WorldWideScience

Sample records for high bandwidth frequency-domain

  1. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product.

    Science.gov (United States)

    Oktem, Figen S; Ozaktas, Haldun M

    2010-08-01

    Linear canonical transforms (LCTs) form a three-parameter family of integral transforms with wide application in optics. We show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space-frequency plane. This allows LCT domains to be labeled and ordered by the corresponding fractional order parameter and provides insight into the evolution of light through an optical system modeled by LCTs. If a set of signals is highly confined to finite intervals in two arbitrary LCT domains, the space-frequency (phase space) support is a parallelogram. The number of degrees of freedom of this set of signals is given by the area of this parallelogram, which is equal to the bicanonical width product but usually smaller than the conventional space-bandwidth product. The bicanonical width product, which is a generalization of the space-bandwidth product, can provide a tighter measure of the actual number of degrees of freedom, and allows us to represent and process signals with fewer samples.

  2. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  3. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  4. Demonstrations of analog-to-digital conversion using a frequency domain stretched processor.

    Science.gov (United States)

    Reibel, Randy Ray; Harrington, Calvin; Dahl, Jason; Ostrander, Charles; Roos, Peter Aaron; Berg, Trenton; Mohan, R Krishna; Neifeld, Mark A; Babbitt, Wm R

    2009-07-06

    The first proof-of-concept demonstrations are presented for a broadband photonic-assisted analog-to-digital converter (ADC) based on spatial spectral holography (SSH). The SSH-ADC acts as a frequency-domain stretch processor converting high bandwidth input signals to low bandwidth output signals, allowing the system to take advantage of high performance, low bandwidth electronic ADCs. Demonstrations with 50 MHz effective bandwidth are shown to highlight basic performance with approximately 5 effective bits of vertical resolution. Signal capture with 1600 MHz effective bandwidth is also shown. Because some SSH materials span over 100 GHz and have large time apertures (approximately 10 micros), this technique holds promise as a candidate for the next generation of ADCs.

  5. The effect of extending high-frequency bandwidth on the acceptable noise level (ANL) of hearing-impaired listeners.

    Science.gov (United States)

    Johnson, Earl; Ricketts, Todd; Hornsby, Benjamin

    2009-01-01

    This study examined the effects of extending high-frequency bandwidth, for both a speech signal and a background noise, on the acceptable signal-to-noise ratio (SNR) of listeners with mild sensorineural hearing loss through utilization of the Acceptable Noise Level (ANL) procedure. In addition to extending high-frequency bandwidth, the effects of reverberation time and background noise type and shape were also examined. The study results showed a significant increase in the mean ANL (i.e. participants requested a better SNR for an acceptable listening situation) when high-frequency bandwidth was extended from 3 to 9 kHz and from 6 to 9 kHz. No change in the ANL of study participants was observed as a result of isolated modification to reverberation time or background noise stimulus. An interaction effect, however, of reverberation time and background noise stimulus was demonstrated. These findings may have implications for future design of hearing aid memory programs for listening to speech in the presence of broadband background noise.

  6. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    Science.gov (United States)

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  7. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  8. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy

    International Nuclear Information System (INIS)

    Pham, Tuan H.; Coquoz, Olivier; Fishkin, Joshua B.; Anderson, Eric; Tromberg, Bruce J.

    2000-01-01

    Near-infrared (NIR) optical properties of turbid media, e.g., tissue, can be accurately quantified noninvasively using methods based on diffuse reflectance or transmittance, such as frequency domain photon migration (FDPM). Factors which govern the accuracy and sensitivity of FDPM-measured optical properties include instrument performance, the light propagation model, and fitting algorithms used to calculate optical properties from measured data. In this article, we characterize instrument, model, and fitting uncertaintics of an FDPM system designed for clinical use and investigate how each of these factors affects the quantification of NIR absorption (μ a ) and reduced scattering (μ s ' ) parameters in tissue phantoms. The instrument is based on a 500 MHz, multiwavelength platform that sweeps through 201 discrete frequencies in as little as 675 ms. Phase and amplitude of intensity modulated light launched into tissue, i.e., diffuse photon density waves (PDW), are measured with an accuracy of ±0.30 degree sign and ±3.5%, while phase and amplitude precision are ±0.025 degree sign and ±0.20%, respectively. At this level of instrument uncertainty, simultaneous fitting of frequency-dependent phase and amplitude nonlinear model functions derived from a photon diffusion approximation provides an accurate and robust strategy for determining optical properties from FDPM data, especially for media with high absorption. In an optical property range that is characteristic of most human tissues in the NIR (5x10 -3 a -2 mm -1 , 0.5 s ' -1 ), we theoretically and experimentally demonstrate that the multifrequency, simultaneous-fit approach allows μ a and μ s ' to be quantified with an accuracy of ±5% and ±3%, respectively. Although exceptionally high levels of precision can be obtained using this approach ( a and μ s ' . (c) 2000 American Institute of Physics

  9. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  10. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  11. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Armstrong, D.J.; Alford, W.J.

    1998-01-01

    We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x,t), rather than Fourier space, (k,ω), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing. copyright 1998 Optical Society of America

  12. Corrections for frequency domain transformations of Winfrith binary cross correlator responses

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1968-04-01

    This report considers the corrections for frequency domain transformations of Winfrith binary cross correlator responses; (i) for the finite bandwidth of the equivalent input signal; (2) for the finite time required for the actuator to move between the two positions appropriate to the two levels of the periodic binary chain code input and (3) for the averaging of experimental determinations of the system frequency response and calculations of the standard deviations of the modulus and phase of the frequency responses determined from the cross correlator responses. (author)

  13. Low-Bandwidth Channel Quality Indication for OFDMA Frequency Domain Packet Scheduling

    DEFF Research Database (Denmark)

    Kolding, Troels E.; Frederiksen, Frank; Pokhariyal, Akhilesh

    2007-01-01

    -relevant information in the CQI. We find that a 60-70% CQI bandwidth reduction is possible with less than 5-10% impact on scheduling performance. Further, we consider the impact of lowering the CQI reporting rate on both mobility performance and increased measuring accuracy due to longer averaging interval. We find...

  14. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    Science.gov (United States)

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.

  15. Practical iterative learning control with frequency domain design and sampled data implementation

    CERN Document Server

    Wang, Danwei; Zhang, Bin

    2014-01-01

    This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much h...

  16. High bandwidth second-harmonic generation in partially deuterated KDP

    International Nuclear Information System (INIS)

    Webb, M.S.; Eimerl, D.; Velsko, S.P.

    1992-01-01

    We have experimentally determined the spectrally noncritical phasematching behavior of Type I frequency doubling in KDP and its dependence on deuteration level in partially deuterated KDP. The first order wavelength sensitivity parameter∂Δk/∂γ for Type I doubling of 1.053 μm light vanishes for a KD*P crystal with a deuteration level between 10 and 14%. Very high bandwidth frequency doubling of Nd:glass lasers is possible with such a crystal

  17. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  18. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  19. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  20. Time versus frequency domain measurements: layered model ...

    African Journals Online (AJOL)

    ... their high frequency content while among TEM data sets with low frequency content, the averaging times for the FEM ellipticity were shorter than the TEM quality. Keywords: ellipticity, frequency domain, frequency electromagnetic method, model parameter, orientation error, time domain, transient electromagnetic method

  1. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be

  2. Pulsed-High Field/High-Frequency EPR Spectroscopy

    Science.gov (United States)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  3. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    Science.gov (United States)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  4. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Eduard Dechant

    2017-12-01

    Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.

  5. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    OpenAIRE

    MacLachlan, Robert A.; Riviere, Cameron N.

    2009-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large ...

  6. High-bandwidth memory interface

    CERN Document Server

    Kim, Chulwoo; Song, Junyoung

    2014-01-01

    This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.   • Enables readers with minimal background in memory design to understand the basics of high-bandwidth memory interface design; • Presents state-of-the-art techniques for memory interface design; • Covers memory interface design at both the circuit level and system architecture level.

  7. Frequency Domain Electroretinography in Retinitis Pigmentosa versus Normal Eyes

    Directory of Open Access Journals (Sweden)

    Homa Hassan-Karimi

    2012-01-01

    Full Text Available Purpose: To compare electroretinogram (ERG characteristics in patients with retinitis pigmentosa (RP and normal subjects using frequency domain analysis. Methods: Five basic ERG recordings were performed in normal subjects and patients with a clinical diagnosis of RP according to the ISCEV (International Society of Clinical Electrophysiology of Vision protocol. Frequency domain analysis was performed by MATLAB software. Different frequency domain parameters were compared between the study groups. Results: Peak frequency (Fmod of flicker and oscillatory responses in RP patients showed significant (P<0.0001 high pass response as compared to normal controls. Peak frequency (Fmod of the other responses was not significantly different between the two groups. Conclusion: In addition to conventional ERG using time domain methods, frequency domain analysis may be useful for diagnosis of RP. Oscillatory and flicker responses may be analyzed in frequency domain. Fast Fourier transform may reveal two distinct high pass responses (shift to higher frequencies in Fmod. Time and frequency domain analyses may be performed simultaneously with many modern ERG machines and may therefore be recommended in RP patients.

  8. System Identification A Frequency Domain Approach

    CERN Document Server

    Pintelon, Rik

    2012-01-01

    System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identi

  9. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu

    2012-01-01

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  10. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    Science.gov (United States)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  11. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  12. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  13. Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

    CERN Document Server

    Aguglia, D; Martins, C.D.A.

    2014-01-01

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experim...

  14. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  15. Frequency-domain analysis of intrinsic neuronal properties using high-resistant electrodes

    Directory of Open Access Journals (Sweden)

    Christian Rössert

    2009-08-01

    Full Text Available Intrinsic cellular properties of neurons in culture or slices are usually studied by the whole cell clamp method using low-resistant patch pipettes. These electrodes allow detailed analyses with standard electrophysiological methods such as current- or voltage-clamp. However, in these preparations large parts of the network and dendritic structures may be removed, thus preventing an adequate study of synaptic signal processing. Therefore, intact in vivo preparations or isolated in vitro whole brains have been used in which intracellular recordings are usually made with sharp, high-resistant electrodes to optimize the impalement of neurons. The general non-linear resistance properties of these electrodes, however, severely limit accurate quantitative studies of membrane dynamics especially needed for precise modelling. Therefore, we have developed a frequency-domain analysis of membrane properties that uses a Piece-wise Non-linear Electrode Compensation (PNEC method. The technique was tested in second-order vestibular neurons and abducens motoneurons of isolated frog whole brain preparations using sharp potassium chloride- or potassium acetate-filled electrodes. All recordings were performed without online electrode compensation. The properties of each electrode were determined separately after the neuronal recordings and were used in the frequency-domain analysis of the combined measurement of electrode and cell. This allowed detailed analysis of membrane properties in the frequency-domain with high-resistant electrodes and provided quantitative data that can be further used to model channel kinetics. Thus, sharp electrodes can be used for the characterization of intrinsic properties and synaptic inputs of neurons in intact brains.

  16. A High Gain-Bandwidth Product Distributed Transimpedance Amplifier IC for High-Speed Optical Transmission Using Low-Cost GaAs Technology.

    OpenAIRE

    Giannini, F.; Limiti, E.; Orengo, G.; Serino, A.; De Dominicis, M.

    2002-01-01

    This paper reports a distributed baseband transimpedance amplifier for optical links up to 10 Gb/s. The amplifier operates as a baseband amplifier with a transimpedance gain of 48 dB Ω and a DC-to-9 GHz bandwidth. Some innovative design techniques to improve gain-bandwidth performance at low and high frequency with an available low-cost GaAs MESFET technology have been developed.

  17. Globally Deghosting for Marine Streamer with Alternating Minimization Approach in Frequency-slowness Domain

    Science.gov (United States)

    Wang, C.; Zhu, Z.; Gu, H.; Liu, C.; Liu, Z.; Jiao, Z.

    2017-12-01

    The ghost effects of the sea surface can generate notch in marine towed-streamer data, which results in narrow bandwidth of seismic data. Currently, deghosting is widely utilized to increase the bandwidth of the seismic data or the images. However, most of the conventional deghosting algorithms havenot considered the error of streamer depth causing a biased ghost-delay time (τ) with respect to primary reflection and amplitude difference coefficient (r) between ghost and primary reflection varies with offset due to rugged seabed and target depth variation. We proposed a ghost filtering operator considering the protentional biases within the ghost-delay time (τ) and the amplitude difference coefficient (r). The up-going wavefield (u), ghost-delay time (τ) and amplitude difference coefficient (r) can be obtained by utilizing alternating minimization approach for minimizing the difference between actual wavefield and theoretical wavefield in frequency-slowness domain. The main idea is to alternatively updating u, τ and r in each iteration: we update u by least-squares when we keep τ and r constant; and we then keep u constant and optimize over τ and r with a closed-form solution which is closely related to matched filtering. The convergence of the proposed algorithm is guaranteed since we have closed-form solutions for each stage. The experiments on synthetic record confirmed the reliability of the proposed algorithm. We also demonstrate our proposed method in marine VDS shot acquisition. After migration stack processing, our ghosting method significantly increases the bandwidth of the average amplitude, amplitude energy of the medium and high frequency spectrum, improving resolution of medium and deep reflection and providing higher signal-to-noise ratio with clear break point. This research is funded by China Important National Science & Technology Specific Projects (2016ZX05026001-001).

  18. Linear dispersion codes in space-frequency domain for SCFDE

    DEFF Research Database (Denmark)

    Marchetti, Nicola; Cianca, Ernestina; Prasad, Ramjee

    2007-01-01

    This paper presents a general framework for applying the Linear Dispersion Codes (LDC) in the space and frequency domains to Single Carrier - Frequency Domain Equalization (SCFDE) systems. Space-Frequency (SF)LDC are more suitable than Space-Time (ST)-LDC in high mobility environment. However......, the application of LDC in space-frequency domain in SCFDE systems is not straightforward as in Orthogonal Frequency Division Multiplexing (OFDM), since there is no direct access to the subcarriers at the transmitter. This paper describes how to build the space-time dispersion matrices to be used...

  19. Frequency Domain Image Filtering Using CUDA

    Directory of Open Access Journals (Sweden)

    Muhammad Awais Rajput

    2014-10-01

    Full Text Available In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA?s CUDA (Compute Unified Device Architecture. In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA?s parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butterworth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output image quality on both the processing architectures

  20. Frequency domain image filtering using cuda

    International Nuclear Information System (INIS)

    Rajput, M.A.; Khan, U.A.

    2014-01-01

    In this paper, we investigate the implementation of image filtering in frequency domain using NVIDIA's CUDA (Compute Unified Device Architecture). In contrast to signal and image filtering in spatial domain which uses convolution operations and hence is more compute-intensive for filters having larger spatial extent, the frequency domain filtering uses FFT (Fast Fourier Transform) which is much faster and significantly reduces the computational complexity of the filtering. We implement the frequency domain filtering on CPU and GPU respectively and analyze the speed-up obtained from the CUDA's parallel processing paradigm. In order to demonstrate the efficiency of frequency domain filtering on CUDA, we implement three frequency domain filters, i.e., Butter worth, low-pass and Gaussian for processing different sizes of images on CPU and GPU respectively and perform the GPU vs. CPU benchmarks. The results presented in this paper show that the frequency domain filtering with CUDA achieves significant speed-up over the CPU processing in frequency domain with the same level of (output) image quality on both the processing architectures. (author)

  1. Fibre Bragg grating based accelerometer with extended bandwidth

    International Nuclear Information System (INIS)

    Basumallick, Nandini; Biswas, Palas; Dasgupta, Kamal; Bandyopadhyay, Somnath; Chakraborty, Rajib; Chakraborty, Sushanta

    2016-01-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer. (paper)

  2. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampl ing time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB . Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with highe raccuracy.

  3. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    Science.gov (United States)

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  4. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    Science.gov (United States)

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.

  5. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  6. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  7. Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles

    Science.gov (United States)

    2004-01-01

    1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    王正明; 段晓君

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampling time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB. Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with higher accuracy.

  9. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    Science.gov (United States)

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  10. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    International Nuclear Information System (INIS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Alici, Gursel; Deng, Huaxia; Du, Haiping; Yan, Tianhong

    2016-01-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy. (paper)

  11. Conversion of Dielectric Data from the Time Domain to the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Vladimir Durman

    2005-01-01

    Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.

  12. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  13. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  14. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  15. Frequency domain analysis of knock images

    Science.gov (United States)

    Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin

    2014-12-01

    High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.

  16. Application of frequency domain line edge roughness characterization methodology in lithography

    Science.gov (United States)

    Sun, Lei; Wang, Wenhui; Beique, Genevieve; Wood, Obert; Kim, Ryoung-Han

    2015-03-01

    A frequency domain 3 sigma LER characterization methodology combining the standard deviation and power spectral density (PSD) methods is proposed. In the new method, the standard deviation is calculated in the frequency domain instead of the spatial domain as in the conventional method. The power spectrum of the LER is divided into three regions: low frequency (LF), middle frequency (MF) and high frequency (HF) regions. The frequency region definition is based on process visual comparisons. Three standard deviation numbers are used to characterize the LER in the three frequency regions. Pattern wiggling can be detected quantitatively with a wiggling factor which is also proposed in this paper.

  17. Time-domain modeling of electromagnetic diffusion with a frequency-domain code

    NARCIS (Netherlands)

    Mulder, W.A.; Wirianto, M.; Slob, E.C.

    2007-01-01

    We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a

  18. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  19. Enhanced magnetic domain relaxation frequency and low power losses in Zn{sup 2+} substituted manganese ferrites potential for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Chen, Hsiao-Wen [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Liu, Hsiang-Lin, E-mail: hliu@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Sadhana, K., E-mail: sadhana@osmania.ac.in [Department of Physics, Osmania University, Saifabad, Hyderabad, 500004 (India); Murthy, S.R. [Department of Physics, Osmania University, Hyderabad, 500007 (India)

    2016-12-15

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese–Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn{sup 2+} substituted MnFe{sub 2}O{sub 4} were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn{sup 2+}, Zn{sup 2+} and Fe{sup 2+} cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (f{sub r}) was increased with the increase in grain size. The real and imaginary part of permeability (μ′ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (M{sub s}), remnant magnetization (M{sub r}) and magneton number (µ{sub B}) decreased gradually with increasing Zn{sup 2+} concentration. The decrease in the saturation magnetization was discussed with Yafet–Kittel (Y–K) model. The Zn{sup 2+} concentration increases the relative number of ferric ions on the A sites, reduces the A–B interactions. The frequency dependent total power losses decreased as the zinc concentration increased

  20. Laser generated ultrasound sources using polymer nanocomposites for high frequency metrology

    KAUST Repository

    Rajagopal, Srinath

    2017-11-22

    Accurate characterization of ultrasound fields generated by diagnostic and therapeutic transducers is critical for patient safety. This requires hydrophones calibrated to a traceable standard and currently the upper calibration frequency range available to the user community is limited to a frequency of 40 MHz. However, the increasing use of high frequencies for both imaging and therapy necessitates calibrations to frequencies well beyond this range. For this to be possible, a source of high amplitude, broadband, quasi-planar and stable ultrasound fields is required. This is difficult to achieve using conventional piezoelectric sources, but laser generated ultrasound is a promising technique in this regard. In this study, various polymer-carbon nanotube nanocomposites (PNC) were fabricated and tested for their suitability for such an application by varying the polymer type, carbon nanotubes weight content in the polymer, and PNC thickness. A broadband hydrophone was used to measure the peak pressure and bandwidth of the laser generated ultrasound pulse. Peak-positive pressures of up to 8 MPa and −6dB bandwidths of up to 40 MHz were recorded. There is a nonlinear dependence of the peak pressure on the laser fluence and the bandwidth scales inversely proportionally to the peak pressure. The high-pressure plane waves generated from this preliminary investigation has demonstrated that laser generated ultrasound sources are a promising technique for high frequency calibration of hydrophones.

  1. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  2. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Zheng, C.; Pong, Philip W. T. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Zhou, Y., E-mail: yanzhou@hku.hk [School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Department of Physics, The University of Hong Kong (Hong Kong); Kubota, H.; Yuasa, S. [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-06

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.

  3. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Science.gov (United States)

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  4. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok

    2013-09-26

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from the wrapping effect, its inversion has the potential of providing a robust and reliable inversion result. We propose a new waveform inversion algorithm using the phase derivative in the frequency domain along with the exponential damping term to attenuate reflections. We estimate the phase derivative, or what we refer to as the instantaneous traveltime, by taking the derivative of the Fourier-transformed wavefield with respect to the angular frequency, dividing it by the wavefield itself and taking the imaginary part. The objective function is constructed using the phase derivative and the gradient of the objective function is computed using the back-propagation algorithm. Numerical examples show that our inversion algorithm with a strong damping generates a tomographic result even for a high ‘single’ frequency, which can be a good initial model for full waveform inversion and migration.

  5. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan

    2010-10-05

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  6. Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

    KAUST Repository

    Copeland, Dylan; Kolmbauer, Michael; Langer, Ulrich

    2010-01-01

    The paper is devoted to fast iterative solvers for frequency-domain finite element equations approximating linear and nonlinear parabolic initial boundary value problems with time-harmonic excitations. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple linear elliptic system for the amplitudes belonging to the sine- and to the cosine-excitation or a large nonlinear elliptic system for the Fourier coefficients in the linear and nonlinear case, respectively. The fast solution of the corresponding linear and nonlinear system of finite element equations is crucial for the competitiveness of this method. © 2011 Springer-Verlag Berlin Heidelberg.

  7. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    Science.gov (United States)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  8. High bandwidth concurrent processing on commodity platforms

    CERN Document Server

    Boosten, M; Van der Stok, P D V

    1999-01-01

    The I/O bandwidth and real-time processing power required for high- energy physics experiments is increasing rapidly over time. The current requirements can only be met by using large-scale concurrent processing. We are investigating the use of a large PC cluster interconnected by Fast and Gigabit Ethernet to meet the performance requirements of the ATLAS second level trigger. This architecture is attractive because of its performance and competitive pricing. A major problem is obtaining frequent high-bandwidth I/O without sacrificing the CPU's processing power. We present a tight integration of a user-level scheduler and a zero-copy communication layer. This system closely approaches the performance of the underlying hardware in terms of both CPU power and I/O capacity. (0 refs).

  9. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    Science.gov (United States)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  10. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    Science.gov (United States)

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  11. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  12. Review of high bandwidth fiber optics radiation sensors

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1985-01-01

    This paper summarizes the use of fiber optics or guided optical systems for radiation sensors. It is limited a passive systems wherein electrical is not required at the sensor location. However, electrically powered light sources, receivers and/or recorders may still be required for detection and data storage in sensor system operation. This paper emphasizes sensor technologies that permit high bandwidth measurements of transient radiation levels, and will also discuss several low bandwidth applications. 60 refs

  13. Transformation Algorithm of Dielectric Response in Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Ji Liu

    2014-01-01

    Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.

  14. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...

  15. Frequency-domain cascading microwave superconducting quantum interference device multiplexers; beyond limitations originating from room-temperature electronics

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori

    2018-07-01

    A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.

  16. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  17. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  18. Signal-Characteristic analysis with respect to backing material of PVDF-based high-frequency ultrasound for photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Su; Chang, Jin Ho [Dept. of Electronic Engineering, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.

  19. Discrete- and finite-bandwidth-frequency distributions in nonlinear stability applications

    Science.gov (United States)

    Kuehl, Joseph J.

    2017-02-01

    A new "wave packet" formulation of the parabolized stability equations method is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening, and results in disturbance representation more consistent with the experiment than traditional formulations. A Mach 6 flared-cone example is presented.

  20. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  1. THz Tube Waveguides With Low Loss, Low Dispersion, and High Bandwidth

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Bang, Ole

    2014-01-01

    We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth.......We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth....

  2. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  3. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  4. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  5. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    Sagi Ariel

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately . In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in of the test utterances.

  6. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    David Malah

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately 3⋅10−4. In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in 92.5% of the test utterances.

  7. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  8. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  9. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    Science.gov (United States)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  10. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  11. High-frequency domain wall excitations in magnetic garnet films with in-plane magnetization

    International Nuclear Information System (INIS)

    Synogach, V.T.; Doetsch, H.

    1996-01-01

    Magnetic garnet films of compositions (YBi) 3 Fe 5 O 12 and (LuBi) 3 Fe 5 O 12 are grown by liquid-phase epitaxy on [110]- and [100]-oriented substrates of gadolinium gallium garnet, respectively. All films have in-plane magnetization. 180 degree and 90 degree domain walls in these films are studied by microwave technique. In addition to the known low-frequency mode of wall translation new multiple resonant modes of both 90 degree and 180 degree domain walls with very small linewidth (4.2 MHz) are observed at frequencies near 1 GHz. Resonances are effectively excited by an rf magnetic field which is parallel or perpendicular to the wall plane. Resonance frequencies are shown to have nonlinear dispersion dependence on the mode number: they decrease with increasing in-plane magnetic field normal to the wall plane. copyright 1996 The American Physical Society

  12. Gain-switched, Yb-doped, all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, Martin; Nyga, Sebastian

    2013-01-01

    We demonstrate that an all-fiber, narrow bandwidth, high pulse energy pulsed laser can be constructed from commercially available components by applying gain-switching. After single-stage amplification the pulses are frequency doubled in ppSLT with high efficiency....

  13. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  14. On Bandwidth Efficient Modulation for High-Data-Rate Wireless LAN Systems

    Directory of Open Access Journals (Sweden)

    Stolpman Victor

    2002-01-01

    Full Text Available We address the problem of high-data-rate orthogonal frequency division multiplexed (OFDM systems under restrictive bandwidth constraints. Based on recent theoretic results, multiple-input multiple-output (MIMO configurations are best suited for this problem. In this paper, we examine several MIMO configurations suitable for high rate transmission. In all scenarios considered, perfect channel state information (CSI is assumed at the receiver. In constrast, availability of CSI at the transmitter is addressed separately. We show that powerful space-time codes can be developed by combining some simple well-known techniques. In fact, we show that for certain configurations, these space-time MIMO configurations are near optimum in terms of outage capacity as compared to previously published codes. Performance evaluation of these techniques is demonstrated within the IEEE 802.11a framework via Monte Carlo simulations.

  15. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    Science.gov (United States)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  16. Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

    Directory of Open Access Journals (Sweden)

    R. K. Barik

    2017-12-01

    Full Text Available In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  17. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    Science.gov (United States)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  18. 47 CFR 74.535 - Emission and bandwidth.

    Science.gov (United States)

    2010-10-01

    ... digital modulation in paragraph (a) of this section, the resolution bandwidth (BRES) of the measuring...), adjusted upward to the nearest greater resolution bandwidth available on the measuring equipment. In all... frequency energy outside the assigned channel. Upon notice by the FCC to the station licensee that...

  19. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  20. Accounting for binaural detection as a function of masker interaural correlation: effects of center frequency and bandwidth.

    Science.gov (United States)

    Bernstein, Leslie R; Trahiotis, Constantine

    2014-12-01

    Binaural detection was measured as a function of the center frequency, bandwidth, and interaural correlation of masking noise. Thresholds were obtained for 500-Hz or 125-Hz Sπ tonal signals and for the latter stimuli (noise or signal-plus-noise) transposed to 4 kHz. A primary goal was assessment of the generality of van der Heijden and Trahiotis' [J. Acoust. Soc. Am. 101, 1019-1022 (1997)] hypothesis that thresholds could be accounted for by the "additive" masking effects of the underlying No and Nπ components of a masker having an interaural correlation of ρ. Results indicated that (1) the overall patterning of the data depended neither upon center frequency nor whether information was conveyed via the waveform or by its envelope; (2) thresholds for transposed stimuli improved relative to their low-frequency counterparts as bandwidth of the masker was increased; (3) the additivity approach accounted well for the data across stimulus conditions but consistently overestimated MLDs, especially for narrowband maskers; (4) a quantitative approach explicitly taking into account the distributions of time-varying ITD-based lateral positions produced by masker-alone and signal-plus-masker waveforms proved more successful, albeit while employing a larger set of assumptions, parameters, and computational complexity.

  1. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  2. 1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth

    Science.gov (United States)

    Nandi, U.; Norman, J. C.; Gossard, A. C.; Lu, H.; Preu, S.

    2018-04-01

    ErAs:In(Al)GaAs superlattice photoconductors are grown using molecular beam epitaxy (MBE) with excellent material characteristics for terahertz time-domain spectroscopy (TDS) systems operating at 1550 nm. The transmitter material (Tx) features a record resistivity of 3.85 kΩcm and record breakdown field strength of 170 ± 40 kV/cm (dark) and 130 ± 20 kV/cm (illuminated with 45 mW laser power). Receivers (Rx) with different superlattice structures were fabricated showing very high mobility (775 cm2/Vs). The TDS system using these photoconductors features a bandwidth larger than 6.5 THz with a laser power of 45 mW at Tx and 16 mW at Rx.

  3. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Directory of Open Access Journals (Sweden)

    Shahid Ameer

    Full Text Available The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands. Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands. The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands ( 4 GHz with limited selective bandwidth.

  4. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    Science.gov (United States)

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  6. A high control bandwidth design method for aalborg inverter under weak grid condition

    DEFF Research Database (Denmark)

    Wu, Weimin; Zhou, Cong; Wang, Houqin

    2017-01-01

    Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...

  7. THE IMPROVEMENT OF COMPUTER NETWORK PERFORMANCE WITH BANDWIDTH MANAGEMENT IN KEMURNIAN II SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Bayu Kanigoro

    2012-05-01

    Full Text Available This research describes the improvement of computer network performance with bandwidth management in Kemurnian II Senior High School. The main issue of this research is the absence of bandwidth division on computer, which makes user who is downloading data, the provided bandwidth will be absorbed by the user. It leads other users do not get the bandwidth. Besides that, it has been done IP address division on each room, such as computer, teacher and administration room for supporting learning process in Kemurnian II Senior High School, so wireless network is needed. The method is location observation and interview with related parties in Kemurnian II Senior High School, the network analysis has run and designed a new topology network including the wireless network along with its configuration and separation bandwidth on microtic router and its limitation. The result is network traffic on Kemurnian II Senior High School can be shared evenly to each user; IX and IIX traffic are separated, which improve the speed on network access at school and the implementation of wireless network.Keywords: Bandwidth Management; Wireless Network

  8. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2004-06-01

    Full Text Available We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.

  9. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    International Nuclear Information System (INIS)

    England, D G; Michelberger, P S; Champion, T F M; Reim, K F; Lee, K C; Sprague, M R; Jin, X-M; Langford, N K; Kolthammer, W S; Nunn, J; Walmsley, I A

    2012-01-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks. (paper)

  10. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    Science.gov (United States)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  11. A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.; Spear, P.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Harris, R.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Lanting, T.; Oh, T.; Perminov, I.; Tolkacheva, E.; Yao, J. [D-Wave Systems, Inc., Burnaby, British Columbia V5G 4M9 (Canada); Bumble, B.; Day, P. K.; Eom, B. H. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); and others

    2016-01-07

    Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

  12. Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  13. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  14. Time and frequency domain analyses of the Hualien Large-Scale Seismic Test

    International Nuclear Information System (INIS)

    Kabanda, John; Kwon, Oh-Sung; Kwon, Gunup

    2015-01-01

    Highlights: • Time- and frequency-domain analysis methods are verified against each other. • The two analysis methods are validated against Hualien LSST. • The nonlinear time domain (NLTD) analysis resulted in more realistic response. • The frequency domain (FD) analysis shows amplification at resonant frequencies. • The NLTD analysis requires significant modeling and computing time. - Abstract: In the nuclear industry, the equivalent-linear frequency domain analysis method has been the de facto standard procedure primarily due to the method's computational efficiency. This study explores the feasibility of applying the nonlinear time domain analysis method for the soil–structure-interaction analysis of nuclear power facilities. As a first step, the equivalency of the time and frequency domain analysis methods is verified through a site response analysis of one-dimensional soil, a dynamic impedance analysis of soil–foundation system, and a seismic response analysis of the entire soil–structure system. For the verifications, an idealized elastic soil–structure system is used to minimize variables in the comparison of the two methods. Then, the verified analysis methods are used to develop time and frequency domain models of Hualien Large-Scale Seismic Test. The predicted structural responses are compared against field measurements. The models are also analyzed with an amplified ground motion to evaluate discrepancies of the time and frequency domain analysis methods when the soil–structure system behaves beyond the elastic range. The analysis results show that the equivalent-linear frequency domain analysis method amplifies certain frequency bands and tends to result in higher structural acceleration than the nonlinear time domain analysis method. A comparison with field measurements shows that the nonlinear time domain analysis method better captures the frequency distribution of recorded structural responses than the frequency domain

  15. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...

  16. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  17. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  18. Experimental demonstration of bandwidth on demand (BoD) provisioning based on time scheduling in software-defined multi-domain optical networks

    Science.gov (United States)

    Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie

    2016-09-01

    A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.

  19. Efficient generation of a narrow-bandwidth and frequency-modulated beam pair from Yb atoms in a ladder configuration

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2011-01-01

    We report on the generation of narrow-bandwidth and frequency-modulated cascaded emission of two photons from a collimated Yb atomic beam. Efficient population transfer from the ground state (6s 2 1 S 0 ) to upper state (6s7s 1 S 0 ), of which direct transition at 291.1 nm is dipole forbidden, is achieved through a resonant two-photon excitation enhanced by the electromagnetically induced transparency mediated by the intermediate state (6s6p 1 P 1 ). Then cascaded emission of two photons with a bandwidth of 54 MHz at 611.3 nm (idler) and 555.8 nm (signal) occurs in sequence from the upper state via the spin triplet state (6s 2 3 P 1 ). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields successfully explain the experimental results for the idler and signal beam intensities depending on the various parameters of the driving fields. Synchronized optical switching and frequency-modulation characteristics of the idler and signal beams are also reported.

  20. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  1. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method

    Science.gov (United States)

    Żak, A.; Krawczuk, M.; Palacz, M.; Doliński, Ł.; Waszkowiak, W.

    2017-11-01

    In this work results of numerical simulations and experimental measurements related to the high frequency dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam are changed revealing a set of frequency band gaps. The presence of the frequency band gaps can help in the design process of effective sound filters or sound barriers that can selectively attenuate propagating wave signals of certain frequency contents. In order to achieve this a combination of three numerical techniques were employed by the authors. They comprise the application of the Time-domain Spectral Finite Element Method in the case of analysis of finite and semi-infinite computational domains, damage modelling in the case of analysis of drill-hole influence, as well as the Bloch reduction in the case of analysis of periodic computational domains. As an experimental technique the Scanning Laser Doppler Vibrometry was chosen. A combined application of all these numerical and experimental techniques appears as new for this purpose and not reported in the literature available.

  2. Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Lorenzen, Dennis Lund

    2014-01-01

    We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources......, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central...... frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present...

  3. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  4. Unified Frequency-Domain Analysis of Switched-Series-RC Passive Mixers and Samplers

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; de Boer, Pieter-Tjerk; van Vliet, Frank Edward; Nauta, Bram

    2010-01-01

    Abstract—A wide variety of voltage mixers and samplers are implemented with similar circuits employing switches, resistors, and capacitors. Restrictions on duty cycle, bandwidth, or output frequency are commonly used to obtain an analytical expression for the response of these circuits. This paper

  5. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  6. Spectral element method for elastic and acoustic waves in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  7. Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth.

    Science.gov (United States)

    Meese, Tim S; Holmes, David J

    2010-10-01

    Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.

  8. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  9. Frequency domain analysis of piping systems under short duration loading

    International Nuclear Information System (INIS)

    Sachs, K.; Sand, H.; Lockau, J.

    1981-01-01

    In piping analysis two procedures are used almost exclusively: the modal superposition method for relatively long input time histories (e.g., earthquake) and direct integration of the equations of motion for short input time histories. A third possibility, frequency domain analysis, has only rarely been applied to piping systems to date. This paper suggests the use of frequency domain analysis for specific piping problems for which only direct integration could be used in the past. Direct integration and frequency domain analysis are compared, and it is shown that the frequency domain method is less costly if more than four or five load cases are considered. In addition, this method offers technical advantages, such as more accurate representation of modal damping and greater insight into the structural behavior of the system. (orig.)

  10. Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials

    Science.gov (United States)

    Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang

    2018-03-01

    By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.

  11. The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation?

    Directory of Open Access Journals (Sweden)

    Bart Peeters

    2004-01-01

    Full Text Available Recently, a new non-iterative frequency-domain parameter estimation method was proposed. It is based on a (weighted least-squares approach and uses multiple-input-multiple-output frequency response functions as primary data. This so-called “PolyMAX” or polyreference least-squares complex frequency-domain method can be implemented in a very similar way as the industry standard polyreference (time-domain least-squares complex exponential method: in a first step a stabilisation diagram is constructed containing frequency, damping and participation information. Next, the mode shapes are found in a second least-squares step, based on the user selection of stable poles. One of the specific advantages of the technique lies in the very stable identification of the system poles and participation factors as a function of the specified system order, leading to easy-to-interpret stabilisation diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases such as high-order and/or highly damped systems with large modal overlap. Some real-life automotive and aerospace case studies are discussed. PolyMAX is compared with classical methods concerning stability, accuracy of the estimated modal parameters and quality of the frequency response function synthesis.

  12. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Science.gov (United States)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  13. Bandwidth Assessment for MultiRotor UAVs

    Directory of Open Access Journals (Sweden)

    Ferrarese Gastone

    2017-06-01

    Full Text Available This paper is a technical note about the theoretical evaluation of the bandwidth of multirotor helicopters. Starting from a mathematical linear model of the dynamics of a multirotor aircraft, the transfer functions of the state variables that deeply affect the stability characteristics of the aircraft are obtained. From these transfer functions, the frequency response analysis of the system is effected. After this analysis, the bandwidth of the system is defined. This result is immediately utilized for the design of discrete PID controllers for hovering flight stabilization. Numeric simulations are shown to demonstrate that the knowledge of the bandwidth is a valid aid in the design of flight control systems of these machines.

  14. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sen; Luo, Sheng-Nian

    2018-02-16

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  15. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    Science.gov (United States)

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  16. High Order Differential Frequency Hopping: Design and Analysis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-01-01

    Full Text Available This paper considers spectrally efficient differential frequency hopping (DFH system design. Relying on time-frequency diversity over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However, the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH scheme. Unlike in traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system efficiency.

  17. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  18. Frequency-domain and time-domain methods for feedback nonlinear systems and applications to chaos control

    International Nuclear Information System (INIS)

    Duan Zhisheng; Wang Jinzhi; Yang Ying; Huang Lin

    2009-01-01

    This paper surveys frequency-domain and time-domain methods for feedback nonlinear systems and their possible applications to chaos control, coupled systems and complex dynamical networks. The absolute stability of Lur'e systems with single equilibrium and global properties of a class of pendulum-like systems with multi-equilibria are discussed. Time-domain and frequency-domain criteria for the convergence of solutions are presented. Some latest results on analysis and control of nonlinear systems with multiple equilibria and applications to chaos control are reviewed. Finally, new chaotic oscillating phenomena are shown in a pendulum-like system and a new nonlinear system with an attraction/repulsion function.

  19. A wide-bandwidth and high-sensitivity robust microgyroscope

    International Nuclear Information System (INIS)

    Sahin, Korhan; Sahin, Emre; Akin, Tayfun; Alper, Said Emre

    2009-01-01

    This paper reports a microgyroscope design concept with the help of a 2 degrees of freedom (DoF) sense mode to achieve a wide bandwidth without sacrificing mechanical and electronic sensitivity and to obtain robust operation against variations under ambient conditions. The design concept is demonstrated with a tuning fork microgyroscope fabricated with an in-house silicon-on-glass micromachining process. When the fabricated gyroscope is operated with a relatively wide bandwidth of 1 kHz, measurements show a relatively high raw mechanical sensitivity of 131 µV (° s −1 ) −1 . The variation in the amplified mechanical sensitivity (scale factor) of the gyroscope is measured to be less than 0.38% for large ambient pressure variations such as from 40 to 500 mTorr. The bias instability and angle random walk of the gyroscope are measured to be 131° h −1 and 1.15° h −1/2 , respectively

  20. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  1. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion

  2. Design and fabrication of bandwidth tunable HTS transmit filter using {pi}-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Harada, H.; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ono, S.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have developed a method for tuning the bandwidth of a high-temperature superconducting (HTS) microstrip filter. Several {pi}-shaped waveguides are placed between the resonators, and the bandwidth is tuned in discrete steps by changing the switch states of the waveguides, which changes the coupling coefficient between the resonators. The filter contains 3-pole half-wavelength straight-line resonators and two {pi}-shaped waveguides for bandwidth tuning. It also has several electrical pads distributed around the feed lines for trimming after tuning. The filter was fabricated by depositing YBa{sub 2}Cu{sub 3}O{sub 7} thin film on an MgO substrate and has a measured center frequency of 5.17 GHz and bandwidth of 220 MHz. Use of the {pi}-shaped waveguides to adjust the coupling coefficients and the electrical pads to adjust the external quality factors resulted in 80-MHz bandwidth tuning without increased insertion loss.

  3. Frequency-domain waveform inversion using the phase derivative

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2013-01-01

    Phase wrapping in the frequency domain or cycle skipping in the time domain is the major cause of the local minima problem in the waveform inversion when the starting model is far from the true model. Since the phase derivative does not suffer from

  4. Parametric time-frequency domain spatial audio

    CERN Document Server

    Delikaris-Manias, Symeon; Politis, Archontis

    2018-01-01

    This book provides readers with the principles and best practices in spatial audio signal processing. It describes how sound fields and their perceptual attributes are captured and analyzed within the time-frequency domain, how essential representation parameters are coded, and how such signals are efficiently reproduced for practical applications. The book is split into four parts starting with an overview of the fundamentals. It then goes on to explain the reproduction of spatial sound before offering an examination of signal-dependent spatial filtering. The book finishes with coverage of both current and future applications and the direction that spatial audio research is heading in. Parametric Time-frequency Domain Spatial Audio focuses on applications in entertainment audio, including music, home cinema, and gaming--covering the capturing and reproduction of spatial sound as well as its generation, transduction, representation, transmission, and perception. This book will teach readers the tools needed...

  5. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    Science.gov (United States)

    2016-04-19

    AFRL-AFOSR-VA-TR-2016-0165 (BRI) Microresonator-Based Optical Frequency Combs: A Time Domain Perspective Andrew Weiner PURDUE UNIVERSITY 401 SOUTH...Optical Frequency Combs: A Time Domain Perspective 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  6. Broadening microwave absorption via a multi-domain structure

    Directory of Open Access Journals (Sweden)

    Zhengwang Liu

    2017-04-01

    Full Text Available Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz is a great challenge. Herein, the three-dimensional (3D Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as −55 dB and the bandwidth (<−10 dB spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450–850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  7. IMPROVING BANDWIDTH OF FLIPPED VOLTAGE FOLLOWER USING GATE-BODY DRIVEN TECHNIQUE

    Directory of Open Access Journals (Sweden)

    VANDANA NIRANJAN

    2017-01-01

    Full Text Available In this paper, a new approach to enhance the bandwidth of flipped voltage follower is explored. The proposed approach is based on gate-body driven technique. This technique boosts the transconductance in a MOS transistor as both gate and body/bulk terminals are tied together and used as signal input. This novel technique appears as a good solution to merge the advantages of gate-driven and bulk-driven techniques and suppress their disadvantages. The gate-body driven technique utilizes body effect to enable low voltage low power operation and improves the overall performance of flipped voltage follower, providing it with low output impedance, high input impedance and bandwidth extension ratio of 2.614. The most attractive feature is that bandwidth enhancement has been achieved without use of any passive component or extra circuitry. Simulations in PSpice environment for 180 nm CMOS technology verified the predicted theoretical results. The improved flipped voltage follower is particularly interesting for high frequency low noise signal processing applications.

  8. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.

  9. Design of a Super High Frequency (SHF) Extremely High Frequency (EHF) Satellite Communications (SATCOM) Terminal (SEST) for New Construction Naval Surface Ships using the systems engineering process

    OpenAIRE

    Harrell, Steven B.

    1996-01-01

    Alternative means of satisfying the high bandwidth and protected communications requirements for New Construction Naval Surface Ships in the midst of conflicting reduced radar cross section (RCS) requirements were investigated using the systems engineering process. Various antenna, ranging from parabolic dish antennas to Luneberg lens antennas to phased array antennas, and feed and amplifier combinations were considered to provide a dual-band Super High Frequency (SHF) and Extr...

  10. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  11. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  12. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  13. Load Estimation by Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Pedersen, Ivar Chr. Bjerg; Hansen, Søren Mosegaard; Brincker, Rune

    2007-01-01

    When performing operational modal analysis the dynamic loading is unknown, however, once the modal properties of the structure have been estimated, the transfer matrix can be obtained, and the loading can be estimated by inverse filtering. In this paper loads in frequency domain are estimated by ...

  14. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  15. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Directory of Open Access Journals (Sweden)

    Yue Ji

    2015-12-01

    Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  16. AMELIORATE OF BANDWIDTH AND RETURN LOSS OF RECTANGULAR PATCH ANTENNA USING METAMATERIAL STRUCTURE FOR RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    RAJESH SAHA

    2016-09-01

    Full Text Available Radio Frequency Identification is an emerging research topic to identify any object automatically and it has applications in many fields like manufacture industry, business, animal tracking, vehicle tracking etc. In automatic identification system, the main role of radio frequency identification system is radiation and detection. The reader and the tag are the important components in radio frequency identification technology. In radio frequency identification system, antenna plays very significant role to transmit and receive data in both direction (i.e., from reader to tag and vice versa. An antenna with high gain, high directivity, high bandwidth and more down in negative S11 (dB value works as an effective antenna. So design and optimization of an effective antenna is very necessary for any application. In this paper, firstly itdesigned a rectangular patch antenna and simulated through High Frequency Structure Simulator. In next step, it designed a metamaterial structure having U shape Split Ring Resonator with both one and two port, on the rectangular patch antenna to improve the return loss and bandwidth of patch antenna; so that the performance of the tag can be increased for the radio frequency identification system. By simulation it has been seen that, two port antenna provides maximum return loss and bandwidth of - 41.2dB and 870MHz respectively. Finally, the output parameters such as return loss, gain, directivity that are obtained from simulation of the metamaterial Split Ring Resonator structure antenna are compared with the network output of Artificial Neural Network to find the Mean Square Error between the simulated output and Artificial Neural Network output.

  17. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Madhukumar A. S.

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  18. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  19. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    Science.gov (United States)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  20. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  1. RAID Disk Arrays for High Bandwidth Applications

    Science.gov (United States)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  2. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  3. Finding the Secret of Image Saliency in the Frequency Domain.

    Science.gov (United States)

    Li, Jia; Duan, Ling-Yu; Chen, Xiaowu; Huang, Tiejun; Tian, Yonghong

    2015-12-01

    There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18 state-of-the-art approaches in predicting human fixations.

  4. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  5. Effective Domain Partitioning for Multi-Clock Domain IP Core Wrapper Design under Power Constraints

    Science.gov (United States)

    Yu, Thomas Edison; Yoneda, Tomokazu; Zhao, Danella; Fujiwara, Hideo

    The rapid advancement of VLSI technology has made it possible for chip designers and manufacturers to embed the components of a whole system onto a single chip, called System-on-Chip or SoC. SoCs make use of pre-designed modules, called IP-cores, which provide faster design time and quicker time-to-market. Furthermore, SoCs that operate at multiple clock domains and very low power requirements are being utilized in the latest communications, networking and signal processing devices. As a result, the testing of SoCs and multi-clock domain embedded cores under power constraints has been rapidly gaining importance. In this research, a novel method for designing power-aware test wrappers for embedded cores with multiple clock domains is presented. By effectively partitioning the various clock domains, we are able to increase the solution space of possible test schedules for the core. Since previous methods were limited to concurrently testing all the clock domains, we effectively remove this limitation by making use of bandwidth conversion, multiple shift frequencies and properly gating the clock signals to control the shift activity of various core logic elements. The combination of the above techniques gains us greater flexibility when determining an optimal test schedule under very tight power constraints. Furthermore, since it is computationally intensive to search the entire expanded solution space for the possible test schedules, we propose a heuristic 3-D bin packing algorithm to determine the optimal wrapper architecture and test schedule while minimizing the test time under power and bandwidth constraints.

  6. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  7. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  8. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    Science.gov (United States)

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    Science.gov (United States)

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  10. MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

    Directory of Open Access Journals (Sweden)

    M. SENTHILKUMAR

    2015-08-01

    Full Text Available Most of the controllers in control system are designed to satisfy either time domain or frequency domain specifications. This work presents the computation of a multiloop PI controller for achieving time and frequency domain specifications simultaneously. The desired time and frequency domain measures are to be specified initially to the design. To obtain the desired value of the performance measures the graphical relationship between the PI controller and the performance criteria is given. Thus by using graphical method a set of PI controller parameters to meet the desired performance measures are obtained in an effective and simpler way. The coupled tank has become a classic design of control engineering for multivariable process. The proposed control strategy has been implemented in the same coupled tank process and validated through simulation studies.

  11. Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others

    1994-12-31

    This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.

  12. Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis

    Science.gov (United States)

    Zhang, Shengli; Tang, J.

    2018-01-01

    Gear fault diagnosis relies heavily on the scrutiny of vibration responses measured. In reality, gear vibration signals are noisy and dominated by meshing frequencies as well as their harmonics, which oftentimes overlay the fault related components. Moreover, many gear transmission systems, e.g., those in wind turbines, constantly operate under non-stationary conditions. To reduce the influences of non-synchronous components and noise, a fault signature enhancement method that is built upon angle-frequency domain synchronous averaging is developed in this paper. Instead of being averaged in the time domain, the signals are processed in the angle-frequency domain to solve the issue of phase shifts between signal segments due to uncertainties caused by clearances, input disturbances, and sampling errors, etc. The enhanced results are then analyzed through feature extraction algorithms to identify the most distinct features for fault classification and identification. Specifically, Kernel Principal Component Analysis (KPCA) targeting at nonlinearity, Multilinear Principal Component Analysis (MPCA) targeting at high dimensionality, and Locally Linear Embedding (LLE) targeting at local similarity among the enhanced data are employed and compared to yield insights. Numerical and experimental investigations are performed, and the results reveal the effectiveness of angle-frequency domain synchronous averaging in enabling feature extraction and classification.

  13. High-Performance Control in Radio Frequency Power Amplification Systems

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod

    . It is clearly shown that single-phase switch-mode control systems based on oscillation (controlled unstable operation) of the whole power train provide the highest possible control bandwidth. A study of the limitations of cartesian feedback is also included. It is shown that bandwidths in excess of 4MHz can...... frequency power amplifiers (RFPAs) in conjunction with cartesian feedback (CFB) used to linearize the overall transmitter system. On a system level, it is demonstrated how envelope tracking is particularly useful for RF carriers with high peak-to-average power ratios, such as TEDS with 10dB. It is also...... demonstrated how the envelope tracking technique introduces a number of potential pitfalls to the system, namely in the form of power supply ripple intermodulation (PSIM), reduced RFPA linearity and a higherimpedance supply rail for the RFPA. Design and analysis techniques for these three issues are introduced...

  14. Enhanced UXO Discrimination Using Frequency-Domain Electromagnetic Induction

    National Research Council Canada - National Science Library

    Nelson, H. H; Steinhurst, D. A; Barrow, B; Bell, T; Khadar, N; SanFilipo, B; Won, I. J

    2007-01-01

    .... With support from the Environmental Security Technology Certification Program, we have developed a frequency-domain electromagnetic induction sensor array to extend the discrimination capabilities of the MTADS...

  15. Frequency-Domain Joint Motion and Disparity Estimation Using Steerable Filters

    Directory of Open Access Journals (Sweden)

    Dimitrios Alexiadis

    2018-02-01

    Full Text Available In this paper, the problem of joint disparity and motion estimation from stereo image sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based approach is proposed. Our rationale behind coupling the two problems is that according to experimental evidence in the literature, the biological visual mechanisms for depth and motion are not independent of each other. Furthermore, our motivation to study the problem in the frequency domain and search for a filter-based solution is based on the fact that, according to early experimental studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based considerations, for both the perception of depth and the perception of motion. The proposed framework constitutes the first attempt to solve the joint estimation problem through a filter-based solution, based on frequency-domain considerations. Thus, the presented ideas provide a new direction of work and could be the basis for further developments. From an algorithmic point of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate the accuracy of the proposed approach.

  16. Modulated convection at high frequencies and large modulation amplitudes

    International Nuclear Information System (INIS)

    Swift, J.B.; Hohenberg, P.C.

    1987-01-01

    Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed

  17. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  18. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Gregory L.; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2016-06-01

    Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  19. Localization of epileptogenic zones in Lennox–Gastaut syndrome using frequency domain source imaging of intracranial electroencephalography: a preliminary investigation

    International Nuclear Information System (INIS)

    Cho, Jae-Hyun; Jung, Young-Jin; Kim, Jeong-Youn; Im, Chang-Hwan; Kang, Hoon-Chul; Kim, Heung Dong; Yoon, Dae Sung; Lee, Yong-Ho

    2013-01-01

    Although intracranial electroencephalography (iEEG) has been widely used to localize epileptogenic zones in epilepsy, visual inspection of iEEG recordings does not always result in a favorable surgical outcome, especially in secondary generalized epilepsy such as Lennox–Gastaut syndrome (LGS). Various computational iEEG analysis methods have recently been introduced to confirm the visual inspection results. Of these methods, high gamma oscillation in iEEG has attracted interest because a series of studies have reported a close relationship between epileptogenic zones and cortical areas with high gamma oscillation. Meanwhile, frequency domain source imaging of EEG and MEG oscillations has proven to be a useful auxiliary tool for identifying rough locations of epileptogenic zones. To the best of our knowledge, however, frequency domain source imaging of high gamma iEEG oscillations has not been studied. In this study, we investigated whether the iEEG-based frequency domain source imaging of high gamma oscillation (60–100 Hz) would be a useful supplementary tool for identifying epileptogenic zones in patients with secondary generalized epilepsy. The method was applied to three successfully operated on LGS patients, whose iEEG contained some ictal events with distinct high gamma oscillations before seizure onset. The resultant cortical source distributions were compared with surgical resection areas and with high gamma spectral power distributions on the intracranial sensor plane. While the results of the sensor-level analyses contained many spurious activities, the results of frequency domain source imaging coincided better with the surgical resection areas, suggesting that the frequency domain source imaging of iEEG high gamma oscillations might help enhance the accuracy of pre-surgical evaluations of patients with secondary generalized epilepsy. (paper)

  20. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....

  1. Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP

    Directory of Open Access Journals (Sweden)

    Patrick A. Naylor

    2008-05-01

    Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.

  2. Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain

    Science.gov (United States)

    Yin, Xingyao; Li, Kun; Zong, Zhaoyun

    2016-10-01

    AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.

  3. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  4. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  5. Frequency domain indirect identification of AMB rotor systems based on fictitious proportional feedback gain

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyeong Joon [Dept. of Mechanical Engineering, Soongsil University, Seoul (Korea, Republic of); Kim, Chan Jung [Dept. of Mechanical Design Engineering, Pukyong National University, Busan(Korea, Republic of)

    2016-12-15

    It is very difficult to directly identify an unstable system with uncertain dynamics from frequency domain input-output data. Hence, in these cases, closed-loop frequency responses calculated using a fictitious feedback could be more identifiable than open-loop data. This paper presents a frequency domain indirect identification of AMB rotor systems based on a Fictitious proportional feedback gain (FPFG). The closed-loop effect due to the FPFG can enhance the detectability of the system by moving the system poles, and significantly weigh the target mode in the frequency domain. The effectiveness of the proposed identification method was verified through the frequency domain identification of active magnetic bearing rotor systems.

  6. Accelerated pharmacokinetic map determination for dynamic contrast enhanced MRI using frequency-domain based Tofts model.

    Science.gov (United States)

    Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam

    2014-01-01

    Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.

  7. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    Science.gov (United States)

    Lee, Woochan

    is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.

  8. Reduced order for nuclear reactor model in frequency and time domain

    International Nuclear Information System (INIS)

    Nugroho, D.H.

    1997-01-01

    In control system theory, a model can be represented by frequency or time domain. In frequency domain, the model was represented by transfer function. in time domain, the model was represented by state space. for the sake of simplification in computation, it is necessary to reduce the model order. the main aim of this research is to find the best in nuclear reactor model. Model order reduction in frequency domain can be done utilizing pole-zero cancellation method; while in time domain utilizing balanced aggregation method the balanced aggregation method was developed by moore (1981). In this paper, the two kinds of method were applied to reduce a nuclear reactor model which was constructed by neutron dynamics and heat transfer equations. to validate that the model characteristics were not change when model order reduction applied, the response was utilized for full and reduced order. it was shown that the nuclear reactor order model can be reduced from order 8 to 2 order 2 is the best order for nuclear reactor model

  9. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.

    Science.gov (United States)

    Wang, Chuan; Badmaev, Alexander; Jooyaie, Alborz; Bao, Mingqiang; Wang, Kang L; Galatsis, Kosmas; Zhou, Chongwu

    2011-05-24

    This paper reports the radio frequency (RF) and linearity performance of transistors using high-purity semiconducting carbon nanotubes. High-density, uniform semiconducting nanotube networks are deposited at wafer scale using our APTES-assisted nanotube deposition technique, and RF transistors with channel lengths down to 500 nm are fabricated. We report on transistors exhibiting a cutoff frequency (f(t)) of 5 GHz and with maximum oscillation frequency (f(max)) of 1.5 GHz. Besides the cutoff frequency, the other important figure of merit for the RF transistors is the device linearity. For the first time, we report carbon nanotube RF transistor linearity metrics up to 1 GHz. Without the use of active probes to provide the high impedance termination, the measurement bandwidth is therefore not limited, and the linearity measurements can be conducted at the frequencies where the transistors are intended to be operating. We conclude that semiconducting nanotube-based transistors are potentially promising building blocks for highly linear RF electronics and circuit applications.

  10. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    Science.gov (United States)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  11. Ultrasound breast imaging using frequency domain reverse time migration

    Science.gov (United States)

    Roy, O.; Zuberi, M. A. H.; Pratt, R. G.; Duric, N.

    2016-04-01

    Conventional ultrasonography reconstruction techniques, such as B-mode, are based on a simple wave propagation model derived from a high frequency approximation. Therefore, to minimize model mismatch, the central frequency of the input pulse is typically chosen between 3 and 15 megahertz. Despite the increase in theoretical resolution, operating at higher frequencies comes at the cost of lower signal-to-noise ratio. This ultimately degrades the image contrast and overall quality at higher imaging depths. To address this issue, we investigate a reflection imaging technique, known as reverse time migration, which uses a more accurate propagation model for reconstruction. We present preliminary simulation results as well as physical phantom image reconstructions obtained using data acquired with a breast imaging ultrasound tomography prototype. The original reconstructions are filtered to remove low-wavenumber artifacts that arise due to the inclusion of the direct arrivals. We demonstrate the advantage of using an accurate sound speed model in the reverse time migration process. We also explain how the increase in computational complexity can be mitigated using a frequency domain approach and a parallel computing platform.

  12. Impact of modulation bandwidth on multiplexing using principal modes in MMF links.

    Science.gov (United States)

    Prasad, Rohan; Appaiah, Kumar

    2018-01-22

    Multimode fibers (MMFs) are widely used for short fiber links. However, the data rates through MMFs is limited owing to modal dispersion. The so-called "principal modes" (PMs) permit transmission and multiplexing through the MMFs without modal dispersion for small modulation bandwidths. For larger modulation bandwidths, however, they lose their dispersion-free nature. In this paper, we model the impact of modulation bandwidth and mode coupling strength on the performance of PMs. We develop a simulator that characterizes the dispersion and cross-talk of the PMs of few-mode and large-core graded-index MMFs with mode-dependent losses (MDL). Simulations reveal that for fibers without MDL, for modulation frequencies beyond 10 GHz diminishes the PMs' frequency response by more than 1 dB for 100 m in large-core MMF links and 10 km few-mode fiber links. With MDL, simulations reveal that for modulation bandwidths beyond 2 GHz diminishes the frequency response by 3 dB for a 1 km few-mode fiber and by more than 4 dB for a 1 km large-core multimode fiber. While multiplexing using PMs in large-core MMFs with MDL, we find that for modulation bandwidths beyond 3 GHz, the cross-talk is 20 dB in 1 km large-core MMF links, thereby limiting system performance.

  13. A frequency domain approach for MPC tuning

    NARCIS (Netherlands)

    Özkan, L.; Meijs, J.B.; Backx, A.C.P.M.; Karimi, I.A.; Srinivasan, R.

    2012-01-01

    This paper presents a frequency domain based approach to tune the penalty weights in the model predictive control (MPC) formulation. The two-step tuning method involves the design of a favourite controller taking into account the model-plant mismatch followed by the controller matching. We implement

  14. Estimating auditory filter bandwidth using distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Hauen, Sigurd van; Rukjær, Andreas Harbo; Ordoñez Pizarro, Rodrigo Eduardo

    2017-01-01

    The basic frequency selectivity in the listener’s hearing is often characterized by auditory filters. These filters are determined through listening tests, which determine the masking threshold as a function of frequency of the tone and the bandwidth of the masking sound. The auditory filters hav...

  15. Spatial frequency domain spectroscopy of two layer media

    Science.gov (United States)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  16. Detection of 320 Gb/s Nyquist OTDM by polarization-insensitive time-domain optical Fourier transformation

    DEFF Research Database (Denmark)

    Hu, Hao; Kong, Deming; Palushani, Evarist

    2013-01-01

    320 Gb/s Nyquist-OTDM is generated by rectangular filtering with a bandwidth of 320 GHz and received by polarization-insensitive time-domain optical Fourier transformation (TD-OFT) followed by passive filtering. After the time-to-frequency mapping in the TD-OFT, the Nyquist-OTDM is converted into...

  17. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  18. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  19. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    International Nuclear Information System (INIS)

    Yu, Zhu; Xue-Jun, Xu; Zhi-Yong, Li; Liang, Zhou; Yu-De, Yu; Jin-Zhong, Yu; Wei-Hua, Han; Zhong-Chao, Fan

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss. (classical areas of phenomenology)

  20. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    Science.gov (United States)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  1. Study and realisation of a high frequency analyzer; Etude et realisation d'un analyseur de signaux a haute frequence

    Energy Technology Data Exchange (ETDEWEB)

    Bourbigot, J [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    This device is designed for the amplitude and frequency analysis of electric or electromagnetic signals in the frequency range of 0 to 55 MHz. The frequency spectrum of a preset bandwidth is displayed on the screen of an oscilloscope. Conceived to analyse the electromagnetic oscillations that can be generated in a plasma, its main characteristics are the following: extended bandwidth of analysed frequencies, on both sides of the ion cyclotron frequency in a magnetic field up to 20 kGs; linear amplitude and frequency response; possibility of analysing a narrow band; high sensitivity; analysis repetition rate of 25 per second. The different parts of the analyzer are described after a discussion of the choice of the techniques used in their design. In addition to its present use, the device can be applied to perform all the functions of a commercial spectral analyzer. (author) [French] Cet appareil est destine a l'analyse en frequence et amplitude de signaux electriques ou electromagnetiques dans une gamme de frequences de 0 a 55 MHz. Couple a un oscillographe, il permet de faire apparaitre sur l'ecran, le spectre de frequences dans une gamme choisie. Etudie dans le but d'analyser les oscillations electromagnetiques pouvant apparaitre dans un plasma, ses principales caracteristiques sont les suivantes: une bande etendue de frequences analysees, de part et d'autre de la frequence cyclotronique des ions dans un champ magnetique pouvant atteindre 20 kGs (valeur maximum 55 MHz); une reponse lineaire en amplitude et en frequence; la possibilite d'analyser, une bande restreinte de frequences; une grande sensibilite La frequence d'analyse est de 25 periodes par seconde. Les diverses parties de l'analyseur sont decrites apres l'expose des motifs ayant guide le choix des solutions adoptees pour sa realisation. Les schemas electriques sont egalement presentes. En dehors du but precis qui a motive la realisation de cet appareil, son usage peut s'etendre a toutes les applications

  2. Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone

    Directory of Open Access Journals (Sweden)

    Marcel Heers

    2018-01-01

    Full Text Available The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ. There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data.

  3. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  4. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  5. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    Science.gov (United States)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  6. High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal

    Science.gov (United States)

    Ma, Jinpeng; Xue, Saidong; Zhao, Xiangyong; Wang, Feifei; Tang, Yanxue; Duan, Zhihua; Wang, Tao; Shi, Wangzhou; Yue, Qingwen; Zhou, Huifang; Luo, Haosu; Fang, Bijun

    2017-08-01

    We report a high frequency ultrasonic transducer up to 50 MHz for vessel imaging based on a lead-free (K0.44Na0.56)NbO3-0.5 mol. % Mn (Mn-KNN) single crystal, which has a high electromechanical coupling coefficient kt of 0.64 and a large thickness frequency constant Nt of 3210 kHz . mm. The Krimholtz, Leedom, and Mattaei (KLM) equivalent circuit model was utilized to simulate and optimize the pulse-echo response combined with PiezoCAD software. Theoretically, a high -6 dB bandwidth of 74.94% was obtained at a center frequency of 50.47 MHz and optimized matching conditions. The experimental results showed a center frequency of 51.8 MHz with a -6 dB bandwidth of 70.2%. The excellent global performance makes this lead-free single-crystal transducer quite potential in an environmentally friendly vessel imaging transducer.

  7. Static and high-frequency magnetic properties of stripe domain structure in a plate of finite sizes

    International Nuclear Information System (INIS)

    Mal'ginova, S.D.; Doroshenko, R.A.; Shul'ga, N.V.

    2006-01-01

    A model that enables to carry out self-consistent calculations of the main parameters of stripe domain structure (DS) and at the same time those of properties of domain walls (DW) of a multiple-axis finite (in all directions) ferromagnet depending on the sizes of a sample, material parameters and intensity of a magnetic field is offered. The calculations of the properties of DS (direction of magnetization in domains, widths, ferromagnetic resonance, etc.) are carried out on a computer for plates (1 1 0), rectangular shapes of a cubic ferromagnet with axes of light magnetization along trigonal directions in a magnetic field [-1 1 0]. It is shown, that in plates of different shapes there can be a structure with Neel DW alongside with DS with Bloch DW. Their features are noticeably exhibited, in particular, in different dependence of the number of domains, and also frequencies of a ferromagnetic resonance from a magnetic field

  8. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    Science.gov (United States)

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  9. Harbor porpoise clicks do not have conditionally minimum time bandwidth product

    DEFF Research Database (Denmark)

    Beedholm, Kristian

    2008-01-01

    The hypothesis that odontocete clicks have minimal time frequency product given their delay and center frequency values is tested by using an in-phase averaged porpoise click compared with a pure tone weighted with the same envelope. These signals have the same delay and the same center frequency...... values but the time bandwidth product of the artificial click is only 0.76 that of the original. Therefore signals with the same parameters exist that have a lower time bandwidth product. The observation that porpoise clicks are in fact minimum phase is confirmed for porpoise clicks and this property...... is argued to be incompatible with optimal reception, if auditory filters are also minimum phase....

  10. Combined failure acoustical diagnosis based on improved frequency domain blind deconvolution

    International Nuclear Information System (INIS)

    Pan, Nan; Wu, Xing; Chi, YiLin; Liu, Xiaoqin; Liu, Chang

    2012-01-01

    According to gear box combined failure extraction in complex sound field, an acoustic fault detection method based on improved frequency domain blind deconvolution was proposed. Follow the frequency-domain blind deconvolution flow, the morphological filtering was firstly used to extract modulation features embedded in the observed signals, then the CFPA algorithm was employed to do complex-domain blind separation, finally the J-Divergence of spectrum was employed as distance measure to resolve the permutation. Experiments using real machine sound signals was carried out. The result demonstrate this algorithm can be efficiently applied to gear box combined failure detection in practice.

  11. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...

  12. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  13. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    International Nuclear Information System (INIS)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z; Bin, L

    2008-01-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP

  14. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  15. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    Science.gov (United States)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  16. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  17. An operational modal analysis method in frequency and spatial domain

    Science.gov (United States)

    Wang, Tong; Zhang, Lingmi; Tamura, Yukio

    2005-12-01

    A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.

  18. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    Science.gov (United States)

    Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.

    2014-03-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  19. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    International Nuclear Information System (INIS)

    Eklund, Anders; Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; Östling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; Åkerman, Johan

    2014-01-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18–25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films

  20. Bayesian Frequency Domain Identification of LTI Systems with OBFs kernels

    NARCIS (Netherlands)

    Darwish, M.A.H.; Lataire, J.P.G.; Tóth, R.

    2017-01-01

    Regularised Frequency Response Function (FRF) estimation based on Gaussian process regression formulated directly in the frequency-domain has been introduced recently The underlying approach largely depends on the utilised kernel function, which encodes the relevant prior knowledge on the system

  1. Peculiarities of low-frequency dielectric spectra and domain wall motion in gadolinium molybdate

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.

    1994-01-01

    Low-frequency Debye dispersion of dielectric permeability in GMO with the low values of high-frequency limit ε ∞ was investigated in a wide temperature range as well as in fields of variable amplitude. The features of domain boundaries motion were studied at the partial repolarization in monopolar P-pulsed fields. The model of cooperationrelaxation motion brifing in parallel with positive to negative contribution to polarization that explained the low values of ε ∞ was suggested

  2. Optimal filter bandwidth for pulse oximetry

    Science.gov (United States)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  3. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    Science.gov (United States)

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  4. Frequency-domain imaging algorithm for ultrasonic testing by application of matrix phased arrays

    Directory of Open Access Journals (Sweden)

    Dolmatov Dmitry

    2017-01-01

    Full Text Available Constantly increasing demand for high-performance materials and systems in aerospace industry requires advanced methods of nondestructive testing. One of the most promising methods is ultrasonic imaging by using matrix phased arrays. This technique allows to create three-dimensional ultrasonic imaging with high lateral resolution. Further progress in matrix phased array ultrasonic testing is determined by the development of fast imaging algorithms. In this article imaging algorithm based on frequency domain calculations is proposed. This approach is computationally efficient in comparison with time domain algorithms. Performance of the proposed algorithm was tested via computer simulations for planar specimen with flat bottom holes.

  5. Frequency-domain multisource optical spectrometer and oximeter

    Science.gov (United States)

    Fantini, Sergio; Franceschini, Maria-Angela; Maier, John S.; Walker, Scott A.; Gratton, Enrico

    1995-01-01

    We have designed and constructed a near-infrared spectrometer for the non-invasive optical study of biological tissue. This instrument works in the frequency-domain and employs multiple source-detector distances to recover the absorption coefficient ((mu) (alpha )) and the reduced scattering coefficient ((mu) s') of tissue. The light sources are eight light emitting diodes (LEDs) whose intensities are modulated at a frequency of 120 MHz. Four LEDs emit light at a peak wavelength of 715 nm ((lambda) 1), while the other four LEDs emit at a peak wavelength of 850 nm ((lambda) 2). From the frequency-domain raw data of phase, dc intensity, and ac amplitude obtained from each one of the eight light sources, which are located at different distances from the detector fiber, we calculate (mu) (alpha ) and (mu) s' at the two wavelengths (lambda) 1 and (lambda) 2. The concentrations of oxy- and deoxy-hemoglobin, and hence hemoglobin saturation, are then derived from the known extinction coefficients of oxy- and deoxy-hemoglobin at (lambda) 1 and (lambda) 2. The statistical error in the measurement of the optical coefficients due to instrument noise is about 1 - 2%. The accuracy in the determination of the absolute value of the optical coefficients is within 10 - 20%. Preliminary results obtained in vivo on the forearm of a volunteer during an ischemia measurement protocol are presented.

  6. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  7. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  8. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Kun-Yu, Zhao; Hua-Rong, Zeng; Hong-Zhang, Song; Sen-Xing, Hui; Guo-Rong, Li; Qing-Rui, Yin; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion Antonia Garcia; Takekawa, Shunji; Kitamura, Kenji

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10kHz, and reached maximum at 8.1kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  10. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  11. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  12. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  13. High-power microwave generation from a frequency-stabilized virtual cathode source

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.; Kinross-Wright, J.

    1988-01-01

    The evolution of virtual cathode based high-power microwave-source technology has been directed primarily toward achieving higher peak-power levels. As peak powers in excess of 10 GW have been reported, attention has begun to focus on techniques for producing a more frequency- and phase-stable virtual cathode source. Free-running virtual cathode microwave sources characteristically exhibit bandwidths in a single pulse of tens of percent, which makes them unsuitable for many applications such as power sources for phased array antennas and microwave linear accelerators. Presented here are results of an experimental approach utilizing a high-Q, resonant cavity surrounding the oscillating virtual cathode to achieve frequency stabilization and repeatable narrow-band operation. A cylindrical cavity resonator is used with the microwave power being extracted radially through circumferential slot apertures into L-band waveguide

  14. Soil-structure interaction analysis of NPP containments: substructure and frequency domain methods

    International Nuclear Information System (INIS)

    Venancio-Filho, F.; Almeida, M.C.F.; Ferreira, W.G.; De Barros, F.C.P.

    1997-01-01

    Substructure and frequency domain methods for soil-structure interaction are addressed in this paper. After a brief description of mathematical models for the soil and of excitation, the equations for dynamic soil-structure interaction are developed for a rigid surface foundation and for an embedded foundation. The equations for the frequency domain analysis of MDOF systems are provided. An example of soil-structure interaction analysis with frequency-dependent soil properties is given and examples of identification of foundation impedance functions and soil properties are presented. (orig.)

  15. ProteinAC: a frequency domain technique for analyzing protein dynamics

    Science.gov (United States)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  16. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.

    Science.gov (United States)

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K

    2010-10-01

    This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.

  17. Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.

    Science.gov (United States)

    Liu, Siwei; Molenaar, Peter

    2016-01-01

    This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.

  18. Biometric identification based on novel frequency domain facial asymmetry measures

    Science.gov (United States)

    Mitra, Sinjini; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-03-01

    In the modern world, the ever-growing need to ensure a system's security has spurred the growth of the newly emerging technology of biometric identification. The present paper introduces a novel set of facial biometrics based on quantified facial asymmetry measures in the frequency domain. In particular, we show that these biometrics work well for face images showing expression variations and have the potential to do so in presence of illumination variations as well. A comparison of the recognition rates with those obtained from spatial domain asymmetry measures based on raw intensity values suggests that the frequency domain representation is more robust to intra-personal distortions and is a novel approach for performing biometric identification. In addition, some feature analysis based on statistical methods comparing the asymmetry measures across different individuals and across different expressions is presented.

  19. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  20. Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

  1. Numerical solutions of ordinary and partial differential equations in the frequency domain

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1997-01-01

    Numerical problems during the noise simulation in a nuclear power plant are discussed. The solutions of ordinary and partial differential equations are studied in the frequency domain. Numerical methods by the transfer function method are applied. It is shown that the correctness of the numerical methods is limited for ordinary differential equations in the frequency domain. To overcome the difficulties, step-size selection is suggested. (author)

  2. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  3. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  4. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  5. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  6. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    Science.gov (United States)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  7. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  8. A digital calibration technique for an ultra high-speed wide-bandwidth folding and interpolating analog-to-digital converter in 0.18-{mu}m CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jinshan; Zhang Ruitao; Zhang Zhengping; Wang Yonglu; Zhu Can; Zhang Lei; Yu Zhou; Han Yong, E-mail: yujinshan@yeah.net [National Laboratory of Analog IC' s, Chongqing 400060 (China)

    2011-01-15

    A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital converter in 0.18-{mu}m CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input. (semiconductor integrated circuits)

  9. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  10. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    Science.gov (United States)

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  11. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Directory of Open Access Journals (Sweden)

    Taner Cevik

    2013-01-01

    Full Text Available One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT which is the only competent authority, each optical network unit (ONU runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand.

  12. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    Science.gov (United States)

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  13. Optical Sideband Generation: a Longitudinal Electron Beam Diagnostic Beyond the Laser Bandwidth Resolution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory; Tilborg, J. van; Matlis, N. H.; Plateau, G. R.; Leemans, W. P.

    2010-06-01

    Electro-optic sampling (EOS) is widely used as a technique to measure THz-domain electric field pulses such asthe self-fields of femtosecond electron beams. We present an EOS-based approach for single-shot spectral measurement that excels in simplicity (compatible with fiber integration) and bandwidth coverage (overcomes the laser bandwidth limitation), allowing few-fs electron beams or single-cycle THz pulses to be characterized with conventional picosecond probes. It is shown that the EOS-induced optical sidebands on the narrow-bandwidth optical probe are spectrally-shifted replicas of the THz pulse. An experimental demonstration on a 0-3 THz source is presented.

  14. Handheld Frequency Domain Vector EMI Sensing for UXO Discrimination

    Science.gov (United States)

    2010-07-01

    MATERIALS AND METHODS: GEM-3D+ SOFTWARE 4.6 NSMS Modeling of GEM-3D+ and HAP Method parametrized by a Pasion Oldenburg type model and/or combined with...Sens., 39:1286–1293, June 2001. 33, 38 [9] Leonard R. Pasion and Douglas W. Oldenburg. A discrimination algorithm for UXO using time domain...Oct. 1969. 52, 69 [39] Nicolas Lhomme, Leonard R. Pasion , Stephen D. Billings, and Douglas W. Oldenburg. Inversion of frequency domain data

  15. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  16. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  17. Large bandwidth RGC transimpedance preamplifier design in SCA

    International Nuclear Information System (INIS)

    Wang Ke; Wang Zheng; Liu Zhen'an; Wei Wei; Lu Weiguo; Gary Varner

    2009-01-01

    A Large Bandwidth RGC Transimpedance Preamplifier is designed for amplifying the high-fidelity timing signal in Switch Capacitance Array chip application. This amplifier have characteristics of low input impedance, large bandwidth, high transimpedance. It will be made under TSMC 0.25μm CMOS technology, and the supply voltage is single 2.5 V. Simulation results indicate: the transimpedance is 5000 ohm, -3dB BW is 953 MHz, and the detector output capacitance have litter effect on the bandwidth in some range. (authors)

  18. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  19. An order of magnitude improvement in optical fiber bandwidth using spatial domain multiplexing/space division multiplexing (SDM) in conjunction with orbital angular momentum (OAM)

    Science.gov (United States)

    Murshid, Syed; Alanzi, Saud; Hridoy, Arnob; Lovell, Greg; Parhar, Gurinder; Chakravarty, Abhijit; Chowdhury, Bilas

    2014-09-01

    Spatial Domain Multiplexing/Space Division Multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single mode pigtail laser sources of same wavelength into a carrier fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. In this endeavor we launch light from five different single mode pigtail laser sources at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation we get five distinct concentric donut shaped rings with negligible crosstalk at the output end of the fiber. These SDM channels also exhibit Orbital Angular Momentum (OAM), thereby adding an extra degree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.

  20. Signal to Noise Ratio (SNR Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR for Passive Optical Network (PON Monitoring Based on Unique Combinations of Wavelength Selective Mirrors

    Directory of Open Access Journals (Sweden)

    Christopher M. Bentz

    2014-03-01

    Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.

  1. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    Science.gov (United States)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  2. Time-domain representation of frequency-dependent foundation impedance functions

    Science.gov (United States)

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  3. CALCULATION OF CONTROL CIRCUITS IN FREQUENCY DOMAIN USING SCILAB ENVIRONEMNT

    Directory of Open Access Journals (Sweden)

    Chioncel Petru

    2014-10-01

    Full Text Available The paper presents the computing of control circuits in the frequency domain, starting from the mathematical model of the frequency response H(jw obtained from the transfer function H(s where the operational variable keeps just the image part. For PT1 and PT2 elements, using Scilab, the geometrical place is illustrated and the frequency diagrams are determinate for different duping constants (PT2. The logarithmic frequency diagrams (Bode, determine the amplitude and phase reserve for a control circuits with three PT1 elements.

  4. In-situ identification of marine organisms using high frequency, wideband ultrasound

    DEFF Research Database (Denmark)

    Pham, An Hoai

    methods. Conventional acoustical methods use frequencies in the range of 10 to 500 kHz and give reasonable estimations of size distribution, if the species is known, but can only significantly support the determination of the actual species, if there are only a few known species available. It is expected...... that higher frequencies and broader bandwidths than used until now will give more information useful for fish species identification. The objective of this Ph.D. study has been to develop a method to investigate the possibility of in-situ identification of fish with high-frequency, wideband ultrasound...... and the fish bodies. The frequencies are 2, 3.5, and 6 MHz. The angles are -30°, -15°, 0°, 15°, and 30°. The results show that even though there are variations, a scan of the ultrasound backscatter along a fish of a specific species contains patterns that are characteristic for that species. This is true...

  5. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    Science.gov (United States)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  6. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    Science.gov (United States)

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613

  7. THEORETICAL RESEARCH ON HYDRODYNAMICS OF A GEOMETRIC SPAR IN FREQUENCY- AND TIME-DOMAINS

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; YANG Jian-min; HU Zhi-qiang; XIAO Long-fei

    2008-01-01

    Considering the coupling effects of the vessel and its riser and mooring system, hydrodynamic analyses of a geometric spar were performed both in frequency- and time-domains. Based on the boundary element method, the 3-D panel model of the geometric spar and the related free water surface model were established, and the first-order and second-order difference-frequency wave loads and other hydrodynamic coefficients were calculated. Frequency domain analysis of the motion Response Amplitude Operators (RAO) and Quadratic Transfer Functions (QTF) and time domain analysis of the response series and spectra in an extreme wave condition were conducted for the coupled system with the mooring lines and risers involved. These analyses were further validated by the physical model test results.

  8. Broadband analog to digital conversion with spatial-spectral holography

    International Nuclear Information System (INIS)

    Babbitt, W. Randall; Neifeld, Mark A.; Merkel, Kristian D.

    2007-01-01

    A new approach to broadband photonic-assisted analog-to-digital converter (ADC) technology is proposed and analyzed. The core of the device is a spatial spectral holographic (SSH) material, which can directly record the signals of interest in the frequency domain. An SSH-ADC acts as a frequency-domain stretch processor, which leverages the high performance of conventional ADCs by converting high bandwidth input signals to low bandwidth output signals without loss of information. Analysis of a 10 GHz bandwidth SSH-ADC predicts that 10-bit performance can be achieved with currently available materials and components. SSH-ADC technology is scalable to bandwidths over 100 GHz with recently developed SSH materials. While the SSH-ADC is a transient digitizer, the spatial parallelism of SSH materials can be utilized to enable continuous digitization

  9. Broadband analog to digital conversion with spatial-spectral holography

    Energy Technology Data Exchange (ETDEWEB)

    Babbitt, W. Randall [Spectrum Lab, Montana State University, Bozeman, MT 59717-3510 (United States)]. E-mail: babbitt@physics.montana.edu; Neifeld, Mark A. [Spectrum Lab, Montana State University, Bozeman, MT 59717-3510 (United States); Merkel, Kristian D. [Spectrum Lab, Montana State University, Bozeman, MT 59717-3510 (United States)

    2007-11-15

    A new approach to broadband photonic-assisted analog-to-digital converter (ADC) technology is proposed and analyzed. The core of the device is a spatial spectral holographic (SSH) material, which can directly record the signals of interest in the frequency domain. An SSH-ADC acts as a frequency-domain stretch processor, which leverages the high performance of conventional ADCs by converting high bandwidth input signals to low bandwidth output signals without loss of information. Analysis of a 10 GHz bandwidth SSH-ADC predicts that 10-bit performance can be achieved with currently available materials and components. SSH-ADC technology is scalable to bandwidths over 100 GHz with recently developed SSH materials. While the SSH-ADC is a transient digitizer, the spatial parallelism of SSH materials can be utilized to enable continuous digitization.

  10. Frequency domain performance analysis of nonlinearly controlled motion systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  11. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness

    NARCIS (Netherlands)

    Herrmann, F.; van Leeuwen, T.

    2014-01-01

    Seismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained by a

  12. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness.

    NARCIS (Netherlands)

    T. van Leeuwen (Tristan); F.J. Herrmann

    2014-01-01

    htmlabstractSeismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained

  13. Bandwidth extension of speech using perceptual criteria

    CERN Document Server

    Berisha, Visar; Liss, Julie

    2013-01-01

    Bandwidth extension of speech is used in the International Telecommunication Union G.729.1 standard in which the narrowband bitstream is combined with quantized high-band parameters. Although this system produces high-quality wideband speech, the additional bits used to represent the high band can be further reduced. In addition to the algorithm used in the G.729.1 standard, bandwidth extension methods based on spectrum prediction have also been proposed. Although these algorithms do not require additional bits, they perform poorly when the correlation between the low and the high band is weak. In this book, two wideband speech coding algorithms that rely on bandwidth extension are developed. The algorithms operate as wrappers around existing narrowband compression schemes. More specifically, in these algorithms, the low band is encoded using an existing toll-quality narrowband system, whereas the high band is generated using the proposed extension techniques. The first method relies only on transmitted high-...

  14. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  15. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    We demonstrate efficient upconversion of modulated infrared (IR) signals over a wide bandwidth (up to frequencies in excess of 1 GHz) via cavity-enhanced sum-frequency generation (SFG) in a periodically poled LiNbO3. Intensity modulated IR signal is produced by combining beams from two 1547 nm...... narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... the enhanced spectral stability from multiple to single longitudinal mode pumping condition. We describe analytically and demonstrate experimentally the deleterious effects of using a multimode pump to the high-bandwidth RF spectrum of the 630 nm SFG output. Offering enhanced sensitivity without the need...

  16. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  17. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  18. A new image cipher in time and frequency domains

    Science.gov (United States)

    Abd El-Latif, Ahmed A.; Niu, Xiamu; Amin, Mohamed

    2012-10-01

    Recently, various encryption techniques based on chaos have been proposed. However, most existing chaotic encryption schemes still suffer from fundamental problems such as small key space, weak security function and slow performance speed. This paper introduces an efficient encryption scheme for still visual data that overcome these disadvantages. The proposed scheme is based on hybrid Linear Feedback Shift Register (LFSR) and chaotic systems in hybrid domains. The core idea is to scramble the pixel positions based on 2D chaotic systems in frequency domain. Then, the diffusion is done on the scrambled image based on cryptographic primitive operations and the incorporation of LFSR and chaotic systems as round keys. The hybrid compound of LFSR, chaotic system and cryptographic primitive operations strengthen the encryption performance and enlarge the key space required to resist the brute force attacks. Results of statistical and differential analysis show that the proposed algorithm has high security for secure digital images. Furthermore, it has key sensitivity together with a large key space and is very fast compared to other competitive algorithms.

  19. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  20. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA).

    Science.gov (United States)

    Tahara, Tatsuki; Kaku, Toru; Arai, Yasuhiko

    2014-12-01

    Single-shot digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA) is proposed. Both amplitude and quantitative phase distributions of waves containing multiple wavelengths are simultaneously recorded with a single reference arm in a single monochromatic image. Then, multiple wavelength information is separately extracted in the spatial frequency domain. The crosstalk between the object waves with different wavelengths is avoided and the number of wavelengths recorded with both a single-shot exposure and no crosstalk can be increased, by a large spatial carrier that causes the aliasing, and/or by use of a grating. The validity of Multi-SPECTRA is quantitatively, numerically, and experimentally confirmed.

  1. Design and construction of high-frequency magnetic probe system on the HL-2A tokamak

    Science.gov (United States)

    Liang, S. Y.; Ji, X. Q.; Sun, T. F.; Xu, Yuan; Lu, J.; Yuan, B. S.; Ren, L. L.; Yang, Q. W.

    2017-12-01

    A high-frequency magnetic probe system is designed, calibrated and constructed on the HL-2A tokamak. To investigate the factors which affect the probe frequency response, the inductance and capacitance in the probe system are analyzed using an equivalent circuit. Suitable sizes and turn number of the coil, and the length of transmission cable are optimized based on the theory and detailed test in the calibration. To deal with the frequency response limitation and bake-out, the ceramic grooved technique is used and the probe is wound with a bare copper wire. A cascade filter is manufactured with a suitable bandwidth as well as a good phase consistency between channels. The system has been used in the experiment to measure high frequency (≤300 kHz) magnetohydrodynamic fluctuations, which can meet the requirement of physical analysis on HL-2A.

  2. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    The wind power fluctuation model built up in the frequency domain is mathematically equivalent with that in the time domain, and has a clearer physical meaning therefore describes the fluctuation more accurately. However, the simulation of this model is required to deal with the time......-frequency transformation related to the power spectrum density (PSD), which is more special and complicated than normal transformations. Meanwhile, the computational complexity also increases significantly, more computation resources are needed. These problems negatively affect the engineering application of the model....... To overcome these disadvantages, the physical meaning of PSD based on fundamental concepts is presented, so that the specialties of this model compared with conventional ones can be understood. Then the time-frequency transformation algorithm is derived, which is fast to be implemented in digital computers...

  3. Comparison between time-and frequency-domain induced polarisation parameters

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-09-01

    Full Text Available of mineralised rocks and of the contrast between different rock types. It is further shown that a multi-frequency (spectral) approach can be used to avoid this pitfall; similarly, the calculation of different time-domain induced polarisation (IP) parameters...

  4. Spatial frequency domain imaging using a snap-shot filter mosaic camera with multi-wavelength sensitive pixels

    Science.gov (United States)

    Strömberg, Tomas; Saager, Rolf B.; Kennedy, Gordon T.; Fredriksson, Ingemar; Salerud, Göran; Durkin, Anthony J.; Larsson, Marcus

    2018-02-01

    Spatial frequency domain imaging (SFDI) utilizes a digital light processing (DLP) projector for illuminating turbid media with sinusoidal patterns. The tissue absorption (μa) and reduced scattering coefficient (μ,s) are calculated by analyzing the modulation transfer function for at least two spatial frequencies. We evaluated different illumination strategies with a red, green and blue light emitting diodes (LED) in the DLP, while imaging with a filter mosaic camera, XiSpec, with 16 different multi-wavelength sensitive pixels in the 470-630 nm wavelength range. Data were compared to SFDI by a multispectral camera setup (MSI) consisting of four cameras with bandpass filters centered at 475, 560, 580 and 650 nm. A pointwise system for comprehensive microcirculation analysis was used (EPOS) for comparison. A 5-min arterial occlusion and release protocol on the forearm of a Caucasian male with fair skin was analyzed by fitting the absorption spectra of the chromophores HbO2, Hb and melanin to the estimatedμa. The tissue fractions of red blood cells (fRBC), melanin (/mel) and the Hb oxygenation (S02 ) were calculated at baseline, end of occlusion, early after release and late after release. EPOS results showed a decrease in S02 during the occlusion and hyperemia during release (S02 = 40%, 5%, 80% and 51%). The fRBC showed an increase during occlusion and release phases. The best MSI resemblance to the EPOS was for green LED illumination (S02 = 53%, 9%, 82%, 65%). Several illumination and analysis strategies using the XiSpec gave un-physiological results (e.g. negative S02 ). XiSpec with green LED illumination gave the expected change in /RBC , while the dynamics in S02 were less than those for EPOS. These results may be explained by the calculation of modulation using an illumination and detector setup with a broad spectral transmission bandwidth, with considerable variation in μa of included chromophores. Approaches for either reducing the effective bandwidth of

  5. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  6. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  7. Estimating individual listeners’ auditory-filter bandwidth in simultaneous and non-simultaneous masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Caminade, Sabine; Strelcyk, Olaf

    2010-01-01

    Frequency selectivity in the human auditory system is often measured using simultaneous masking of tones presented in notched noise. Based on such masking data, the equivalent rectangular bandwidth (ERB) of the auditory filters can be derived by applying the power spectrum model of masking....... Considering bandwidth estimates from previous studies based on forward masking, only average data across a number of subjects have been considered. The present study is concerned with bandwidth estimates in simultaneous and forward masking in individual normal-hearing subjects. In order to investigate...... the reliability of the individual estimates, a statistical resampling method is applied. It is demonstrated that a rather large set of experimental data is required to reliably estimate auditory filter bandwidth, particularly in the case of simultaneous masking. The poor overall reliability of the filter...

  8. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    Science.gov (United States)

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  9. Achieving increased bandwidth for 4 degree of freedom self-tuning energy harvester

    Science.gov (United States)

    Staaf, L. G. H.; Smith, A. D.; Köhler, E.; Lundgren, P.; Folkow, P. D.; Enoksson, P.

    2018-04-01

    The frequency response of a self-tuning energy harvester composed of two piezoelectric cantilevers connected by a middle beam with a sliding mass is investigated. Measurements show that incorporation of a free-sliding mass increases the bandwidth. Using an analytical model, the system is explained through close investigation of the resonance modes. Resonance mode behavior further suggests that, by breaking the symmetry of the system, even broader bandwidths are achievable.

  10. Joint time-frequency domain proportional fair scheduler with HARQ for 3GPP LTE systems

    OpenAIRE

    Beh, KC; Doufexi, A; Armour, SMD

    2008-01-01

    This paper explores the potential gain of joint diversity in both frequency domain and time domain which can be exploited to achieve spectral efficiency gains whilst simultaneously facilitating QoS/ fairness in an OFDMA system particularly in 3GPP Long Term Evolution (LTE)). The performance of several joint time-frequency schedulers is investigated. Simulation results show that joint time frequency schedulers achieve significantly superior performance compared to a more conventional time doma...

  11. A Frequency Domain Design Method For Sampled-Data Compensators

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1990-01-01

    A new approach to the design of a sampled-data compensator in the frequency domain is investigated. The starting point is a continuous-time compensator for the continuous-time system which satisfy specific design criteria. The new design method will graphically show how the discrete...

  12. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

    Science.gov (United States)

    Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.

    2016-07-01

    The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.

  13. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  14. PSpice modeling of broadband RF cavities for transient and frequency domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)

    2016-07-01

    In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.

  15. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    International Nuclear Information System (INIS)

    Habib Ullah, M; Islam, M T

    2014-01-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < −10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart. (paper)

  16. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  17. Frequency Hopping Transceiver Multiplexer

    Science.gov (United States)

    1983-03-01

    ATC 17 ULR IHQ OCLI CPCTR ULTRA HIGH "OQS" UP TO 4X HIGHER THAN BEST INDUS- TRY STANDARD (ATC 100). MICROWAVE POWER, CURRENT. AND 0 RATINGS5...Q"W were assigned to element (FigC-2); which will be modelled into the transformer previously ment td . The center frequencies, "Q", frequency range...of the TD 1288 system. Temperature stability, change with time or storage. Flexure Frequency, or non-linear change over bandwidth. * Humidity

  18. Modal Identification from Ambient Responses using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, L.; Andersen, P.

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical ...

  19. High and low spatial frequencies in website evaluations.

    Science.gov (United States)

    Thielsch, Meinald T; Hirschfeld, Gerrit

    2010-08-01

    Which features of websites are important for users' perceptions regarding aesthetics or usability? This study investigates how evaluations of aesthetic appeal and usability depend on high vs. low spatial frequencies. High spatial frequencies convey information on fine details, whereas low spatial frequencies convey information about the global layout. Participants rated aesthetic appeal and usability of 50 website screenshots from different domains. Screenshots were presented unfiltered, low-pass filtered with blurred targets or high-pass filtered with high-pass filtered targets. The main result is that low spatial frequencies can be seen to have a unique contribution in perceived website aesthetics, thus confirming a central prediction from processing fluency theory. There was no connection between low spatial frequencies and usability evaluations, whereas strong correlations were found between ratings of high-pass filtered websites and those of unfiltered websites in aesthetics and usability. This study thus offers a new perspective on the biological basis of users' website perceptions. This research links ergonomics to neurocognitive models of visual processing. This paper investigates how high and low spatial frequencies, which are neurologically processed in different visual pathways, independently contribute to users' perceptions of websites. This is very relevant for theories of website perceptions and for practitioners of web design.

  20. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  1. The Peltier driven frequency domain approach in thermal analysis.

    Science.gov (United States)

    De Marchi, Andrea; Giaretto, Valter

    2014-10-01

    The merits of Frequency Domain analysis as a tool for thermal system characterization are discussed, and the complex thermal impedance approach is illustrated. Pure AC thermal flux generation with negligible DC component is possible with a Peltier device, differently from other existing methods in which a significant DC component is intrinsically attached to the generated AC flux. Such technique is named here Peltier Driven Frequency Domain (PDFD). As a necessary prerequisite, a novel one-dimensional analytical model for an asymmetrically loaded Peltier device is developed, which is general enough to be useful in most practical situations as a design tool for measurement systems and as a key for the interpretation of experimental results. Impedance analysis is possible with Peltier devices by the inbuilt Seebeck effect differential thermometer, and is used in the paper for an experimental validation of the analytical model. Suggestions are then given for possible applications of PDFD, including the determination of thermal properties of materials.

  2. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  3. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill

    2017-11-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  4. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  5. Optimal Frequency Ranges for Sub-Microsecond Precision Pulsar Timing

    Science.gov (United States)

    Lam, Michael Timothy; McLaughlin, Maura; Cordes, James; Chatterjee, Shami; Lazio, Joseph

    2018-01-01

    Precision pulsar timing requires optimization against measurement errors and astrophysical variance from the neutron stars themselves and the interstellar medium. We investigate optimization of arrival time precision as a function of radio frequency and bandwidth. We find that increases in bandwidth that reduce the contribution from receiver noise are countered by the strong chromatic dependence of interstellar effects and intrinsic pulse-profile evolution. The resulting optimal frequency range is therefore telescope and pulsar dependent. We demonstrate the results for five pulsars included in current pulsar timing arrays and determine that they are not optimally observed at current center frequencies. We also find that arrival-time precision can be improved by increases in total bandwidth. Wideband receivers centered at high frequencies can reduce required overall integration times and provide significant improvements in arrival time uncertainty by a factor of $\\sim$$\\sqrt{2}$ in most cases, assuming a fixed integration time. We also discuss how timing programs can be extended to pulsars with larger dispersion measures through the use of higher-frequency observations.

  6. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  7. Modal Identification from Ambient Responses Using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, Lingmi; Andersen, Palle

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical...

  8. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  9. Teleoperation over low bandwidth communication links

    International Nuclear Information System (INIS)

    Fryer, R.J.; Mair, G.M.; Clark, N.; Heng, J.

    1996-01-01

    Teleoperation is well established for many areas of hazardous environment working. Where such environments are well structured and contained, such as within a working plant, communications bandwidths need not be a constraining factor. However where the worksite is remote, large, poorly structured or damaged communications rapidly become a critical factor in the efficient deployment and use of teleoperation equipment. The paper justifies and describes means which we are exploring to reduce the required communications bandwidth for teleoperation whist retaining full functionality. Techniques involved include incorporation of local intelligence at the worksite, with bandwidth devoted to high-level up-link control signals and down-link feedback, and the use of highly compressed video feeding 'virtual reality type' HMDs to provide maximum system transparency for the operator. The work is drawing on previous experience with an 'anthropomorphic robot heat' for telepresence work, and proprietary algorithms capable of compressing full colour video to standard telephone modem data rates. (Author)

  10. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    Science.gov (United States)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  11. Iterative procedures for wave propagation in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongjai [Rice Univ., Houston, TX (United States); Symes, W.W.

    1996-12-31

    A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.

  12. Heart rate variability at limiting stationarity: evidence of neuro-cardiac control mechanisms operating at ultra-low frequencies

    International Nuclear Information System (INIS)

    Fisher, A C; Groves, D; Eleuteri, A; Mesum, P; Patterson, D; Taggart, P

    2014-01-01

    This study considers the linkage of exogenously stimulated emotional stress with the neurogenic regulation of heart rate operating at very low frequencies. The objectives were three-fold: to consider the present evidence that such a linkage exists as a primary phenomenon; to compare the potential of a frequency-domain method and a time-domain method in revealing this phenomenon by characterizing heart rate variability (HRV) at frequencies of [0.0005…0.4] Hz and to design, implement and report a physiological experiment in which alternating periods of exposure to bland and high valence visual stimuli might reveal this phenomenon. A methodical challenge was to optimize the length of exposure to the stimulus such that subjects did not have time to habituate to stimuli, whilst acquiring sufficient data (heart beats) such that the ultra-low frequency (ULF) components of HRV could be described. With exposure times set to approximately 5 min, during which time the strength of the stimulus and the corresponding evoked response were considered stationary, the lowest HRV frequency component that could be characterized was 0.003 Hz. In trials with parametrically defined test data, the time-domain method based on the Ornstein–Uhlenbeck Gaussian process (OU-GP) was shown to be better than the frequency-domain method in describing the ULF components of the HRV. In an experimental cohort of 16 subjects, analysis using the OU-GP revealed evidence of cardiac regulatory mechanisms influenced by emotional valence operating in the bandwidth (ULF*) [0.002…0.01] Hz. (paper)

  13. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  14. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    Science.gov (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  15. Time- and Frequency-domain Comparisons of the Wavepiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Read, Robert; Bingham, Harry

    Analysis of wave-energy converters is most frequently undertaken in the time-domain. This formulation allows the direct inclusion of nonlinear time-varying loads such as power take-off (PTO) reactions, mooring forces, and viscous drag. However, integrating the governing equations of motion...... forces arising from both the PTO reactions and the non-negligible viscous drag acting on the plate. Equivalent linear damping coeffcients are used to model these forces in the frequency domain, while they are included explicitly in the time domain. The main idea of this paper is to quantify...

  16. Quantifying Stability Using Frequency Domain Data from Wireless Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Stephen Slaughter

    2013-06-01

    Full Text Available The quantification of gait stability can provide valuable information when evaluating subjects for age related and neuromuscular disease changes. Using tri-axial inertial measurement units (IMU for acceleration and rotational data provide a non-linear profile for this type of movement. As subjects traverse various surfaces representing decreasing stability, the different phasing of gait data make comparisons difficult. By converting from time to frequency domain data, the phase effects can be ignored, allowing for significant correlations. In this study, 12 subjects provided gait information over various surfaces while wearing an IMU. Instabilities were determined by comparing frequency domain data over less stable surfaces to frequency domain data of neural network (NN models representing the normal gait for any given participant. Time dependent data from 2 axes of acceleration and 2 axes of rotation were converted using a discrete Fourier transform (FFT algorithm. The data over less stable surfaces were compared to the normal gait NN model by averaging the Pearson product moment correlation (r values. This provided a method to quantify the decreased stability. Data showed progressively decreasing correlation coefficient values as subjects encountered progressively less stable surface environments. This methodology has allowed for the quantification of instability in gait situations for application in real-time fall prevention situations.

  17. Quantifying Stability Using Frequency Domain Data from Wireless Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Stephen Slaughter

    2012-08-01

    Full Text Available The quantification of gait stability can provide valuable information when evaluating subjects for age related and neuromuscular disease changes. Using tri-axial inertial measurement units (IMU for acceleration and rotational data provide a non-linear profile for this type of movement. As subjects traverse various surfaces representing decreasing stability, the different phasing of gait data make comparisons difficult. By converting from time to frequency domain data, the phase effects can be ignored, allowing for significant correlations. In this study, 12 subjects provided gait information over various surfaces while wearing an IMU. Instabilities were determined by comparing frequency domain data over less stable surfaces to frequency domain data of neural network (NN models representing the normal gait for any given participant. Time dependent data from 2 axes of acceleration and 2 axes of rotation were converted using a discrete Fourier transform (FFT algorithm. The data over less stable surfaces were compared to the normal gait NN model by averaging the Pearson product moment correlation (r values. This provided a method to quantify the decreased stability. Data showed progressively decreasing correlation coefficient values as subjects encountered progressively less stable surface environments. This methodology has allowed for the quantification of instability in gait situations for application in real-time fall prevention situations.

  18. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    Science.gov (United States)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  19. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  20. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  1. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  2. Model-driven requirements engineering (MDRE) for real-time ultra-wide instantaneous bandwidth signal simulation

    Science.gov (United States)

    Chang, Daniel Y.; Rowe, Neil C.

    2013-05-01

    While conducting a cutting-edge research in a specific domain, we realize that (1) requirements clarity and correctness are crucial to our success [1], (2) hardware is hard to change, most work is in software requirements development, coding and testing [2], (3) requirements are constantly changing, so that configurability, reusability, scalability, adaptability, modularity and testability are important non-functional attributes [3], (4) cross-domain knowledge is necessary for complex systems [4], and (5) if our research is successful, the results could be applied to other domains with similar problems. In this paper, we propose to use model-driven requirements engineering (MDRE) to model and guide our requirements/development, since models are easy to understand, execute, and modify. The domain for our research is Electronic Warfare (EW) real-time ultra-wide instantaneous bandwidth (IBW1) signal simulation. The proposed four MDRE models are (1) Switch-and-Filter architecture, (2) multiple parallel data bit streams alignment, (3) post-ADC and pre-DAC bits re-mapping, and (4) Discrete Fourier Transform (DFT) filter bank. This research is unique since the instantaneous bandwidth we are dealing with is in gigahertz range instead of conventional megahertz.

  3. A novel frequency domain fluorescence technique for determination of triplet decay times

    NARCIS (Netherlands)

    Sterenborg, H. J.; Janson, M. E.; van Gemert, M. J.

    1999-01-01

    Frequency domain fluorescence measurement using two diode lasers with amplitude modulation in the kHz range yields a signal component at the sum frequency. This intermodulation phenomenon was observed in an aqueous solution of haematoporphyrin (HP) and could be related to triplet state population

  4. A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems

    NARCIS (Netherlands)

    Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik

    2003-01-01

    The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method

  5. Charge domain filter operating up to 20 MHz clock frequency

    NARCIS (Netherlands)

    Gal, R.A.J.; Wallinga, Hans

    1983-01-01

    An analog sampled data low pass third order Butterworth filter has been realised in a buried channel CCD technology. This Charge Domain Filter, composed of transversal and recursive CCD filter sections, has been tested at clock frequencies up to 20 MHz.

  6. Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains

    CERN Document Server

    Billings, Stephen A

    2013-01-01

    Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by

  7. Online Identification of a Mechanical System in the Frequency Domain with Short-Time DFT

    Directory of Open Access Journals (Sweden)

    Niko Nevaranta

    2015-07-01

    Full Text Available A proper system identification method is of great importance in the process of acquiring an analytical model that adequately represents the characteristics of the monitored system. While the use of different time-domain online identification techniques has been widely recognized as a powerful approach for system diagnostics, the frequency domain identification techniques have primarily been considered for offline commissioning purposes. This paper addresses issues in the online frequency domain identification of a flexible two-mass mechanical system with varying dynamics, and a particular attention is paid to detect the changes in the system dynamics. An online identification method is presented that is based on a recursive Kalman filter configured to perform like a discrete Fourier transform (DFT at a selected set of frequencies. The experimental online identification results are compared with the corresponding values obtained from the offline-identified frequency responses. The results show an acceptable agreement and demonstrate the feasibility of the proposed identification method.

  8. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  9. Development of a heterodyne laser interferometer for very small high frequency displacements detection

    International Nuclear Information System (INIS)

    Baarmann, P.

    1992-10-01

    A heterodyne laser interferometer with detection electronics has been developed for measuring very small amplitude high frequency vibrations. A laser beam from HeNe-laser is focused and reflected in the vibrating surface and the generated phase shifts are after interference with a reference beam detected with a photo detector and evaluated in a demodulation system. The set-up is a prototype and techniques to improve the accuracy and sensitivity of the system are presented. The present system can detect vibration amplitude from around 1 Angstrom and is linear up to 250 Angstrom (±4%). Frequencies from a few tens of kHz up to tens of MHz are covered. The low frequency region can be greatly improved. The minimum detectable displacement may be improved by narrowing the bandwidth of the detection system to the region of interest

  10. Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains

    Directory of Open Access Journals (Sweden)

    Reza Ahmadi

    2014-12-01

    Full Text Available To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD technique, have been proposed to simulate Ground-Penetrating Radar (GPR responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the forward modelling process to be very long lasting, even with modern high-speed computers. In the present study the well-known hyperbolic pattern response of horizontal cylinders, usually found in GPR B-Scan images, is used as a basic model to examine the possibility of reducing the forward modelling execution time. In general, the simulated GPR traces of common reflected objects are time shifted, as with the Normal Moveout (NMO traces encountered in seismic reflection responses. This suggests the application of Fourier transform to the GPR traces, employing the time-shifting property of the transformation to interpolate the traces between the adjusted traces in the frequency domain (FD. Therefore, in the present study two post-processing algorithms have been adopted to increase the speed of forward modelling while maintaining the required precision. The first approach is based on linear interpolation in the Fourier domain, resulting in increasing lateral trace-to-trace interval of appropriate sampling frequency of the signal, preventing any aliasing. In the second approach, a super-resolution algorithm based on 2D-wavelet transform is developed to increase both vertical and horizontal resolution of the GPR B-Scan images through preserving scale and shape of hidden hyperbola features. Through comparing outputs from both methods with the corresponding actual high-resolution forward response, it is shown that both approaches can perform satisfactorily, although the wavelet-based approach outperforms the frequency-domain approach noticeably, both in amplitude and

  11. New indices for quantification of the power spectrum of heart rate variability time series without the need of any frequency band definition

    International Nuclear Information System (INIS)

    García-González, M A; Fernández-Chimeno, M; Benítez, A; Ramos-Castro, J; Ferrer, J; Escorihuela, R M; Parrado, E; Capdevila, L; Angulo, R; Rodríguez, F A; Iglesias, X; Bescós, R; Marina, M; Padullés, J M

    2011-01-01

    This paper presents a new family of indices for the frequency domain analysis of heart rate variability time series that do not need any frequency band definition. After proper detrending of the time series, a cumulated power spectrum is obtained and frequencies that contain a certain percentage of the power below them are identified, so median frequency, bandwidth and a measure of the power spectrum asymmetry are proposed to complement or improve the classical spectral indices as the ratio of the powers of LF and HF bands (LF/HF). In normal conditions the median frequency provides similar information as the classical indices, while the bandwidth and asymmetry can be complementary measures of the physiological state of the tested subject. The proposed indices seem to be a good choice for tracking changes in the power spectrum in exercise stress, and they can guide in the determination of frequency band limits in other animal species

  12. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  13. Frequency-wavenumber domain phase inversion along reflection wavepaths

    KAUST Repository

    Yu, Han

    2014-12-01

    A background velocity model containing the correct low-wavenumber information is desired for both the quality of the migration image and the success of waveform inversion. To achieve this goal, the velocity is updated along the reflection wavepaths, rather than along both the reflection ellipses and transmission wavepaths as in conventional FWI. This method allows for reconstructing the low-wavenumber part of the background velocity model, even in the absence of long offsets and low-frequency component of the data. Moreover, in gradient-based iterative updates, instead of forming the data error conventionally, we propose to exploit the phase mismatch between the observed and the calculated data. The phase mismatch emphasizes a kinematic error and varies quasi-linearly with respect to the velocity error. The phase mismatch is computed (1) in the frequency-wavenumber (f-k) domain replacing the magnitudes of the calculated common shot gather by those of the observed one, and (2) in the temporal-spatial domain to form the difference between the transformed calculated common-shot gather and the observed one. The background velocity model inverted according to the proposed methods can serve as an improved initial velocity model for conventional waveform inversion. Tests with synthetic and field data show both the benefits and limitations of this method.

  14. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    Science.gov (United States)

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    Science.gov (United States)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  16. Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir

    2006-01-01

    comprising a pump laser, optical filters, optical fibre and photo-detectors are presented. Limitations, trade-offs and optimisation processes are described for setups having different specifications with respect to range, resolution and accuracy. The analysis is conducted using computer simulation programs...... developed and implemented in Matlab. The computer model is calibrated and tested, and describes the entire system with high precision. Noise analysis and digital processing of the detected signal are discussed as well. An equation describing the standard deviation of the measured temperature is derived......This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...

  17. Multiobjective Optimization for Electronic Circuit Design in Time and Frequency Domains

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2013-04-01

    Full Text Available The multiobjective optimization provides an extraordinary opportunity for the finest design of electronic circuits because it allows to mathematically balance contradictory requirements together with possible constraints. In this paper, an original and substantial improvement of an existing method for the multiobjective optimization known as GAM (Goal Attainment Method is suggested. In our proposal, the GAM algorithm itself is combined with a procedure that automatically provides a set of parameters -- weights, coordinates of the reference point -- for which the method generates noninferior solutions uniformly spread over an appropriately selected part of the Pareto front. Moreover, the resulting set of obtained solutions is then presented in a suitable graphic form so that the solution representing the most satisfactory tradeoff can be easily chosen by the designer. Our system generates various types of plots that conveniently characterize results of up to four-dimensional problems. Technically, the procedures of the multiobjective optimization were created as a software add-on to the CIA (Circuit Interactive Analyzer program. This way enabled us to utilize many powerful features of this program, including the sensitivity analyses in time and frequency domains. As a result, the system is also able to perform the multiobjective optimization in the time domain and even highly nonlinear circuits can be significantly improved by our program. As a demonstration of this feature, a multiobjective optimization of a C-class power amplifier in the time domain is thoroughly described in the paper. Further, a four-dimensional optimization of a video amplifier is demonstrated with an original graphic representation of the Pareto front, and also some comparison with the weighting method is done. As an example of improving noise properties, a multiobjective optimization of a low-noise amplifier is performed, and the results in the frequency domain are shown

  18. Thermal history of the plasma and high-frequency gravitons

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the $\\Lambda$CDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma is smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three la...

  19. A Frequency-Domain Model for a Novel Wave Energy Converter

    NARCIS (Netherlands)

    Wei, Yanji; Yu, Zhiheng; Barradas Berglind, Jose de Jesus; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    In this work, we develop a frequency-domain model for the novel Ocean Grazer (OG) wave energy converter (WEC), with the intention to study the hydrodynamic behavior of its array of floater elements individually connected to power take-off (PTO) systems. To investigate these hydrodynamic

  20. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    Science.gov (United States)

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  1. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  2. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  3. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.

    Science.gov (United States)

    Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai

    2016-01-01

    Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.

  4. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-01-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  5. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.; Hartman, Trenton S.

    2017-02-16

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  6. Modal Identification of Output-Only Systems using Frequency Domain Decomposition

    DEFF Research Database (Denmark)

    Brincker, Rune; Zhang, L.; Andersen, P.

    2000-01-01

    In this paper a new frequency domain technique is introduced for the modal identification from ambient responses, ie. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical ...

  7. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    Science.gov (United States)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  8. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  9. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  10. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  11. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.upenn.edu; Cochran, J. M.; Pathak, S.; Chung, S. H.; Yodh, A. G. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Schweiger, M.; Arridge, S. R. [Department of Computer Science, University College London, London WC1E 7JE (United Kingdom); Xie, L. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Busch, D. R. [Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 (United States); Katrašnik, J. [Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000 (Slovenia); Lee, K. [Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-813 (Korea, Republic of); Choe, R. [Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642 (United States); Czerniecki, B. J. [Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2016-07-15

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittal breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.

  12. Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J M; Oliveira e Silva, L; Mendonca, J T [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)

    1998-03-01

    A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)

  13. Towards Bandwidth Scalable Transceiver Technology for Optical Metro-Access Networks

    DEFF Research Database (Denmark)

    Spolitis, Sandis; Bobrovs, Vjaceslavs; Wagner, Christoph

    2015-01-01

    sliceable transceiver for 1 Gbit/s non-return to zero (NRZ) signal sliced into two slices is presented. Digital signal processing (DSP) power consumption and latency values for proposed sliceable transceiver technique are also discussed. In this research post FEC with 7% overhead error free transmission has......Massive fiber-to-the-home network deployment is creating a challenge for telecommunications network operators: exponential increase of the power consumption at the central offices and a never ending quest for equipment upgrades operating at higher bandwidth. In this paper, we report on flexible...... signal slicing technique, which allows transmission of high-bandwidth signals via low bandwidth electrical and optoelectrical equipment. The presented signal slicing technique is highly scalable in terms of bandwidth which is determined by the number of slices used. In this paper performance of scalable...

  14. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  15. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    Science.gov (United States)

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  16. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  17. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  18. Extraction of repetitive transients with frequency domain multipoint kurtosis for bearing fault diagnosis

    Science.gov (United States)

    Liao, Yuhe; Sun, Peng; Wang, Baoxiang; Qu, Lei

    2018-05-01

    The appearance of repetitive transients in a vibration signal is one typical feature of faulty rolling element bearings. However, accurate extraction of these fault-related characteristic components has always been a challenging task, especially when there is interference from large amplitude impulsive noises. A frequency domain multipoint kurtosis (FDMK)-based fault diagnosis method is proposed in this paper. The multipoint kurtosis is redefined in the frequency domain and the computational accuracy is improved. An envelope autocorrelation function is also presented to estimate the fault characteristic frequency, which is used to set the frequency hunting zone of the FDMK. Then, the FDMK, instead of kurtosis, is utilized to generate a fast kurtogram and only the optimal band with maximum FDMK value is selected for envelope analysis. Negative interference from both large amplitude impulsive noise and shaft rotational speed related harmonic components are therefore greatly reduced. The analysis results of simulation and experimental data verify the capability and feasibility of this FDMK-based method

  19. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  20. A bandwidth correction to the Allegri-Zhang solution for accelerated random vibration testing

    Directory of Open Access Journals (Sweden)

    Benasciutti Denis

    2018-01-01

    Full Text Available In 2008, Allegri and Zhang published a study [Int. J. Fatigue. 2008, 30(6:967-977] in which they provided an exact analytical solution to the inverse scaling law for accelerated vibration tests of linear systems submitted to stationary Gaussian excitations By combining finite element analysis with multiaxial spectral methods defined in the frequency-domain, their solution generalised the simple inverse power law model suggested in some standards. The solution adopted the “equivalent von Mises stress” multiaxial criterion combined with the narrow-band damage expression. This work aims to propose a bandwidth correction to the original Allegri-Zhang solution to account for the actual spectral banwidth of the local multiaxial stress. The corrected Allegri-Zhang solution is also extended to another multiaxial spectral method, namely the “Projection-by-Projection” criterion. A numerical example is finally discussed, in which the corrected solution is applied to an L-shaped beam submitted to random accelerations.

  1. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  2. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, D. [Fermilab; Bockelman, B. [Nebraska U.; Blomer, J. [CERN; Herner, K. [Fermilab; Levshina, T. [Fermilab; Slyz, M. [Fermilab

    2015-12-23

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached

  3. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Science.gov (United States)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  4. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  5. High Bandwidth Communications Links Between Heterogeneous Autonomous Vehicles Using Sensor Network Modeling and Extremum Control Approaches

    Science.gov (United States)

    2008-12-01

    In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command

  6. BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    Directory of Open Access Journals (Sweden)

    Carlos Gañán

    2013-01-01

    Full Text Available Certificate revocation is a challenging task, especiallyin mobile network environments such as vehicular ad Hoc networks (VANETs.According to the IEEE 1609.2 security standard for VANETs, public keyinfrastructure (PKI will provide this functionality by means of certificate revocation lists (CRLs.When a certificate authority (CAneeds to revoke a certificate, itglobally distributes CRLs.Transmitting these lists pose a problem as they require high update frequencies and a lot of bandwidth. In this article, we propose BECSI, aBandwidth Efficient Certificate Status Informationmechanism to efficiently distributecertificate status information (CSI in VANETs.By means of Merkle hash trees (MHT, BECSI allowsto retrieve authenticated CSI not onlyfrom the infrastructure but also from vehicles actingas mobile repositories.Since these MHTs are significantly smaller than the CRLs, BECSIreduces the load on the CSI repositories and improves the response time for the vehicles.Additionally, BECSI improves the freshness of the CSIby combining the use of delta-CRLs with MHTs.Thus, vehicles that have cached the most current CRLcan download delta-CRLs to have a complete list of revoked certificates.Once a vehicle has the whole list of revoked certificates, it can act as mobile repository.

  7. Building a good initial model for full-waveform inversion using frequency shift filter

    Science.gov (United States)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  8. Coherence bandwidth characterization in an urban microcell at 62.4 GHz

    DEFF Research Database (Denmark)

    Sánchez, M. G.; Hammoudeh, A. M.; Grindrod, E.

    2000-01-01

    Results of experiments made at 62.4 GHz in an urban mobile radio environment to characterize the coherence bandwidth are presented. The correlation coefficients between signal envelopes separated in frequency are measured and expressed as functions of distance from the base station. Due to the hi...

  9. Fast simulation approaches for power fluctuation model of wind farm based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Gao, Wen-zhong; Sun, Yuan-zhang

    2012-01-01

    This paper discusses one model developed by Riso, DTU, which is capable of simulating the power fluctuation of large wind farms in frequency domain. In the original design, the “frequency-time” transformations are time-consuming and might limit the computation speed for a wind farm of large size....... Under this background, this paper proposes four efficient approaches to accelerate the simulation speed. Two of them are based on physical model simplifications, and the other two improve the numerical computation. The case study demonstrates the efficiency of these approaches. The acceleration ratio...... is more than 300 times if all these approaches are adopted, in any low, medium and high wind speed test scenarios....

  10. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  11. Frequency domain method for the stack of seismic and radar data

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H; Sato, M [Tohoku University, Sendai (Japan); Xu, S

    1997-10-22

    With relation to the stacking method of elastic wave and radar wave, the frequency domain stacking method using the Fourier conversion was proposed as a method for automatically removing errors in time correction leaving advantages of the conventional horizontal stacking method. Concerning an example of wave motion with the same wave form and time difference, as a result of the analysis conducted by this method, it was found that not only effects are kept of suppressing random noise and regular noise in the conventional horizontal stacking method, but the resolution in the original wave motion data is kept. In the example, amplitude of the noise was a half of the wave motion signal, but if it is more than 0.85 times of the wave motion signal, favorable result cannot be obtained in this method. In the analysis in the area where time correction is very difficult and the correction cannot be made completely, it is useful also for the time domain stacking method to acquire data on high resolution of elastic wave and radar wave. 4 refs., 2 figs.

  12. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  13. Asymptotically exact localized expansions for signals in the time–frequency domain

    International Nuclear Information System (INIS)

    Muzhikyan, Aramazd H; Avanesyan, Gagik T

    2012-01-01

    Based on a unique waveform with strong exponential localization property, an exact mathematical method for solving problems in signal analysis in the time–frequency domain is presented. An analogue of the Gabor frame exposes the non-commutative geometry of the time–frequency plane. Signals are visualized using the constructed graphical representation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  14. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    International Nuclear Information System (INIS)

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  15. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime

    Science.gov (United States)

    Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.

    2018-06-01

    Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.

  16. EMG-Torque Dynamics Change With Contraction Bandwidth.

    Science.gov (United States)

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  17. Performance improvement of 100 kW high frequency transmitter for CW operation

    International Nuclear Information System (INIS)

    Kwak, J. G.; Yoon, J. S.; Bae, Y. D.; Cho, C. G.; Wang, S. J.; Lee, K. D.

    2001-08-01

    For the plasma heating of KSTAR(Korea Superconducting Tokamak Advanced Research)by using ICH(Ion Cyclotron Heating), it is designed that the selective ion heating and current drive are performed by the transmitter with the rf power of 8 MW in the frequency range of 25-60 MHz. 100 kW HF transmitter was constructed for the high voltage/current test of ICH antenna and HF transmission components. The output power is about 100 kW around 30 MHz. Thomson 581 tetrode is used for the final amplifier whose cavity type is ground cathode. Overall gain is above 15 dB and the bandwidth is about 100 kHz

  18. An Effective Experimental Optimization Method for Wireless Power Transfer System Design Using Frequency Domain Measurement

    Directory of Open Access Journals (Sweden)

    Sangyeong Jeong

    2017-10-01

    Full Text Available This paper proposes an experimental optimization method for a wireless power transfer (WPT system. The power transfer characteristics of a WPT system with arbitrary loads and various types of coupling and compensation networks can be extracted by frequency domain measurements. The various performance parameters of the WPT system, such as input real/imaginary/apparent power, power factor, efficiency, output power and voltage gain, can be accurately extracted in a frequency domain by a single passive measurement. Subsequently, the design parameters can be efficiently tuned by separating the overall design steps into two parts. The extracted performance parameters of the WPT system were validated with time-domain experiments.

  19. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  20. Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Kim

    2018-04-01

    Full Text Available The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA with a high permittivity (ɛr = 10 feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

  1. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    Science.gov (United States)

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-03-01

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL -1 and broad detection range of 10 pg mL -1 ≲ c BSA ≲ 100 µg mL -1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL -1 ≲ c BSA ≲ 500 ng mL -1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Postural analysis in time and frequency domains in patients with Ehlers-Danlos syndrome.

    Science.gov (United States)

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30s in two conditions: open eyes (OE) and closed eyes (CE). In order to compare pathological group we acquired in the same conditions a control group composed by 20 healthy participants. The obtained center of pressure (COP) signal was analyzed in time and frequency domain using an AR model. Results revealed differences between pathological and control group: EDS participants pointed out difficulties in controlling COP displacements trying to keep it inside the BOS in AP direction and for this reason increased the use of ML mechanism in order to avoid the risk of fall. Also in CE conditions they demonstrated more difficulties in maintaining posture revealing the proprioceptive system is impaired, due to ligament laxity that characterized EDS participants. Frequency domain analysis showed no differences between the two groups, affirming that the changes in time domain reflected really the impairment to the postural control mechanism and not a different strategy assumed by EDS participants. These data could help in decision-making process to establish a correct rehabilitation approach, based on the reinforcing of muscle tone to supply the ligament laxity in order to prevent risks of falls and its consequences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  4. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  5. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  6. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    International Nuclear Information System (INIS)

    Lipton, Robert; Polizzi, Anthony

    2014-01-01

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  7. Extended bandwidth nonlinear frequency compression in Mandarin-speaking hearing-aid users

    Directory of Open Access Journals (Sweden)

    Wen-Hsuan Tseng

    2018-02-01

    Conclusion: Patients with high-frequency hearing loss may benefit more from using EB-NLFC for word and consonant recognition; however, the improvement was small under a noisy listening environment. The subjective questionnaires did not show significant benefit of EB-NLFC either.

  8. Causality between regional stock markets: A frequency domain approach

    Directory of Open Access Journals (Sweden)

    Gradojević Nikola

    2013-01-01

    Full Text Available Using a data set from five regional stock exchanges (Serbia, Croatia, Slovenia, Hungary and Germany, this paper presents a frequency domain analysis of a causal relationship between the returns on the CROBEX, SBITOP, CETOP and DAX indices, and the return on the major Serbian stock exchange index, BELEX 15. We find evidence of a somewhat dominant effect of the CROBEX and CETOP stock indices on the BELEX 15 stock index across a range of frequencies. The results also indicate that the BELEX 15 index and the SBITOP index interact in a bi-directional causal fashion. Finally, the DAX index movements consistently drive the BELEX 15 index returns for cycle lengths between 3 and 11 days without any feedback effect.

  9. A hybrid absorbing boundary condition for frequency-domain finite-difference modelling

    International Nuclear Information System (INIS)

    Ren, Zhiming; Liu, Yang

    2013-01-01

    Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)

  10. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    Science.gov (United States)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  11. A new Monte Carlo method for neutron noise calculations in the frequency domain

    International Nuclear Information System (INIS)

    Rouchon, Amélie; Zoia, Andrea; Sanchez, Richard

    2017-01-01

    Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently proposed in the literature by using particles with complex-valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algorithm that solves the transport neutron noise equations in the frequency domain. The stochastic method presented here relies on a modified collision operator and does not need any weight cancellation technique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic and anisotropic noise sources. Our stochastic method shows better performances in the frequency region of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source problems.

  12. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  13. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  14. Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    Directory of Open Access Journals (Sweden)

    Acharya U Rajendra

    2004-06-01

    Full Text Available Abstract Background Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. Methods The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT, Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT coefficients is studied. Differential pulse code modulation (DPCM is employed for data compression as well as encryption and results are tabulated for a specific example. Results It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. Conclusion The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient.

  15. Exploit the Bandwidth Capacities of the Perfluorinated Graded Index Polymer Optical Fiber for Multi-Services Distribution

    Directory of Open Access Journals (Sweden)

    Paul Alain Rolland

    2011-06-01

    Full Text Available The study reported here deals with the exploitation of perfluorinated graded index polymer optical fiber bandwidth to add further services in a home/office network. The fiber properties are exhibited in order to check if perfluorinated graded index plastic optical fiber (PFGI-POF is suitable to support a multiplexing transmission. According to the high bandwidth length of plastic fibers, both at 850 nm and 1,300 nm, the extension of the classical baseband existing network is proposed to achieve a dual concept, allowing the indoor coverage of wireless signals transmitted using the Radio over Fiber technology. The simultaneous transmission of a 10 GbE signal and a wireless signal is done respectively at 850 nm and 1,300 nm on a single plastic fiber using wavelength division multiplexing commercially available devices. The penalties have been evaluated both in digital (Bit Error Rate measurement and radiofrequency (Error Vector Magnitude measurement domains.

  16. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    Science.gov (United States)

    Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.

    2014-08-01

    Long-lived coherences (LLC's) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.

  17. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    International Nuclear Information System (INIS)

    Sadet, A.; Fernandes, L.; Kateb, F.; Balzan, R.; Vasos, P. R.

    2014-01-01

    Long-lived coherences (LLC’s) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening

  18. Long-lived coherences: Improved dispersion in the frequency domain using continuous-wave and reduced-power windowed sustaining irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadet, A.; Fernandes, L.; Kateb, F., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Balzan, R., E-mail: fatiha.kateb@parisdescartes.fr, E-mail: balzan.riccardo@parisdescartes.fr; Vasos, P. R. [Laboratoire de Chimie et Biochimie Toxicologiques et Pharmacologiques UMR-8601, Université Paris Descartes - CNRS, PRES Paris Sorbonne Cité, 75006 Paris (France)

    2014-08-07

    Long-lived coherences (LLC’s) are detectable magnetisation modes with favourable relaxation times that translate as sharp resonances upon Fourier transform. The frequency domain of LLC's was previously limited to the range of J-couplings within pairs of homonuclear spins. LLC evolution at high magnetic fields needs to be sustained by radio-frequency irradiation. We show that LLC-based spectral dispersion can be extended beyond the J-couplings domain using adapted carrier offsets and introduce a new reduced-power sustaining method to preserve LLC's within the required range of offsets. Spectral resolution is enhanced as the natively narrow lines of LLC's are further dispersed, making them potential probes for the study of biomolecules featuring strong resonance overlap and for media where NMR spectroscopy is commonly hindered by line broadening.

  19. Hardware architecture design of image restoration based on time-frequency domain computation

    Science.gov (United States)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  20. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    Science.gov (United States)

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using

  1. Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations

    Science.gov (United States)

    Bonnasse-Gahot, Marie; Calandra, Henri; Diaz, Julien; Lanteri, Stéphane

    2018-04-01

    Discontinuous Galerkin (DG) methods are nowadays actively studied and increasingly exploited for the simulation of large-scale time-domain (i.e. unsteady) seismic wave propagation problems. Although theoretically applicable to frequency-domain problems as well, their use in this context has been hampered by the potentially large number of coupled unknowns they incur, especially in the 3-D case, as compared to classical continuous finite element methods. In this paper, we address this issue in the framework of the so-called hybridizable discontinuous Galerkin (HDG) formulations. As a first step, we study an HDG method for the resolution of the frequency-domain elastic wave equations in the 2-D case. We describe the weak formulation of the method and provide some implementation details. The proposed HDG method is assessed numerically including a comparison with a classical upwind flux-based DG method, showing better overall computational efficiency as a result of the drastic reduction of the number of globally coupled unknowns in the resulting discrete HDG system.

  2. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    OpenAIRE

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower contro...

  3. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2017-10-01

    Full Text Available Precise azimuth-variant motion compensation (MOCO is an essential and difficult task for high-resolution synthetic aperture radar (SAR imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA, have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  4. Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects

    CERN Document Server

    Alkan, Erdogan; Elsherbeni, Atef

    2013-01-01

    This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid

  5. Frequency domain performance analysis of marginally stable LTI systems with saturation

    NARCIS (Netherlands)

    Berg, van den R.A.; Pogromski, A.Y.; Rooda, J.E.; Leonov, G.; Nijmeijer, H.; Pogromsky, A.; Fradkov, A.

    2009-01-01

    In this paper we discuss the frequency domain performance analysis of a marginally stable linear time-invariant (LTI) system with saturation in the feedback loop. We present two methods, both based on the notion of convergent systems, that allow to evaluate the performance of this type of systems in

  6. Narrow bandwidth detection of vibration signature using fiber lasers

    Science.gov (United States)

    Moore, Sean; Soh, Daniel B.S.

    2018-05-08

    The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.

  7. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    International Nuclear Information System (INIS)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-01-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance. - Highlights: • Development variety of radar absorbing materials especially at high gigahertz frequencies. • Best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. • Important parameters need to be taken into consideration to obtain stronger absorption and better performances.

  8. Amplitude modulation detection with concurrent frequency modulation.

    Science.gov (United States)

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  9. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  10. Time-frequency analysis with temporal and spectral resolution as the human auditory system

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    1992-01-01

    The human perception of sound is a suitable area for the application of a simultaneous time-frequency analysis, since the ear is selective in both domains. A perfect reconstruction filter bank with bandwidths approximating the critical bands is presented. The orthogonality of the filter makes...... it possible to examine the masking effect with realistic signals. The tree structure of the filter bank makes it difficult to obtain well-attenuated stop-bands. The use of filters of different length solves this problem...

  11. 2.5D Inversion Algorithm of Frequency-Domain Airborne Electromagnetics with Topography

    Directory of Open Access Journals (Sweden)

    Jianjun Xi

    2016-01-01

    Full Text Available We presented a 2.5D inversion algorithm with topography for frequency-domain airborne electromagnetic data. The forward modeling is based on edge finite element method and uses the irregular hexahedron to adapt the topography. The electric and magnetic fields are split into primary (background and secondary (scattered field to eliminate the source singularity. For the multisources of frequency-domain airborne electromagnetic method, we use the large-scale sparse matrix parallel shared memory direct solver PARDISO to solve the linear system of equations efficiently. The inversion algorithm is based on Gauss-Newton method, which has the efficient convergence rate. The Jacobian matrix is calculated by “adjoint forward modelling” efficiently. The synthetic inversion examples indicated that our proposed method is correct and effective. Furthermore, ignoring the topography effect can lead to incorrect results and interpretations.

  12. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-01-01

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  13. On the Conductive Loss of High-Q Frequency Reconfigurable Antennas for LTE Frequencies

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del

    2018-01-01

    Intrinsically narrowband and highly tunable systems are a promising way to address the bandwidth challenge of LTE. However, narrowband antennas exhibit low efficiencies. This paper details the loss mechanism of narrowband antennas by investigating the contribution of the resistance of the tuner...

  14. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  15. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  16. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  17. Frequency-domain elastic full waveform inversion using encoded simultaneous sources

    Science.gov (United States)

    Jeong, W.; Son, W.; Pyun, S.; Min, D.

    2011-12-01

    Currently, numerous studies have endeavored to develop robust full waveform inversion and migration algorithms. These processes require enormous computational costs, because of the number of sources in the survey. To avoid this problem, the phase encoding technique for prestack migration was proposed by Romero (2000) and Krebs et al. (2009) proposed the encoded simultaneous-source inversion technique in the time domain. On the other hand, Ben-Hadj-Ali et al. (2011) demonstrated the robustness of the frequency-domain full waveform inversion with simultaneous sources for noisy data changing the source assembling. Although several studies on simultaneous-source inversion tried to estimate P- wave velocity based on the acoustic wave equation, seismic migration and waveform inversion based on the elastic wave equations are required to obtain more reliable subsurface information. In this study, we propose a 2-D frequency-domain elastic full waveform inversion technique using phase encoding methods. In our algorithm, the random phase encoding method is employed to calculate the gradients of the elastic parameters, source signature estimation and the diagonal entries of approximate Hessian matrix. The crosstalk for the estimated source signature and the diagonal entries of approximate Hessian matrix are suppressed with iteration as for the gradients. Our 2-D frequency-domain elastic waveform inversion algorithm is composed using the back-propagation technique and the conjugate-gradient method. Source signature is estimated using the full Newton method. We compare the simultaneous-source inversion with the conventional waveform inversion for synthetic data sets of the Marmousi-2 model. The inverted results obtained by simultaneous sources are comparable to those obtained by individual sources, and source signature is successfully estimated in simultaneous source technique. Comparing the inverted results using the pseudo Hessian matrix with previous inversion results

  18. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    Science.gov (United States)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  19. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small......-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain...

  20. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    Science.gov (United States)

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  1. Patellofemoral pain syndrome: electromyography in a frequency domain analysis

    Science.gov (United States)

    Catelli, D. S.; Kuriki, H. U.; Polito, L. F.; Azevedo, F. M.; Negrão Filho, R. F.; Alves, N.

    2011-09-01

    The Patellofemoral Pain Syndrome (PFPS), has a multifactorial etiology and affects approximately 7 to 15% of the population, mostly women, youth, adults and active persons. PFPS causes anterior or retropatelar pain that is exacerbated during functional motor gestures, such as up and down stairs or spending long periods of time sitting, squatting or kneeling. As the diagnostic evaluation of this syndrome is still indirect, different mechanisms and methodologies try to make a classification that distinguishes patients with PFPS in relation to asymptomatic. Thereby, the purpose of this investigation was to determine the characteristics of the electromyographic (EMG) signal in the frequency domain of the vastus medialis oblique (VMO) and vastus lateralis (VL) in patients with PFPS, during the ascent of stairs. 33 young women (22 control group and 11 PFPS group), were evaluated by EMG during ascent of stairs. The VMO mean power frequency (MPF) and the VL frequency 95% (F95) were lower in symptomatic individuals. This may be related to the difference in muscle recruitment strategy exerted by each muscle in the PFPS group compared to the control group.

  2. Novel Burst Suppression Segmentation in the Joint Time-Frequency Domain for EEG in Treatment of Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Jaeyun Lee

    2016-01-01

    Full Text Available We developed a method to distinguish bursts and suppressions for EEG burst suppression from the treatments of status epilepticus, employing the joint time-frequency domain. We obtained the feature used in the proposed method from the joint use of the time and frequency domains, and we estimated the decision as to whether the measured EEG was a burst segment or suppression segment by the maximum likelihood estimation. We evaluated the performance of the proposed method in terms of its accordance with the visual scores and estimation of the burst suppression ratio. The accuracy was higher than the sole use of the time or frequency domains, as well as conventional methods conducted in the time domain. In addition, probabilistic modeling provided a more simplified optimization than conventional methods. Burst suppression quantification necessitated precise burst suppression segmentation with an easy optimization; therefore, the excellent discrimination and the easy optimization of burst suppression by the proposed method appear to be beneficial.

  3. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry

    International Nuclear Information System (INIS)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2010-01-01

    We present the latest advances in distributed strain measurement in perfluorinated polymer optical fibres (POFs) using backscatter techniques. Compared to previously introduced poly(methyl methacrylate) POFs, the measurement length can be extended to more than 500 m at improved spatial resolution of a few centimetres. It is shown that strain in a perfluorinated POF can be measured up to 100%. In parallel to these investigations, the incoherent optical frequency domain reflectometry (OFDR) technique is introduced to detect strained fibre sections and to measure distributed length change along the fibre with sub-millimetre resolution by applying a cross-correlation algorithm to the backscatter signal. The overall superior performance of the OFDR technique compared to the optical time domain reflectometry in terms of accuracy, dynamic range, spatial resolution and measurement speed is presented. The proposed sensor system is a promising technique for use in structural health monitoring applications where the precise detection of high strain is required

  4. Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing

    Science.gov (United States)

    Rost, Robert W.; Brown, David L.

    1988-01-01

    An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.

  5. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  6. Wide-bandwidth bilateral control using two-stage actuator system

    International Nuclear Information System (INIS)

    Kokuryu, Saori; Izutsu, Masaki; Kamamichi, Norihiro; Ishikawa, Jun

    2015-01-01

    This paper proposes a two-stage actuator system that consists of a coarse actuator driven by a ball screw with an AC motor (the first stage) and a fine actuator driven by a voice coil motor (the second stage). The proposed two-stage actuator system is applied to make a wide-bandwidth bilateral control system without needing expensive high-performance actuators. In the proposed system, the first stage has a wide moving range with a narrow control bandwidth, and the second stage has a narrow moving range with a wide control bandwidth. By consolidating these two inexpensive actuators with different control bandwidths in a complementary manner, a wide bandwidth bilateral control system can be constructed based on a mechanical impedance control. To show the validity of the proposed method, a prototype of the two-stage actuator system has been developed and basic performance was evaluated by experiment. The experimental results showed that a light mechanical impedance with a mass of 10 g and a damping coefficient of 2.5 N/(m/s) that is an important factor to establish good transparency in bilateral control has been successfully achieved and also showed that a better force and position responses between a master and slave is achieved by using the proposed two-stage actuator system compared with a narrow bandwidth case using a single ball screw system. (author)

  7. Frequency domain analysis and design of nonlinear systems based on Volterra series expansion a parametric characteristic approach

    CERN Document Server

    Jing, Xingjian

    2015-01-01

    This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain.  The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...

  8. Reconstitution of Low Bandwidth Reaction History

    International Nuclear Information System (INIS)

    May, M.; Clancy, T.; Fittinghoff, D.; Gennaro, P.; Hagans, K.; Halvorson, G.; Lowry, M.; Perry, T.; Roberson, P.; Smith, D.; Teruya, A.; Blair, J.; Davis, B.; Hunt, E.; Emkeit, B.; Galbraith, J.; Kelly, B.; Montoya, R.; Nickel, G.; Ogle, J.; Wilson, K.; Wood, M.

    2004-01-01

    The goal of the Test Readiness Program is to transition to a 24 month test readiness posture and if approved move to an 18-month posture. One of the key components of the Test Readiness Program necessary to meet this goal is the reconstitution of the important diagnostics. Since the end of nuclear testing, the ability to field diagnostics on a nuclear test has deteriorated. Reconstitution of diagnostics before those who had experience in nuclear testing either retire or leave is essential to achieving a shorter test readiness posture. Also, the data recording systems have not been used since the end of testing. This report documents the reconstitution of one vital diagnostic: the low bandwidth reaction history diagnostic for FY04. Reaction history is one of the major diagnostics that has been used on all LLNL and LANL tests since the early days of nuclear testing. Reaction history refers to measuring the time history of the gamma and neutron output from a nuclear test. This gives direct information on the nuclear reactions taking place in the device. The reaction history measurements are one of the prime measurements the nuclear weapon scientists use to validate their models of device performance. All tests currently under consideration require the reaction history diagnostic. Thus moving to a shorter test readiness posture requires the reconstitution of the ability to make reaction history measurements. Reconstitution of reaction history was planned to be in two steps. Reaction history measurements that have been used in the past can be broadly placed into two categories. The most common type of reaction history and the one that has been performed on virtually all nuclear tests is termed low bandwidth reaction history. This measurement has a time response that is limited by the bandpass of kilometer length coaxial cables. When higher bandwidth has been required for specific measurements, fiber optic techniques have been used. This is referred to as high-bandwidth

  9. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    International Nuclear Information System (INIS)

    Cui Tiejun; Kong Jinau

    2004-01-01

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain

  10. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    International Nuclear Information System (INIS)

    Ammendola, R; Salamon, A; Salina, G; Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P; Simula, F

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera ® FPGA, are provided.

  11. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R; Salamon, A; Salina, G [INFN Tor Vergata, Roma (Italy); Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P [INFN Roma, Roma (Italy); Simula, F [Sapienza Universita di Roma, Roma (Italy)

    2011-12-23

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera{sup Registered-Sign} FPGA, are provided.

  12. Bandwidth-on-demand motion control

    NARCIS (Netherlands)

    Van Loon, S.J.L.M.; Hunnekens, B.G.B.; Simon, A.S.; van de Wouw, N.; Heemels, W.P.M.H.

    2018-01-01

    In this brief, we introduce a 'bandwidth-on-demand' variable-gain control (VGC) strategy that allows for a varying bandwidth of the feedback controller. The proposed VGC can achieve improved performance given time-varying, reference-dependent performance requirements compared with linear

  13. A Novel Comb-Pilot Transform Domain Frequency Diversity Channel Estimation for OFDM System

    Directory of Open Access Journals (Sweden)

    L. Liu

    2009-12-01

    Full Text Available Due to implementation complexity, the transform domain channel estimation based on training symbols or comb-type pilots has been paid more attention because of its efficient algorithm FFT/IFFT. However, in a comb-type OFDM system, the length of the channel impulse response is much smaller than the pilot number. In this case, the comb-pilot transform domain channel estimation only works as interpolation like the Least Squares (LS algorithm, but loses the noise suppression function. In this paper, we propose a novel frequency diversity channel estimation method via grouped pilots combining. With this estimator, not only the channel frequency response on non-pilot subcarriers can be interpolated, but also the noise can be better suppressed. Moreover, it does not need prior statistical characteristics of the wireless channel.

  14. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  15. Controller design for flexible, distributed parameter mechanical arms via combined state space and frequency domain techniques

    Science.gov (United States)

    Book, W. J.; Majett, M.

    1982-01-01

    The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.

  16. GUM2DFT—a software tool for uncertainty evaluation of transient signals in the frequency domain

    International Nuclear Information System (INIS)

    Eichstädt, S; Wilkens, V

    2016-01-01

    The Fourier transform and its counterpart for discrete time signals, the discrete Fourier transform (DFT), are common tools in measurement science and application. Although almost every scientific software package offers ready-to-use implementations of the DFT, the propagation of uncertainties in line with the guide to the expression of uncertainty in measurement (GUM) is typically neglected. This is of particular importance in dynamic metrology, when input estimation is carried out by deconvolution in the frequency domain. To this end, we present the new open-source software tool GUM2DFT, which utilizes closed formulas for the efficient propagation of uncertainties for the application of the DFT, inverse DFT and input estimation in the frequency domain. It handles different frequency domain representations, accounts for autocorrelation and takes advantage of the symmetry inherent in the DFT result for real-valued time domain signals. All tools are presented in terms of examples which form part of the software package. GUM2DFT will foster GUM-compliant evaluation of uncertainty in a DFT-based analysis and enable metrologists to include uncertainty evaluations in their routine work. (paper)

  17. RF-heating of plasma in the frequency domain of the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Hahnekamp, H.G.; Stampa, A.; Tuczek, H.; Laeuter, R.; Wulf, H.O.

    1976-01-01

    Experiments on rf-heating of plasmas in the frequency domain of the ion cyclotron harmonics are reported. The rf-power is coupled to the magneto-acoustic wave for frequencies between ωsub(ci) and 5ωsub(ci). The measurements indicate that the damping of the pump wave is mainly due to the excitation of turbulence, whereas direct resonance at 2ωsub(ci) seems to be of minor importance

  18. Experimental demonstration of an improved EPON architecture using OFDMA for bandwidth scalable LAN emulation

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Yu, Xianbin

    2011-01-01

    We propose and demonstrate an improved Ethernet passive optical network (EPON) architecture supporting bandwidth-scalable physical layer local area network (LAN) emulation. Due to the use of orthogonal frequency division multiple access (OFDMA) technology for the LAN traffic transmission, there i...

  19. Frequency domain, waveform inversion of laboratory crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  20. A perspective on single-channel frequency-domain speech enhancement

    CERN Document Server

    Benesty, Jacob

    2010-01-01

    This book focuses on a class of single-channel noise reduction methods that are performed in the frequency domain via the short-time Fourier transform (STFT). The simplicity and relative effectiveness of this class of approaches make them the dominant choice in practical systems. Even though many popular algorithms have been proposed through more than four decades of continuous research, there are a number of critical areas where our understanding and capabilities still remain quite rudimentary, especially with respect to the relationship between noise reduction and speech distortion. All exis

  1. First applications of high temperature superconductors in microelectronic. Subproject: Foundations of a reality-near simulation of superconducting high frequency circuits. Final report

    International Nuclear Information System (INIS)

    Wolff, I.; Konopka, J.; Fritsch, U.; Hofschen, S.; Rittweger, M.; Becks, T.; Schroeder, W.; Ma Jianguo.

    1994-01-01

    The basis of computer aided design of the physical properties of high temperature superconductors in high frequency and microwave areas were not well known and understood at the beginning of this research project. For this reason within in the research project as well new modells for describing the microwave properties of these superconductors have been developed as alos well known numerical analysis techniques as e.g. the boundary integral method, the method of finite differences in time domain and the spectral domain analysis technique have been changed so that they meet the requirements of superconducting high frequency and microwave circuits. Hereby it especially also was considered that the substrate materials used for high temperature superconductors normally have high dielectric constants and big anisotropies so that new analysis techniques had to be developed to consider the influence of these parameters on the components and circuits. The dielectric properties of the substrate materials furthermore have been a subject of measurement activities in which the permittivity tensor of the materials have been determined with high accuracy and ogver a large frequency range. As a result of the performed investigations now improved numerical simulation techniques on a realistic basis are available for the analysis of superconducting high frequency and microwave circuits. (orig.) [de

  2. A note on eigenfrequency sensitivities and structural eigenfrequency optimization based on local sub-domain frequencies

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2014-01-01

    foundation. A numerical heuristic redesign procedure is proposed and illustrated with examples. For the ideal case, an optimality criterion is fulfilled if the design have the same sub-domain frequency (local Rayleigh quotient). Sensitivity analysis shows an important relation between squared system...... eigenfrequency and squared local sub-domain frequency for a given eigenmode. Higher order eigenfrequenciesmay also be controlled in this manner. The presented examples are based on 2D finite element models with the use of subspace iteration for analysis and a heuristic recursive design procedure based...... on the derived optimality condition. The design that maximize a frequency depend on the total amount of available material and on a necessary interpolation as illustrated by different design cases.In this note we have assumed a linear and conservative eigenvalue problem without multiple eigenvalues. The presence...

  3. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  4. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  5. A real scale simulator for high frequency LEMP

    Science.gov (United States)

    Gauthier, D.; Serafin, D.

    1991-01-01

    The real scale simulator is described which was designed by the Centre d'Etudes de Gramat (CEG) to study the coupling of fast rise time Lightning Electromagnetic pulse in a fighter aircraft. The system capability of generating the right electromagnetic environment was studied using a Finite Difference Time Domain (FDTD) computer program. First, data of inside stresses are shown. Then, a time domain and a frequency domain approach is exposed and compared.

  6. Optimal Bandwidth Selection for Kernel Density Functionals Estimation

    Directory of Open Access Journals (Sweden)

    Su Chen

    2015-01-01

    Full Text Available The choice of bandwidth is crucial to the kernel density estimation (KDE and kernel based regression. Various bandwidth selection methods for KDE and local least square regression have been developed in the past decade. It has been known that scale and location parameters are proportional to density functionals ∫γ(xf2(xdx with appropriate choice of γ(x and furthermore equality of scale and location tests can be transformed to comparisons of the density functionals among populations. ∫γ(xf2(xdx can be estimated nonparametrically via kernel density functionals estimation (KDFE. However, the optimal bandwidth selection for KDFE of ∫γ(xf2(xdx has not been examined. We propose a method to select the optimal bandwidth for the KDFE. The idea underlying this method is to search for the optimal bandwidth by minimizing the mean square error (MSE of the KDFE. Two main practical bandwidth selection techniques for the KDFE of ∫γ(xf2(xdx are provided: Normal scale bandwidth selection (namely, “Rule of Thumb” and direct plug-in bandwidth selection. Simulation studies display that our proposed bandwidth selection methods are superior to existing density estimation bandwidth selection methods in estimating density functionals.

  7. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  8. The frequency-domain approach for apparent density mapping

    Science.gov (United States)

    Tong, T.; Guo, L.

    2017-12-01

    Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.

  9. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability.

    Science.gov (United States)

    Nakajima, Yoshie; Tanaka, Naofumi; Mima, Tatsuya; Izumi, Shin-Ichi

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu), low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  10. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    Science.gov (United States)

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  11. Computationally Efficient Amplitude Modulated Sinusoidal Audio Coding using Frequency-Domain Linear Prediction

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jensen, Søren Holdt

    2006-01-01

    A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...

  12. Calibration of an audio frequency noise generator

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1966-01-01

    a noise bandwidth Bn = π/2 × (3dB bandwidth). To apply this method to low audio frequencies, the noise bandwidth of the low Q parallel resonant circuit has been found, including the effects of both series and parallel damping. The method has been used to calibrate a General Radio 1390-B noise generator...... it is used for measurement purposes. The spectral density of a noise source may be found by measuring its rms output over a known noise bandwidth. Such a bandwidth may be provided by a passive filter using accurately known elements. For example, the parallel resonant circuit with purely parallel damping has...

  13. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    Science.gov (United States)

    Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee

    2015-08-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  14. A frequency-domain approach to improve ANNs generalization quality via proper initialization.

    Science.gov (United States)

    Chaari, Majdi; Fekih, Afef; Seibi, Abdennour C; Hmida, Jalel Ben

    2018-08-01

    The ability to train a network without memorizing the input/output data, thereby allowing a good predictive performance when applied to unseen data, is paramount in ANN applications. In this paper, we propose a frequency-domain approach to evaluate the network initialization in terms of quality of training, i.e., generalization capabilities. As an alternative to the conventional time-domain methods, the proposed approach eliminates the approximate nature of network validation using an excess of unseen data. The benefits of the proposed approach are demonstrated using two numerical examples, where two trained networks performed similarly on the training and the validation data sets, yet they revealed a significant difference in prediction accuracy when tested using a different data set. This observation is of utmost importance in modeling applications requiring a high degree of accuracy. The efficiency of the proposed approach is further demonstrated on a real-world problem, where unlike other initialization methods, a more conclusive assessment of generalization is achieved. On the practical front, subtle methodological and implementational facets are addressed to ensure reproducibility and pinpoint the limitations of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Input preshaping with frequency domain information for flexible-link manipulator control

    Science.gov (United States)

    Tzes, Anthony; Englehart, Matthew J.; Yurkovich, Stephen

    1989-01-01

    The application of an input preshaping scheme to flexible manipulators is considered. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration free output. The robustness of the algorithm with respect to injected disturbances and modal frequency variations is not satisfactory and can be improved by convolving the input with a longer sequence of impulses. The incorporation of the preshaping scheme to a closed-loop plant, using acceleration feedback, offers satisfactory disturbance rejection due to feedback and cancellation of the flexible mode effects due to the preshaping. A frequency domain identification scheme is used to estimate the modal frequencies on-line and subsequently update the spacing between the impulses. The combined adaptive input preshaping scheme provides the fastest possible slew that results in a vibration free output.

  16. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.; Wheatley, Trevor A.; Song, Hongbin; Webb, James G.; Mabrok, Mohamed; Huntington, Elanor H.; Yonezawa, Hidehiro

    2017-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  17. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  18. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  19. On the actual bandwidth of some dynamic fiber optic strain/temperature interrogators

    Science.gov (United States)

    Preizler, Rotem R.; Davidi, R.; Motil, Avi; Botsev, Yakov; Hahami, Meir; Tur, Moshe

    2017-04-01

    The measurement accuracy of dynamic fiber-optic sensing interrogators, which use frequency scanning to determine the value of the measured, err as either the event bandwidth approaches half the instrument sampling frequency or when the event dynamic range comes close to the instrument designed value. One main source of error is the common practice of assigning sampling at a non-uniform grid to a uniform one. Harmonics higher than -20 dB are observed for signal frequencies exceeding 25% of the sampling rate and/or for signal amplitudes higher than 15% of the instrument dynamic range. These findings have applications to fiber-Bragg-grating and Brillouin interrogators.

  20. High-capacity method for hiding data in the discrete cosine transform domain

    Science.gov (United States)

    Qazanfari, Kazem; Safabakhsh, Reza

    2013-10-01

    Steganography is the art and science of hiding data in different media such as texts, audios, images, and videos. Data hiding techniques are generally divided into two groups: spatial and frequency domain techniques. Spatial domain methods generally have low security and, as a result, are less attractive to researchers. Discrete cosine transform (DCT) is the most common transform domain used in steganography and JPEG compression. Since a large number of the DCT coefficients of JPEG images are zero, the capacity of DCT domain-based steganography methods is not very high. We present a high-capacity method for hiding messages in the DCT domain. We describe the method in two classes where the receiver has and where the receiver does not have the cover image. In each class, we consider three cases for each coefficient. By considering n coefficients, there are 3n different situations. The method embeds ⌊log2 3n⌋ bits in these n coefficients. We show that the maximum reachable capacity by our method is 58% higher than the other general steganography methods. Experimental results show that the histogram-based steganalysis methods cannot detect the stego images produced by the proposed method while the capacity is increased significantly.

  1. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  2. The statistical bandwidth of Butterworth filters

    Science.gov (United States)

    Davy, J. L.; Dunn, I. P.

    1987-06-01

    The precision of standard architectural acoustic measurements is a function of the statistical bandwidth of the band pass filters used in the measurements. The International and United States Standards on octave and fractional octave-band filters which specify the band pass filters used in architectural acoustics measurements give the effective bandwidth, but unfortunately not the statistical bandwidth of the filters. Both these Standards are currently being revised and both revisions require the use of Butterworth filter characteristics. In this paper it is shown theoretically that the ratio of statistical bandwidth to effective bandwidth for an nth order Butterworth band pass filter is {2n}/{(2n-1)}. This is verified experimentally for third-octave third-order Butterworth band pass filters. It is also shown experimentally that this formula is approximately correct for some non-Butterworth third-octave third-order band pass filters. Because of the importance of Butterworth filters in the revised Standards, the theory of Butterworth filters is reviewed and the formulae for Butterworth filters given in both revised Standards are derived.

  3. Effects of Raman scattering in quantum state-preserving frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Castaneda, Mario A. Usuga

    2014-01-01

    We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure.......We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure....

  4. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  5. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  6. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  7. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    Science.gov (United States)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  8. 3-D Printed Fabry–Pérot Resonator Antenna with Paraboloid-Shape Superstrate for Wide Gain Bandwidth

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2017-11-01

    Full Text Available A three-dimensional (3-D printed Fabry–Pérot resonator antenna (FPRA, which designed with a paraboloid-shape superstrate for wide gain bandwidth is proposed. In comparison with the commonly-adopted planar superstrate, the paraboloid-shape superstrate is able to provide multiple resonant heights and thus satisfy the resonant condition of the FPRA in a wide frequency band. A FPRA working at 6 GHz is designed, fabricated, and tested. Considering the fabrication difficulty caused by its complex structure, the prototype antenna was fabricated by using the 3-D printing technology, i.e., all components of the prototype antenna were printed with photopolymer resin and then treated by the surface metallization process. Measurement results agree well with the simulation results, and show the 3-D printed FPRA has a |S11| < −10 dB impedance bandwidth of 12.4%, and a gain of 16.8 dBi at its working frequency of 6 GHz. Moreover, in comparison with the planar superstrate adopted in traditional FPRAs, the paraboloid-shape superstrate of the proposed FPRA significantly improves the 3-dB gain bandwidth from 6% to 22.2%.

  9. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    Science.gov (United States)

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  10. Uncertainty quantification of dynamic responses in the frequency domain in the context of virtual testing

    Science.gov (United States)

    Brehm, Maik; Deraemaeker, Arnaud

    2015-04-01

    For the development of innovative materials, construction types or maintenance strategies, experimental investigations are inevitable to validate theoretical approaches in praxis. Numerical simulations, embedded in a general virtual testing approach, are alternatives to expensive experimental investigations. The statistical properties of the dynamic response in the frequency domain obtained from continuously measured data are often the basis for many developments, such as the optimization of damage indicators for structural health monitoring systems or the investigation of data-based frequency response function estimates. Two straightforward numerical simulation approaches exist to derive the statistics of a response due to random excitation and measurement errors. One approach is the sample-based technique, wherein for each excitation sample a time integration solution is needed. This can be computationally very demanding if a high accuracy of the statistical properties is of interest. The other approach consists in using the relationship between the excitation and the response directly in the frequency domain, wherein a weakly stationary process is assumed. This approach is inherently related to an infinite time response, which can hardly be derived from measured data. In this paper, a novel approach is proposed that overcomes the limitation of both aforementioned methods, by providing a fast analytical probabilistic framework for uncertainty quantification to determine accurately the statistics of short time dynamic responses. It is assumed that the structural system is known and can be described by deterministic parameters. The influences of signal processing techniques, such as linear combinations, windowing, and segmentation used in Welch's method, are considered as well. The performance of the new algorithm is investigated in comparison to both previous approaches on a three degrees of freedom system. The benchmark shows that the novel approach outperforms

  11. Pyroelectric detectors with integrated operational amplifier for high modulation frequencies; Pyroelektrische Detektoren mit integriertem Operationsverstaerker fuer hohe Modulationsfrequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, N.; Saenze, H.; Heinze, M. [InfraTec GmbH Dresden (Germany)

    2006-02-01

    In order to use the advantages of the current mode operation a pyroelectric detector family with integrated transimpedance amplifier (TIA) was developed particularly for modulation frequencies up to the kHz range with a simplified external circuitry for new application fields, e.g. absorption spectroscopy using quantum-cascade-laser. The essential advantages of the TIA arise from the small electrical time constant {tau}{sub E} and the short-circuiting of the pyroelectric element. A flat amplitude response up to some kHz was aimed at for a sufficiently high response of 7500 V/W, appr., also at high modulation frequencies. This can be achieved through a electrical time constant of 1 ms or less and a wide bandwidth of the op amp. The article describes in detail how these demands were accomplished and which compromises had to be accepted. (orig.)

  12. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  13. PLASTIQUE: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    International Nuclear Information System (INIS)

    De Stasio, G.; Zema, N.; Antonangeli, F.; Parasassi, T.; Rosato, N.

    1991-01-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in the frequency domain. These experiments are extremely valuable sources of informations on the structure and dynamics of molecules. The beamline and some examples of initial data are described

  14. Self-aligned BCB planarization method for high-frequency signal injection in a VCSEL with an integrated modulator

    Science.gov (United States)

    Marigo-Lombart, Ludovic; Doucet, Jean-Baptiste; Lecestre, Aurélie; Reig, Benjamin; Rousset, Bernard; Thienpont, Hugo; Panajotov, Krassimir; Almuneau, Guilhem

    2016-04-01

    The huge increase of datacom capacities requires lasers sources with more and more bandwidth performances. Vertical-Cavity Surface-Emitting Lasers (VCSEL) in direct modulation is a good candidate, already widely used for short communication links such as in datacenters. Recently several different approaches have been proposed to further extend the direct modulation bandwidth of these devices, by improving the VCSEL structure, or by combining the VCSEL with another high speed element such as lateral slow light modulator or transistor/laser based structure (TVCSEL). We propose to increase the modulation bandwidth by vertically integrating a continuous-wave VCSEL with a high-speed electro-modulator. This vertical structure implies multiple electrodes with sufficiently good electrical separation between the different input electrical signals. This high frequency modulation requires both good electrical insulation between metal electrodes and an optimized design of the coplanar lines. BenzoCyclobutene (BCB) thanks to its low dielectric constant, low losses, low moisture absorption and good thermal stability, is often used as insulating layer. Also, BCB planarization offers the advantages of simpler and more reliable technological process flow in such integrated VCSEL/modulator structures with important reliefs. As described by Burdeaux et al. a degree of planarization (DOP) of about 95% can be achieved by simple spin coating whatever the device thickness. In most of the cases, the BCB planarization process requires an additional photolithography step in order to open an access to the mesa surface, thus involving a tight mask alignment and resulting in a degraded planarization. In this paper, we propose a self-aligned process with improved BCB planarization by combining a hot isostatic pressing derived from nanoimprint techniques with a dry plasma etching step.

  15. Time-optimal control with finite bandwidth

    Science.gov (United States)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  16. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Directory of Open Access Journals (Sweden)

    Zhenyang Ding

    2018-04-01

    Full Text Available Distributed optical fiber sensors (DOFS offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  17. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Science.gov (United States)

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  18. Flexible power and bandwidth allocation in mobile satellites

    Science.gov (United States)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  19. 47 CFR 2.202 - Bandwidths.

    Science.gov (United States)

    2010-10-01

    ... three numerals and one letter. The letter occupies the position of the decimal point and represents the... quality desired Speech and music, M=4000, Bandwidth: 8000 Hz= 8 kHz 8K00A3E Sound broadcasting, single... desired Speech and music, M=4000, Bandwidth: 4000 Hz= 4 kHz 4K00R3E Sound broadcasting, single-sideband...

  20. The thermal history of the plasma and high-frequency gravitons

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2009-01-01

    Possible deviations from a radiation-dominated evolution, occurring prior to the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the ΛCDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infrared region of the graviton energy spectrum is nearly scale invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma be smaller than the speed of light. Current (e.g., low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three large-scale data sets) are shown to be compatible with a detectable signal in the frequency range of wideband interferometers. In the present context, the scrutiny of the early evolution of the sound speed of the plasma can then be mapped onto a reliable strategy of parameter extraction including not only the well-established cosmological observables but also the forthcoming data from wideband interferometers.

  1. Assessment of damage domains of the High-Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Flores, Alain; Izquierdo, José María; Tuček, Kamil; Gallego, Eduardo

    2014-01-01

    Highlights: • We developed an adequate model for the identification of damage domains of the HTTR. • We analysed an anticipated operational transient, using the HTTR5+/GASTEMP code. • We simulated several transients of the same sequence. • We identified the corresponding damage domains using two methods. • We calculated exceedance frequency using the two methods. - Abstract: This paper presents an assessment analysis of damage domains of the 30 MW th prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA

  2. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  3. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  4. A Novel Sub-pixel Measurement Algorithm Based on Mixed the Fractal and Digital Speckle Correlation in Frequency Domain

    Directory of Open Access Journals (Sweden)

    Zhangfang Hu

    2014-10-01

    Full Text Available The digital speckle correlation is a non-contact in-plane displacement measurement method based on machine vision. Motivated by the facts that the low accuracy and large amount of calculation produced by the traditional digital speckle correlation method in spatial domain, we introduce a sub-pixel displacement measurement algorithm which employs a fast interpolation method based on fractal theory and digital speckle correlation in frequency domain. This algorithm can overcome either the blocking effect or the blurring caused by the traditional interpolation methods, and the frequency domain processing also avoids the repeated searching in the correlation recognition of the spatial domain, thus the operation quantity is largely reduced and the information extracting speed is improved. The comparative experiment is given to verify that the proposed algorithm in this paper is effective.

  5. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany

    DEFF Research Database (Denmark)

    Steuner, Annika; Siemon, Bernhard; Auken, Esben

    2010-01-01

    Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group at the Un......Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group...... at the University of Aarhus, Denmark. For verification of and comparison with the airborne methods, ground-basedtransient electromagnetics and 2-D resistivity surveying were carried out. The target of investigation was the Cuxhaven valley in NorthernGermany, which is a significant local groundwater reservoir...

  6. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  7. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  8. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul; Hugues, M.; Vézian, S.; Childs, D. T. D.; Hogg, R. A.

    2012-01-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  9. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  10. A Priority-aware Frequency Domain Polling MAC Protocol for OFDMA-based Networks in Cyber-physical Systems

    Institute of Scientific and Technical Information of China (English)

    Meng Zheng; Junru Lin; Wei Liang; Haibin Yu

    2015-01-01

    Wireless networking in cyber-physical systems(CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and reliability constraints.One of the fundamental considerations for enabling CPS networks is the medium access control protocol. To this end, this paper proposes a novel priority-aware frequency domain polling medium access control(MAC) protocol, which takes advantage of an orthogonal frequency-division multiple access(OFDMA)physical layer to achieve instantaneous priority-aware polling.Based on the polling result, the proposed work then optimizes the resource allocation of the OFDMA network to further improve the data reliability. Due to the non-polynomial-complete nature of the OFDMA resource allocation, we propose two heuristic rules,based on which an efficient solution algorithm to the OFDMA resource allocation problem is designed. Simulation results show that the reliability performance of CPS networks is significantly improved because of this work.

  11. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    International Nuclear Information System (INIS)

    Yu, Ying; Zhan, Qingfeng; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Wang, Baomin; Li, Run-Wei; Wei, Jinwu; Wang, Jianbo; Xie, Shuhong

    2015-01-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices

  12. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Science.gov (United States)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  13. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  14. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  15. Frequency-Domain Hydrodynamic Modelling of Dense and Sparse Arrays of Wave Energy Converters

    NARCIS (Netherlands)

    Wei, Yanji; Barradas Berglind, Jose de Jesus; Yu, Zhiheng; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I.

    2018-01-01

    In this work, we develop a frequency-domain model to study the hydrodynamic behaviour of a floater blanket (FB), i.e., an array of floater elements individually connected to power take-off (PTO) systems, which constitutes the core technology of the novel Ocean Grazer (OG) wave energy converter

  16. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  17. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey.

    Science.gov (United States)

    Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen

    2016-03-01

    Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.

  18. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  19. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  20. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    Science.gov (United States)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.