08-01

    One key to successful digital battlespace management is communications management. HF, UHF, VHF, CDMA, and SATCOM assets are difficult and complex to manage, and the modern digital battlespace adds new dimensions by including high volume multimedia transmissions, high-speed broadband data, and hyper-spectral sensor data. This environment requires more than the traditional voice transport-based communications system. The future sanctuary-based communication hub model will benefit from a novel uninterruptible self-determinate high bandwidth fiber optic system.

  17. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Time Tagging the Data

    Science.gov (United States)

    2015-09-01

    1 ms. 15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF...study of WIN-T IOTE ClockModel Issues.7 Fig. 5 Sample long-running ADMAS clock differences (3 clock model states...of the total cuts recorded (on the order of 0.00001% of cuts recorded). 7. Adametz J, McGowan J. Case study of WIN-T IOTE ClockModel issues

  18. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Introduction

    Science.gov (United States)

    2015-09-01

    ability to transport voice and data messages, with high assurance and minimal delays, as the unit maneuvers to accomplish its mission. Tactical...critical to such analysis efforts, in addition to metrics drawn from application-level interactions, such as Voice over futemet Protocol (VoiP...Network Performance Statistics. These provide information on the state of IP routing tables and radio-level connections, which informs the overall

  19. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  20. Optical sampling of ultrahigh bitrate signals using highly nonlinear chalcogenide planar waveguides or tapered fibers

    Science.gov (United States)

    Van Erps, Jürgen; Luan, Feng; Pelusi, Mark D.; Mägi, Eric; Iredale, Tim; Madden, Steve; Choi, Duk Yong; Bulla, Douglas A.; Luther-Davies, Barry; Thienpont, Hugo; Eggleton, Benjamin J.

    2010-06-01

    As the bit rates of optical networks increase, the ability of accurate monitoring of optical waveforms has become increasingly important. In recent years, optical sampling has emerged as a technique to perform time-resolved measurements of optical data signals at high data rates with a bandwidth that cannot be reached by conventional photodetectors and oscilloscopes. In an optical sampling system, the optical signal is sampled in the optical domain by a nonlinear optical sampling gate before the resulting samples are converted to an electrical signal. This avoids the need for high bandwidth electronics if the optical sampling gate is operated with a modest repetition frequency. In this paper, we present an optical sampling system using the optical Kerr effect in a highly nonlinear chalcogenide device, enabling combined capability for femtosecond resolution and broadband signal wavelength tunability. A temporal resolution 450-fs is achieved using four-wave mixing (FWM) in dispersion-engineered chalcogenide waveguides: on one hand a 7-cm long planar waveguide (integrated on a photonic chip) and on the other hand a 5-cm long tapered fiber. The use of a short length, dispersion-shifted waveguide with ultrahigh nonlinearity (10000/W/km) enables high-resolution optical sampling without the detrimental effect of chromatic dispersion on the temporal distortion of the signal and sampling pulses, as well as their phase mismatch (which in turn would degrade the FWM efficiency and the sensitivity of the measurement). Using these chalcogenide devices, we successfully monitor a 640-Gb/s optical time-division multiplexing (OTDM) datastream, showcasing its potential for monitoring of signals at bitrates approaching and beyond Tb/s. We compare the advantages and disadvantages of both approaches and discuss fundamental limitations as well as potential improvements.

  1. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.

    Science.gov (United States)

    Supradeepa, V R; Weiner, Andrew M

    2012-08-01

    We introduce a new cascaded four-wave mixing technique that scales up the bandwidth of frequency combs generated by phase modulation of a continuous-wave (CW) laser while simultaneously enhancing the spectral flatness. As a result, we demonstrate a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within a flatness of 1 dB. The cascaded four-wave mixing process increases the bandwidth of the initial comb generated by the modulation of a CW laser by a factor of five. The broadband comb has approximately quadratic spectral phase, which is compensated upon propagation in single-mode fiber, resulting in a 10 GHz train of 940 fs pulses.

  2. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  3. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  4. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. Optics assembly for high power laser tools

    Energy Technology Data Exchange (ETDEWEB)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  6. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  7. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  8. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  9. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  10. On the Highly Stable Performance of Loss-Free Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Milos Kozak

    2016-01-01

    Full Text Available Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS; Optical Packet Switching (OPS; and Optical Burst Switching (OBS. Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost.

  11. (Box-filling-model)-based ONU schedule algorithm and bandwidth-requirement-based ONU transfer mechanism for multi-subsystem-based VPONs' management in metro-access optical network

    Science.gov (United States)

    Zhang, Yuchao; Gan, Chaoqin; Gou, Kaiyu; Hua, Jian

    2017-07-01

    ONU schedule algorithm and ONU transfer mechanism for multi-subsystem-based VPONs' management is proposed in this paper. To avoid frequent wavelength switch and realize high system stability, ONU schedule algorithm is presented for wavelength allocation by introducing box-filling model. At the same time, judgement mechanism is designed to filter wavelength-increased request caused by slight bandwidth fluctuation of VPON. To share remained bandwidth among VPONs, ONU transfer mechanism is put forward according to flexible wavelength routing. To manage wavelength resource of entire network and wavelength requirement from VPONs, information-managed matrix model is constructed. Finally, the effectiveness of the proposed scheme is demonstrated by simulation and analysis.

  12. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    Science.gov (United States)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  13. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  14. A Novel Dynamic Bandwidth Allocation Algorithm with Correction-based the Multiple Traffic Prediction in EPON

    Directory of Open Access Journals (Sweden)

    Ziyi Fu

    2012-10-01

    Full Text Available According to the upstream TDM in the system of Ethernet passive optical network (EPON, this paper proposes a novel dynamic bandwidth allocation algorithm which supports the mechanism with correction-based the multiple services estimation. To improve the real-time performance of the bandwidth allocation, this algorithm forecasts the traffic of high priority services, and then pre-allocate bandwidth for various priority services is corrected according to Gaussian distribution characteristics, which will make traffic prediction closer to the real traffic. The simulation results show that proposed algorithm is better than the existing DBA algorithm. Not only can it meet the delay requirement of high priority services, but also control the delay abnormity of low priority services. In addition, with rectification scheme, it obviously improves the bandwidth utilization.

  15. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration ...... as examples. Finally, it is concluded that the VIP-2 process is suitable technology for creating circuits for 100 Gb/s communication networks. Keywords: Indium Phosphide (InP), DHBT, VCO, Colpitt, Static Divider, CDR, PLL, Transceiver...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  16. High speed all optical Nyquist signal generation and full-band coherent detection.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-08-21

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems.

  17. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical...... modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we...

  18. Bandwidth challenge teams at SC2003 conference

    CERN Multimedia

    2003-01-01

    Results from the fourth annual High-Performance Bandwidth Challenge, held in conjunction with SC2003, the international conference on high-performance computing and networking which occurred last week in Phoenix, AZ (1 page).

  19. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  20. Tunable-Bandwidth Filter System

    Science.gov (United States)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  1. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  2. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  3. Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Chang, J.F.; Clark, J.; Zhao, N.

    2006-01-01

    Interchain interactions have a profound effect on the optical as well as charge transport properties of conjugated polymer thin films. In contrast to oligomeric model systems in solution-deposited polymer thin films the study of such effects is complicated by the complex microstructure. We presen...

  4. Reconstruction in Time-Bandwidth Compression Systems

    CERN Document Server

    Chan, Jacky; Asghari, Mohammad H; Jalali, Bahram

    2014-01-01

    Recently it has been shown that the intensity time-bandwidth product of optical signals can be engineered to match that of the data acquisition instrument. In particular, it is possible to slow down an ultrafast signal, resulting in compressed RF bandwidth - a similar benefit to that offered by the Time-Stretch Dispersive Fourier Transform (TS-DFT) - but with reduced temporal record length leading to time-bandwidth compression. The compression is implemented using a warped group delay dispersion leading to non-uniform time stretching of the signal's intensity envelope. Decoding requires optical phase retrieval and reconstruction of the input temporal profile, for the case where information of interest is resides in the complex field. In this paper, we present results on the general behavior of the reconstruction process and its dependence on the signal-to-noise ratio. We also discuss the role of chirp in the input signal.

  5. Bandwidth in bolometric interferometry

    Science.gov (United States)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  6. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  7. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    Science.gov (United States)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  8. High throughput optoelectronic smart pixel systems using diffractive optics

    Science.gov (United States)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  9. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    Directory of Open Access Journals (Sweden)

    Shih-Hsiang Hsu

    2010-12-01

    Full Text Available To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  10. Bandwidth in bolometric interferometry

    CERN Document Server

    Charlassier, R; Hamilton, J -Ch; Kaplan, J; Malu, S

    2009-01-01

    Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. Using an angular power spectrum estimator ...

  11. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  12. Bandwidth Trading as Incentive

    Science.gov (United States)

    Eger, Kolja; Killat, Ulrich

    In P2P networks with multi-source download the file of interest is fragmented into pieces and peers exchange pieces with each other although they did not finish the download of the complete file. Peers can adopt different strategies to trade upload for download bandwidth. These trading schemes should give peers an incentive to contribute bandwidth to the P2P network. This chapter studies different trading schemes analytically and by simulations. A mathematical framework for bandwidth trading is introduced and two distributed algorithms, which are denoted as Resource Pricing and Reciprocal Rate Control, are derived. The algorithms are compared to the tit-for-tat principle in BitTorrent. Nash Equilibria and results from simulations of static and dynamic networks are presented. Additionally, we discuss how trading schemes can be combined with a piece selection algorithm to increase the availability of a full copy of the file. The chapter closes with an extension of the mathematical model which takes also the underlying IP network into account. This results in a TCP variant optimised for P2P content distribution.

  13. Two-photon-excited fluorescence (TPEF) and fluorescence lifetime imaging (FLIM) with sub-nanosecond pulses and a high analog bandwidth signal detection

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Hakert, Hubertus; Weng, Daniel; Huber, Robert

    2017-02-01

    Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) are powerful imaging techniques in bio-molecular science. The need for elaborate light sources for TPEF and speed limitations for FLIM, however, hinder an even wider application. We present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is synchronized to a high analog bandwidth signal detection for single shot TPEF- and single shot FLIM imaging. The actively modulated pulses at 1064nm from the fiber laser are adjustable from 50ps to 5ns with kW of peak power. At a typically applied pulse lengths and repetition rates, the duty cycle is comparable to typically used femtosecond pulses and thus the peak power is also comparable at same cw-power. Hence, both types of excitation should yield the same number of fluorescence photons per time on average when used for TPEF imaging. However, in the 100ps configuration, a thousand times more fluorescence photons are generated per pulse. In this paper, we now show that the higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate the performance of our system, we acquired FLIM images of a Convallaria sample with pixel rates of 1 MHz where the lifetime information is directly measured with a fast real time digitizer. With the presented results, we show that longer pulses in the many-10ps to nanosecond regime can be readily applied for TPEF imaging and enable new imaging modalities like single pulse FLIM.

  14. Polyimide-etalon all-optical ultrasound transducer for high frequency applications

    Science.gov (United States)

    Sheaff, Clay; Ashkenazi, Shai

    2014-03-01

    We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz ). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

  15. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  16. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Kunpeng Feng

    2017-02-01

    Full Text Available To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO. The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry–Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  17. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis.

    Science.gov (United States)

    Feng, Kunpeng; Cui, Jiwen; Dang, Hong; Wu, Weidong; Sun, Xun; Jiang, Xuelin; Tan, Jiubin

    2017-02-10

    To achieve a narrow bandwidth optical filter with a wide swept range for new generation optical spectrum analysis (OSA) of high performance optical sensors, an optoelectronic equivalent narrowband filter (OENF) was investigated and a swept optical filter with bandwidth of several MHz and sweep range of several tens of nanometers was built using electric filters and a sweep laser as local oscillator (LO). The principle of OENF is introduced and analysis of the OENF system is presented. Two electric filters are optimized to be RBW filters for high and medium spectral resolution applications. Both simulations and experiments are conducted to verify the OENF principle and the results show that the power uncertainty is less than 1.2% and the spectral resolution can reach 6 MHz. Then, a real-time wavelength calibration system consisting of a HCN gas cell and Fabry-Pérot etalon is proposed to guarantee a wavelength accuracy of ±0.4 pm in the C-band and to reduce the influence of phase noise and nonlinear velocity of the LO sweep. Finally, OSA experiments on actual spectra of various optical sensors are conducted using the OENF system. These experimental results indicate that OENF system has an excellent capacity for the analysis of fine spectrum structures.

  18. Propagation characteristics of a high-power broadband laser beam passing through a nonlinear optical medium with defects

    Institute of Scientific and Technical Information of China (English)

    Xueqiong; Chen; Xiaoyan; Li; Ziyang; Chen; Jixiong; Pu; Guowen; Zhang; Jianqiang; Zhu

    2013-01-01

    The intensity distributions of a high-power broadband laser beam passing through a nonlinear optical medium with defects and then propagating in free space are investigated based on the general nonlinear Schr¨odinger equation and the split-step Fourier numerical method. The influences of the bandwidth of the laser beam, the thickness of the medium,and the defects on the light intensity distribution are revealed. We find that the nonlinear optical effect can be suppressed and that the uniformity of the beam can be improved for a high-power broadband laser beam with appropriate wide bandwidth. It is also found that, under the same incident light intensity, a thicker medium will lead to a stronger self-focusing intensity, and that the influence of defects in the optical elements on the intensity is stronger for a narrowband beam than for a broadband beam.

  19. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...... with respect to the optical axis. Appropriate scanning of the phase-match condition (Δk=0) while acquiring images, allow us to perform monochromatic image reconstruction with a significantly increased space bandwidth product. We derive the theory for the image reconstruction process and demonstrate acquisition...... of images with >10 fold increase in space bandwidth product, i.e. the number of pixel elements, when compared to upconversion of images using fixed phase-match conditions....

  20. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    Science.gov (United States)

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  1. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  2. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    A T junction in a photonic crystal waveguide is designed with the topology-optimization method. The gradientbased optimization tool is used to modify the material distribution in the junction area so that the power transmission in the output ports is maximized. To obtain high transmission...

  3. Theoretical model for a Stark anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1993-01-01

    A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.

  4. High-contrast linear optical pulse compression using a temporal hologram.

    Science.gov (United States)

    Li, Bo; Fernández-Ruiz, Maria R; Lou, Shuqin; Azaña, José

    2015-03-01

    Temporal holograms can be realized by temporal amplitude-only modulation devices and used for generation and processing of complex (amplitude and phase) time-domain signals. Based on the temporal hologram concept, we numerically and experimentally demonstrate a novel design for linear optical pulse compression using temporal modulation of continuous-wave light combined with dispersion. The newly introduced scheme overcomes the undesired background problem that is intrinsic to designs based on temporal zone plates, while also offering an energy efficiency of ~25%. This pulse compression scheme can ideally provide an arbitrarily high time-bandwidth product using a low peak-power modulation driving signal, though in practice it is limited by the achievable modulation bandwidth and dispersion amount.

  5. Dense all-optical WDM-SCM technology for high-speed computer interconnects

    Science.gov (United States)

    Ih, Charles S.; Tian, Rongsheng; Zhou, H. X.; Xia, Xiang-Gen

    1993-07-01

    We describe a dense and flexible all optical multi-channel communication system for high speed computer interconnects. The system can provide 10 Gb/s for each individual node with a total system capacity to 250 Gb/s using currently available technologies. The system capacity can be scaled to 1 Tb/s using optical amplifiers with a broader bandwidth and higher modulations. The system is based on the multi-beam (heterodyne) modulator (MBM) recently demonstrated in our laboratory and other current technologies in tunable laser arrays and acousto-optical tunable filter (AOTF). Each MBM automatically forms a high frequency microwave sub-carrier multiplexing (SCM) with sub-carrier frequency to tens of GHz. A MBM with sub-carriers at 17 and 21 GHz has already been demonstrated and can be scaled to higher frequencies by using a higher frequency detector. Each SCM group may consist of up to 10 one-Gb/s channels and occupies only 1 nm spectral width. Therefore we can form a conventional WDM with 25 divisions within the bandwidth of commercially available optical amplifiers.

  6. Optoelectronics for high-speed, wavelength-division- multiplexed optical communications networks

    Science.gov (United States)

    Hudgings, Janice Anne

    1999-11-01

    All-optical wavelength division multiplexed (WDM) communications networks have the potential to revolutionize future high-speed communications. All- optical networks offer enormous bandwidth capacity on the order of 25 THz, which is orders of magnitude greater than the capacity of radio or copper coaxial cable. In addition, wavelength division multiplexing offers a natural method of supporting with a single network multiple simultaneous applications with widely varying bandwidth requirements, modulation formats, and quality of service requirements. However, future implementation of all-optical WDM networks relies on further development of optical device technology. We present an experimental demonstration of a step- tunable, all-optical wavelength converter using cavity- enhanced four wave mixing (FWM) in a semiconductor laser. The converter is modulation format transparent, has a high conversion efficiency (> -10 dB), and is step- tunable over a large conversion range (> 2.5 THz). In addition, we derive a mathematical model of the wavelength converter, which is used to simulate step- tuning and to examine the relationship between the conversion efficiency and information bandwidth of the device. Likewise, the development of appropriate optical sources is critical to the success of all-optical communications networks. Vertical-cavity surface-emitting lasers (VCSELs) are rapidly emerging as strong competitors to the conventional edge-emitting semiconductor lasers. We have developed a novel three-contact VCSEL with an intracavity quantum-well absorber. The three-contact design of this structure enables independent control of the gain and absorber regions. If the VCSEL is designed such that the lasing wavelength is shorter than the bandedge of the intracavity absorber, the laser exhibits broad negative differential resistance, due to changes in the cavity photon density as the relative absorption is varied. With this design, the device is useful as an integrated

  7. Health care using high-bandwidth communication to overcome distance and time barriers for the Department of Defense

    Science.gov (United States)

    Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne

    1993-01-01

    Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.

  8. Towards highly multimode optical quantum memory for quantum repeaters

    CERN Document Server

    Jobez, Pierre; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2015-01-01

    Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a $^{151}$Eu$^{3+}$-doped Y$_2$SiO$_5$ crystal, in which we demonstrate storage of 100 modes for 51 $\\mu$s using the AFC echo scheme (a delay-line memory), and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memo...

  9. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  10. Live Educational Outreach for Ocean Exploration: High-Bandwidth Ship-to-Shore Broadcasts Using Internet2

    Science.gov (United States)

    Coleman, D. F.; Ballard, R. D.

    2005-12-01

    During the past 3 field seasons, our group at the University of Rhode Island Graduate School of Oceanography, in partnership with the Institute for Exploration and a number of educational institutions, has conducted a series of ocean exploration expeditions with a significant focus on educational outreach through "telepresence" - utilizing live transmissions of video, audio, and data streams across the Internet and Internet2. Our educational partners include Immersion Presents, Boys and Girls Clubs of America, the Jason Foundation for Education, and the National Geographic Society, all who provided partial funding for the expeditions. The primary funding agency each year was NOAA's Office of Ocean Exploration and our outreach efforts were conducted in collaboration with them. During each expedition, remotely operated vehicle (ROV) systems were employed to examine interesting geological and archaeological sites on the seafloor. These expeditions include the investigation of ancient shipwrecks in the Black Sea in 2003, a survey of the Titanic shipwreck site in 2004, and a detailed sampling and mapping effort at the Lost City Hydrothermal Field in 2005. High-definition video cameras on the ROVs collected the footage that was then digitally encoded, IP-encapsulated, and streamed across a satellite link to a shore-based hub, where the streams were redistributed. During each expedition, live half-hour-long educational broadcasts were produced 4 times per day for 10 days. These shows were distributed using satellite and internet technologies to a variety of venues, including museums, aquariums, science centers, public schools, and universities. In addition to the live broadcasts, educational products were developed to enhance the learning experience. These include activity modules and curriculum-based material for teachers and informal educators. Each educational partner also maintained a web site that followed the expedition and provided additional background information

  11. Bandwidth Estimation For Mobile Ad hoc Network (MANET

    Directory of Open Access Journals (Sweden)

    Rabia Ali

    2011-09-01

    Full Text Available In this paper we presents bandwidth estimation scheme for MANET, which uses some components of the two methods for the bandwidth estimation: 'Hello Bandwidth Estimation 'Listen Bandwidth Estimation. This paper also gives the advantages of the proposed method. The proposed method is based on the comparison of these two methods. Bandwidth estimation is an important issue in the Mobile Ad-hoc Network (MANET because bandwidth estimation in MANET is difficult, because each host has imprecise knowledge of the network status and links change dynamically. Therefore, an effective bandwidth estimation scheme for MANET is highly desirable. Ad hoc networks present unique advanced challenges, including the design of protocols for mobility management, effective routing, data transport, security, power management, and quality-of-service (QoS provisioning. Once these problems are solved, the practical use of MANETs will be realizable.

  12. Broad optical bandwidth based on nonlinear effect of intensity and phase modulators through intense four-wave mixing in photonic crystal fiber

    Science.gov (United States)

    Eltaif, Tawfig

    2017-05-01

    This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.

  13. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2017-01-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  14. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  15. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    Science.gov (United States)

    Vaughn, Israel Jacob

    Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is

  16. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  17. Three-dimensional packaging of very large scale integrated optics (VLSIO) for high-complexity optical systems

    Science.gov (United States)

    West, Lawrence C.; Roberts, Charles W.; Piscani, Emil C.; Dubey, Madan; Jones, Kenneth A.; McLane, George F.

    1996-03-01

    Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of very large scale integrated optics (VLSIO), with over 50,000 high speed logic gates per square centimeter, is a new class of ultra high confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid-infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently inter-connected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low cost three dimensional packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components are presented.

  18. Optics of high-performance electron microscopes*

    OpenAIRE

    H H Rose

    2016-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  19. Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program develops fiber optic transceivers that offer wide bandwidth (1 Mbps to 10 Gbps) and operate in space environments targeted by NASA for robotic...

  20. High-Counting Rate Photon Detectors for Long-Range Space Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long range, RF space communications do not meet anymore the bandwidth requirements or power constraints of future NASA missions. Optical communications offer the...

  1. Fibre Optics in Undersea Applications

    Directory of Open Access Journals (Sweden)

    A. K. Talwar

    1984-01-01

    Full Text Available Role of optical fibres for underwater communication cables and hydrophones is discussed. The fibre optics cables provide an excellent solution to the historical bandwidth-diameter problems of conventional coaxial cables.Fibre optic hydrophones are found to have many more advantages apart from high sensitivity and large dynamic range, over the classical sound sensors used in underwater work.

  2. High-speed signal processing using highly nonlinear optical fibres

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen

    2009-01-01

    relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...

  3. 200Gb/s 10-channel miniature optical interconnect transmitter module for high-performance computing (HPC)

    Science.gov (United States)

    Mohammed, Edris; Au, Hinmeng

    2010-02-01

    A major breakthrough to alleviating the interconnect bottleneck in intra cabinet system in HPC may happen by bringing optics directly to the processor package. In order to do so efficient and compact optical interconnect subassembly modules that utilize simple optical and electrical interfacing schemes are needed. In our current work the development of a novel 10-channel, miniature 7mm(W)x1.8mm(L)x3mm(H), optical interconnect transmitter subassembly module is described. The module consists of a high precision molded optical alignment unit with integrated microlens arrays, highspeed coplanar waveguide (CPW) electrical interfaces and a VCSEL (Vertical Cavity Surface Emitting Laser) array chip which is flip chip mounted. The module is designed to uniquely interface vertically with high-speed electrical I/O lines on a microprocessor style package or a motherboard to convert electrical signals to optical for transmission to other similar units using a standard (Multi-Terminal) MT style optical connector. We report on optical coupling efficiency, misalignment tolerance and high-speed electrical and optical measurements of the module. We have measured 40Gb/s electrical eye for the CPW interfaces on the module and 20Gb/s clear optical eyes for VCSEL assembled module from all the 10 channels to produce an aggregate transmitter bandwidth of 200Gb/s. We also measured 30Gb/s electrical and 20Gb/s optical eyes for the optical subassembly module that is bonded onto a microprocessor style package substrate.

  4. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    Science.gov (United States)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  5. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  6. All optical up-converted signal generation with high dispersion tolerance using frequency quadrupling technique for radio over fiber system

    Science.gov (United States)

    Gu, Yiying; Zhao, Jiayi; Hu, Jingjing; Kang, Zijian; Zhu, Wenwu; Fan, Feng; Han, Xiuyou; Zhao, Mingshan

    2016-05-01

    A novel all optical up-converted signal generation scheme with optical single-sideband (OSSB) technique for radio over fiber (RoF) application is presented and experimentally demonstrated using low-bandwidth devices. The OSSB signal is generated by one low-bandwidth intensity LiNbO3 Mach-Zehnder modulator (LN-MZM) under frequency quadrupling modulation scheme and one low-bandwidth LN-MZM under double sideband carrier suppressed modulation (DSB-CS) scheme. The proposed all OSSB generation scheme is capable of high tolerance of fiber chromatic dispersion induced power fading (DIPF) effect. Benefiting from this novel OSSB generation scheme, a 26 GHz radio frequency (RF) signal up-conversion is realized successfully when one sideband of the optical LO signal is reused as the optical carrier for intermediate frequency (IF) signal modulation. The received vector signal transmission over long distance single-mode fiber (SMF) shows negligible DIPF effect with the error vector magnitude (EVM) of 15.7% rms. In addition, a spurious free dynamic range (SFDR) of the OSSB up-converting system is measured up to 81 dB Hz2/3. The experiment results indicate that the proposed system may find potential applications in future wireless communication networks, especially in microcellular personal communication system (MPCS).

  7. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...

  8. Fibre optic communications: past, present and future

    Directory of Open Access Journals (Sweden)

    B. M. Lacquet

    2000-07-01

    Full Text Available The exponential increase in the use of the Internet and the consequent growing need for higher bandwidth demand that the telecommu­nications industry expand the laid networks at a much faster rate. Optical fibre is the only transmission medium that has the potential of unlimited bandwidth and the ability to handle very high data rates.

  9. Technology Development for High Efficiency Optical Communications

    Science.gov (United States)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  10. Optically transparent high temperature shape memory polymers.

    Science.gov (United States)

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

  11. Theoretical Calculation of MMF's Bandwidth

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-fu; JIANG De-sheng; YU Hai-hu

    2004-01-01

    The difference between over-filled launch bandwidth (OFL BW) and restricted mode launch bandwidth (RML BW) is described. A theoretical model is founded to calculate the OFL BW of grade index multimode fiber (GI-MMF),and the result is useful to guide the modification of the manufacturing method.

  12. Estimating Bottleneck Bandwidth using TCP

    Science.gov (United States)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  13. Bandwidth of Gaussian weighted Chirp

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.

    1993-01-01

    Four major time duration and bandwidth expressions are calculated for a linearly frequency modulated sinusoid with Gaussian shaped envelope. This includes a Gaussian tone pulse. The bandwidth is found to be a nonlinear function of nominal time duration and nominal frequency excursion of the chirp...

  14. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  15. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee;

    2014-01-01

    Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optic...

  16. Optical under-sampling by using a broadband optical comb with a high average power.

    Science.gov (United States)

    Sherman, Alexander; Horowitz, Moshe; Zach, Shlomo

    2014-06-30

    We demonstrate a new method to improve the performance of photonic assisted analog to digital converters (ADCs) that are based on frequency down-conversion obtained by optical under-sampling. The under-sampling is performed by multiplying the radio frequency signal by ultra-low jitter broadband phase-locked optical comb. The comb wave intensity has a smooth periodic function in the time domain rather than a train of short pulses that is currently used in most photonic assisted ADCs. Hence, the signal energy at the photo-detector output can be increased and the signal to noise ratio of the system might be improved without decreasing its bandwidth. We have experimentally demonstrated a system for electro-optical under-sampling with a 6-dB bandwidth of 38.5 GHz and a spur free dynamic range of 99 dB/Hz(2/3) for a signal with a carrier frequency of 35.8 GHz, compared with 94 dB/Hz(2/3) for a signal at 6.2 GHz that was obtained in the same system when a pulsed optical source was used. The optical comb was generated by mixing signals from two dielectric resonator oscillators in a Mach-Zehnder modulator. The comb spacing is equal to 4 GHz and its bandwidth was greater than 48 GHz. The temporal jitter of the comb measured by integrating the phase noise in a frequency region of 10 kHz to 10 MHz around comb frequencies of 16 and 20 GHz was only about 15 and 11 fs, respectively.

  17. Compact antenna arrays with wide bandwidth and low sidelobe levels

    Science.gov (United States)

    Strassner, II, Bernd H.

    2014-09-09

    Highly efficient, low cost, easily manufactured SAR antenna arrays with lightweight low profiles, large instantaneous bandwidths and low SLL are disclosed. The array topology provides all necessary circuitry within the available antenna aperture space and between the layers of material that comprise the aperture. Bandwidths of 15.2 GHz to 18.2 GHz, with 30 dB SLLs azimuthally and elevationally, and radiation efficiencies above 40% may be achieved. Operation over much larger bandwidths is possible as well.

  18. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  19. VisIO: enabling interactive visualization of ultra-scale, time-series data via high-bandwidth distributed I/O systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christopher J [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Wang, Jun [UCF

    2010-10-15

    Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar to other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.

  20. a Decade-Spanning High-Resolution Asynchronous Optical Sampling Based Terahertz Time-Domain Spectrometer

    Science.gov (United States)

    Good, Jacob T.; Holland, Daniel; Finneran, Ian A.; Carroll, Brandon; Allodi, Marco A.; Blake, Geoffrey

    2015-06-01

    High-resolution ASynchronous OPtical Sampling (ASOPS) is a technique that substantially improves the combined frequency resolution and bandwidth of ASOPS based TeraHertz Time-Domain Spectroscopy (THz-TDS) systems. We employ two mode-locked femtosecond Ti:Sapphire oscillators with repetition frequencies of 80 MHz operating at a fixed repetition frequency offset of 100 Hz. This offset lock is maintained by a Phase-Locked Loop (PLL) operating at the 60th harmonic of the repetition rate of the Ti:Sapphire oscillators. Their respective time delay is scanned across 12.5 ns requiring a scan time of 10 ms, supporting a time delay resolution of up to 15.6 fs. ASOPS-THz-TDS enables high-resolution spectroscopy that is impossible for a THz-TDS system employing a mechanical delay stage. We measure a timing jitter of 1.36 fs for the system using an air-gap etalon and an optical cross-correlator. We report a Root-Mean-Square deviation of 20.7 MHz and a mean deviation of 14.4 MHz for water absorption lines from 0.5 to 2.7. High-resolution ASOPS-THz-TDS enables high resolution spectroscopy of both gas-phase and condensed-phase samples across a decade of THz bandwidth.

  1. Drude weight in quasi-two-dimensional organic conductors close to the Mott transition: Optical studies of the bandwidth, filling and temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Drichko, Natalia [Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); 1. Physikalisches Institut, Universitaet Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)], E-mail: drichko@pi1.physik.uni-stuttgart.de; Dumm, Michael; Faltermeier, Daniel; Dressel, Martin [1. Physikalisches Institut, Universitaet Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Merino, Jaime [Dept. de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid (Spain); Greco, Andres [Facultad de Ciencias Exactas Ingenieria y Agrimensura e Instituto de Fisica Rosario (UNR-CONICET), Rosario (Argentina)

    2007-09-01

    We explore the effects of electronic correlations in quasi-two-dimensional BEDT-TTF-based organic conductors with half, quarter and 1/5-filled bands. Close to the Mott transition but still on the metallic side, quasiparticles are observed in the 1/2-filled systems only at temperatures well below 100 K, with a considerable growth of the Drude-like contribution. In contrast, the 1/4-filled conductors show a zero-frequency conduction peak already at room temperature which increases slightly upon cooling. Basically no change with temperature is observed for the Drude contribution of the 1/5-filled compound. Optical studies allow us to investigate the formation of quasiparticles at low temperature for systems of different filling. The strongest effect is observed in 1/2-filled compounds, it becomes weaker in 1/4 filled, while in the 1/5-filled compound no change of the Dude-peak on temperature is seen.

  2. Simple and robust phase-locking of optical cavities with > 200 KHz servo-bandwidth using a piezo-actuated mirror mounted in soft materials.

    Science.gov (United States)

    Goldovsky, David; Jouravsky, Valery; Pe'er, Avi

    2016-12-12

    We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

  3. Optical micromachined ultrasound transducers (OMUT) - a new approach for high resolution imaging

    Science.gov (United States)

    Tadayon, M. A.; Ashkenazi, S.

    2013-03-01

    Piezoelectric ultrasound (US) transducers are at the heart of almost any ultrasonic medical imaging probe. However, their sensitivity and reliability severely degrade in applications requiring high frequency (>20 MHz) and small element size (construct micron-size air cavities capped by an elastic membrane. The membrane functions as the active ultrasound transmitter and receiver. We will describe the design and testing of prototype OMUT devices which implement a receive-only function. The cavity detector is an optical cavity which its top mirror is deflected under the application of pressure. The intensity of a reflected light beam is highly sensitive to displacement of the top membrane if the optical wavelength is at near-resonance condition. Therefore, US pulses can be detected by recording the reflected light intensity. The sensitivity of the device depends on the mechanical properties of the top membrane and optical characteristics of the optical cavity. The device was fabricated using SU8 as a structural material and gold as a mirror. We have developed a new bonding method to fabricate a sealed, low roughness, high quality optical cavity. The 60μm cavity with the 8.5 μm top membrane is tested in water with 25MHz ultrasound transducer. The NEP of the device for bandwidth of 28MHz was 9.25kPa. The optical cavity has a finesse of around 23.

  4. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order to in......) using two exclusive OR (XOR) gates realised by four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is experimentally demonstrated and very low (~ 1 dB) total operation penalty is achieved....... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...

  5. Application of Nanophotonic Devices in High Speed Optical Communications

    DEFF Research Database (Denmark)

    Vukovic, Dragana

    highcapacity fiber-optic transmission systems including switching nodes, crossconnectors and add-drop multiplexers. One of the expected key advantages of wavelength converters based on four-wave mixing in nonlinear media exhibiting third-order nonlinearities is the possibility for modulation format and bit......-chip photonic networks. In this thesis, the use of a indium phosphide (InP) photonic crystal nanocavity to perform optical switching that is compatible with telecommunication signals has been demonstrated. Cavity switching induced by free carrier generation was achieved in the GHz range with very low energy......All-optical signal processing has attracted a significant research interest in the past decade as it might become competitive with electronics in terms of compactness, energy consumption, and reliability. Furthermore it might solve the current bandwidth mismatch between optical transmission...

  6. Generation of the Optical Frequency Comb with a Bandwidth of 3.8 nm by Using an Electro-absorption Modulator and a Frequency Modulator%利用EAM和FM产生带宽3.8 nm的光梳

    Institute of Scientific and Technical Information of China (English)

    高迪; 邵茜; 陈静远; 李培丽

    2015-01-01

    Using the cascade structure of an Electro-absorption Modulator (EAM) and a frequency modulator (FM), we proposed a new Optical Frequency Comb (OFC) generation scheme. The program structure is simple, easy to be controlled and the output noise is low. We conducted a theoretical analysis on the principle scheme and did research on the simulation with software of Optisystem7.0. The simulation results show that: we generated a flat optical frequency comb, whose center wavelength and line spacing can be tuned independently. Also,the effective bandwidth of the OFC is 3.8 nm, its line spacing is 5 GHz and number of lines is 105.%利用电吸收调制器(Electro-absorption Modulator, EAM)和频率调制器(Frequency Modulator, FM)的级联结构,提出了一种新型光学频率梳(Optical Frequency Comb, OFC)产生方案。本方案结构简单、易于控制,输出噪声低。对提出的方案原理进行了理论分析,并利用Optisystem7.0软件进行仿真研究。仿真结果表明:产生了平坦的光学频率梳,其中心波长和谱线间距均可独立调谐。产生的OFC有效带宽为3.8 nm,得到了谱线间距为5 GHz的105条谱线。

  7. High performance fluoride optical coatings for DUV optics

    Science.gov (United States)

    Zhang, Lichao; Cai, Xikun

    2014-08-01

    In deep ultraviolet region that typical applications are used on the ArF wavelength, coated optics should meet stringent requirements of optical systems. To meet these requirements, systematical researches are carried out on fabrication and characterization methods of fluoride coatings. First, by optimizing of deposition processes, dense coatings with the refractive index of ~1.7 for LaF3 and ~1.4 for MgF2, together with extinction coefficients of ~2×10-4 on 193nm were realized. The transmission of AR coating for 193nm achieved by using optimized deposition techniques is 99.8%. Second, a method of designing shadowing masks was developed to solve the problem of correcting coating thickness distributions for complex DUV systems. By using the method, the thickness distribution error specification of 3% PV has been achieved on substrates with ~300mm diameters and large curvatures. Finally, the laser calorimetry method is used to evaluate the laser radiation stability of fluoride coatings. It is turned out that the damage coefficients of fluoride coatings, which are defined as the values of unrecoverable increase of the absorption during the laser irradiation process, are much lower than that of fused silica substrates. The above progresses could further support the realization of high performance DUV optical systems.

  8. Optimal resource allocation in random networks with transportation bandwidths

    Science.gov (United States)

    Yeung, C. H.; Wong, K. Y. Michael

    2009-03-01

    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Recursive relations from the Bethe approximation are converted into useful algorithms. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterized by a profile of homogenized resource allocation similar to the Maxwell construction.

  9. High capacity optical links for datacentre connectivity

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Usuga, Mario; Vegas Olmos, Juan José

    There is a timely and growing demand for high capacity optical data transport solutions to provide connectivity inside data centres and between data centres located at different geographical locations. The requirements for reach are in the order of 2 km for intra-datacentre and up to 100 km for i...

  10. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Fitzpatrick, Conor; Meloni, Simone; Boettcher, Thomas Julian; Whitehead, Mark Peter; Dziurda, Agnieszka; Vesterinen, Mika Anton

    2017-01-01

    This document describes a selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run 2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm decays, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to distribute the output bandwidth among different physics channels, maximising the efficiency for useful physics events. The performance is then studied as a function of the available output bandwidth.

  11. Topology Optimization for Photonic Crystal Waveguide Intersection with Wide and Flat Bandwidths in Ultra-Fast All-Optical Switch (PC-SMZ)

    DEFF Research Database (Denmark)

    Sugimoto, Y; Watanabe, Y; Ikeda, N

    2006-01-01

    Numerical and experimental studies on the photonic crystal waveguide intersection based on the topology optimization design method are reported and the effectiveness is shown by achieving high transmission spectra with low crosstalk for the straightforward beam-propagation line....

  12. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    Science.gov (United States)

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  13. Simulation and Analysis of Router Buffer Requirements in High Bandwidth-Delay Networks%高带宽延迟网络中路由器缓存需求的仿真分析

    Institute of Scientific and Technical Information of China (English)

    王建新; 李春泉; 黄家玮

    2009-01-01

    In order to meet the requirement for router buffer size in high bandwidth-delay networks, five typical buffer-sizing methods based on the TCP model are analyzed via the NS2 simulation, and the effects of various high-speed TCP protocols and active queue management (AQM) mechanisms on the buffer-sizing methods in high bandwidth-delay networks are discussed in detail. Simulated results show that: (1) the buffer-sizing methods based on different assumptions adapt to different network environments; (2) the validity of the existing cache mechanisms depends on the ratio of the bandwidth-delay product to the flow number; and (3) when high-speed TCP protocols and AQM mechanisms are used in high bandwidth-delay networks, the buffer size is greatly reduced.%文中针对当今高带宽延迟网络下路由器缓存大小的需求问题,通过NS2仿真实验,对基于TCP协议模型的5种典型的缓存设置方法展开研究,着重分析了在高带宽延迟网络下各种高速TCP协议和主动队列管理(AQM)机制对各种缓存设置方法的影响.仿真实验表明:基于不同假设前提的缓存设置方法适应于不同的网络负载环境;缓存机制的选择取决于网络带宽延迟乘积与流数的比值;在高带宽延迟网络下,当采用高速TCP协议和AQM机制时,缓存需求可以大大减小.

  14. Hybrid optical antenna with high directivity gain.

    Science.gov (United States)

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

  15. High-precision Distribution of Highly-stable Optical Pulse Trains with Sub-10-fs Timing Jitter

    CERN Document Server

    Ning, B; Hou, D; Wu, J T; Li, Z B; Zhao, J Y

    2014-01-01

    High-precision optical pulse trains distribution via fibre links has made huge impacts in many fields. In most published works, the accuracies are still fundamentally limited by some unavoidable noises, such as thermal and shot noise from conventional photodiodes, thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system by using highly-precision phase detector to overcome the limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors to realize optical-electrical conversion and phase measurements, for suppressing the noises and achieving ultra-high accuracy. A 10-km fibre link distribution experiment shows our system provides a residual instability at the level of 4.6*10-15@1-s and 6.1*10-18@10000-s, with an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 KHz. This low instability and timing jitter makes it possible that our system can be used in the optical clock distri...

  16. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  17. Management of dispersion, nonlinearity and polarization-dependent effects in high-speed reconfigurable WDM fiber optic communication systems

    Science.gov (United States)

    Luo, Ting

    As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical

  18. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    Science.gov (United States)

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  19. Confocal microscopy via multimode fibers: fluorescence bandwidth

    Science.gov (United States)

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2016-03-01

    We recently described a method for confocal reflection imaging through fibers, as a way to increase contrast when imaging unstained biological specimens. Using a transmission matrix, focused spots can be created at the distal end of a fiber. The backscattered field coming back from the sample can be filtered using optical correlation to obtain spatial selectivity in the detection. In this proceedings article, we briefly review the working principle of this method, and we discuss how the scheme could be adapted to confocal fluorescence imaging. In particular, we show simulations of the achievable detection bandwidth when using step-index multimode fibers as imaging devices.

  20. High-throughput Imaging of Self-luminous Objects through a Single Optical Fiber

    CERN Document Server

    Barankov, Roman

    2015-01-01

    Imaging through a single optical fiber offers attractive possibilities in many applications such as microendoscopy or remote sensing. However, the direct transmission of an image through an optical fiber is difficult because spatial information is scrambled upon propagation. We demonstrate an image transmission strategy where spatial information is first converted to spectral information. Our strategy is based on a principle of spread-spectrum encoding, borrowed from wireless communications, wherein object pixels are converted into distinct spectral codes that span the full bandwidth of the object spectrum. Image recovery is performed by numerical inversion of the detected spectrum at the fiber output. We provide a simple demonstration of spread-spectrum encoding using Fabry-Perot etalons. Our technique enables the 2D imaging of self-luminous (i.e. incoherent) objects with high throughput in principle independent of pixel number. Moreover, it is insensitive to fiber bending, contains no moving parts, and open...

  1. Bandwidth enhancement of MgZnO-based MSM photodetectors by inductive gain peaking

    Science.gov (United States)

    Wang, Ping; Guo, Xinlu; Guo, Lixin; He, Jingfang; Yang, Yintang; Zhang, Zhiyong

    2016-08-01

    For high-speed optical communication applications, the bandwidth of photodetector would be a key limitation. In this work, the bandwidth property of MgZnO-based Metal-Semiconductor-Metal (MSM) photodetector considering RC and transit limitations is investigated on the basis of the series and enhanced gain peaked photodetector circuits proposed by us with different finger widths. To ensure the accuracy of parameters, the high-filed transportation characteristics of MgZnO are investigated by a three-valley ensemble Monte Carlo simulation combined with first principle calculations. The results show that the gain peaking technique, especially the enhanced gain peaking, can improve the bandwidth of MgZnO MSM photodetector to a maximum value of 61.28 GHz, corresponding to a bandwidth enhancement of 49% without undesired effects. Three-dimensional electromagnetic computation is further performed to design and simulate the on-chip-inductor. The value of the simulated inductor is approximately 0.0529 nH, which is in good agreement with the designed value of 0.0569 nH. This work benefits the development of high speed MgZnO MSM photodetector.

  2. Staged optimization algorithms based MAC dynamic bandwidth allocation for OFDMA-PON

    Science.gov (United States)

    Liu, Yafan; Qian, Chen; Cao, Bingyao; Dun, Han; Shi, Yan; Zou, Junni; Lin, Rujian; Wang, Min

    2016-06-01

    Orthogonal frequency division multiple access passive optical network (OFDMA-PON) has being considered as a promising solution for next generation PONs due to its high spectral efficiency and flexible bandwidth allocation scheme. In order to take full advantage of these merits of OFDMA-PON, a high-efficiency medium access control (MAC) dynamic bandwidth allocation (DBA) scheme is needed. In this paper, we propose two DBA algorithms which can act on two different stages of a resource allocation process. To achieve higher bandwidth utilization and ensure the equity of ONUs, we propose a DBA algorithm based on frame structure for the stage of physical layer mapping. Targeting the global quality of service (QoS) of OFDMA-PON, we propose a full-range DBA algorithm with service level agreement (SLA) and class of service (CoS) for the stage of bandwidth allocation arbitration. The performance of the proposed MAC DBA scheme containing these two algorithms is evaluated using numerical simulations. Simulations of a 15 Gbps network with 1024 sub-carriers and 32 ONUs demonstrate the maximum network throughput of 14.87 Gbps and the maximum packet delay of 1.45 ms for the highest priority CoS under high load condition.

  3. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.

    Science.gov (United States)

    Wang, Hui; Jenkins, Michael W; Rollins, Andrew M

    2008-04-01

    We demonstrate a compact, inexpensive, and reliable fiber-coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart.

  4. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography

    Science.gov (United States)

    Wang, Hui; Jenkins, Michael W.; Rollins, Andrew M.

    2013-01-01

    We demonstrate a compact, inexpensive, and reliable fiber–coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart. PMID:24347689

  5. High-speed tunable and fixed-wavelength VCSELs for short-reach optical links and interconnects

    Science.gov (United States)

    Larsson, A.; Gustavsson, J. S.; Haglund, Å.; Kögel, B.; Bengtsson, J.; Westbergh, P.; Haglund, E.; Baveja, P. P.

    2012-03-01

    This paper presents a review of recent work on high speed tunable and fixed wavelength vertical cavity surface emitting lasers (VCSELs) at Chalmers University of Technology. All VCSELs are GaAs-based, employ an oxide aperture for current and/or optical confinement, and emit around 850 nm. With proper active region and cavity designs, and techniques for reducing capacitance and thermal impedance, our fixed wavelength VCSELs have reached a modulation bandwidth of 23 GHz, which has enabled error-free 40 Gbps back-to-back transmission and 35 Gbps transmission over 100 m of multimode fiber. A MEMS-technology for wafer scale integration of tunable high speed VCSELs has also been developed. A tuning range of 24 nm and a modulation bandwidth of 6 GHz have been achieved, enabling error-free back-to-back transmission at 5 Gbps.

  6. Bidirectional all-optical switches based on highly nonlinear optical fibers

    Science.gov (United States)

    Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi

    2017-05-01

    All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.

  7. High Performance Graded Index Polymer Optical Fibers

    Science.gov (United States)

    1998-05-11

    tested have NAs of near 0.2, they are underfilled by the input light. An underfilled launch condition tends to produce higher bandwidth than an...include extrinsic features such as micro bends, diameter variations, micro voids and cracks in addition to intrinsic static and dynamic density

  8. High-resolution CT of lesions of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Peyster, R.G.; Hoover, E.D.; Hershey, B.L.; Haskin, M.E.

    1983-05-01

    The optic nerves are well demonstrated by high-resolution computed tomography. Involvement of the optic nerve by optic gliomas and optic nerve sheath meningiomas is well known. However, nonneoplastic processes such as increased intracranial pressure, optic neuritis, Grave ophthalmopathy, and orbital pseudotumor may also alter the appearance of the optic nerve/sheath on computed tomography. Certain clinical and computed tomographic features permit distinction of these nonneoplastic tumefactions from tumors.

  9. Modulation bandwidth enhancement of white-LED-based visible light communications using electrical equalizations

    Science.gov (United States)

    Kwon, D. H.; Yang, S. H.; Han, S. K.

    2015-01-01

    Utilizing the modulation capability of LEDs, there have been many studies about convergence technology to combine illumination and communication. The visible light communication (VLC) system has several advantages such as high security, immunity to RF interference and lower additional cost than comparing to LEDs just for illumination. However, modulation bandwidth of LEDs is not enough for various wireless communication systems. Since the commercial LEDs are designed only for lighting systems; we need an effort to enhance the modulation characteristics of LEDs. When the area of LED is increased, internal junction capacitance of LED is also increased depending on the area of LEDs and then the RC delay time of LED is increased. As a result, the modulation bandwidth of LEDs is limited by large RC delay time. In addition, frequency response of commercial white LED is degraded by the slow response time of the used yellow phosphor. Thus, modulation bandwidth of VLC system is limited to several MHz which is not enough to accommodate high data rate transmission. In this paper, we designed equalization circuit using RLC component for compensating the white LEDs frequency response. Also, we used blue filtering to improve frequency response of white LEDs, which is degraded by yellow phosphorescent component. Power loss by optical filtering and distance is compensated by convex lens. Consequently, we extend the modulation bandwidth of VLC system from 3 MHz to more than 180 MHz, and it allows NRZ-OOK data transmission up to 400 Mbps at 50 cm.

  10. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  11. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... for cooling, the GHz-bandwidth upconverter can readily be extended to the mid-IR (2 - 5 mu m) as an alternative to cooled low-bandgap semiconductor detectors for applications such as high-speed free-space optical communications. (C) 2017 Optical Society of America...

  12. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  13. 高灵敏度微小卫星可变带宽接收机设计%Design of variable loop bandwidth high sensitivity micro-satellite receiver

    Institute of Scientific and Technical Information of China (English)

    张朝杰; 金小军; 杨伟君; 金仲和

    2011-01-01

    针对微小卫星发射功率低、天线增益小的特点对星载测控应答机提出的高接收灵敏度及高动态范围要求,研究卫星接收机的实现方法.提出一种基于正交欠采样技术及全数字载波恢复环的可变带宽卫星接收机结构.在全数字载波恢复环的实现中,通过相干自动增益控制(AGC)来控制环路带宽,使得在高信噪比下的环路带宽增大,从而获得更佳的跟踪性能;在低信噪比下,降低环路带宽使得接收机有更高的接收灵敏度.经实验测试可知,在250Hz环路带宽下,接收灵敏度为-144 dBm,动态范围达到80 dB以上.%The characteristic of low transmit power and antenna gain in micro-satellite requires high receiver sensitivity and high dynamic range for board transponders. A variable loop bandwidth receiver architecture based on all digital carrier recovery loop was presented using I/Q sub-sampling technique. A coherent automatic gain control (AGC) was used in order to control the loop bandwidth. The loop bandwidth was expanded to achieve better tracking performance at high signal to noise ratio; the loop bandwidth was decreased to realize high receiver sensitivity at low signal to noise ratio. -144 dBm receiver sensitivity was achieved and the dynamic range was better than 80 dB under the condition of 250 Hz loop bandwidth.

  14. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI, NZ 96720-2700 (United States); Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit, E-mail: baranec@hawaii.edu [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India)

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  15. Optics of high-performance electron microscopes.

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  16. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  17. High-efficiency Autonomous Laser Adaptive Optics

    CERN Document Server

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  18. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  19. Recent Approaches for Broadening the Spectral Bandwidth in Resonant Cavity Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Gun Wu Ju

    2015-01-01

    Full Text Available Resonant cavity optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs, resonant cavity enhanced photodetectors (RCEPDs, and electroabsorption modulators (EAMs, show improved performance over their predecessors by placing the active device structure inside a resonant cavity. The effect of the optical cavity, which allows wavelength selectivity and enhancement of the optical field due to resonance, allows the devices to be made thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. However, the narrow spectral bandwidth significantly reduces operating tolerances, which leads to severe problems in applications such as optical communication, imaging, and biosensing. Recently, in order to overcome such drawbacks and/or to accomplish multiple functionalities, several approaches for broadening the spectral bandwidth in resonant cavity optoelectronic devices have been extensively studied. This paper reviews the recent progress in techniques for wide spectral bandwidth that include a coupled microcavity, asymmetric tandem quantum wells, and high index contrast distributed Bragg-reflectors. This review will describe design guidelines for specific devices together with experimental considerations in practical applications.

  20. A digital calibration technique for an ultra high-speed wide-bandwidth folding and interpolating analog-to-digital converter in 0.18-μm CMOS technology*

    Institute of Scientific and Technical Information of China (English)

    Yu Jinshan; Zhang Ruitao; Zhang Zhengping; Wang Yonglu; Zhu Can; Zhang Lei; Yu Zhou; Han Yong

    2011-01-01

    A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital converter in 0.18-μm CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input.

  1. High-Power Amplifier Compatible Internally Sensed Optical Phased Array for Space Debris Tracking and Maneuvering

    Science.gov (United States)

    Roberts, L.; Francis, S.; Sibley, P.; Ward, R.; Smith, C.; McClelland, D.; Shaddock, D.

    2016-09-01

    Optical phased arrays (OPAs) provide a way to scale optical power beyond the capabilities of conventional CW lasers via coherent beam combination. By stabilising the relative output phase of multiple spatially separate lasers, OPAs form a coherent optical wavefront in the far field. Since the phase of each laser can be controlled independently, OPAs also have the ability to manipulate the distribution of optical power in the far field, and therefore may provide the capability to compensate for atmospheric turbulence. Combined with their inherent scalability and high power handling capabilities, OPAs are a promising technology for CW space debris ranging and manoeuvring. The OPA presented here is unique in its ability to sense the phase of each laser internally, without requiring any external sampling optics between it and the telescope. This allows the internally sensed OPA to be constructed entirely within fibre, utilising high-power fiber amplifiers to scale optical power beyond the limits of any conventional single lasers. The total power that can be delivered by each emitter in the OPA is limited only by the onset of stimulated Brillouin scattering, a non-linear effect that clamps the amount of power that can be delivered through a fiber waveguide. A three element internally sensed OPA developed at the Australian National University has been demonstrated to coherently combine three commercial 15 Watt fiber amplifiers with an output phase stability of one 200th of a wavelength. We have also demonstrated the ability to dynamically manipulate the distribution of optical power in the far-field at a bandwidth of up to 10 kHz. Since the OPA's control system is implemented using field-programmable gate-array technology, the system may be scaled beyond 100 emitters, potentially reaching the kilowatt level optical powers required to perturb the orbit of space debris.

  2. Fabrication and tolerances of optics for high concentration photovoltaics

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Ahmadpanaih, Hamed; Mendes Lopes, Joao; Zamora Herranz, Pablo

    2014-01-01

    High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.

  3. Black Holes, Bandwidths and Beethoven

    CERN Document Server

    Kempf, A

    2000-01-01

    It is usually believed that a function whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component. This is in fact not the case, as Aharonov, Berry and others drastically demonstrated with explicit counter examples, so-called superoscillations. The claim is that even the recording of an entire Beethoven symphony can occur as part of a signal with 1Hz bandwidth. Superoscillations have been suggested to account e.g. for transplanckian frequencies of black hole radiation. Here, we give an exact proof for generic superoscillations. Namely, we show that for every fixed bandwidth there exist functions which pass through any finite number of arbitrarily prespecified points. Further, we show that the behavior of bandlimited functions can be reliably characterized through an uncertainty relation for the standard deviation of the signals' samples taken at the Nyquist rate. This uncertainty relation generalizes to time-varying bandwidths.

  4. Using very large scale integrated optics (VLSIO) to create high-complexity optoelectronic components

    Science.gov (United States)

    West, Lawrence C.; Roberts, Charles W.; Piscani, Emil C.; Dubey, Madan; Jones, Kenneth A.; McLane, George F.

    1996-01-01

    Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of Very Large Scale Integrated Optics, with over 50,000 high speed logic gates per square centimeter, is a new class of Ultra High Confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid- infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently interconnected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low-cost 3D packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components will be presented.

  5. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  6. Efficiently parallelized modeling of tightly focused, large bandwidth laser pulses

    CERN Document Server

    Dumont, Joey; Lefebvre, Catherine; Gagnon, Denis; MacLean, Steve

    2016-01-01

    The Stratton-Chu integral representation of electromagnetic fields is used to study the spatio-temporal properties of large bandwidth laser pulses focused by high numerical aperture mirrors. We review the formal aspects of the derivation of diffraction integrals from the Stratton-Chu representation and discuss the use of the Hadamard finite part in the derivation of the physical optics approximation. By analyzing the formulation we show that, for the specific case of a parabolic mirror, the integrands involved in the description of the reflected field near the focal spot do not possess the strong oscillations characteristic of diffraction integrals. Consequently, the integrals can be evaluated with simple and efficient quadrature methods rather than with specialized, more costly approaches. We report on the development of an efficiently parallelized algorithm that evaluates the Stratton-Chu diffraction integrals for incident fields of arbitrary temporal and spatial dependence. We use our method to show that t...

  7. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  8. High data rate optical transceiver terminal

    Science.gov (United States)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  9. Upgrade trigger: Bandwidth strategy proposal

    CERN Document Server

    Boettcher, Thomas Julian; Meloni, Simone; Whitehead, Mark Peter; Williams, Mark Richard James

    2017-01-01

    This document describes a proposed selection strategy for the upgrade trigger using charm signals as a benchmark. The Upgrade trigger uses a 'Run2-like' sequence consisting of a first and second stage, in between which the calibration and alignment is performed. The first stage, HLT1, uses an inclusive strategy to select beauty and charm, while the second stage uses offline-quality exclusive selections. A novel genetic algorithm-based bandwidth division is performed at the second stage to maximise the output of useful physics events, and a range of possible signal efficiencies are presented as a function of the available bandwidth.

  10. Mining Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  11. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  12. High-Bandwidth AFM-Based Rheology Reveals that Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairment

    Science.gov (United States)

    Nia, Hadi Tavakoli; Bozchalooi, Iman S.; Li, Yang; Han, Lin; Hung, Han-Hwa; Frank, Eliot; Youcef-Toumi, Kamal; Ortiz, Christine; Grodzinsky, Alan

    2013-01-01

    Utilizing a newly developed atomic-force-microscopy-based wide-frequency rheology system, we measured the dynamic nanomechanical behavior of normal and glycosaminoglycan (GAG)-depleted cartilage, the latter representing matrix degradation that occurs at the earliest stages of osteoarthritis. We observed unique variations in the frequency-dependent stiffness and hydraulic permeability of cartilage in the 1 Hz-to-10 kHz range, a frequency range that is relevant to joint motions from normal ambulation to high-frequency impact loading. Measurement in this frequency range is well beyond the capabilities of typical commercial atomic force microscopes. We showed that the dynamic modulus of cartilage undergoes a dramatic alteration after GAG loss, even with the collagen network still intact: whereas the magnitude of the dynamic modulus decreased two- to threefold at higher frequencies, the peak frequency of the phase angle of the modulus (representing fluid-solid frictional dissipation) increased 15-fold from 55 Hz in normal cartilage to 800 Hz after GAG depletion. These results, based on a fibril-reinforced poroelastic finite-element model, demonstrated that GAG loss caused a dramatic increase in cartilage hydraulic permeability (up to 25-fold), suggesting that early osteoarthritic cartilage is more vulnerable to higher loading rates than to the conventionally studied “loading magnitude”. Thus, over the wide frequency range of joint motion during daily activities, hydraulic permeability appears the most sensitive marker of early tissue degradation. PMID:23561529

  13. Black holes, bandwidths and Beethoven

    Science.gov (United States)

    Kempf, Achim

    2000-04-01

    It is usually believed that a function φ(t) whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component ωmax. This is, in fact, not the case, as Aharonov, Berry, and others drastically demonstrated with explicit counterexamples, so-called superoscillations. It has been claimed that even the recording of an entire Beethoven symphony can occur as part of a signal with a 1 Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields. Their superoscillations have been suggested, for example, to resolve the trans-Planckian frequencies problem of black hole radiation. Here, we give an exact proof for generic superoscillations. Namely, we show that for every fixed bandwidth there exist functions that pass through any finite number of arbitrarily prespecified points. Further, we show that, in spite of the presence of superoscillations, the behavior of bandlimited functions can be characterized reliably, namely through an uncertainty relation: The standard deviation ΔT of samples φ(tn) taken at the Nyquist rate obeys ΔT>=1/4ωmax. This uncertainty relation generalizes to variable bandwidths. For ultraviolet regularized fields we identify the bandwidth as the in general spatially variable finite local density of degrees of freedom.

  14. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  15. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  16. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  17. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  18. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  19. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth

    Science.gov (United States)

    Pelusi, Mark; Luan, Feng; Vo, Trung D.; Lamont, Michael R. E.; Madden, Steven J.; Bulla, Douglas A.; Choi, Duk-Yong; Luther-Davies, Barry; Eggleton, Benjamin J.

    2009-03-01

    Signal processing at terahertz speeds calls for an enormous leap in bandwidth beyond the current capabilities of electronics, for which practical operation is currently limited to tens of gigahertz. This can be achieved through all-optical schemes making use of the ultrafast response of χ(3) nonlinear waveguides. Towards this objective, we have developed compact planar rib waveguides based on As2S3 glass, providing a virtual `lumped' high nonlinearity in a monolithic platform capable of integrating multiple functions. Here, we apply it to demonstrate, for the first time, a photonic-chip-based, all-optical, radio-frequency spectrum analyser with the performance advantages of distortion-free, broad measurement bandwidth (>2.5 THz) and flexible wavelength operation (that is, colourless). The key to this is the waveguide's high optical nonlinearity and dispersion-shifted design. Using the device, we characterize high-bit-rate (320 Gb s-1) optical signals impaired by various distortions. The demonstrated ultrafast, broadband capability highlights the potential for integrated chip-based signal processing at bit rates approaching and beyond Tb s-1.

  20. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  1. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  2. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths...

  3. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-09-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.

  4. Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon

    Science.gov (United States)

    Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie

    2016-01-01

    Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796

  5. Electro-optic comb based real time ultra-high sensitivity phase noise measurement system for high frequency microwaves.

    Science.gov (United States)

    Kuse, N; Fermann, M E

    2017-06-06

    Recent progress in ultra low phase noise microwave generation indispensably depends on ultra low phase noise characterization systems. However, achieving high sensitivity currently relies on time consuming averaging via cross correlation, which sometimes even underestimates phase noise because of residual correlations. Moreover, extending high sensitivity phase noise measurements to microwaves beyond 10 GHz is very difficult because of the lack of suitable high frequency microwave components. In this work, we introduce a delayed self-heterodyne method in conjunction with sensitivity enhancement via the use of higher order comb modes from an electro-optic comb for ultra-high sensitivity phase noise measurements. The method obviates the need for any high frequency RF components and has a frequency measurement range limited only by the bandwidth (100 GHz) of current electro-optic modulators. The estimated noise floor is as low as -133 dBc/Hz, -155 dBc/Hz, -170 dBc/Hz and -171 dBc/Hz without cross correlation at 1 kHz, 10 kHz, 100 kHz and 1 MHz Fourier offset frequency for a 10 GHz carrier, respectively. Moreover, since no cross correlation is necessary, RF oscillator phase noise can be directly suppressed via feedback up to 100 kHz frequency offset.

  6. High nonlinear optical anisotropy of urea nanofibers

    Science.gov (United States)

    Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.

    2010-07-01

    Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.

  7. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz.......We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  8. Black Holes, Bandwidths and Beethoven

    OpenAIRE

    Kempf, A.

    1999-01-01

    It is usually believed that a function whose Fourier spectrum is bounded can vary at most as fast as its highest frequency component. This is in fact not the case, as Aharonov, Berry and others drastically demonstrated with explicit counter examples, so-called superoscillations. It has been claimed that even the recording of an entire Beethoven symphony can occur as part of a signal with 1Hz bandwidth. Bandlimited functions also occur as ultraviolet regularized fields. Their superoscillations...

  9. Fast, high-precision optical polarization synthesizer for ultracold-atom experiments

    CERN Document Server

    Robens, Carsten; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2016-01-01

    We propose a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists in superposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and amplitude of each light field are individually controlled. To assess the precision of the synthesized polarization states, we characterize static spatial variations of the polarization over the wavefront, as well as the noise spectral density of temporal fluctuations. We find that static polarization distortions limit the extinction ratio to $2\\times 10^{-5}$, corresponding to a 0.01% reduction of the degree of polarization (DOP). We also obtain that temporal fluctuations give rise to a $0.2^\\circ$ uncertainty in the state of polarization (SOP). We recently demonstrated an application of the polarization synthesizer (Robens et al., arXiv:1608.02410) to create two fully independent, controllable optical lattices, which trap atoms depending on...

  10. Utility-based bandwidth allocation algorithm for heterogeneous wireless networks

    Institute of Scientific and Technical Information of China (English)

    CHAI Rong; WANG XiuJuan; CHEN QianBin; SVENSSON Tommy

    2013-01-01

    In next generation wireless network (NGWN), mobile users are capable of connecting to the core network through various heterogeneous wireless access networks, such as cellular network, wireless metropolitan area network (WMAN), wireless local area network (WLAN), and ad hoc network. NGWN is expected to provide high-bandwidth connectivity with guaranteed quality-of-service to mobile users in a seamless manner; however, this desired function demands seamless coordination of the heterogeneous radio access network (RAN) technologies. In recent years, some researches have been conducted to design radio resource management (RRM) architectures and algorithms for NGWN; however, few studies stress the problem of joint network performance optimization, which is an essential goal for a cooperative service providing scenario. Furthermore, while some authors consider the competition among the service providers, the QoS requirements of users and the resource competition within access networks are not fully considered. In this paper, we present an interworking integrated network architecture, which is responsible for monitoring the status information of different radio access technologies (RATs) and executing the resource allocation algorithm. Within this architecture, the problem of joint bandwidth allocation for heterogeneous integrated networks is formulated based on utility function theory and bankruptcy game theory. The proposed bandwidth allocation scheme comprises two successive stages, i.e., service bandwidth allocation and user bandwidth allocation. At the service bandwidth allocation stage, the optimal amount of bandwidth for different types of services in each network is allocated based on the criterion of joint utility maximization. At the user bandwidth allocation stage, the service bandwidth in each network is optimally allocated among users in the network according to bankruptcy game theory. Numerical results demonstrate the efficiency of

  11. A hybrid OFDM-TDM architecture with decentralized dynamic bandwidth allocation for PONs.

    Science.gov (United States)

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand.

  12. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Science.gov (United States)

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  13. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    Science.gov (United States)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  14. Material and Optical Design Rules for High Performance Luminescent Solar Concentrators

    Science.gov (United States)

    Bronstein, Noah Dylan

    This dissertation will highlight a path to achieve high photovoltaic conversion efficiency in luminescent solar concentrators, devices which absorb sunlight with a luminescent dye and then re-emit it into a waveguide where it is ultimately collected by a photovoltaic cell. Luminescent concentrators have been studied for more than three decades as potential low-cost but not high efficiency photovoltaics. Astute application of the blackbody radiation law indicates that photonic design is necessary to achieve high efficiency: a reflective filter must be used to trap luminescence at all angles while allowing higher energy photons to pass through. In addition, recent advances in the synthesis of colloidal nanomaterials have created the possibility for lumophores with broad absorption spectra, narrow-bandwidth emission, high luminescence quantum yield, tunable Stokes shifts and tunable Stokes ratios. Together, these factors allow luminescent solar concentrators to achieve the optical characteristics necessary for high efficiency. We have fabricated and tested the first generation of these devices. Our experiments demonstrate that the application of carefully matched photonic mirrors and luminescent quantum dots can allow luminescent concentration factors to reach record values while maintaining high photon collection efficiency. Finally, the photonic mirror dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon collection over distances much longer than the scattering length of the waveguide. After demonstrating the possibility for high performance, we theoretically explore the efficacy of luminescent concentrators with dielectric reflectors as the high-bandgap top-junctions in two-junction devices. Simple thermodynamic calculations indicate that this approach can be nearly as good as a traditional vertically stacked tandem. The major barriers to such a device are the optical design of narrow-bandwidth, angle

  15. Experimental observation of optical differentiation and optical Hilbert transformation using a single SOI microdisk chip

    CERN Document Server

    Yang, Ting; Liu, Li; Liao, Shasha; Tan, Sisi; Shi, Lei; Gao, Dingshan; Zhang, Xinliang

    2013-01-01

    Optical differentiation and optical Hilbert transformation play important roles in communications, computing, information processing and signal analysis in optical domain which offering huge bandwidth. Meanwhile, silicon-based photonic integrated circuits are preferable in all-optical signal processing due to their intrinsic advantages of low power consumption, compact footprint and ultra-high speed. In this study, we analyze the interrelation between first-order optical differentiation and optical Hilbert transformation and then experimentally demonstrate a feasible integrated scheme which can simultaneously function as first-order optical differentiation and optical Hilbert transformation based on a single microdisk resonator. This finding may motivate the development of integrated optical signal processors.

  16. Cascaded passive silicon microrings for large bandwidth slow light device

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuntao; Hu Yingtao; Xiao Xi; Li Zhiyong; Yu Yude; Yu Jinzhong, E-mail: ytli@semi.ac.cn [State Key Laboratory of integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 (China)

    2011-02-01

    Slow light devices have important applications in the areas of data buffering, signal processing, and phased array antenna. Cascaded microring resonators structure can obtain large delay and also enhance the bandwidth, which was considered as a potential approach for future on-chip optical buffer. In this paper, we demonstrated a large bandwidth slow light device using cascaded Silicon-on-insulator (SOI) based microring resonators. With carefully designed the gap between the bus and the ring waveguides and the distances between the adjacent rings, a 57 ps group delay was observed and 83 Gbps maximum allowable bit rate is suggested according the measured 3 dB spectral bandwidth in the 8-stage cascaded microrings.

  17. A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs

    Science.gov (United States)

    Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng

    2011-12-01

    With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.

  18. Algorithms and Requirements for Measuring Network Bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guojun

    2002-12-08

    This report unveils new algorithms for actively measuring (not estimating) available bandwidths with very low intrusion, computing cross traffic, thus estimating the physical bandwidth, provides mathematical proof that the algorithms are accurate, and addresses conditions, requirements, and limitations for new and existing algorithms for measuring network bandwidths. The paper also discusses a number of important terminologies and issues for network bandwidth measurement, and introduces a fundamental parameter -Maximum Burst Size that is critical for implementing algorithms based on multiple packets.

  19. The design of space optical communications terminal with high efficient

    Science.gov (United States)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  20. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  1. 47 CFR 2.202 - Bandwidths.

    Science.gov (United States)

    2010-10-01

    ... RULES AND REGULATIONS Emissions § 2.202 Bandwidths. (a) Occupied bandwidth. The frequency bandwidth such.... Facsimile Analogue facsimile by sub-carrier frequency modulation of a single-sideband emission with reduced...: 1980 Hz=1.98 kHz 1K98F3C 5. Composite Emissions (See Table III-B) Radio-relay system,...

  2. Dynamic bandwidth allocation in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewiez, J.; Ruepp, Sarah Renée; Dittmann, Lars

    2009-01-01

    Two Dynamic Bandwidth Allocation algorithms used for coordination of the available bandwidth between end users in a GPON network have been simulated using OPNET to determine and compare the performance, scalability and efficiency of status reporting and non status reporting dynamic bandwidth allo...

  3. Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses

    Science.gov (United States)

    Ahmad, H.; Faruki, M. J.; Razak, M. Z. A.; Tiu, Z. C.; Ismail, M. F.

    2017-02-01

    Pulses with picosecond pulse widths are highly desired for high precision laser applications. A mode-locked pulse laser utilizing evanescent field interaction of a tapered fiber with graphene oxide (GO) is demonstrated. A homemade fabrication stage was used to fabricate the tapered fiber using systematic flame brushing and a GO solution was used to coat the microfiber using optical deposition technique. Pulse trains with a pulse width of 3.46 ps, a 3 dB optical bandwidth of 11.82 nm and a repetition rate of 920 kHz were obtained. The system has substantial potential for many crucial medical, communication, bio processing, military, and industrial applications.

  4. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  5. RF and Optical Communications: A Comparison of High Data Rate Returns From Deep Space in the 2020 Timeframe

    Science.gov (United States)

    Williams, W. Dan; Collins, Michael; Boroson, Don M.; Lesh, James; Biswas, Abihijit; Orr, Richard; Schuchman, Leonard; Sands, O. Scott

    2007-01-01

    As NASA proceeds with plans for increased science data return and higher data transfer capacity for science missions, both RF and optical communications are viable candidates for significantly higher-rate communications from deep space to Earth. With the inherent advantages, smaller apertures and larger bandwidths, of optical communications, it is reasonable to expect that at some point in time and combination of increasing distance and data rate, the rapidly emerging optical capabilities would become more advantageous than the more mature and evolving RF techniques. This paper presents a comparison of the burden to a spacecraft by both RF and optical communications systems for data rates of 10, 100, and 1000 Mbps and large distances. Advanced technology for RF and optical communication systems have been considered for projecting capabilities in the 2020 timeframe. For the comparisons drawn, the optical and RF ground terminals were selected to be similar in cost. The RF system selected is composed of forty-five 12-meter antennas, whereas the selected optical system is equivalent to a 10-meter optical telescope. Potential differences in availability are disregarded since the focus of this study is on spacecraft mass and power burden for high-rate mission data, under the assumption that essential communications will be provided by low-rate, high availability RF. For both the RF and optical systems, the required EIRP, for a given data rate and a given distance, was achieved by a design that realized the lowest possible communications subsystem mass (power + aperture) consistent with achieving the lowest technology risk. A key conclusion of this paper is that optical communications has great potential for high data rates and distances of 2.67 AU and beyond, but requires R&D and flight demonstrations to prove out technologies.

  6. Optical Transmitter Terminal for Selective RF High Frequency Bans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposal work is to investigate the highly innovative conceptual design of an optical communication selective frequency transmitter terminal...

  7. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    Science.gov (United States)

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that…

  8. Optical prefiltering in subcarrier systems

    Science.gov (United States)

    Greenhalgh, Philip A.; Abel, Robin D.; Davies, Phillip A.

    1993-02-01

    Subcarrier multiplexing (SCM) is a convenient method of implementing multi-access in a lightwave system. Conventionally SCM receivers detect all channels using high speed optoelectronic components, each channel then being selected using heterodyne techniques in the electrical domain. Optical prefiltering is a novel technique where channel selection is accomplished optically. This method has the primary advantage that only a low bandwidth optical detector and receiver is needed to recover the baseband information.

  9. Highly Efficient Tabletop Optical Parametric Chirped Pulse Amplifier at 1 (micron)m

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I.; Ebbers, C.A.; Comaskey, B.J.; Bonner, R.A.; Morse, E.C.

    2001-12-04

    Optical parametric chirped pulse amplification (OPCPA) is a scalable technology, for ultrashort pulse amplification. Its major advantages include design simplicity, broad bandwidth, tunability, low B-integral, high contrast, and high beam quality. OPCPA is suitable both for scaling to high peak power as well as high average power. We describe the amplification of stretched 100 fs oscillator pulses in a three-stage OPCPA system pumped by a commercial, single-longitudinal-mode, Q-switched Nd:YAG laser. The stretched pulses were centered around 1054 nm with a FWHM bandwidth of 16.5 nm and had an energy of 0.5 nJ. Using our OPCPA system, we obtained an amplified pulse energy of up to 31 mJ at a 10 Hz repetition rate. The overall conversion efficiency from pump to signal is 6%, which is the highest efficiency obtained With a commercial tabletop pump laser to date. The overall conversion efficiency is limited due to the finite temporal overlap of the seed (3 ns) with respect to the duration of the pump (8.5 ns). Within the temporal window of the seed pulse the pump to signal conversion efficiency exceeds 20%. Recompression of the amplified signal was demonstrated to 310 fs, limited by the aberrations initially present in the low energy seed imparted by the pulse stretcher. The maximum gain in our OPCPA system is 6 x 10{sup 7}, obtained through single passing of 40 mm of beta-barium borate. We present data on the beam quality obtained from our system (M{sup 2}=1.1). This relatively simple system replaces a significantly more complex Ti:sapphire regenerative amplifier based CPA system used in the front end of a high energy short pulse laser. Future improvement will include obtaining shorter amplified pulses and higher average power.

  10. Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure.

    Science.gov (United States)

    Li, Xinkun; Jin, Peng; An, Qi; Wang, Zuocai; Lv, Xueqin; Wei, Heng; Wu, Jian; Wu, Ju; Wang, Zhanguo

    2012-05-21

    In this work, a high-power and broadband quantum dot superluminescent diode (QD-SLD) is achieved by using a two-section structure. The QD-SLD device consists of a tapered titled ridge waveguide section supplying for high optical gain and a straight titled ridge waveguide section to tune optical feedback from the rear facet of the device. The key point of our design is to achieve the wavelength-selective optical feedback to the emission of the QDs' ground state (GS) and 1st excited state (ES) by tuning the current densities injected in the straight titled section. With GS-dominant optical feedback under proper current-injection of the straight titled region, a high output power of 338 mW and a broad bandwidth of 65 nm is obtained simultaneously by the contribution associated to the QDs' GS and 1st ES emission.

  11. High Speed Fibre Optic Backbone LAN

    Science.gov (United States)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  12. Application of portable optical laboratory in high schools and colleges

    Science.gov (United States)

    Altshuler, Gregory B.; Belashenkov, Nickolai R.; Ermolaev, Vladimir S.; Inochkin, Mickle V.; Karasev, Vyatcheslav B.

    1995-10-01

    The present paper describes the experience of application of portable optical laboratory in optical practicum developed directly for training and demonstrations of basic optical laws and phenomena in high-schools, colleges and nontechnical universities all over Russia. The laboratory includes the portable optical platform with built-in laser and lamp sources, kit of optical components and software. These accessories provide the attractive and smart teaching in general optics during lectures, lessons and practice at schools and colleges. The portable optical laboratory provides 28 basic lab works and demonstrations in reflection, refraction, absorption and dispersion of light, interference, diffraction, polarization of light, image formation and waveguide propagation of light in optical fibers. Due to their interdependence one can teach and learn a whole course of general optics. The individual work of students and school children with optical kit stimulates and develops their creative abilities and experimental skills, as well increases the effectiveness of education. The kit is provided with optional elements for a number of extra experiments with holography, polarizing light propagation, simple optical devices etc. These extensions allow to modify the education process according to teacher's point of view. The conception of optical class-room based on portable optical laboratories is discussed. The effectiveness of individual and small-group training is analyzed.

  13. Characterization of Mn-modified Pb(Mg(13)Nb(23))O(3)-PbZrO(3)-PbTiO(3) single crystals for high power broad bandwidth transducers.

    Science.gov (United States)

    Zhang, Shujun; Lee, Sung-Min; Kim, Dong-Ho; Lee, Ho-Yong; Shrout, Thomas R

    2008-09-22

    The effect of MnO(2) addition on the dielectric and piezoelectric properties of 0.4Pb(Mg(13)Nb(23))O(3)-0.25PbZrO(3)-0.35PbTiO(3) single crystals was investigated. Analogous to acceptor doping in "hard" Pb(Zr,Ti)O(3) based polycrystalline materials, the Mn doped crystals exhibited enhanced mechanical Q ( approximately 1050) with low dielectric loss ( approximately 0.2%), while maintaining ultrahigh electromechanical coupling k(33)>90%, inherent in domain engineered single crystals. The effect of acceptor doping was also evident in the build-up of an internal bias (E(i) approximately 1.6 kVcm), shown by a horizontal offset in the polarization-field behavior. Together with the relatively high usage temperature (T(R-T) approximately 140 degrees C), the Mn doped crystals are promising candidates for high power and broad bandwidth transducers.

  14. Integrated optical devices for photonics instrumentation systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.M.; Lafaw, D.A.; Lowry, M.; Tindall, W.

    1990-01-01

    We discuss the design, fabrication, and evaluation of high speed integrated optical devices for application to photonics instrumentation systems. Specifically, we have demonstrated integrated optical devices with bandwidths in excess of 25 GHz and implemented these devices in single-shot, streak camera based recording schemes. 5 refs., 6 figs.

  15. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  16. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal

    Institute of Scientific and Technical Information of China (English)

    Meizhi Sun; Lailin Ji; Qunyu Bi; Nannan Wang; Jun Kang; Xinglong Xie; Zunqi Lin

    2011-01-01

    A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm.A novel crystal,yttrium calcium oxyborate YCa4O(BO3)3 (YCOB),is utilized in the power amplification stage of optical parametric amplification (OPA).Noncollinear phase matching parameters in the xoz principle plane of YCOB,compared with those in BBO and DKDP,are analyzed by numerical simulation.The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to several joules with a gain bandwidth exceeding 100 nm.This can be used to gain a high intensity pulse of ~10 fs after the compressor.The amplification of the femtosecond pulse is an important branch of ultra-intense laser technology,with Ti:sapphire as the medium for its large gain bandwidth.From the perspective of technical features and applications,such femtosecond pulses are used to study high field physics and other related areas in ultrashort time[1,2];however,the pursuit of higher energy femtosecond pulse should not be abandoned.Optical parametric chirped pulse amplification (OPCPA) has been successfully used in the front end of high intensity lasers[3-8],indicating the possibility of femtosecond pulse amplification.This has been verified by an increasing number of fine crystals being invented,such as YCa4O(BO3)3 (YCOB)[9-12].%A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm. A novel crystal, yttrium calcium oxyborate YCa4O(BO3)3 (YCOB), is utilized in the power amplification stage of optical parametric amplification (OPA). Noncollinear phase matching parameters in the xoz principle plane of YCOB, compared with those in BBO and DKDP, are analyzed by numerical simulation. The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to

  17. Miniaturized High Performance Optical Gyroscope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new approach for to the design and fabrication of miniaturized Interferometric Fiber Optical Gyroscope (FOG) that enables the production of smaller IRU...

  18. Highly Sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulate in the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 and a 3 dB bandwidth of ~10 MHz.

  19. Improvement of CBQ for bandwidth reclamation of RPR

    Science.gov (United States)

    Huang, Benxiong; Wang, Xiaoling; Xu, Ming; Shi, Lili

    2004-04-01

    The Resilient Packet Ring (RPR) IEEE 802.17 standard is under development as a new high-speed backbone technology for metropolitan area networks (MAN) [1]. Bandwidth reclamation has been concerned in RPR specifications from draft 0.1 to draft 2.4. According to specifications, allocated bandwidth can be reused, or reclaimed, by a lower priority service class whenever the reclamation does not effect the service guarantees of any equal or higher priority classes on the local station or on any other station on the ring [2]. The class-based queuing (CBQ) algorithm is proposed to implement link-sharing [3]. A hierarchical link-sharing structure can be used to specify guidelines for the distribution of 'excess" bandwidth [4] and it can rate-limit all classes to their allocated bandwidth. There is some sameness between the link-sharing of CBQ and bandwidth reclamation of RPR. The CBQ is a mature technology while RPR is a new technology. Given CBQ improvement and full use so as to make its thought suitable for bandwidth reclamation of RPR is the focus of our work. In this paper, we present the solution that can solve the reclamation problem, which proves to be effective by simulation.

  20. Efficiently parallelized modeling of tightly focused, large bandwidth laser pulses

    Science.gov (United States)

    Dumont, Joey; Fillion-Gourdeau, François; Lefebvre, Catherine; Gagnon, Denis; MacLean, Steve

    2017-02-01

    The Stratton-Chu integral representation of electromagnetic fields is used to study the spatio-temporal properties of large bandwidth laser pulses focused by high numerical aperture mirrors. We review the formal aspects of the derivation of diffraction integrals from the Stratton-Chu representation and discuss the use of the Hadamard finite part in the derivation of the physical optics approximation. By analyzing the formulation we show that, for the specific case of a parabolic mirror, the integrands involved in the description of the reflected field near the focal spot do not possess the strong oscillations characteristic of diffraction integrals. Consequently, the integrals can be evaluated with simple and efficient quadrature methods rather than with specialized, more costly approaches. We report on the development of an efficiently parallelized algorithm that evaluates the Stratton-Chu diffraction integrals for incident fields of arbitrary temporal and spatial dependence. This method has the advantage that its input is the unfocused field coming from the laser chain, which is experimentally known with high accuracy. We use our method to show that the reflection of a linearly polarized Gaussian beam of femtosecond duration off a high numerical aperture parabolic mirror induces ellipticity in the dominant field components and generates strong longitudinal components. We also estimate that future high-power laser facilities may reach intensities of {10}24 {{W}} {{cm}}-2.

  1. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  2. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  3. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss....... A sample double ring add-drop filter is presented....

  4. Fast optical signal processing in high bit rate OTDM systems

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Jepsen, Kim Stokholm; Clausen, Anders;

    1998-01-01

    As all-optical signal processing is maturing, optical time division multiplexing (OTDM) has also gained interest for simple networking in high capacity backbone networks. As an example of a network scenario we show an OTDM bus interconnecting another OTDM bus, a single high capacity user...

  5. Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System under Light Sand Storm Condition

    KAUST Repository

    Esmail, Maged Abdullah

    2016-12-19

    In contrast to traditional free space optical (FSO) systems, the new generation is aimed to be transparent to optical fiber where protocols, high signal bandwidths, and high data rates over fiber are all maintained. In this paper, we experimentally demonstrate a high speed outdoor full-optical FSO communication system over 100 m link. We first describe the design of our transmitter, which consists of a comb generator and a flexible multiformat transmitter. Our measurements are performed in arid desert area under a light dust storm. In this environment, we use a 12 subcarrier comb generator, each of which is modulated by a quadrature-amplitude modulation (QAM) signal. We achieved a 1.08 Tbps error free data rate with 3.6 b/s/Hz spectral efficiency. We place long optical fiber rolls in the transmitter side and the receiver side to mimic real FSO deployments. Furthermore, we investigated the effect of receiver misalignment in outdoor conditions and the effect of background noise. We find that full-optical FSO system is sensitive to the misalignment effect. However, the background noise has negligible effect. Finally, we find that solar heating of the transceiver causes collimator deviation, which requires using a cooling unit or auto tracking system.

  6. Application of Optical Frequency Comb in High-Capacity Long Distance Optical Communication for China-Pakistan Economic Corridor

    Science.gov (United States)

    Latif, Zahid; Jianqiu, Zeng; Ullah, Rahat; Pathan, Zulfiqar Hussain; Latif, Shahid

    2017-08-01

    The current study examines the fiber optic connectivity from Chinese boundary to Rawalpindi and proposes a novel technique for carrying large capacity triple play services across China Pakistan economic corridor (CPEC). With the help of this technique, various wavelength data services can be extended to Pakistan, which can decrease the low bandwidth, poor connectivity and low speed problems of data transfer in Pakistan. This study contributes toward the existing literature in a way that this novel technique of data transmission not only relaxes the laying of fiber optic cable but also reduces the total cost of the project. The proposed technique proposes the deployment of optical frequency comb technique for 820 km CPEC route which could support 4 Tbps data. From the perspective of time energy consumption, the assessment suggests that the laying of fiber optic cable in CPEC is feasible with the existing route at the lowest cost between the two sovereign countries.

  7. Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures

    Science.gov (United States)

    Mikulics, Martin; Zhang, Jie; Serafini, John; Adam, Roman; Grützmacher, Detlev; Sobolewski, Roman

    2012-07-01

    We present the ultrafast (THz-bandwidth) photoresponse from GaAs single-crystal mesoscopic structures, such as freestanding whiskers and platelets fabricated by the top-down technique, transferred onto a substrate of choice, and incorporated into a coplanar strip line. We recorded electrical transients as short as ˜600 fs from an individual whisker photodetector. Analysis of the frequency spectrum of the photoresponse electrical signal showed that, intrinsically, our device was characterized by an ˜150-fs carrier lifetime and an overall 320-fs response. The corresponding 3-dB frequency bandwidth was 1.3 THz—the highest bandwidth ever reported for a GaAs-based photodetector. Simultaneously, as high-quality, epitaxially grown crystals, our GaAs structures exhibited mobility values as high as ˜7300 cm2/V.s, extremely low dark currents, and ˜7% intrinsic detection efficiency, which, together with their experimentally measured photoresponse repetition time of ˜1 ps, makes them uniquely suitable for terahertz-frequency optoelectronic applications, ranging from ultrafast photon detectors and counters to THz-bandwidth optical-to-electrical transducers and photomixers.

  8. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    Science.gov (United States)

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  9. An inexpensive high-temperature optical fiber thermometer

    Science.gov (United States)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Allred, David D.

    2017-01-01

    An optical fiber thermometer consists of an optical fiber whose tip is coated with a highly conductive, opaque material. When heated, this sensing tip becomes an isothermal cavity that emits like a blackbody. This emission is used to predict the sensing tip temperature. In this work, analytical and experimental research has been conducted to further advance the development of optical fiber thermometry. An inexpensive optical fiber thermometer is developed by applying a thin coating of a high-temperature cement onto the tip of a silica optical fiber. An FTIR spectrometer is used to detect the spectral radiance exiting the fiber. A rigorous mathematical model of the irradiation incident on the detection system is developed. The optical fiber thermometer is calibrated using a blackbody radiator and inverse methods are used to predict the sensing tip temperature when exposed to various heat sources.

  10. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  11. High energy laser optics manufacturing: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  12. The high education of optical engineering in East China

    Science.gov (United States)

    Liu, Xu; Liu, Xiangdong; Wang, Xiaoping; Bai, Jian; Liu, Yuling

    2014-07-01

    The history and the development of the high education in the field of optical engineering in the area of East China will be presented in the paper. The overall situation of research and human resource training in optics and photonics will also be reviewed, it shows that China needs lots of talents and experts in this field to support the world optical industry in East China.

  13. High-speed optical frequency-domain imaging

    OpenAIRE

    Yun, S. H.; Tearney, G. J.; Boer; Iftimia, N. V.; Bouma, B. E.

    2003-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, rep...

  14. Optical fiber crossbar switch

    Science.gov (United States)

    Kilcoyne, Michael K.; Beccue, Stephen M.; Brar, Berinder; Robinson, G.; Pedrotti, Kenneth D.; Haber, William A.

    1990-07-01

    Advances in high performance computers and signal processing systems have led to parallel system architectures. The main limitation in achieving the performance expected of these parallel systems has been the realization of an efficient means to interconnect many processors into a effective parallel system. Electronic interconnections have proved cumbersome, costly and ineffective. The Optical Fiber Crossbar Switch (OFCS) is a compact low power, multi-gigahertz bandwidth multi-channel switch which can be used in large scale computer and telecommunication applications. The switch operates in the optical domain using GaAs semiconductor lasers to transmit wideband multiple channel optical data over fiber optic cables. Recently, a 32 X 32 crossbar switching system was completed and demonstrated. Error free performance was obtained at a data bandwidth of 410 MBPS, using a silicon switch IC. The switch can be completely reconfigured in less than 50 nanoseconds under computer control. The fully populated OFCS has the capability to handle 12.8 gigabits per second (GBPS) of data while switching this data over 32 channels without the loss of a single bit during switching. GaAs IC technology has now progressed to the point that 16 X 16 GaAs based crossbar switch Ics are available which have increased the data bandwidth capability to 2.4 GBPS. The present optical interfaces are integrated GaAs transmitter drivers, GaAs lasers, and integrated GaAs optical receivers with data bandwidths exceeding 2.4 GBPS. A system using all Ill-V switching and optoelectronic components is presently under development for both NASA and DoD programs. The overall system is designed to operate at 1.3 GBPS. It is expected that these systems will find wide application in high capacity computing systems based on parallel microprocessor architecture which require high data bandwidth communication between processors. The OFCS will also have application in commercial optical telecommunication systems

  15. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  16. Ptychography with broad-bandwidth radiation

    Energy Technology Data Exchange (ETDEWEB)

    Enders, B., E-mail: bjoern.enders@ph.tum.de; Dierolf, M.; Stockmar, M.; Pfeiffer, F. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85747 Garching (Germany); Cloetens, P. [European Synchrotron Radiation Facility, 38043 Grenoble (France); Thibault, P. [Department of Physics and Astronomy, University College London, London (United Kingdom)

    2014-04-28

    Ptychography, a scanning Coherent Diffractive Imaging (CDI) technique, has quickly gained momentum as a robust method to deliver quantitative images of extended specimens. A current conundrum for the development of X-ray CDI is the conflict between a need for higher flux to reach higher resolutions and the requirement to strongly filter the incident beam to satisfy the tight coherence prerequisite of the technique. Latest developments in algorithmic treatment of ptychographic data indicate that the technique is more robust than initially assumed, so that some experimental limitations can be substantially relaxed. Here, we demonstrate that ptychography can be conducted in conditions that were up to now considered insufficient, using a broad-bandwidth X-ray beam and an integrating scintillator-based detector. Our work shows the wide applicability of ptychography and paves the way to high-throughput, high-flux diffractive imaging.

  17. High-accurate optical vector analysis based on optical single-sideband modulation

    Science.gov (United States)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  18. Optical glass with tightest refractive index and dispersion tolerances for high-end optical designs

    Science.gov (United States)

    Jedamzik, R.; Reichel, S.; Hartmann, P.

    2014-03-01

    In high end optical designs the quality of the optical system not only depends on the chosen optical glasses but also on the available refractive index and Abbe number tolerances. The primary optical design is based on datasheet values of the refractive index and Abbe number. In general the optical position of the delivered glass will deviate from the catalog values by given tolerances due to production tolerances. Therefore in many cases the final optical design needs to be modified based on real glass data. Tighter refractive index and Abbe number tolerances can greatly reduce this additional amount of work. The refractive index and Abbe number of an optical glass is a function of the chemical composition and the annealing process. Tight refractive index tolerances require not only a close control and high reliability of the melting and fine annealing process but also best possible material data. These data rely on high accuracy measurement and accurate control during mass production. Modern melting and annealing procedure do not only enable tight index tolerances but also a high homogeneity of the optical properties. Recently SCHOTT was able to introduce the tightest available refractive index and Abbe number tolerance available in the market: step 0.5 meaning a refractive index tolerance of +/- 0.0001 and an Abbe number tolerance of +/- 0.1%. This presentation describes how the refractive index depends on the glass composition and annealing process and describes the requirements to get to this tightest refractive index and Abbe number tolerance.

  19. Alternative high-resolution lithographic technologies for optical applications

    Science.gov (United States)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  20. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  1. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  2. Improved optical performance monitoring technique based on nonlinear optics for high-speed WDM Nyquist systems

    Science.gov (United States)

    Guesmi, Latifa; Menif, Mourad

    2016-04-01

    The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.

  3. Optical Processing of High Dimensionality Signals

    DEFF Research Database (Denmark)

    Da Ros, Francesco

    signal processing, including wavelength conversion, optical phase conjugation (OPC), and signal regeneration. This project focuses precisely on the applications of OPAs for all-optical signal processing with a two-fold focus: on the one hand, processing the advanced modulation formats required......) waveguides, are investigated. The limits of parametric amplification for 16-quadrature amplitude modulation (QAM) signals are first characterized. The acquired knowledge is then applied to the design of a black-box OPC-device used to provide Kerr nonlinearity compensation for a 5-channel polarization......-division multiplexing (PDM) 16-QAM signal at 1.12 Tbps with significant improvements in received signal quality. Furthermore, the first demonstration of phase regeneration for binary phase-shift keying (BPSK) signals using the silicon platform is presented. The silicon-based OPA relies on a novel design where a reverse...

  4. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz

    Science.gov (United States)

    Lv, Qian-Qian; Ye, Han; Yin, Dong-Dong; Yang, Xiao-Hong; Han, Qin

    2015-12-01

    Not Available Supported by the High-Tech Research and Development Program of China under Grant Nos 2013AA031401, 2015AA016902 and 2015AA016904, the National Natural Science Foundation of China under Grant Nos 61176053, 61274069 and 61435002, and the National Basic Research Program of China under Grant No 2012CB933503.

  5. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    Science.gov (United States)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  6. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  7. Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer

    CERN Document Server

    Cervantes, Felipe Guzman; Pratt, Jon; Taylor, Jacob

    2013-01-01

    The reflection spectrum of an optical cavity is exquisitely sensitive to length variations, enabling precise and accurate displacement measurements. When combined with mechanical oscillators, such cavities can yield accelerometers of unprecedented resolution. Previously, accelerometer sensitivity enhancements were achieved by lowering the sensor's natural frequency and bandwidth. Detection near the thermal limit was achieved, but at high acceleration levels due to low oscillator mass. We present a novel self-calibrating accelerometer, capable of reaching nano-gn/rtHz sensitivities (micro-Gal/rtHz -- 1gn=9.81 m/s^2 -- equivalent displacement of attometer/rtHz) over a bandwidth of several kHz, and compare its accuracy to a calibrated commercial system. It consists of a compact (10.6 x 15 mm), high-mQ (5kg) fused-silica oscillator that utilizes fiber-optic micro-mirror cavities, for self-calibrated detection of the motions of its test-mass. This device provides a substantial improvement over conventional systems...

  8. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  9. Improving the Bandwidth Utilization by Recycling the Unused Bandwidth in IEEE 802.16 Networks

    Directory of Open Access Journals (Sweden)

    Gowri T

    2012-03-01

    Full Text Available The Physical and MAC layers have been specified in IEEE 802.16 networks. The quality of service is ensured by the bandwidth reservation. The subscriber station should reserve the bandwidth more than its demand. But the bandwidth is fully utilized by SS but not all the time. So the bandwidth has recycled by the process of recycling the unused bandwidth. The main objective of the proposed scheme is to utilize the unused bandwidth by recycling and maintain the QOS service. By recycling the throughput can be improved which maintains the QOS in the proposed scheme. During this recycling process to maintain the QOS services, the amount of reserved bandwidth is not changed. The proposed scheme can utilize the unused bandwidth up to 70% on average. Protocols and the scheduling algorithms are used to improve the utilization and throughput.

  10. High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis.

    Science.gov (United States)

    Nia, Hadi T; Gauci, Stephanie J; Azadi, Mojtaba; Hung, Han-Hwa; Frank, Eliot; Fosang, Amanda J; Ortiz, Christine; Grodzinsky, Alan J

    2015-01-02

    Murine models of osteoarthritis (OA) and post-traumatic OA have been widely used to study the development and progression of these diseases using genetically engineered mouse strains along with surgical or biochemical interventions. However, due to the small size and thickness of murine cartilage, the relationship between mechanical properties, molecular structure and cartilage composition has not been well studied. We adapted a recently developed AFM-based nano-rheology system to probe the dynamic nanomechanical properties of murine cartilage over a wide frequency range of 1 Hz to 10 kHz, and studied the role of glycosaminoglycan (GAG) on the dynamic modulus and poroelastic properties of murine femoral cartilage. We showed that poroelastic properties, highlighting fluid-solid interactions, are more sensitive indicators of loss of mechanical function compared to equilibrium properties in which fluid flow is negligible. These fluid-flow-dependent properties include the hydraulic permeability (an indicator of the resistance of matrix to fluid flow) and the high frequency modulus, obtained at high rates of loading relevant to jumping and impact injury in vivo. Utilizing a fibril-reinforced finite element model, we estimated the poroelastic properties of mouse cartilage over a wide range of loading rates for the first time, and show that the hydraulic permeability increased by a factor ~16 from knormal=7.80×10(-16)±1.3×10(-16) m(4)/N s to kGAG-depleted=1.26×10(-14)±6.73×10(-15) m(4)/N s after GAG depletion. The high-frequency modulus, which is related to fluid pressurization and the fibrillar network, decreased significantly after GAG depletion. In contrast, the equilibrium modulus, which is fluid-flow independent, did not show a statistically significant alteration following GAG depletion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Depth profilometry via multiplexed optical high-coherence interferometry

    National Research Council Canada - National Science Library

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    ... such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument...

  12. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    Science.gov (United States)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  13. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  14. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  15. Radiation-hard/high-speed parallel optical links

    Energy Technology Data Exchange (ETDEWEB)

    Gan, K.K., E-mail: gan@mps.ohio-state.edu [Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Buchholz, P. [Fachbereich Physik, Universität Siegen, Siegen (Germany); Kagan, H.P.; Kass, R.D.; Moore, J.; Smith, D.S. [Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Wiese, A.; Ziolkowski, M. [Fachbereich Physik, Universität Siegen, Siegen (Germany)

    2013-12-11

    We have designed an ASIC for use in a parallel optical engine for a new layer of the ATLAS pixel detector in the initial phase of the LHC luminosity upgrade. The ASIC is a 12-channel Vertical Cavity Surface Emitting Laser (VCSEL) array driver capable of operating up to 5 Gb/s per channel. The ASIC is designed using a 130 nm CMOS process to enhance the radiation-hardness. A scheme for redundancy has also been implemented to allow bypassing of a broken VCSEL. The ASIC also contains a power-on reset circuit that sets the ASIC to a default configuration with no signal steering. In addition, the bias and modulation currents of the individual channels are programmable. We have tested the ASIC and the performance up to 5 Gb/s is satisfactory. Furthermore, we are able to program the bias and modulation currents and to bypass a broken VCSEL channel. We are currently upgrading our design to allow operation at 10 Gb/s per channel yielding an aggregated bandwidth of 120 Gb/s. Preliminary results of the design will be presented.

  16. Radiation-hard/high-speed parallel optical links

    Energy Technology Data Exchange (ETDEWEB)

    Gan, K.K., E-mail: gan@mps.ohio-state.edu [Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Buchholz, P. [Fachbereich Physik, Universität Siegen, Siegen (Germany); Kagan, H.P.; Kass, R.D.; Moore, J.; Smith, D.S. [Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Wiese, A.; Ziolkowski, M. [Fachbereich Physik, Universität Siegen, Siegen (Germany)

    2014-11-21

    We have designed an ASIC for use in a parallel optical engine for a new layer of the ATLAS pixel detector in the initial phase of the LHC luminosity upgrade. The ASIC is a 12-channel VCSEL (Vertical Cavity Surface Emitting Laser) array driver capable of operating up to 5 Gb/s per channel. The ASIC is designed using a 130 nm CMOS process to enhance the radiation-hardness. A scheme for redundancy has also been implemented to allow bypassing of a broken VCSEL. The ASIC also contains a power-on reset circuit that sets the ASIC to a default configuration with no signal steering. In addition, the bias and modulation currents of the individual channels are programmable. The performance of the first prototype ASIC up to 5 Gb/s is satisfactory. Furthermore, we are able to program the bias and modulation currents and to bypass a broken VCSEL channel. We are currently upgrading our design to allow operation at 10 Gb/s per channel yielding an aggregated bandwidth of 120 Gb/s. Some preliminary results of the design will be presented.

  17. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José;

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  18. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu;

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  19. Directing Traffic: Managing Internet Bandwidth Fairly

    Science.gov (United States)

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  20. 47 CFR 95.633 - Emission bandwidth.

    Science.gov (United States)

    2010-10-01

    ... SERVICES Technical Regulations Technical Standards § 95.633 Emission bandwidth. (a) The authorized... frequencies 151.820 MHz, 151.880 MHz, and 151.940 MHz are limited to 11.25 kHz. (2) Emissions on frequencies... 47 Telecommunication 5 2010-10-01 2010-10-01 false Emission bandwidth. 95.633 Section...

  1. Energy Bandwidth for Petroleum Refining Processes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  2. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  3. Bimodal-sized quantum dots for broad spectral bandwidth emitter.

    Science.gov (United States)

    Zhou, Yinli; Zhang, Jian; Ning, Yongqiang; Zeng, Yugang; Zhang, Jianwei; Zhang, Xing; Qin, Li; Wang, Lijun

    2015-12-14

    In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

  4. Influence of load by high power on the optical coupler

    Science.gov (United States)

    Bednarek, Lukas; Poboril, Radek; Vanderka, Ales; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2016-12-01

    Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.

  5. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  6. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  7. Ultra-high Frequency Linear Fiber Optic Systems

    CERN Document Server

    Lau, Kam

    2011-01-01

    This book provides an in-depth treatment of both linear fiber-optic systems and their key enabling devices. It presents a concise but rigorous treatment of the theory and practice of analog (linear) fiber-optics links and systems that constitute the foundation of Hybrid Fiber Coax infrastructure in present-day CATV distribution and cable modem Internet access. Emerging applications in remote fiber-optic feed for free-space millimeter wave enterprise campus networks are also described. Issues such as dispersion and interferometric noise are treated quantitatively, and means for mitigating them are explained. This broad but concise text will thus be invaluable not only to students of fiber-optics communication but also to practicing engineers. To the second edition of this book important new aspects of linear fiber-optic transmission technologies are added, such as high level system architectural issues, algorithms for deriving the optimal frequency assignment, directly modulated or externally modulated laser t...

  8. Silicon retina for optical tracking systems

    Science.gov (United States)

    Strohbehn, K.; Jenkins, R. E.; Sun, X.; Andreou, A. G.

    1993-01-01

    There are a host of position sensors, such as quadcells and CCD's, which are candidates for detecting optical position errors and providing error signals for a mirror positioning loop. We are developing a novel, very high bandwidth, biologically inspired position sensor for optical position tracking systems. We present recent test results and design issues for the use of biologically inspired silicon retinas for spaceborne optical position tracking systems.

  9. Conical Emission Patterns by Femtosecond Pulses with Different Spectral Bandwidths

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; ZENG Zhi-Nan; GE Xiao-Chun; CHEN Xiao-Wei; LI Ru-Xin; XU Zhi-Zhan

    2008-01-01

    @@ Different conical emission (CE) patterns are obtained experimentally at various incident powers and beam sizes of pump laser pulses with pulse durations of 7fs, 44fs and lOOfs.The results show that it is the incident power but not the incident power density that determines a certain CE pattern.In addition, the critical powers for similar CE patterns are nearly the same for the laser pulses with the same spectral bandwidth.Furthermore, as far as a certain CE pattern is concerned, the wider the spectral bandwidth of pump laser pulse is, the higher the critical power is.This will hopefully provide new insights for the generation of CE pattern in optical medium.

  10. Final Report for Statistical Nonlinear Optics of High Energy Density Plasmas: The Physics of Multiple Crossing Laser Beams

    Energy Technology Data Exchange (ETDEWEB)

    Afeyan, Bedros [Polymath Research Inc., Pleasanton, CA (United States); Hueller, Stefan [Centre de Physique Theorique de l' Ecole Polytechnique (France); Montgomery, David S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hammer, James H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, Nathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heebner, John E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    The various implementations of the STUD pulse program (spike trains of uneven duration and delay) for LPI (laser-plasma instability) control were studied in depth, and novel regimes were found. How to generate STUD pulses with large time-bandwidth products, how to measure their optical scattering signatures, and how to experimentally demonstrate their usefulness were explored. Theoretical and numerical studies were conducted on Stimulated Brillouin Scattering (SBS) and Crossed Beam Energy Transfer (CBET) including statistical models. We established how LPI can be tamed and gain democratized in space and time. Implementing STUD pulses on NIF was also studied. Future high rep rate lasers and fast diagnostics will aid in the adoption of the whole STUD pulse program for LPI control in High Energy Density Plasmas (HEDP).

  11. A 50 nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth.

    Science.gov (United States)

    Wachulak, Przemyslaw W; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy

    2011-05-09

    In this paper we report a desk-top microscopy reaching 50 nm spatial resolution in very compact setup using a gas-puff laser plasma EUV source. The thickness of an object and the bandwidth of illuminating radiation were studied in order to estimate their quantitative influence on the EUV microscope spatial resolution. EUV images of various thickness objects obtained by illumination with variable bandwidth EUV radiation were compared in terms of knife-edge spatial resolution to study the bandwidth/object thickness parasitic influence on spatial resolution of the EUV microscope. © 2011 Optical Society of America

  12. Bandwidth comparison of photonic crystal fibers and conventional single mode fibers

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal; Folkenberg, Jacob Riis; Mortensen, Niels Asger;

    2004-01-01

    We experimentally compare the optical bandwidth of a conventional single-mode fiber (SMF) with 3 different photonic crystal fibers (PCF) all optimized for visible applications. The spectral attenuation, single-turn bend loss, and mode-field diameters (MFD) are measured and the PCF is found to have...... a significantly larger bandwidth than the SMF for an identical MFD. It is shown how this advantage can be utilized for realizing a larger MFD for the PCF while maintaining a bending resistant fiber....

  13. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  14. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    Science.gov (United States)

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  15. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Science.gov (United States)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  16. High-throughput proteomics : optical approaches.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.

  17. Exploring the origin of high optical absorption in conjugated polymers

    KAUST Repository

    Vezie, Michelle S.

    2016-05-16

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  18. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    CERN Document Server

    de Sousa, N; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  19. Optical levitation of high purity nanodiamonds in vacuum without heating

    CERN Document Server

    Frangeskou, A C; Gines, L; Mandal, S; Williams, O A; Barker, P F; Morley, G W

    2016-01-01

    Levitated nanodiamonds containing nitrogen vacancy centres in high vacuum are a potential test bed for numerous phenomena in fundamental physics. However, experiments so far have been limited to low vacuum due to heating arising from optical absorption of the trapping laser. We show that milling pure diamond creates nanodiamonds that do not heat up as the optical intensity is raised above 700 GW/m$^2$ below 5 mbar of pressure. This advance now means that the level of attainable vacuum for nanodiamonds in optical dipole traps is no longer temperature limited.

  20. Research of high speed optical switch based on compound semiconductor

    Institute of Scientific and Technical Information of China (English)

    WANG MingHua; QI Wei; YU Hui; JIANG XiaoQing; YANG JianYi

    2009-01-01

    High-speed optical switch and its array are the crucial components of all-optical switching system. This paper presents the analytical model of a total-internal-reflection (TIR) optical switch. By employing the carrier injection effect in GaAs and the GaAs/AlGaAs double heterojunction structure, the X-junction TIR switch and the Mach-Zehnder interference (MZI) switch are demonstrated at 1.55 IJm. The measured results show that the extinction ratio of both switches exceeds 20 dB. The switching speed reaches the scale of 10 ns.

  1. High-speed image matching with coaxial holographic optical correlator

    Science.gov (United States)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  2. Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures

    CERN Document Server

    Duchesne, David; Razzari, Luca; Morandotti, Roberto; Little, Brent; Chu, Sai T; Moss, David J

    2015-01-01

    Integrated photonic technologies are rapidly becoming an important and fundamental milestone for wideband optical telecommunications. Future optical networks have several critical requirements, including low energy consumption, high efficiency, greater bandwidth and flexibility, which must be addressed in a compact form factor.

  3. Fiber Optically Coupled Eyesafe Laser Threat Warning System

    Science.gov (United States)

    2000-05-11

    LIGHTWEIGHT, MUST BE CONFORMAL TO AIRCRAFT SKIN, MUST HAVE A HIGH DEGREE OF RFI/EMI INMUNITY AND SHOULD BE LOW COST. PERFORMANCE REQUIREMENTS SIMILAR...CONTINUOUS) LARGE OPTICAL DYNAMIC RANGES (60-70 dB) DEMONSTRATED WITH LARGE TEMPORAL BANDWIDTHS RFI/EMI IMMUNITY ACHIEVED WITH 100% PASSIVE OPTICAL

  4. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    Akira Hasegawa

    2001-11-01

    Multi-terabit/s, ultra-high speed optical transmissions over several thousands kilometers on fibers are becoming a reality. Most use RZ (Return to Zero) format in dispersion-managed fibers. This format is the only stable waveform in the presence of fiber Kerr nonlinearity and dispersion in all optical transmission lines with loss compensated by periodic amplifications. The nonlinear Schrödinger equation assisted by the split step numerical solutions is commonly used as the master equation to describe the information transfer in optical fibers. All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  5. High-Order Modulation for Optical Fiber Transmission

    CERN Document Server

    Seimetz, Matthias

    2009-01-01

    Catering to the current interest in increasing the spectral efficiency of optical fiber networks by the deployment of high-order modulation formats, this monograph describes transmitters, receivers and performance of optical systems with high-order phase and quadrature amplitude modulation. In the first part of the book, the author discusses various transmitter implementation options as well as several receiver concepts based on direct and coherent detection, including designs of new structures. Hereby, both optical and electrical parts are considered, allowing the assessment of practicability and complexity. In the second part, a detailed characterization of optical fiber transmission systems is presented, regarding a wide range of modulation formats. It provides insight in the fundamental behavior of different formats with respect to relevant performance degradation effects and identifies the major trends in system performance.

  6. Synthesis of high purity metal oxide nanoparticles for optical applications

    Science.gov (United States)

    Baker, C.; Kim, W.; Friebele, E. J.; Villalobos, G.; Frantz, J.; Shaw, L. B.; Sadowski, B.; Fontana, J.; Dubinskii, M.; Zhang, J.; Sanghera, J.

    2014-09-01

    In this paper we present our recent research results in synthesizing various metal oxide nanoparticles for use as laser gain media (solid state as well as fiber lasers) and transparent ceramic windows via two separate techniques, co-precipitation and flame spray pyrolysis. The nanoparticles were pressed into ceramic discs that exhibited optical transmission approaching the theoretical limit and showed very high optical-to-optical lasing slope efficiency. We have also synthesized sesquioxide nanoparticles using a Flame Spray Pyrolysis (FSP) technique that leads to the synthesis of a metastable phase of sesquioxide which allows fabricating excellent optical quality transparent windows with very fine grain sizes. Finally, we present our research in the synthesis of rare earth doped boehmite nanoparticles where the rareearth ion is encased in a cage of aluminum and oxygen to prevent ion-ion proximity and energy transfer. The preforms have been drawn into fibers exhibiting long lifetimes and high laser efficiencies.

  7. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...

  8. High directivity optical antenna substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Chu, Yizhuo; Crozier, Kenneth B

    2012-08-22

    A two-dimensional array of gold optical antennas integrated with a one-dimensional array of gold strips and mirrors is introduced and fabricated. The experimental results show that this design achieves average surface-enhanced Raman scattering (SERS) enhancement factors as high as 1.2 × 10(10) , which is more than two orders of magnitude larger than optical antennas without the gold strips and gold mirror.

  9. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    OpenAIRE

    Maydan, Jason; THOMAS, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; HAHN, KRISTEN; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstr...

  10. TOPICAL REVIEW: Optics of high-performance electron microscopes

    OpenAIRE

    H H Rose

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  11. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  12. A System Theoretic Approach to Bandwidth Estimation

    OpenAIRE

    Liebeherr, Jorg; Fidler, Markus; Valaee, Shahrokh

    2008-01-01

    It is shown that bandwidth estimation in packet networks can be viewed in terms of min-plus linear system theory. The available bandwidth of a link or complete path is expressed in terms of a {\\em service curve}, which is a function that appears in the network calculus to express the service available to a traffic flow. The service curve is estimated based on measurements of a sequence of probing packets or passive measurements of a sample path of arrivals. It is shown that existing bandwidth...

  13. Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation

    CERN Document Server

    Rogov, Andrei

    2016-01-01

    Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.

  14. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... of the focused spot can be determined. The analyser is based on the principle of a rotating wire being swept though the laser beam, while the reflected signal is recorded [1]. By changing the incident angle of the rotating rod from 0° to 360° in relation to the fiber, the full profile of the laser beam...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  15. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  16. Optical OFDM-based Data Center Networks

    Directory of Open Access Journals (Sweden)

    Christoforos Kachris

    2013-07-01

    Full Text Available Cloud computing and web emerging application has created the need for more powerful data centers with high performance interconnection networks.Current data center networks,based on electronic packet switches,will not be able to satisfy the required communication bandwidth of emerging applications without consuming excessive power.Optical interconnercts have gained attention recently as a promising solution offering high throughput,low latency and reduced energy cosumption compared to current networks based in commidity switches.This paper presents a novel architecture for data center networks based on optical OFDM using Wavelength Selective Swithces(WSS. The OFDM-based solution provides high throughput,reduced latency and fine grain bandwidth allocation. A heuristic algorithm for the bandwidth allocation is presented and evaluated in terms of utilization. The power analysis shows that the proposed scheme is almost 60% more energy efficient compared to the current networks based on eommodity switches.

  17. A highly sensitive optical detector for use in deep underwater.

    Science.gov (United States)

    Hanada, H.; Hayashino, T.; Ito, M.; Iwasaki, A.; Kawamorita, K.; Kawamoto, H.; Matsumoto, T.; Narita, S.; Takayama, T.; Tanaka, S.; Yamaguchi, A.; Aoki, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Fukawa, M.; Uehara, S.; Bolesta, J. W.; Gorham, P. W.; Kondo, S.; Learned, J. G.; Matsuno, S.; Mignard, M.; Mitiguy, R.; O'Connor, D. J.; Peterson, V. Z.; Roberts, A.; Rosen, M.; Stenger, V. J.; Takemori, D.; Wilkins, G.; Grieder, P. K. F.; Minkowski, P.; Kitamura, T.; Camerini, U.; Grogan, W.; Jaworski, M.; March, R.; Narita, T.; Nicklaus, D.

    1998-05-01

    The authors have developed an optical detector module for use in deep underwater experiments that will search for high-energy neutrinos from cosmic rays and astronomical sources. This module is sensitive to single photons, is operable under high pressure, functions automatically and is remotely controlled.

  18. Design of a high-quality optical conjugate structure in optical tweezers.

    Science.gov (United States)

    Hu, Chunguang; An, Ran; Zhang, Chengwei; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-02-20

    We propose an approach to realize a high-quality optical conjugate of a piezo-driven mirror (PM) in optical tweezers. Misalignments between the optical beam and the steering center of the PM are analyzed mathematically. The decentrations in different directions cause different changes, either a position change of the conjugate plane or a spot variation of the beam during PM steering. On the other hand, these misalignment-introduced problems provide the information to check the assembling errors. Thus a wanted conjugate plane of the PM can be effectively and precisely achieved according to the detection signals. This approach is also available to deal with multifactor coupling error. At the end, the procedure for error analysis is given by testing homebuilt optical tweezers.

  19. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    Science.gov (United States)

    Maydan, Jason; Thomas, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; Hahn, Kristen; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstrate the ability of Boreal Genomics' Aurora instrument to provide pure, high molecular weight (HMW) DNA 250-1,100 kb in length, ideally suited for optical mapping. The Aurora performs electrophoretic DNA purification within an agarose gel in reusable cartridges, protecting long DNA molecules from shearing forces associated with liquid handling steps common to other purification methods. DNA can be purified directly from intact cells embedded and lysed within an agarose gel, preserving the highest molecular weight DNA possible while achieving exceptional levels of purity. The Aurora delivers DNA in a buffer solution, where DNA can be condensed and protected from shearing during recovery with a pipette. DNA is then returned to its regular coiled state by simple dilution prior to optical mapping. Here we present images showing HMW DNA purification taking place in the Aurora and subsequent images of single DNA molecules on OpGen's Argus® Optical Mapping System. Future work will focus on further optimizing Aurora HMW DNA purification to bias DNA recovery in favor of only the longest molecules in a sample, maximizing the benefits of optical mapping.

  20. Optical Communication for Coping the UAS Data Deluge

    Science.gov (United States)

    Griethe, Wolfgang; Heine, Frank; Seel, Stefan; Alberty, Thomas

    2012-08-01

    Hardly any technology has retained a greater recovery in recent years than that of the Unmanned Aerial Systems (UAS). The rationale for this is manifold. UAS are currently operated by many countries around the world. Upcoming sensors and raised numbers of operated vehicles create an increased bandwidth demand for Unmanned Aerial Vehicle (UA V) to ground communication bandwidth in the near future, exceeding currently installed RF communication capabilities. A high bandwidth optical link between an above-the-weather UAV and a GEO spacecraft offers a secure, jamming resistant, non-ITU regulated alternative to existing and envisaged Ku- and Ka- band UAV data and TM/TC links.