WorldWideScience

Sample records for high bandwidth force

  1. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  2. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  3. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  4. High-bandwidth memory interface

    CERN Document Server

    Kim, Chulwoo; Song, Junyoung

    2014-01-01

    This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.   • Enables readers with minimal background in memory design to understand the basics of high-bandwidth memory interface design; • Presents state-of-the-art techniques for memory interface design; • Covers memory interface design at both the circuit level and system architecture level.

  5. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  6. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  7. High bandwidth concurrent processing on commodity platforms

    CERN Document Server

    Boosten, M; Van der Stok, P D V

    1999-01-01

    The I/O bandwidth and real-time processing power required for high- energy physics experiments is increasing rapidly over time. The current requirements can only be met by using large-scale concurrent processing. We are investigating the use of a large PC cluster interconnected by Fast and Gigabit Ethernet to meet the performance requirements of the ATLAS second level trigger. This architecture is attractive because of its performance and competitive pricing. A major problem is obtaining frequent high-bandwidth I/O without sacrificing the CPU's processing power. We present a tight integration of a user-level scheduler and a zero-copy communication layer. This system closely approaches the performance of the underlying hardware in terms of both CPU power and I/O capacity. (0 refs).

  8. RAID Disk Arrays for High Bandwidth Applications

    Science.gov (United States)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  9. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  10. Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles

    Science.gov (United States)

    2004-01-01

    1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  11. Review of high bandwidth fiber optics radiation sensors

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1985-01-01

    This paper summarizes the use of fiber optics or guided optical systems for radiation sensors. It is limited a passive systems wherein electrical is not required at the sensor location. However, electrically powered light sources, receivers and/or recorders may still be required for detection and data storage in sensor system operation. This paper emphasizes sensor technologies that permit high bandwidth measurements of transient radiation levels, and will also discuss several low bandwidth applications. 60 refs

  12. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  13. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    Science.gov (United States)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  14. High bandwidth second-harmonic generation in partially deuterated KDP

    International Nuclear Information System (INIS)

    Webb, M.S.; Eimerl, D.; Velsko, S.P.

    1992-01-01

    We have experimentally determined the spectrally noncritical phasematching behavior of Type I frequency doubling in KDP and its dependence on deuteration level in partially deuterated KDP. The first order wavelength sensitivity parameter∂Δk/∂γ for Type I doubling of 1.053 μm light vanishes for a KD*P crystal with a deuteration level between 10 and 14%. Very high bandwidth frequency doubling of Nd:glass lasers is possible with such a crystal

  15. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  16. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  17. A wide-bandwidth and high-sensitivity robust microgyroscope

    International Nuclear Information System (INIS)

    Sahin, Korhan; Sahin, Emre; Akin, Tayfun; Alper, Said Emre

    2009-01-01

    This paper reports a microgyroscope design concept with the help of a 2 degrees of freedom (DoF) sense mode to achieve a wide bandwidth without sacrificing mechanical and electronic sensitivity and to obtain robust operation against variations under ambient conditions. The design concept is demonstrated with a tuning fork microgyroscope fabricated with an in-house silicon-on-glass micromachining process. When the fabricated gyroscope is operated with a relatively wide bandwidth of 1 kHz, measurements show a relatively high raw mechanical sensitivity of 131 µV (° s −1 ) −1 . The variation in the amplified mechanical sensitivity (scale factor) of the gyroscope is measured to be less than 0.38% for large ambient pressure variations such as from 40 to 500 mTorr. The bias instability and angle random walk of the gyroscope are measured to be 131° h −1 and 1.15° h −1/2 , respectively

  18. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  19. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  20. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  1. A high control bandwidth design method for aalborg inverter under weak grid condition

    DEFF Research Database (Denmark)

    Wu, Weimin; Zhou, Cong; Wang, Houqin

    2017-01-01

    Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...

  2. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  3. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  4. THz Tube Waveguides With Low Loss, Low Dispersion, and High Bandwidth

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Bang, Ole

    2014-01-01

    We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth.......We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth....

  5. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  6. THE IMPROVEMENT OF COMPUTER NETWORK PERFORMANCE WITH BANDWIDTH MANAGEMENT IN KEMURNIAN II SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Bayu Kanigoro

    2012-05-01

    Full Text Available This research describes the improvement of computer network performance with bandwidth management in Kemurnian II Senior High School. The main issue of this research is the absence of bandwidth division on computer, which makes user who is downloading data, the provided bandwidth will be absorbed by the user. It leads other users do not get the bandwidth. Besides that, it has been done IP address division on each room, such as computer, teacher and administration room for supporting learning process in Kemurnian II Senior High School, so wireless network is needed. The method is location observation and interview with related parties in Kemurnian II Senior High School, the network analysis has run and designed a new topology network including the wireless network along with its configuration and separation bandwidth on microtic router and its limitation. The result is network traffic on Kemurnian II Senior High School can be shared evenly to each user; IX and IIX traffic are separated, which improve the speed on network access at school and the implementation of wireless network.Keywords: Bandwidth Management; Wireless Network

  7. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  8. Extremelly High Bandwidth Rad Hard Data Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in sensors/detectors are needed to support future NASA mission concepts including polarimetry, large format imaging arrays, and high-sensitivity...

  9. Extremelly High Bandwidth Rad Hard Data Acquisition System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Analog-to-digital converters (ADCs) are the key components for digitizing high-speed analog data in modern data acquisition systems, which is a critical part of...

  10. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  11. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  12. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    International Nuclear Information System (INIS)

    Yu, Zhu; Xue-Jun, Xu; Zhi-Yong, Li; Liang, Zhou; Yu-De, Yu; Jin-Zhong, Yu; Wei-Hua, Han; Zhong-Chao, Fan

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss. (classical areas of phenomenology)

  13. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  14. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    Science.gov (United States)

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  15. High Bandwidth Communications Links Between Heterogeneous Autonomous Vehicles Using Sensor Network Modeling and Extremum Control Approaches

    Science.gov (United States)

    2008-12-01

    In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command

  16. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    International Nuclear Information System (INIS)

    England, D G; Michelberger, P S; Champion, T F M; Reim, K F; Lee, K C; Sprague, M R; Jin, X-M; Langford, N K; Kolthammer, W S; Nunn, J; Walmsley, I A

    2012-01-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks. (paper)

  17. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    Science.gov (United States)

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  18. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  19. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  20. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  1. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  2. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Huang, Y-T [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China); Chang, P-B [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd., Taipei, 106, Taiwan (China)

    2006-10-15

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  3. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  4. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  5. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  6. A HIGH BANDWIDTH BIPOLAR POWER SUPPLY FOR THE FAST CORRECTORS IN THE APS UPGRADE*

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ju; Sprau, Gary

    2017-06-25

    The APS Upgrade of a multi-bend achromat (MBA) storage ring requires a fast bipolar power supply for the fast correction magnets. The key performance requirement of the power supply includes a small-signal bandwidth of 10 kHz for the output current. This requirement presents a challenge to the design because of the high inductance of the magnet load and a limited input DC voltage. A prototype DC/DC power supply utilizing a MOSFET H-bridge circuit with a 500 kHz PWM has been developed and tested successfully. The prototype achieved a 10-kHz bandwidth with less than 3-dB attenuation for a signal 0.5% of the maximum operating current of 15 amperes. This paper presents the design of the power circuit, the PWM method, the control loop, and the test results.

  7. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  8. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  9. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  10. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    Science.gov (United States)

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    International Nuclear Information System (INIS)

    Ammendola, R; Salamon, A; Salina, G; Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P; Simula, F

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera ® FPGA, are provided.

  12. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R; Salamon, A; Salina, G [INFN Tor Vergata, Roma (Italy); Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P [INFN Roma, Roma (Italy); Simula, F [Sapienza Universita di Roma, Roma (Italy)

    2011-12-23

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera{sup Registered-Sign} FPGA, are provided.

  13. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  14. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Science.gov (United States)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  15. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, D. [Fermilab; Bockelman, B. [Nebraska U.; Blomer, J. [CERN; Herner, K. [Fermilab; Levshina, T. [Fermilab; Slyz, M. [Fermilab

    2015-12-23

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached

  16. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sen; Luo, Sheng-Nian

    2018-02-16

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  17. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    Science.gov (United States)

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  18. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  19. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  20. On Bandwidth Efficient Modulation for High-Data-Rate Wireless LAN Systems

    Directory of Open Access Journals (Sweden)

    Stolpman Victor

    2002-01-01

    Full Text Available We address the problem of high-data-rate orthogonal frequency division multiplexed (OFDM systems under restrictive bandwidth constraints. Based on recent theoretic results, multiple-input multiple-output (MIMO configurations are best suited for this problem. In this paper, we examine several MIMO configurations suitable for high rate transmission. In all scenarios considered, perfect channel state information (CSI is assumed at the receiver. In constrast, availability of CSI at the transmitter is addressed separately. We show that powerful space-time codes can be developed by combining some simple well-known techniques. In fact, we show that for certain configurations, these space-time MIMO configurations are near optimum in terms of outage capacity as compared to previously published codes. Performance evaluation of these techniques is demonstrated within the IEEE 802.11a framework via Monte Carlo simulations.

  1. High-speed force mapping on living cells with a small cantilever atomic force microscope

    International Nuclear Information System (INIS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-01-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed

  2. High-speed force mapping on living cells with a small cantilever atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E., E-mail: Tilman.Schaeffer@uni-tuebingen [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  3. High-Q Variable Bandwidth Passive Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  4. High-Q variable bandwidth passive filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper describes a technique for channel filtering, in which two passive filters are combined to obtain a variable bandwidth. Passive filters have the advantage of

  5. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  6. A 750MHz and a 8GHz High Bandwidth Digital FFT Spectrometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The scope of this project is to to develop a wide bandwidth, low power, and compact single board digital Fast Fourier Transform spectrometer (FFTS) optimized for the...

  7. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    Science.gov (United States)

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.

  8. A high performance long-reach passive optical network with a novel excess bandwidth distribution scheme

    Science.gov (United States)

    Chao, I.-Fen; Zhang, Tsung-Min

    2015-06-01

    Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.

  9. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  10. A High Gain-Bandwidth Product Distributed Transimpedance Amplifier IC for High-Speed Optical Transmission Using Low-Cost GaAs Technology.

    OpenAIRE

    Giannini, F.; Limiti, E.; Orengo, G.; Serino, A.; De Dominicis, M.

    2002-01-01

    This paper reports a distributed baseband transimpedance amplifier for optical links up to 10 Gb/s. The amplifier operates as a baseband amplifier with a transimpedance gain of 48 dB Ω and a DC-to-9 GHz bandwidth. Some innovative design techniques to improve gain-bandwidth performance at low and high frequency with an available low-cost GaAs MESFET technology have been developed.

  11. A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems

    Science.gov (United States)

    Yoshida, Takeshi; Sueishi, Katsuya; Iwata, Atsushi; Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi

    2011-04-01

    This paper describes a low-noise amplifier with multiple adjustable parameters for neural recording applications. An adjustable pseudo-resistor implemented by cascade metal-oxide-silicon field-effect transistors (MOSFETs) is proposed to achieve low-signal distortion and wide variable bandwidth range. The amplifier has been implemented in 0.18 µm standard complementary metal-oxide-semiconductor (CMOS) process and occupies 0.09 mm2 on chip. The amplifier achieved a selectable voltage gain of 28 and 40 dB, variable bandwidth from 0.04 to 2.6 Hz, total harmonic distortion (THD) of 0.2% with 200 mV output swing, input referred noise of 2.5 µVrms over 0.1-100 Hz and 18.7 µW power consumption at a supply voltage of 1.8 V.

  12. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers.

    Science.gov (United States)

    Meng, Bo; Wang, Qi Jie

    2012-01-16

    In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

  13. The effect of extending high-frequency bandwidth on the acceptable noise level (ANL) of hearing-impaired listeners.

    Science.gov (United States)

    Johnson, Earl; Ricketts, Todd; Hornsby, Benjamin

    2009-01-01

    This study examined the effects of extending high-frequency bandwidth, for both a speech signal and a background noise, on the acceptable signal-to-noise ratio (SNR) of listeners with mild sensorineural hearing loss through utilization of the Acceptable Noise Level (ANL) procedure. In addition to extending high-frequency bandwidth, the effects of reverberation time and background noise type and shape were also examined. The study results showed a significant increase in the mean ANL (i.e. participants requested a better SNR for an acceptable listening situation) when high-frequency bandwidth was extended from 3 to 9 kHz and from 6 to 9 kHz. No change in the ANL of study participants was observed as a result of isolated modification to reverberation time or background noise stimulus. An interaction effect, however, of reverberation time and background noise stimulus was demonstrated. These findings may have implications for future design of hearing aid memory programs for listening to speech in the presence of broadband background noise.

  14. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    Science.gov (United States)

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

  15. Adventures in the evolution of a high-bandwidth network for central servers

    International Nuclear Information System (INIS)

    Swartz, K.L.; Cottrell, L.; Dart, M.

    1994-08-01

    In a small network, clients and servers may all be connected to a single Ethernet without significant performance concerns. As the number of clients on a network grows, the necessity of splitting the network into multiple sub-networks, each with a manageable number of clients, becomes clear. Less obvious is what to do with the servers. Group file servers on subnets and multihomed servers offer only partial solutions -- many other types of servers do not lend themselves to a decentralized model, and tend to collect on another, well-connected but overloaded Ethernet. The higher speed of FDDI seems to offer an easy solution, but in practice both expense and interoperability problems render FDDI a poor choice. Ethernet switches appear to permit cheaper and more reliable networking to the servers while providing an aggregate network bandwidth greater than a simple Ethernet. This paper studies the evolution of the server networks at SLAC. Difficulties encountered in the deployment of FDDI are described, as are the tools and techniques used to characterize the traffic patterns on the server network. Performance of Ethernet, FDDI, and switched Ethernet networks is analyzed, as are reliability and maintainability issues for these alternatives. The motivations for re-designing the SLAC general server network to use a switched Ethernet instead of FDDI are described, as are the reasons for choosing FDDI for the farm and firewall networks at SLAC. Guidelines are developed which may help in making this choice for other networks

  16. Technologies for low-bandwidth high-latency unmanned ground vehicle control

    Science.gov (United States)

    Pace, Teresa; Cogan, Ken; Hunt, Lee; Restine, Paul

    2014-05-01

    Automation technology has evolved at a rapid pace in recent years; however, many real-world problems require contextual understanding, problem solving, and other forms of higher-order thinking that extends beyond the capabilities of robots for the foreseeable future. This limits the complexity of automation which can be supplied to modern unmanned ground robots (UGV) and necessitates human-in-the-loop monitoring and control for some portions of missions. In order for the human operator to make decisions and provide tasking during key portions of the mission, existing solutions first derive significant information from a potentially dense reconstruction of the scene utilizing LIDAR, video, and other onboard sensors. A dense reconstruction contains too much data for real-time transmission over a modern wireless data link, so the robot electronics must first condense the scene representation prior to transmission. The control station receives this condensed scene representations and provides visual information to the human operator; the human operator then provides tele-operation commands in real-time to the robot. This paper discusses approaches to dense scene reduction of the data required to transmit to a human-in-the loop as well as the challenges associated with them. In addition, the complex and unstructured nature of real-world environments increases the need for tele-operation. Furthermore, many environments reduce the bandwidth and increase the latency of the link. Ultimately, worsening conditions will cause the tele-operation control process to break down, rendering the robot ineffective. In a worst-case scenario, extreme conditions causing a complete loss-of-communications could result in mission failure and loss of the vehicle.

  17. A Novel Approach to Reduce the Unicast Bandwidth of an IPTV System in a High-Speed Access Network

    Directory of Open Access Journals (Sweden)

    El Hassane Khabbiza

    2017-01-01

    Full Text Available Channel change time is a critical quality of experience (QOE metric for IP-based video delivery systems such as Internet Protocol Television (IPTV. An interesting channel change acceleration scheme based on peer-assisted delivery was recently proposed, which consists of deploying one FCC server (Fast Channel Change Server in the IP backbone in order to send the unicast stream to the STB (Set-Top Box before sending the normal multicast stream after each channel change. However, deploying such a solution will cause high bandwidth usage in the network because of the huge unicast traffic sent by the FCC server to the STBs. In this paper, we propose a new solution to reduce the bandwidth occupancy of the unicast traffic, by deploying the FCC server capabilities on the user STB. This means that, after each channel change request, the STB will receive the unicast traffic from another STB instead of the central server. By using this method, the unicast traffic will not pass through the IP network; it will be a peer-to-peer communication via the Access Network only. Extensive simulation results are presented to demonstrate the robustness of our new solution.

  18. Design of the corona current measurement sensor with wide bandwidth under dc ultra-high-voltage environment

    International Nuclear Information System (INIS)

    Liu, Yingyi; Yuan, Haiwen; Yang, Qinghua; Cui, Yong

    2011-01-01

    The research in the field of corona discharge, which is one of the key technologies, can help us to realize ultra-high-voltage (UHV) power transmission. This paper proposes a new sampling resistance sensor to measure the dc UHV corona current in a wide band. By designing the structural and distributed parameters of the sensor, the UHV dielectric breakdown performance and the wide-band measuring characteristics of the sensor are satisfied. A high-voltage discharge test shows that the designed sensor can work under a 1200 kV dc environment without the occurrence of corona discharge. A frequency characteristic test shows that the measuring bandwidth of the sensor can be improved from the current 4.5 to 20 MHz. The test results in an actual dc UHV transmission line demonstrate that the sensor can accurately measure the corona current under the dc UHV environment

  19. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  20. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent 99% coupling efficiency over 30% fractional bandwidth.

  1. Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Kim

    2018-04-01

    Full Text Available The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA with a high permittivity (ɛr = 10 feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

  2. High Bandwidth Zero Voltage Injection Method for Sensorless Control of PMSM

    DEFF Research Database (Denmark)

    Ge, Xie; Lu, Kaiyuan; Kumar, Dwivedi Sanjeet

    2014-01-01

    High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses to be inj......High frequency signal injection is widely used in PMSM sensorless control system for low speed operations. The conventional voltage injection method often needs filters to obtain particular harmonic component in order to estimate the rotor position; or it requires several voltage pulses...... in a fast current regulation performance. Injection of zero voltage also minimizes the inverter voltage error effects caused by the dead-time....

  3. Level-1 Data Driver Card - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2017-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The L1DDC is a high speed aggregator board capable of communicating with multiple front-end electronic boards. It collects the Level-1 data along with monitoring data and transmits them to a network interface through bidirectional and/or unidirectional fiber links at 4.8 Gbps each. In addition, the L1DDC board distributes trigger, time and configuration data coming from the network interface to the front-end boards. The L1DDC is fully compatible with the Phase II upgrade where the trigger rate is expected to reach the 1 MHz. Three different types of L1DDC boards will be fabricated handling up to 10.080 Gbps of user data. It consist of custom made radiation tolerant ASICs: the GigaBit Transceiver (GBTx), the FEAST DC-DC converter, the Slow Control Adapter (SCA), and the Versatile Tranceivers (VTRX) and transmitters (VTTX). The overall scheme of the data acquis...

  4. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    Backhaus, Malte

    2014-01-01

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  5. LEVEL-1 DATA DRIVER CARD - A high bandwidth radiation tolerant aggregator board for detectors

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The Level-1 Data Driver Card (L1DDC) was designed for the needs of the future upgrades of the innermost stations of the ATLAS end-cap muon spectrometer. The detectors located at the muon Small Wheels will be replaced by a set of precision tracking and trigger detectors, the resistive Micromegas (MM) and the small-strip Thin Gap Chambers (sTGC). After the upgrade, the number of interactions per bunch-crossing will be increased up to 140, resulting in a dramatically large amount of produced data. The high number of electronic channels (about two million for the MM and about 300k for the sTGC) along with a harsh environment (radiation dose up to 1700Gy (inner radius) and a magnetic field up to 0:4T in the end cap region) led to the development of new radiation tolerant electronics and a scalable readout scheme able to handle the new data rates. In addition, correction mechanisms for Single Event Upsets (SEU) and communication errors must be implemented to assure the integrity of the transmitted data. The L1DDC i...

  6. Pushing the Envelope: Ship to Shore Events and High-Bandwidth Telepresence Engages Scientists and the Public

    Science.gov (United States)

    Cooper, S. K.; Coleman, D. F.; Fisher, A. T.; Livelybrooks, D.; Mulder, G.

    2013-12-01

    Since 2009, the drillship JOIDES Resolution has engaged in an extensive program of live ship-to-shore events during its two-month scientific expeditions using a range of software applications and formats. The University of Rhode Island's Inner Space Center has utilized a high bandwidth 'telepresence' from ships such as the Ocean Exploration Trust's E/V Nautilus and the NOAA Ship Okeanos Explorer, to bring live feeds from underwater exploration vehicles directly into museums, aquaria, science centers, boys and girls clubs, and K-16 classrooms. Both of these strategies have employed close partnerships between scientists and educators to bring cutting edge research and the excitement of exploration and discovery directly to the public in close to real time, but telepresence provides unique opportunities. Participants have been able to experience, live, launches of remotely operated vehicle systems including Jason/Medea on R/V Atlantis and Hercules/Argus on Nautilus, see scientific samples come up on deck for the very first time, observe previously-undiscovered shipwrecks at the same time as those on ship, and watch amazing deep sea creatures swim past deep water cameras. There are many benefits from high-bandwidth telepresence, including improved quality of images, video, and sound; the ability to move large data sets and files between ship and shore, allowing collaboration among individuals who are not on the ship; the ability to stage spontaneous "web events" among scientific, educational, and technical personnel at essentially any time; and more intensive interactions through use of social media, such as blogging, posting of multimedia products, and frequent question/answer sessions. These telepresence-enhanced activities assist the public in understanding the significance and excitement of these discoveries, the challenges of working in the deep sea, and the true nature of scientific processes. These interactions have significant impacts on their audiences, and

  7. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  8. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  9. Imaging RF Phased Array Receivers using Optically-Coherent Up-conversion for High Beam-Bandwidth Processing

    Science.gov (United States)

    2017-03-01

    It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that

  10. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    International Nuclear Information System (INIS)

    Goldenstein, Christopher S; Almodóvar, Christopher A; Jeffries, Jay B; Hanson, Ronald K; Brophy, Christopher M

    2014-01-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H 2 O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H 2 O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H 2 O by mole. Four H 2 O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H 2 O sensing to within 1.5–3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H 2 -fueled RDE indicate that the temperature and H 2 O oscillate at the detonation frequency (≈3.25 kHz) and that production of H 2 O is a weak function of global equivalence ratio. (paper)

  11. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    Science.gov (United States)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  12. High-Power and High-Efficiency 1.3- µm Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Alhashim, Hala H.; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    We report on a flat-top and ultrawide emission bandwidth of 125 nm from InGaAsP/InP multiple quantum-well (MQW) superluminescent diode with antireflection coated and tilted ridge-waveguide device configuration. A total output power in excess of 70 mW with an average power spectral density of 0.56 mW/nm and spectral ripple ≤ 1.2 ± 0.5 dB is measured from the device. Wall-plug efficiency and output power as high as 14% and 80 mW, respectively, is demonstrated from this batch of devices. We attribute the broad emission to the inherent inhomogeneity of the electron-heavy-hole (e-hh) and electron-light-hole (e-lh) recombination of the ground state and the first excited state of the MQWs and their simultaneous emission.

  13. High-Power and High-Efficiency 1.3- µm Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2015-02-01

    We report on a flat-top and ultrawide emission bandwidth of 125 nm from InGaAsP/InP multiple quantum-well (MQW) superluminescent diode with antireflection coated and tilted ridge-waveguide device configuration. A total output power in excess of 70 mW with an average power spectral density of 0.56 mW/nm and spectral ripple ≤ 1.2 ± 0.5 dB is measured from the device. Wall-plug efficiency and output power as high as 14% and 80 mW, respectively, is demonstrated from this batch of devices. We attribute the broad emission to the inherent inhomogeneity of the electron-heavy-hole (e-hh) and electron-light-hole (e-lh) recombination of the ground state and the first excited state of the MQWs and their simultaneous emission.

  14. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  15. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul; Hugues, M.; Vézian, S.; Childs, D. T. D.; Hogg, R. A.

    2012-01-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  16. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Packet-Level Analysis

    Science.gov (United States)

    2015-09-01

    individual fragments using the hash-based method. In general, fragments 6 appear in order and relatively close to each other in the file. A fragment...data product derived from the data model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file. This product includes aggregate...System BLOb binary large object FPGA field-programmable gate array HPC high-performance computing IP Internet Protocol KML Keyhole Markup Language

  17. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    Science.gov (United States)

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  18. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Science.gov (United States)

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  19. Chemical Industry Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  20. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  1. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  2. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  3. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  4. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  5. Combination of fat saturation and variable bandwidth imaging to increase signal-to-noise ratio and decrease motion artifacts for body MR imaging at high field

    International Nuclear Information System (INIS)

    Chew, W.M.

    1989-01-01

    The signal-to-noise ratio (SNR) of the MR imaging examination is a critical component of the quality of the image. Standard methods to increase SNR include signal averaging with multiple excitations, at the expense of imaging time (which on T2-weighted images could be quite significant), or increasing pixel volume by manipulation of field of view, matrix size, and/or section thickness, all at the expense of resolution. Another available method to increase SNR is to reduce the bandwidth of the receiver, which increases SNR by the square root of the amount of the reduction. The penalty imposed on high-field-strength MR examinations of the body is an unacceptable increase in chemical shift artifact. However, presaturating the fat resonance eliminates the chemical shift artifact. Thus, a combination of imaging techniques, fat suppression, and decreased bandwidth imaging can produce images free of chemical shift artifact with increased SNR and no penalty in resolution or imaging time. Early studies also show a reduction in motion artifact when fat saturation is used. This paper reports MR imaging performed with a 1.5-T Signa imager. With this technique, T2-weighted images (2,500/20/80 [repetition time msec/echo time msec/inversion time msec]) illustrating the increase in SNR and T1-weighted images (600/20) demonstrating a decrease in motion artifact are shown

  6. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    Science.gov (United States)

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  7. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  8. Low Group Delay Dispersion Optical Coating for Broad Bandwidth High Reflection at 45° Incidence, P Polarization of Femtosecond Pulses with 900 nm Center Wavelength

    Directory of Open Access Journals (Sweden)

    John C. Bellum

    2016-03-01

    Full Text Available We describe an optical coating design suitable for broad bandwidth high reflection (BBHR at 45° angle of incidence (AOI, P polarization (Ppol of femtosecond (fs laser pulses whose wavelengths range from 800 to 1000 nm. Our design process is guided by quarter-wave HR coating properties. The design must afford low group delay dispersion (GDD for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT. We base the coating on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45° AOI, Ppol. The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. For the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.

  9. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  10. Wide-bandwidth bilateral control using two-stage actuator system

    International Nuclear Information System (INIS)

    Kokuryu, Saori; Izutsu, Masaki; Kamamichi, Norihiro; Ishikawa, Jun

    2015-01-01

    This paper proposes a two-stage actuator system that consists of a coarse actuator driven by a ball screw with an AC motor (the first stage) and a fine actuator driven by a voice coil motor (the second stage). The proposed two-stage actuator system is applied to make a wide-bandwidth bilateral control system without needing expensive high-performance actuators. In the proposed system, the first stage has a wide moving range with a narrow control bandwidth, and the second stage has a narrow moving range with a wide control bandwidth. By consolidating these two inexpensive actuators with different control bandwidths in a complementary manner, a wide bandwidth bilateral control system can be constructed based on a mechanical impedance control. To show the validity of the proposed method, a prototype of the two-stage actuator system has been developed and basic performance was evaluated by experiment. The experimental results showed that a light mechanical impedance with a mass of 10 g and a damping coefficient of 2.5 N/(m/s) that is an important factor to establish good transparency in bilateral control has been successfully achieved and also showed that a better force and position responses between a master and slave is achieved by using the proposed two-stage actuator system compared with a narrow bandwidth case using a single ball screw system. (author)

  11. Bandwidth extension of speech using perceptual criteria

    CERN Document Server

    Berisha, Visar; Liss, Julie

    2013-01-01

    Bandwidth extension of speech is used in the International Telecommunication Union G.729.1 standard in which the narrowband bitstream is combined with quantized high-band parameters. Although this system produces high-quality wideband speech, the additional bits used to represent the high band can be further reduced. In addition to the algorithm used in the G.729.1 standard, bandwidth extension methods based on spectrum prediction have also been proposed. Although these algorithms do not require additional bits, they perform poorly when the correlation between the low and the high band is weak. In this book, two wideband speech coding algorithms that rely on bandwidth extension are developed. The algorithms operate as wrappers around existing narrowband compression schemes. More specifically, in these algorithms, the low band is encoded using an existing toll-quality narrowband system, whereas the high band is generated using the proposed extension techniques. The first method relies only on transmitted high-...

  12. High-bandwidth prefetcher for high-bandwidth memory

    Science.gov (United States)

    Mehta, Sanyam; Kohn, James Robert; Ernst, Daniel Jonathan; Poxon, Heidi Lynn; DeRose, Luiz

    2018-04-17

    A method for prefetching data into a cache is provided. The method allocates an outstanding request buffer ("ORB"). The method stores in an address field of the ORB an address and a number of blocks. The method issues prefetch requests for a degree number of blocks starting at the address. When a prefetch response is received for all the prefetch requests, the method adjusts the address of the next block to prefetch and adjusts the number of blocks remaining to be retrieved and then issues prefetch requests for a degree number of blocks starting at the adjusted address. The prefetching pauses when a maximum distance between the reads of the prefetched blocks and the last prefetched block is reached. When a read request for a prefetched block is received, the method resumes prefetching when a resume criterion is satisfied.

  13. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.

    Directory of Open Access Journals (Sweden)

    Mona Hichert

    Full Text Available It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses.Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting.Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more and high (50% object's breaking force. The time to complete the task was not different between settings during successful manipulation trials.High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.

  14. Ultrahigh bandwidth signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2016-01-01

    Optical time lenses have proven to be very versatile for advanced optical signal processing. Based on a controlled interplay between dispersion and phase-modulation by e.g. four-wave mixing, the processing is phase-preserving, an hence useful for all types of data signals including coherent multi......-level modulation founats. This has enabled processing of phase-modulated spectrally efficient data signals, such as orthogonal frequency division multiplexed (OFDM) signa In that case, a spectral telescope system was used, using two time lenses with different focal lengths (chirp rates), yielding a spectral...... regeneratio These operations require a broad bandwidth nonlinear platform, and novel photonic integrated nonlinear platform like aluminum gallium arsenide nano-waveguides used for 1.28 Tbaud optical signal processing will be described....

  15. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  16. Teleoperation over low bandwidth communication links

    International Nuclear Information System (INIS)

    Fryer, R.J.; Mair, G.M.; Clark, N.; Heng, J.

    1996-01-01

    Teleoperation is well established for many areas of hazardous environment working. Where such environments are well structured and contained, such as within a working plant, communications bandwidths need not be a constraining factor. However where the worksite is remote, large, poorly structured or damaged communications rapidly become a critical factor in the efficient deployment and use of teleoperation equipment. The paper justifies and describes means which we are exploring to reduce the required communications bandwidth for teleoperation whist retaining full functionality. Techniques involved include incorporation of local intelligence at the worksite, with bandwidth devoted to high-level up-link control signals and down-link feedback, and the use of highly compressed video feeding 'virtual reality type' HMDs to provide maximum system transparency for the operator. The work is drawing on previous experience with an 'anthropomorphic robot heat' for telepresence work, and proprietary algorithms capable of compressing full colour video to standard telephone modem data rates. (Author)

  17. Can NATO's new Very High Readiness Joint Task Force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    ” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  18. Cutter Connectivity Bandwidth Study

    Science.gov (United States)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  19. Very broad bandwidth klystron amplifiers

    Science.gov (United States)

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  20. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  1. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    Science.gov (United States)

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low.

  2. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  3. VisIO: enabling interactive visualization of ultra-scale, time-series data via high-bandwidth distributed I/O systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christopher J [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Wang, Jun [UCF

    2010-10-15

    Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar to other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.

  4. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  5. Understanding gastric forces calculated from high-resolution pill tracking.

    Science.gov (United States)

    Laulicht, Bryan; Tripathi, Anubhav; Schlageter, Vincent; Kucera, Pavel; Mathiowitz, Edith

    2010-05-04

    Although other methods exist for monitoring gastrointestinal motility and contractility, this study exclusively provides direct and quantitative measurements of the forces experienced by an orally ingested pill. We report motive forces and torques calculated from real-time, in vivo measurements of the movement of a magnetic pill in the stomachs of fasted and fed humans. Three-dimensional net force and two-dimensional net torque vectors as a function of time data during gastric residence are evaluated using instantaneous translational and rotational position data. Additionally, the net force calculations described can be applied to high-resolution pill tracking acquired by any modality. The fraction of time pills experience ranges of forces and torques are analyzed and correlate with the physiological phases of gastric digestion. We also report the maximum forces and torques experienced in vivo by pills as a quantitative measure of the amount of force pills experience during the muscular contractions leading to gastric emptying. Results calculated from human data are compared with small and large animal models with a translational research focus. The reported magnitude and direction of gastric forces experienced by pills in healthy stomachs serves as a baseline for comparison with pathophysiological states. Of clinical significance, the directionality associated with force vector data may be useful in determining the muscle groups associated with gastrointestinal dysmotility. Additionally, the quantitative comparison between human and animal models improves insight into comparative gastric contractility that will aid rational pill design and provide a quantitative framework for interpreting gastroretentive oral formulation test results.

  6. Task force for integral test of High Energy nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    According to completion of the JENDL-High Energy file for neutron nuclear cross sections up to 50 MeV, a task force for integral test of high energy nuclear data was organized to discuss a guide line for integral test activities. A status of existing differential and integral experiments and how to perform such a test were discussed in the task force. Here the purpose and outline of the task force is explained with some future problems raised in discussion among the task member. (author)

  7. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  8. Physically Connected Stacked Patch Antenna Design with 100% Bandwidth

    KAUST Repository

    Klionovski, Kirill

    2017-11-01

    Typically, stacked patch antennas are parasitically coupled and provide larger bandwidth than a single patch antenna. Here, we show a stacked patch antenna design where square patches with semi-circular cutouts are physically connected to each other. This arrangement provides 100% bandwidth from 23.9–72.2 GHz with consistent high gain (5 dBi or more) across the entire bandwidth. In another variation, a single patch loaded with a superstrate provides 83.5% bandwidth from 25.6–62.3 GHz. The mechanism of bandwidth enhancement is explained through electromagnetic simulations. Measured reflection coefficient, radiation patterns and gain results confirm the extremely wideband performance of the design.

  9. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  10. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  11. Reliability of force-velocity relationships during deadlift high pull.

    Science.gov (United States)

    Lu, Wei; Boyas, Sébastien; Jubeau, Marc; Rahmani, Abderrahmane

    2017-11-13

    This study aimed to evaluate the within- and between-session reliability of force, velocity and power performances and to assess the force-velocity relationship during the deadlift high pull (DHP). Nine participants performed two identical sessions of DHP with loads ranging from 30 to 70% of body mass. The force was measured by a force plate under the participants' feet. The velocity of the 'body + lifted mass' system was calculated by integrating the acceleration and the power was calculated as the product of force and velocity. The force-velocity relationships were obtained from linear regression of both mean and peak values of force and velocity. The within- and between-session reliability was evaluated by using coefficients of variation (CV) and intraclass correlation coefficients (ICC). Results showed that DHP force-velocity relationships were significantly linear (R² > 0.90, p  0.94), mean and peak velocities showed a good agreement (CV reliable and can therefore be utilised as a tool to characterise individuals' muscular profiles.

  12. A digital calibration technique for an ultra high-speed wide-bandwidth folding and interpolating analog-to-digital converter in 0.18-{mu}m CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jinshan; Zhang Ruitao; Zhang Zhengping; Wang Yonglu; Zhu Can; Zhang Lei; Yu Zhou; Han Yong, E-mail: yujinshan@yeah.net [National Laboratory of Analog IC' s, Chongqing 400060 (China)

    2011-01-15

    A digital calibration technique for an ultra high-speed folding and interpolating analog-to-digital converter in 0.18-{mu}m CMOS technology is presented. The similar digital calibration techniques are taken for high 3-bit flash converter and low 5-bit folding and interpolating converter, which are based on well-designed calibration reference, calibration DAC and comparators. The spice simulation and the measured results show the ADC produces 5.9 ENOB with calibration disabled and 7.2 ENOB with calibration enabled for high-frequency wide-bandwidth analog input. (semiconductor integrated circuits)

  13. Polybinary modulation for bandwidth limited optical links

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Jurado-Navas, Antonio

    2015-01-01

    form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, poly binary modulation requires low complexity direct detection and very little digital signal processing. This talk will review...... the recent results on poly binary modulation, comprising both binary and multilevel signals as seed signals. The results will show how poly binary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency....

  14. Can NATO's new very high readiness joint task force deter?

    DEFF Research Database (Denmark)

    Rynning, Sten; Ringsmose, Jens

    2017-01-01

    When NATO-allies met at their Wales summit in September 2014, the D-word was back in vogue. Not in a muttering, shy or implicit way, but unambiguously and straightforward. For the first time in more than two decades NATO’s heads of states and governments openly discussed how best to “deter......” a distinct strategic rival – Russia. Chief among the Welsh summit initiatives was the decision to set up a new multinational spearhead force – the Very High Readiness Joint Task Force (VJTF) – as part of an enhanced NATO Response Force (NRF) and within the framework of a so-called Readiness Action Plan (RAP...

  15. The FORCE: A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them.

  16. The FORCE - A highly portable parallel programming language

    Science.gov (United States)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    This paper explains why the FORCE parallel programming language is easily portable among six different shared-memory multiprocessors, and how a two-level macro preprocessor makes it possible to hide low-level machine dependencies and to build machine-independent high-level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared-memory multiprocessor executing them.

  17. Large bandwidth RGC transimpedance preamplifier design in SCA

    International Nuclear Information System (INIS)

    Wang Ke; Wang Zheng; Liu Zhen'an; Wei Wei; Lu Weiguo; Gary Varner

    2009-01-01

    A Large Bandwidth RGC Transimpedance Preamplifier is designed for amplifying the high-fidelity timing signal in Switch Capacitance Array chip application. This amplifier have characteristics of low input impedance, large bandwidth, high transimpedance. It will be made under TSMC 0.25μm CMOS technology, and the supply voltage is single 2.5 V. Simulation results indicate: the transimpedance is 5000 ohm, -3dB BW is 953 MHz, and the detector output capacitance have litter effect on the bandwidth in some range. (authors)

  18. Time-optimal control with finite bandwidth

    Science.gov (United States)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  19. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.

  20. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    International Nuclear Information System (INIS)

    Soltani Bozchalooi, I.; Youcef-Toumi, K.

    2014-01-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube

  1. Reconstitution of Low Bandwidth Reaction History

    International Nuclear Information System (INIS)

    May, M.; Clancy, T.; Fittinghoff, D.; Gennaro, P.; Hagans, K.; Halvorson, G.; Lowry, M.; Perry, T.; Roberson, P.; Smith, D.; Teruya, A.; Blair, J.; Davis, B.; Hunt, E.; Emkeit, B.; Galbraith, J.; Kelly, B.; Montoya, R.; Nickel, G.; Ogle, J.; Wilson, K.; Wood, M.

    2004-01-01

    The goal of the Test Readiness Program is to transition to a 24 month test readiness posture and if approved move to an 18-month posture. One of the key components of the Test Readiness Program necessary to meet this goal is the reconstitution of the important diagnostics. Since the end of nuclear testing, the ability to field diagnostics on a nuclear test has deteriorated. Reconstitution of diagnostics before those who had experience in nuclear testing either retire or leave is essential to achieving a shorter test readiness posture. Also, the data recording systems have not been used since the end of testing. This report documents the reconstitution of one vital diagnostic: the low bandwidth reaction history diagnostic for FY04. Reaction history is one of the major diagnostics that has been used on all LLNL and LANL tests since the early days of nuclear testing. Reaction history refers to measuring the time history of the gamma and neutron output from a nuclear test. This gives direct information on the nuclear reactions taking place in the device. The reaction history measurements are one of the prime measurements the nuclear weapon scientists use to validate their models of device performance. All tests currently under consideration require the reaction history diagnostic. Thus moving to a shorter test readiness posture requires the reconstitution of the ability to make reaction history measurements. Reconstitution of reaction history was planned to be in two steps. Reaction history measurements that have been used in the past can be broadly placed into two categories. The most common type of reaction history and the one that has been performed on virtually all nuclear tests is termed low bandwidth reaction history. This measurement has a time response that is limited by the bandpass of kilometer length coaxial cables. When higher bandwidth has been required for specific measurements, fiber optic techniques have been used. This is referred to as high-bandwidth

  2. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  3. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    Science.gov (United States)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  4. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  5. Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity

    International Nuclear Information System (INIS)

    Dienwiebel, M.; Kuyper, E. de; Crama, L.; Frenken, J.W.M.; Heimberg, J.A.; Spaanderman, D.-J.; Glatra van Loon, D.; Zijlstra, T.; Drift, E. van der

    2005-01-01

    In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15 pN

  6. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    International Nuclear Information System (INIS)

    Ren, Juan; Zou, Qingze

    2014-01-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality

  7. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854 (United States)

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  8. Motor Unit Interpulse Intervals During High Force Contractions.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  9. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  10. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  11. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  12. A Study on the Bandwidth Characteristics of Pleated Pneumatic Artificial Muscles

    Directory of Open Access Journals (Sweden)

    Rino Versluys

    2009-01-01

    Full Text Available Pleated pneumatic artificial muscles have interesting properties that can be of considerable significance in robotics and automation. With a view to the potential use of pleated pneumatic artificial muscles as actuators for a fatigue test bench (high forces and small displacements, the bandwidth characteristics of a muscle-valve system were investigated. Bandwidth is commonly used for linear systems, as the Bode plot is independent of the amplitude of the input signal. However, due to the non-linear behaviour of pleated pneumatic artificial muscles, the system's gain becomes dependent on the amplitude of the input sine wave. As a result, only one Bode plot is insufficient to clearly describe or identify a non-linear system. In this study, the bandwidth of a muscle-valve system was assessed from two perspectives: a varying amplitude and a varying offset of the input sine wave. A brief introduction to pneumatic artificial muscles is given. The concept of pleated pneumatic artificial muscles is explained. Furthermore, the different test methods and experimental results are presented.

  13. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  14. A Novel High Bandwidth Current Control Strategy for SiC mosfet Based Active Front-End Rectifiers Under Unbalanced Input Voltage Conditions

    DEFF Research Database (Denmark)

    Maheshwari, Ramkrishan; Trintis, Ionut; Török, Lajos

    2017-01-01

    SiC mosfet based converters are capable of high switching frequency operation. In this paper, the converter is operated with 50-kHz switching frequency for an active front-end rectifier application. Due to high switching frequency, the grid-side filter size is reduced, and the possibility of a high...

  15. Nuclear forces and high-performance computing: The perfect match

    International Nuclear Information System (INIS)

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  17. Electrothermal impedance spectroscopy measurement on high power LiMO2/Li4Ti5O12 battery cell with low bandwidth test setup

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2015-01-01

    be executed on-line (e.g. in the electric vehicle Battery Management System). The Electrothermal Impedance Spectroscopy (ETIS) can be used as a relatively simple and fast method for non-destructive parametrization of the battery thermal models. However, the ETIS requires expensive galvanostat with high...

  18. On semidefinite programming bounds for graph bandwidth

    NARCIS (Netherlands)

    de Klerk, E.; Nagy, M.; Sotirov, R.

    2013-01-01

    In this paper, we propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds reported in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala,

  19. Directing Traffic: Managing Internet Bandwidth Fairly

    Science.gov (United States)

    Paine, Thomas A.; Griggs, Tyler J.

    2008-01-01

    Educational institutions today face budgetary restraints and scarce resources, complicating the decision of how to allot bandwidth for campus network users. Additionally, campus concerns over peer-to-peer networking (specifically outbound Internet traffic) have increased because of bandwidth and copyright issues. In this article, the authors…

  20. 47 CFR 2.202 - Bandwidths.

    Science.gov (United States)

    2010-10-01

    ... three numerals and one letter. The letter occupies the position of the decimal point and represents the... quality desired Speech and music, M=4000, Bandwidth: 8000 Hz= 8 kHz 8K00A3E Sound broadcasting, single... desired Speech and music, M=4000, Bandwidth: 4000 Hz= 4 kHz 4K00R3E Sound broadcasting, single-sideband...

  1. Bandwidth-on-demand motion control

    NARCIS (Netherlands)

    Van Loon, S.J.L.M.; Hunnekens, B.G.B.; Simon, A.S.; van de Wouw, N.; Heemels, W.P.M.H.

    2018-01-01

    In this brief, we introduce a 'bandwidth-on-demand' variable-gain control (VGC) strategy that allows for a varying bandwidth of the feedback controller. The proposed VGC can achieve improved performance given time-varying, reference-dependent performance requirements compared with linear

  2. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    Science.gov (United States)

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  3. Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall

    Science.gov (United States)

    Belver, Daniel; Cabanelas, P.; Castro, E.; Garzon, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.

    2010-10-01

    A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m2, divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade .

  4. Fluids with highly directional attractive forces. IV. Equilibrium polymerization

    International Nuclear Information System (INIS)

    Wertheim, M.S.

    1986-01-01

    The author investigates approximation methods for systems of molecules interacting by core repulsion and highly directional attraction due to several attraction sites. The force model chosen imitates a chemical bond by providing for bond saturation when binding occurs. The dense fluid is an equilibrium mixture of s-mers with mutual repulsion. The author uses a previously derived reformulation of statistical thermodynamics in which the particle species are monomeric units with a specified set of attraction sites bonded. Thermodynamic perturbation theory (TPT) and integral equations of two types are derived. The use of TPT is illustrated by explicit calculation for a molecular model with two attraction sites capable of forming chain and ring polymers. Successes and defects of TPT are discussed. The integral equations for pair correlations between particles of specified bonding include calculation of self-consistent densities of species. Methods of calculating thermodynamic properties from the solutions of integral equations are given

  5. EMG-Torque Dynamics Change With Contraction Bandwidth.

    Science.gov (United States)

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  6. High Bandwidth, Fine Resolution Deformable Mirror Design.

    Science.gov (United States)

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  7. Shuffle motor: a high force, high precision linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1997-01-01

    The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of

  8. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  9. High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    NARCIS (Netherlands)

    Hichert, M.; Abbink, D.A.; Kyberd, P.J.; Plettenburg, D.H.

    2017-01-01

    Background It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Bodypowered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available

  10. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  11. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    Science.gov (United States)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  12. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr Elsayed M.

    2016-05-15

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth, longer distance between end user and network operator, and less energy consumption. Ethernet Passive Optical Network (EPON) is a favorable choice for broadband access networks. EPONs support transmission rates up to 10 Gbps. EPONs also support distance between end users and central office up to 20 Km. Moreover, optical networks have the least energy consumption among all types of networks. In this dissertation, we focus on reducing delay and saving energy in EPONs. Reducing delay is essential for delay-sensitive traffic, while minimizing energy consumption is an environmental necessity and also reduces the network operating costs. We identify five challenges, namely excess bandwidth allocation, frame delineation, congestion resolution, large round trip time delay in long-reach EPONs (LR-EPONs), and energy saving. We provide a Dynamic Bandwidth Allocation (DBA) approach for each challenge. We also propose a novel scheme that combines the features of the proposed approaches in one highly performing scheme. Our approach is to design novel DBA protocols that can further reduce the delay and be simultaneously simple and fair. We also present a dynamic bandwidth allocation scheme for Green EPONs taking into consideration maximizing energy saving under target delay constraints. Regarding excess bandwidth allocation, we develop an effective DBA scheme called Delayed Excess Scheduling (DES). DES achieves significant delay and jitter reduction and is more suitable for industrial deployment due to its simplicity. Utilizing DES in hybrid TDM/WDM EPONs (TWDM-EPONs) is also investigated. We also study eliminating the wasted bandwidth due to frame delineation. We develop an interactive DBA scheme, Efficient Grant Sizing Interleaved

  13. Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

    OpenAIRE

    Michelinakis, Foivos; Kreitz, Gunnar; Petrocco, Riccardo; Zhang, Boxun; Widmer, Joerg

    2015-01-01

    Consumption of multimedia content is moving from a residential environment to mobile phones. Optimizing Quality of Experience—smooth, quick, and high quality playback—is more difficult in this setting, due to the highly dynamic nature of wireless links. A key requirement for achieving this goal is estimating the available bandwidth of mobile devices. Ideally, this should be done quickly and with low overhead. One challenge is that the majority of connections on mobiles are short-lived TCP con...

  14. Reduced bandwidth video for remote vehicle operations

    Energy Technology Data Exchange (ETDEWEB)

    Noell, T.E.; DePiero, F.W.

    1993-08-01

    Oak Ridge National Laboratory staff have developed a video compression system for low-bandwidth remote operations. The objective is to provide real-time video at data rates comparable to available tactical radio links, typically 16 to 64 thousand bits per second (kbps), while maintaining sufficient quality to achieve mission objectives. The system supports both continuous lossy transmission of black and white (gray scale) video for remote driving and progressive lossless transmission of black and white images for remote automatic target acquisition. The average data rate of the resulting bit stream is 64 kbps. This system has been demonstrated to provide video of sufficient quality to allow remote driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds up to 15 mph (24.1 kph) on a moguled dirt track. The nominal driving configuration provides a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approximately}1s. This paper reviews the system approach and implementation, and further describes some of our experiences when using the system to support remote driving.

  15. The statistical bandwidth of Butterworth filters

    Science.gov (United States)

    Davy, J. L.; Dunn, I. P.

    1987-06-01

    The precision of standard architectural acoustic measurements is a function of the statistical bandwidth of the band pass filters used in the measurements. The International and United States Standards on octave and fractional octave-band filters which specify the band pass filters used in architectural acoustics measurements give the effective bandwidth, but unfortunately not the statistical bandwidth of the filters. Both these Standards are currently being revised and both revisions require the use of Butterworth filter characteristics. In this paper it is shown theoretically that the ratio of statistical bandwidth to effective bandwidth for an nth order Butterworth band pass filter is {2n}/{(2n-1)}. This is verified experimentally for third-octave third-order Butterworth band pass filters. It is also shown experimentally that this formula is approximately correct for some non-Butterworth third-octave third-order band pass filters. Because of the importance of Butterworth filters in the revised Standards, the theory of Butterworth filters is reviewed and the formulae for Butterworth filters given in both revised Standards are derived.

  16. Theory of high-force DNA stretching and overstretching

    NARCIS (Netherlands)

    Storm, C.; Nelson, P.

    2003-01-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not

  17. Bandwidth Assessment for MultiRotor UAVs

    Directory of Open Access Journals (Sweden)

    Ferrarese Gastone

    2017-06-01

    Full Text Available This paper is a technical note about the theoretical evaluation of the bandwidth of multirotor helicopters. Starting from a mathematical linear model of the dynamics of a multirotor aircraft, the transfer functions of the state variables that deeply affect the stability characteristics of the aircraft are obtained. From these transfer functions, the frequency response analysis of the system is effected. After this analysis, the bandwidth of the system is defined. This result is immediately utilized for the design of discrete PID controllers for hovering flight stabilization. Numeric simulations are shown to demonstrate that the knowledge of the bandwidth is a valid aid in the design of flight control systems of these machines.

  18. Design and fabrication of bandwidth tunable HTS transmit filter using {pi}-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Harada, H.; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ono, S.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have developed a method for tuning the bandwidth of a high-temperature superconducting (HTS) microstrip filter. Several {pi}-shaped waveguides are placed between the resonators, and the bandwidth is tuned in discrete steps by changing the switch states of the waveguides, which changes the coupling coefficient between the resonators. The filter contains 3-pole half-wavelength straight-line resonators and two {pi}-shaped waveguides for bandwidth tuning. It also has several electrical pads distributed around the feed lines for trimming after tuning. The filter was fabricated by depositing YBa{sub 2}Cu{sub 3}O{sub 7} thin film on an MgO substrate and has a measured center frequency of 5.17 GHz and bandwidth of 220 MHz. Use of the {pi}-shaped waveguides to adjust the coupling coefficients and the electrical pads to adjust the external quality factors resulted in 80-MHz bandwidth tuning without increased insertion loss.

  19. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  20. Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator

    Directory of Open Access Journals (Sweden)

    Lei Lan

    2017-07-01

    Full Text Available It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.

  1. Bandwidth Reservations in Home Networks

    DEFF Research Database (Denmark)

    Nelis, Jelle; Verslype, Dieter; Develder, Chris

    2010-01-01

    In order for service providers to provide their users high quality services in the home network, Quality of Service (QoS) provisioning is needed to protect premium services. In this paper, we describe how a Universal Plug-and-Play (UPnP) based home network architecture solves this problem...... in a heterogeneous home network. We outline how it both relieves the end user from troublesome configuration and still offers control to the service provider. We particularly present performance assessment results for UPnP-QoS v3, based on a fully operational experimental implementation. The quantitative measurement...

  2. Hydrostatic force sensor

    International Nuclear Information System (INIS)

    Evans, M.S.; Stoughton, R.S.; Kazerooni, H.

    1994-08-01

    This paper presents a theoretical and experimental investigation of a new kind of force sensor which detects forces by measuring an induced pressure change in a material of large Poisson's ratio. In this investigation we develop mathematical expressions for the sensor's sensitivity and bandwidth, and show that its sensitivity can be much larger and its bandwidth is usually smaller than those of existing strain-gage-type sensors. This force sensor is well-suited for measuring large but slowly varying forces. It can be installed in a space smaller than that required by existing sensors

  3. Bandwidth Reservation Using Velocity and Handoff Statistics for Cellular Networks

    Institute of Scientific and Technical Information of China (English)

    Chuan-Lin Zhang; Kam Yiu Lam; Wei-Jia Jia

    2006-01-01

    The percentages of blocking and forced termination rates as parameters representing quality of services (QoS)requirements are presented. The relation between the connection statistics of mobile users in a cell and the handoff number and new call number in next duration in each cell is explored. Based on the relation, statistic reservation tactics are raised.The amount of bandwidth for new calls and handoffs of each cell in next period is determined by using the strategy. Using this method can guarantee the communication system suits mobile connection request dynamic. The QoS parameters:forced termination rate and blocking rate can be maintained steadily though they may change with the offered load. Some numerical experiments demonstrate this is a practical method with affordable overhead.

  4. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  5. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...

  6. Experiences in Traceroute and Bandwidth Change Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Logg, C

    2004-06-23

    SLAC has been studying end-to-end WAN bandwidth availability and achievability for 2.5 years via IEPM-BW [1]. IEPM-BW performs network intensive tests every 90 minutes. Based on that experience we have also developed a light weight available bandwidth (ABwE [2]) measurement tool that can make a measurement within a second. We are now extending this to a WAN measurement and detection system (IEPM-LITE) aimed at more quickly detecting and troubleshooting network performance problems and also to be more friendly on lower performance paths. IEPM-LITE uses ping, forward traceroutes, and ABwE sensors to monitor, in close to real-time, Round Trip Times (RTT), changes in available bandwidth and routes to and from target hosts. This paper discusses the experiences, techniques and algorithms used to detect and report on significant traceroute and bandwidth changes. The ultimate aim is to develop a lightweight WAN network performance monitoring system that can detect, in near real time, significant changes and generate alerts.

  7. Experiences in Traceroute and Bandwidth Change Analysis

    International Nuclear Information System (INIS)

    Logg, C

    2004-01-01

    SLAC has been studying end-to-end WAN bandwidth availability and achievability for 2.5 years via IEPM-BW [1]. IEPM-BW performs network intensive tests every 90 minutes. Based on that experience we have also developed a light weight available bandwidth (ABwE [2]) measurement tool that can make a measurement within a second. We are now extending this to a WAN measurement and detection system (IEPM-LITE) aimed at more quickly detecting and troubleshooting network performance problems and also to be more friendly on lower performance paths. IEPM-LITE uses ping, forward traceroutes, and ABwE sensors to monitor, in close to real-time, Round Trip Times (RTT), changes in available bandwidth and routes to and from target hosts. This paper discusses the experiences, techniques and algorithms used to detect and report on significant traceroute and bandwidth changes. The ultimate aim is to develop a lightweight WAN network performance monitoring system that can detect, in near real time, significant changes and generate alerts

  8. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...

  9. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    Science.gov (United States)

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  10. Kernel bandwidth estimation for non-parametric density estimation: a comparative study

    CSIR Research Space (South Africa)

    Van der Walt, CM

    2013-12-01

    Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...

  11. High-speed atomic force microscope imaging: Adaptive multiloop mode

    Science.gov (United States)

    Ren, Juan; Zou, Qingze; Li, Bo; Lin, Zhiqun

    2014-07-01

    In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging is currently the most widely used imaging technique. The speed of TM imaging, however, is substantially (over an order of magnitude) lower than that of CM imaging, becoming the major bottleneck of this technique. Increasing the speed of TM imaging is challenging as a stable probe tapping on the sample surface must be maintained to preserve the image quality, whereas the probe tapping is rather sensitive to the sample topography variation. As a result, the increase of imaging speed can quickly lead to loss of the probe-sample contact and/or annihilation of the probe tapping, resulting in image distortion and/or sample deformation. The proposed adaptive multiloop mode (AMLM) imaging overcomes these limitations of TM imaging through the following three efforts integrated together: First, it is proposed to account for the variation of the TM deflection when quantifying the sample topography; second, an inner-outer feedback control loop to regulate the TM deflection is added on top of the tapping-feedback control loop to improve the sample topography tracking; and, third, an online iterative feedforward controller is augmented to the whole control system to further enhance the topography tracking, where the next-line sample topography is predicted and utilized to reduce the tracking error. The added feedback regulation of the TM deflection ensures the probe-sample interaction force remains near the minimum for maintaining a stable probe-sample interaction. The proposed AMLM imaging is tested and demonstrated by imaging a poly(tert-butyl acrylate) sample in experiments. The

  12. Bandwidth-sharing in LHCONE, an analysis of the problem

    Science.gov (United States)

    Wildish, T.

    2015-12-01

    The LHC experiments have traditionally regarded the network as an unreliable resource, one which was expected to be a major source of errors and inefficiency at the time their original computing models were derived. Now, however, the network is seen as much more capable and reliable. Data are routinely transferred with high efficiency and low latency to wherever computing or storage resources are available to use or manage them. Although there was sufficient network bandwidth for the experiments’ needs during Run-1, they cannot rely on ever-increasing bandwidth as a solution to their data-transfer needs in the future. Sooner or later they need to consider the network as a finite resource that they interact with to manage their traffic, in much the same way as they manage their use of disk and CPU resources. There are several possible ways for the experiments to integrate management of the network in their software stacks, such as the use of virtual circuits with hard bandwidth guarantees or soft real-time flow-control, with somewhat less firm guarantees. Abstractly, these can all be considered as the users (the experiments, or groups of users within the experiment) expressing a request for a given bandwidth between two points for a given duration of time. The network fabric then grants some allocation to each user, dependent on the sum of all requests and the sum of available resources, and attempts to ensure the requirements are met (either deterministically or statistically). An unresolved question at this time is how to convert the users’ requests into an allocation. Simply put, how do we decide what fraction of a network's bandwidth to allocate to each user when the sum of requests exceeds the available bandwidth? The usual problems of any resourcescheduling system arise here, namely how to ensure the resource is used efficiently and fairly, while still satisfying the needs of the users. Simply fixing quotas on network paths for each user is likely to lead

  13. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  14. Force Structure. DOD Needs to Integrate Data into Its Force Identification Process and Examine Options to Meet Requirements for High-Demand Support Forces

    National Research Council Canada - National Science Library

    2006-01-01

    ...) will continue to meet its requirements using an all-volunteer force. The Army, in particular, has faced continuing demand for large numbers of forces, especially for forces with support skills...

  15. Probabilistic Bandwidth Assignment in Wireless Sensor Networks

    OpenAIRE

    Khan , Dawood; Nefzi , Bilel; Santinelli , Luca; Song , Ye-Qiong

    2012-01-01

    International audience; With this paper we offer an insight in designing and analyzing wireless sensor networks in a versatile manner. Our framework applies probabilistic and component-based design principles for the wireless sensor network modeling and consequently analysis; while maintaining flexibility and accuracy. In particular, we address the problem of allocating and reconfiguring the available bandwidth. The framework has been successfully implemented in IEEE 802.15.4 using an Admissi...

  16. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  17. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  18. Stokes versus Basset: comparison of forces governing motion of small bodies with high acceleration

    Science.gov (United States)

    Krafcik, A.; Babinec, P.; Frollo, I.

    2018-05-01

    In this paper, the importance of the forces governing the motion of a millimetre-sized sphere in a viscous fluid has been examined. As has been shown previously, for spheres moving with a high initial acceleration, the Basset history force should be used, as well as the commonly used Stokes force. This paper introduces the concept of history forces, which are almost unknown to students despite their interesting mathematical structure and physical meaning, and shows the implementation of simple and efficient numerical methods as a MATLAB code to simulate the motion of a falling sphere. An important application of this code could be, for example, the simulation of microfluidic systems, where the external forces are very large and the relevant timescale is in the order of milliseconds to seconds, and therefore the Basset history force cannot be neglected.

  19. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  20. Towards Bandwidth Scalable Transceiver Technology for Optical Metro-Access Networks

    DEFF Research Database (Denmark)

    Spolitis, Sandis; Bobrovs, Vjaceslavs; Wagner, Christoph

    2015-01-01

    sliceable transceiver for 1 Gbit/s non-return to zero (NRZ) signal sliced into two slices is presented. Digital signal processing (DSP) power consumption and latency values for proposed sliceable transceiver technique are also discussed. In this research post FEC with 7% overhead error free transmission has......Massive fiber-to-the-home network deployment is creating a challenge for telecommunications network operators: exponential increase of the power consumption at the central offices and a never ending quest for equipment upgrades operating at higher bandwidth. In this paper, we report on flexible...... signal slicing technique, which allows transmission of high-bandwidth signals via low bandwidth electrical and optoelectrical equipment. The presented signal slicing technique is highly scalable in terms of bandwidth which is determined by the number of slices used. In this paper performance of scalable...

  1. Efficient Bandwidth Management for Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr

    2016-01-01

    The increasing bandwidth demands in access networks motivates network operators, networking devices manufacturers, and standardization institutions to search for new approaches for access networks. These approaches should support higher bandwidth

  2. Compensator design for improved counterbalancing in high speed atomic force microscopy

    OpenAIRE

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, ...

  3. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  4. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  5. Fluid limits for Bandwidth-Sharing Networks with Impatience.

    NARCIS (Netherlands)

    Remerova, M.; Reed, J.; Zwart, A.P.

    2014-01-01

    Bandwidth-sharing networks as introduced by Roberts and Massoulié [Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan], Massoulié and Roberts [Massoulié L, Roberts JW (1999) Bandwidth sharing: Objectives and

  6. Low and Expensive Bandwidth Remains Key Bottleneck for ...

    African Journals Online (AJOL)

    These bottlenecks have dwarfed the expectations of the citizens to fully participate in the new world economic order galvanized by e-commerce and world trade. It is estimated that M.I.T in Boston USA has bandwidth allocation that surpasses all the bandwidth allocated to Nigeria put together. Low bandwidth has been found ...

  7. Friction force experimental approach in High School Physics classes

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Alvarenga Monteiro

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-7941.2012v29n3p1121 In this paper we propose and describe the performance of an experimental activity to address the concept of friction in High School Physics practical classes. We use a low-cost and simple construction device that enables the determination of the coefficient of static friction between two materials through three different procedures. The results were coherent, with small percentage deviation, which gives reliability to the activity and can stimulate discussions in class. The activity also allows greater contextualization of concepts that are usually discussed only theoretically, requiring a higher abstraction level of the students. This can stimulate discussions and greater interaction between teacher and students.

  8. Fluids with highly directional attractive forces. III. Multiple attraction sites

    International Nuclear Information System (INIS)

    Wertheim, M.S.

    1986-01-01

    The authors derive a reformulation of statistical thermodynamics for fluids of molecules which interact by highly directional attraction. The molecular model consists of a repulsive core and several sites of very short-ranged attraction. The authors explore the relationship between graph cancellation in the fugacity expansion and three types of steric incompatibility between repulsive and attractive interactions involving several molecules. The steric effects are used to best advantage in a limited regrouping of bonds. This controls the density parameters which appear when articulation points are eliminated in the graphical representation. Each density parameter is a singlet density for a species consisting of molecules with a specified set of sites bonded. The densities satisfy subsidiary conditions of internal consistency. These conditions are equivalent to a minimization of the Helmholtz free energy A. Graphical expressions for A and for the pressure are derived. Analogs of the s-particle direct correlation functions and of the Ornstein-Zernike equation are found

  9. Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Zheng, C.; Pong, Philip W. T. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Zhou, Y., E-mail: yanzhou@hku.hk [School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Department of Physics, The University of Hong Kong (Hong Kong); Kubota, H.; Yuasa, S. [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-06

    Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model. The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.

  10. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    Science.gov (United States)

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  12. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    Science.gov (United States)

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  13. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  14. Numerical evaluation of electromagnetic force induced in high Tc superconductor with grain boundary

    International Nuclear Information System (INIS)

    Hashizume, Hidetoshi; Toda, Saburo; Maeda, Koutaro

    1996-01-01

    After high T c superconducting material was discovered, its superconducting characteristic has been improved so that its critical current density becomes comparable with that of metal alloy superconductors. Together with this progress of the high T c material, it is considered to apply the materials to generating levitation force in combination with permanent magnets. In this case, it becomes very important to evaluate quantitatively the electromagnetic force for designing of the devices. Some researches have used numerical analysis to evaluate the force, where the grain boundary was ignored or treated as nonconducting. In the real materials, however, some part of the screening current can pass through the grain boundary. In this paper, therefore, two dimensional electromagnetic analysis was performed with a new method to treat the grain boundaries, and its effect on the levitation force was discussed

  15. Flange joint system for SRF cavities utilizing high force spring clamps for low particle generation

    Science.gov (United States)

    None

    2017-09-05

    A flange joint system for SRF cavities. The flange joint system includes a set of high force spring clamps that produce high force on the simple flanges of Superconducting Radio Frequency (SRF) cavities to squeeze conventional metallic seals. The system establishes the required vacuum and RF-tight seal with minimum particle contamination to the inside of the cavity assembly. The spring clamps are designed to stay within their elastic range while being forced open enough to mount over the flange pair. Upon release, the clamps have enough force to plastically deform metallic seal surfaces and continue to a new equilibrium sprung dimension where the flanges remain held against one another with enough preload such that normal handling will not break the seal.

  16. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  17. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  18. Effect of parameters of a high-temperature superconductor levitation system on the lateral force

    International Nuclear Information System (INIS)

    Yang Yong; Zheng Xiaojing

    2008-01-01

    The lateral forces on a rectangular permanent magnet above a cylindrical high-temperature superconductor during lateral traverses are simulated in two cooling conditions. The simulation is based on the finite element method and critical state model of Bean. The calculations agree well with the previous experimental data, on the basis of which the effect of initial cooling conditions, physical parameters, levitating height during lateral traverses and geometrical parameters on the lateral force is presented

  19. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  20. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    Sagi Ariel

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately . In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in of the test utterances.

  1. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    David Malah

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately 3⋅10−4. In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in 92.5% of the test utterances.

  2. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials

    Science.gov (United States)

    Liu, Kesong; Du, Jiexing; Wu, Juntao; Jiang, Lei

    2012-01-01

    Functional integration is an inherent characteristic for multiscale structures of biological materials. In this contribution, we first investigate the liquid-solid adhesive forces between water droplets and superhydrophobic gecko feet using a high-sensitivity micro-electromechanical balance system. It was found, in addition to the well-known solid-solid adhesion, the gecko foot, with a multiscale structure, possesses both superhydrophobic functionality and a high adhesive force towards water. The origin of the high adhesive forces of gecko feet to water could be attributed to the high density nanopillars that contact the water. Inspired by this, polyimide films with gecko-like multiscale structures were constructed by using anodic aluminum oxide templates, exhibiting superhydrophobicity and a strong adhesive force towards water. The static water contact angle is larger than 150° and the adhesive force to water is about 66 μN. The resultant gecko-inspired polyimide film can be used as a ``mechanical hand'' to snatch micro-liter liquids. We expect this work will provide the inspiration to reveal the mechanism of the high-adhesive superhydrophobic of geckos and extend the practical applications of polyimide materials.

  3. Optimal Bandwidth Selection for Kernel Density Functionals Estimation

    Directory of Open Access Journals (Sweden)

    Su Chen

    2015-01-01

    Full Text Available The choice of bandwidth is crucial to the kernel density estimation (KDE and kernel based regression. Various bandwidth selection methods for KDE and local least square regression have been developed in the past decade. It has been known that scale and location parameters are proportional to density functionals ∫γ(xf2(xdx with appropriate choice of γ(x and furthermore equality of scale and location tests can be transformed to comparisons of the density functionals among populations. ∫γ(xf2(xdx can be estimated nonparametrically via kernel density functionals estimation (KDFE. However, the optimal bandwidth selection for KDFE of ∫γ(xf2(xdx has not been examined. We propose a method to select the optimal bandwidth for the KDFE. The idea underlying this method is to search for the optimal bandwidth by minimizing the mean square error (MSE of the KDFE. Two main practical bandwidth selection techniques for the KDFE of ∫γ(xf2(xdx are provided: Normal scale bandwidth selection (namely, “Rule of Thumb” and direct plug-in bandwidth selection. Simulation studies display that our proposed bandwidth selection methods are superior to existing density estimation bandwidth selection methods in estimating density functionals.

  4. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  5. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  6. Optimal filter bandwidth for pulse oximetry

    Science.gov (United States)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  7. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  8. BECSI: Bandwidth Efficient Certificate Status Information Distribution Mechanism for VANETs

    Directory of Open Access Journals (Sweden)

    Carlos Gañán

    2013-01-01

    Full Text Available Certificate revocation is a challenging task, especiallyin mobile network environments such as vehicular ad Hoc networks (VANETs.According to the IEEE 1609.2 security standard for VANETs, public keyinfrastructure (PKI will provide this functionality by means of certificate revocation lists (CRLs.When a certificate authority (CAneeds to revoke a certificate, itglobally distributes CRLs.Transmitting these lists pose a problem as they require high update frequencies and a lot of bandwidth. In this article, we propose BECSI, aBandwidth Efficient Certificate Status Informationmechanism to efficiently distributecertificate status information (CSI in VANETs.By means of Merkle hash trees (MHT, BECSI allowsto retrieve authenticated CSI not onlyfrom the infrastructure but also from vehicles actingas mobile repositories.Since these MHTs are significantly smaller than the CRLs, BECSIreduces the load on the CSI repositories and improves the response time for the vehicles.Additionally, BECSI improves the freshness of the CSIby combining the use of delta-CRLs with MHTs.Thus, vehicles that have cached the most current CRLcan download delta-CRLs to have a complete list of revoked certificates.Once a vehicle has the whole list of revoked certificates, it can act as mobile repository.

  9. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  10. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  11. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  12. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  13. Bandwidth Impacts of Localizing Peer-to-Peer IP Video Traffic in Access and Aggregation Networks

    Directory of Open Access Journals (Sweden)

    Kerpez Kenneth

    2008-01-01

    Full Text Available Abstract This paper examines the burgeoning impact of peer-to-peer (P2P traffic IP video traffic. High-quality IPTV or Internet TV has high-bandwidth requirements, and P2P IP video could severely strain broadband networks. A model for the popularity of video titles is given, showing that some titles are very popular and will often be available locally; making localized P2P attractive for video titles. The bandwidth impacts of localizing P2P video to try and keep traffic within a broadband access network area or within a broadband access aggregation network area are examined. Results indicate that such highly localized P2P video can greatly lower core bandwidth usage.

  14. Bandwidth Impacts of Localizing Peer-to-Peer IP Video Traffic in Access and Aggregation Networks

    Directory of Open Access Journals (Sweden)

    Kenneth Kerpez

    2008-10-01

    Full Text Available This paper examines the burgeoning impact of peer-to-peer (P2P traffic IP video traffic. High-quality IPTV or Internet TV has high-bandwidth requirements, and P2P IP video could severely strain broadband networks. A model for the popularity of video titles is given, showing that some titles are very popular and will often be available locally; making localized P2P attractive for video titles. The bandwidth impacts of localizing P2P video to try and keep traffic within a broadband access network area or within a broadband access aggregation network area are examined. Results indicate that such highly localized P2P video can greatly lower core bandwidth usage.

  15. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats

    Science.gov (United States)

    Li, Hao; Liu, Wenzhong; Zhang, Hao F.

    2015-10-01

    Rodent models are indispensable in studying various retinal diseases. Noninvasive, high-resolution retinal imaging of rodent models is highly desired for longitudinally investigating the pathogenesis and therapeutic strategies. However, due to severe aberrations, the retinal image quality in rodents can be much worse than that in humans. We numerically and experimentally investigated the influence of chromatic aberration and optical illumination bandwidth on retinal imaging. We confirmed that the rat retinal image quality decreased with increasing illumination bandwidth. We achieved the retinal image resolution of 10 μm using a 19 nm illumination bandwidth centered at 580 nm in a home-built fundus camera. Furthermore, we observed higher chromatic aberration in albino rat eyes than in pigmented rat eyes. This study provides a design guide for high-resolution fundus camera for rodents. Our method is also beneficial to dispersion compensation in multiwavelength retinal imaging applications.

  16. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties

    Science.gov (United States)

    Jang, Hyeyoung; Yoon, Hyungsuk; Ko, Youngpyo; Choi, Jaeyoo; Lee, Sang-Soo; Jeon, Insu; Kim, Jong-Ho; Kim, Heesuk

    2016-03-01

    Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased dielectric properties of elastomers and simple sensor structure. We rationally design dielectric elastomers based on alkylamine modified-multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) composites, which have a higher dielectric constant than pure PDMS. The alkylamine-MWCNTs show excellent dispersion in a PDMS matrix, thus leading to enhanced and reliable dielectric properties of the composites. A force sensor array fabricated with alkylamine-MWCNT/PDMS composites presents an enhanced response due to the higher dielectric constant of the composites than that of pure PDMS. This study is the first to report enhanced performance of capacitive force sensors by modulating the dielectric properties of elastomers. We believe that the disclosed strategy to improve the sensor performance by increasing the dielectric properties of elastomers has great potential in the development of capacitive force sensor arrays that respond to various input forces.Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased

  17. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  18. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  19. Faraday forcing of high-temperature levitated liquid metal drops for the measurement of surface tension.

    Science.gov (United States)

    Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga

    2018-01-01

    In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.

  20. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  1. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.

    1998-01-01

    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  2. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  3. Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    . Large preform tolerances are compensated during the fiber draw resulting in ultra low NA fibers with very large cores. In this paper, design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared...... LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber. However, achieving ultra low NA for single-mode (SM) guidance is challenging, and thus different design strategies must be applied to filter out higher order modes (HOMs). The novel...... distributed modal filtering (DMF) design presented here enables SM guidance, and previous results have shown a SM mode field diameter of 60 μm operating in a 20 nm SM bandwidth. The DMF rod fiber has high index ring-shaped inclusions acting as resonators enabling SM guidance through modal filtering of HOMs...

  4. Levitation force and magnetization in bulk and thin film high Tc superconductors

    International Nuclear Information System (INIS)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa 2 Cu 3 O 7-δ superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F z and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T c superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa 2 Cu 3 O 7-δ sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the critical current density in thin films

  5. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  6. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    International Nuclear Information System (INIS)

    Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi

    2015-01-01

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration

  7. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  8. Gain-switched, Yb-doped, all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, Martin; Nyga, Sebastian

    2013-01-01

    We demonstrate that an all-fiber, narrow bandwidth, high pulse energy pulsed laser can be constructed from commercially available components by applying gain-switching. After single-stage amplification the pulses are frequency doubled in ppSLT with high efficiency....

  9. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  10. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  11. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  12. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  13. End effect braking force reduction in high-speed single-sided linear induction machine

    International Nuclear Information System (INIS)

    Shiri, Abbas; Shoulaie, Abbas

    2012-01-01

    Highlights: ► A new analytical equation to model the end effect braking force of SLIM is derived. ► Equations for efficiency, power factor and output thrust are analytically derived. ► The effect of design variables on the performance of the motor is analyzed. ► An optimization method is employed to minimize the end effect braking force (EEBF). ► The results show that EEBF is minimized by appropriate selection of motor parameters. - Abstract: Linear induction motors have been widely employed in industry because of their simple structure and low construction cost. However, they suffer from low efficiency and power factor. In addition, existence of so called end effect influences their performance especially in high speeds. The end effect deteriorates the performance of the motor by producing braking force. So, in this paper, by using Duncan equivalent circuit model, a new analytical equation is proposed to model end effect braking force. Employing the proposed equation and considering all phenomena involved in the single-sided linear induction motor, a simple design procedure is presented and the effect of different design variables on the performance of the motor is analyzed. A multi-objective optimization method based on genetic algorithm is introduced to maximize efficiency and power factor, as well as to minimize the end effect braking force, simultaneously. Finally, to validate the optimization results, 2D finite element method is employed.

  14. A Hybrid ACO Approach to the Matrix Bandwidth Minimization Problem

    Science.gov (United States)

    Pintea, Camelia-M.; Crişan, Gloria-Cerasela; Chira, Camelia

    The evolution of the human society raises more and more difficult endeavors. For some of the real-life problems, the computing time-restriction enhances their complexity. The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous permutation of the rows and the columns of a square matrix in order to keep its nonzero entries close to the main diagonal. The MBMP is a highly investigated {NP}-complete problem, as it has broad applications in industry, logistics, artificial intelligence or information recovery. This paper describes a new attempt to use the Ant Colony Optimization framework in tackling MBMP. The introduced model is based on the hybridization of the Ant Colony System technique with new local search mechanisms. Computational experiments confirm a good performance of the proposed algorithm for the considered set of MBMP instances.

  15. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  16. Bandwidth selection in smoothing functions | Kibua | East African ...

    African Journals Online (AJOL)

    ... inexpensive and, hence, worth adopting. We argue that the bandwidth parameter is determined by two factors: the kernel function and the length of the smoothing region. We give an illustrative example of its application using real data. Keywords: Kernel, Smoothing functions, Bandwidth > East African Journal of Statistics ...

  17. Variable Bandwidth Analog Channel Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is

  18. Fluid Limits for Bandwidth-Sharing Networks in Overload.

    NARCIS (Netherlands)

    Borst, S.; Egorova, R.; Zwart, A.P.

    2014-01-01

    Bandwidth-sharing networks as considered by Roberts and Massoulié [28] (Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan) provide a natural modeling framework for describing the dynamic flow-level interaction

  19. Fluid limits for bandwidth-sharing networks in overload

    NARCIS (Netherlands)

    Borst, S.C.; Egorova, R.R.; Zwart, B.

    2014-01-01

    Bandwidth-sharing networks as considered by Roberts and Massoulié [28] (Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan) provide a natural modeling framework for describing the dynamic flow-level interaction

  20. 47 CFR 74.535 - Emission and bandwidth.

    Science.gov (United States)

    2010-10-01

    ... digital modulation in paragraph (a) of this section, the resolution bandwidth (BRES) of the measuring...), adjusted upward to the nearest greater resolution bandwidth available on the measuring equipment. In all... frequency energy outside the assigned channel. Upon notice by the FCC to the station licensee that...

  1. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    Science.gov (United States)

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  2. Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Lorenzen, Dennis Lund

    2014-01-01

    We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources......, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central...... frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present...

  3. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    International Nuclear Information System (INIS)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z; Bin, L

    2008-01-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP

  4. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  5. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    DEFF Research Database (Denmark)

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  6. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    Science.gov (United States)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  7. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

    International Nuclear Information System (INIS)

    Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

    2011-01-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

  8. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes

    International Nuclear Information System (INIS)

    Labardi, M

    2007-01-01

    Dynamic force microscopy (DFM) with the self-oscillator (SO) method allows reasonably high scanning rates even with high Q-factors of the resonant force sensor, typical of cantilevers in ultra-high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes (sub-nm level) are generally preferred. In applications like 'apertureless' scanning near-field optical microscopy (SNOM), oscillation amplitudes of the order of 5-10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air-operated cantilevers. Both constant-excitation-amplitude (CE) and constant-oscillation-amplitude (CA) modes of SO-DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach ('isophase') curves in both modes can be conveniently described in terms of the usual 'normalized frequency shift' γ and of a 'normalized gain' η, defined as a measurement of surface dissipation

  9. HIGHLY QUALIFIED WORKING FORCE – KEY ELEMENT OF INNOVATIVE DEVELOPMENT MODEL

    Directory of Open Access Journals (Sweden)

    M. Avksientiev

    2014-12-01

    Full Text Available Highly qualified working force is a central element of intensive development model in modern society. The article surveys the experience of countries that managed to transform their economy to the innovative one. Ukrainian economy cannot stand aside processes that dominate the world economy trends, thus we are to use this experience to succeed in future. Today any government of the world is facing challenges that occur due to transformation of the economy into informational one. This type of economy causes its transformation form extensive to intensive one. The main reasons under that is limitation of nature resources, material factors of production. Thus this approach depends much on the quality of working force. Unfortunately in Ukraine there is a misbalance in specialist preparation. This puts additional pressure on the educational sphere also. In order to avoid this pressure we are to conduct reforms in education sphere. Nowadays, in the world views and concepts of governmental role in the social development are changing. This why, even at times of economic recession educational costs are not reduced under the new economical doctrine in the EU. Highly qualified specialists, while creating new products and services play role of engineers in XXI century. They are to lead their industries to world leading positions. From economic point of view, highly qualified specialists benefit society with higher income rates, taxation and thus, increasing the living standards in society. Thus, the majority if modern scientists prove the importance of highly trained working force for more effective economic development.

  10. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.

    Science.gov (United States)

    Lin, Jun; Valentine, Megan T

    2012-05-01

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to ∼4.5 μm paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as ∼1 kPa.

  11. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jun [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106 (United States); Valentine, Megan T. [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to {approx}4.5 {mu}m paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as {approx}1 kPa.

  12. Three-dimensional Force and Kinematic Interactions in V1 Skating at High Speeds.

    Science.gov (United States)

    Stöggl, Thomas; Holmberg, Hans-Christer

    2015-06-01

    To describe the detailed kinetics and kinematics associated with use of the V1 skating technique at high skiing speeds and to identify factors that predict performance. Fifteen elite male cross-country skiers performed an incremental roller-skiing speed test (Vpeak) on a treadmill using the V1 skating technique. Pole and plantar forces and whole-body kinematics were monitored at four submaximal speeds. The propulsive force of the "strong side" pole was greater than that of the "weak side" (P skating at high speeds. The faster skiers exhibit more symmetric leg motion on the "strong" and "weak" sides, as well as more synchronized poling. With respect to methods, the pressure insoles and three-dimensional kinematics in combination with the leg push-off model described here can easily be applied to all skating techniques, aiding in the evaluation of skiing techniques and comparison of effectiveness.

  13. Tubular bending and pull-out forces in high-curvature well bores

    International Nuclear Information System (INIS)

    Dareing, D.W.; Ahlers, C.A.

    1991-01-01

    This paper is concerned with drag forces developed on tubulars in high-curvature well bores typically found in drainhole and horizontal drilling. The dog-leg severity of these types of boreholes are considerably higher than those typically found in conventional directional drilling. The objective of the study was to determine the significance of bending stiffness on drag forces in the pull-out mode. The method of analysis treats the tubular as a multi-spanned curved beam under tension and solves for radial displacements, slope, shear and bending moment over each span. Calculations show that bending stiffness is a minor factor provided there are no locally severe dog legs superimposed in the high-curvature well bore

  14. Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology

    NARCIS (Netherlands)

    Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    2003-01-01

    The influence of different geometries (layouts) and structures of high-speed photodiodes in fully standard 0.18 μm CMOS technology on their intrinsic (physical) and electrical bandwidths is analyzed. Three photodiode structures are studied: nwell/p-substrate, p+/nwell/p-substrate and p+/nwell. The

  15. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P

    2005-01-01

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  16. Magnetic field and force analysis of high Tc superconductor with flux flow and creep

    International Nuclear Information System (INIS)

    Yoshida, Yoshikatsu; Uesaka, Mitsuru; Miya, Kenzo

    1994-01-01

    This paper describes a new method for the magnetic force analysis of high T c superconductor based on the flux flow and creep model. The introduction of the artificial conductivity, which is used in the conventional method, is not needed. The CPU time requirement of the calculations is considerably lower than that in the case of the conventional method. Thereby the vibration of a levitated permanent magnet was numerically analyzed by taking into account the flux flow and creep

  17. Search and Rescue in the High North: An Air Force Mission?

    Science.gov (United States)

    2013-12-01

    at the strange new things in the land of the midnight sun. What wouldn’t surprise him are the things that never change: six months of darkness ...8-98) Prescribed by ANSI Std Z39-18 November–December 2013 Air & Space Power Journal | 5 Conway Search and Rescue in the High North Feature tourism ...official sanction of the Department of Defense, Air Force, Air Education and Training Command, Air University, or other agencies or departments of

  18. Burnout in boiling heat transfer. Part III. High-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1979-01-01

    This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation

  19. High-throughput single-molecule force spectroscopy for membrane proteins

    Science.gov (United States)

    Bosshart, Patrick D.; Casagrande, Fabio; Frederix, Patrick L. T. M.; Ratera, Merce; Bippes, Christian A.; Müller, Daniel J.; Palacin, Manuel; Engel, Andreas; Fotiadis, Dimitrios

    2008-09-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ~400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ~200 (AdiC) and ~400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  20. High-throughput single-molecule force spectroscopy for membrane proteins

    International Nuclear Information System (INIS)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios; Ratera, Merce; Palacin, Manuel; Bippes, Christian A; Mueller, Daniel J

    2008-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications

  1. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  2. Study of Cutting Edge Temperature and Cutting Force of End Mill Tool in High Speed Machining

    Directory of Open Access Journals (Sweden)

    Kiprawi Mohammad Ashaari

    2017-01-01

    Full Text Available A wear of cutting tools during machining process is unavoidable due to the presence of frictional forces during removing process of unwanted material of workpiece. It is unavoidable but can be controlled at slower rate if the cutting speed is fixed at certain point in order to achieve optimum cutting conditions. The wear of cutting tools is closely related with the thermal deformations that occurred between the frictional contact point of cutting edge of cutting tool and workpiece. This research paper is focused on determinations of relationship among cutting temperature, cutting speed, cutting forces and radial depth of cutting parameters. The cutting temperature is determined by using the Indium Arsenide (InAs and Indium Antimonide (InSb photocells to measure infrared radiation that are emitted from cutting tools and cutting forces is determined by using dynamometer. The high speed machining process is done by end milling the outer surface of carbon steel. The signal from the photocell is digitally visualized in the digital oscilloscope. Based on the results, the cutting temperature increased as the radial depth and cutting speed increased. The cutting forces increased when radial depth increased but decreased when cutting speed is increased. The setup for calibration and discussion of the experiment will be explained in this paper.

  3. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  4. Bandwidth auction for SVC streaming in dynamic multi-overlay

    Science.gov (United States)

    Xiong, Yanting; Zou, Junni; Xiong, Hongkai

    2010-07-01

    In this paper, we study the optimal bandwidth allocation for scalable video coding (SVC) streaming in multiple overlays. We model the whole bandwidth request and distribution process as a set of decentralized auction games between the competing peers. For the upstream peer, a bandwidth allocation mechanism is introduced to maximize the aggregate revenue. For the downstream peer, a dynamic bidding strategy is proposed. It achieves maximum utility and efficient resource usage by collaborating with a content-aware layer dropping/adding strategy. Also, the convergence of the proposed auction games is theoretically proved. Experimental results show that the auction strategies can adapt to dynamic join of competing peers and video layers.

  5. 3600 digital phase detector with 100-kHz bandwidth

    International Nuclear Information System (INIS)

    Reid, D.W.; Riggin, D.; Fazio, M.V.; Biddle, R.S.; Patton, R.D.; Jackson, H.A.

    1981-01-01

    The general availability of digital circuit components with propagation delay times of a few nanoseconds makes a digital phase detector with good bandwidth feasible. Such a circuit has a distinct advantage over its analog counterpart because of its linearity over wide range of phase shift. A phase detector that is being built at Los Alamos National Laboratory for the Fusion Materials Irradiation Test (FMIT) project is described. The specifications are 100-kHz bandwidth, linearity of +- 1 0 over +- 180 0 of phase shift, and 0.66 0 resolution. To date, the circuit has achieved the bandwidth and resolution. The linearity is approximately +- 3 0 over +- 180 0 phase shift

  6. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different......The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...

  7. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  8. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  9. Analysis of Electromagnetics Forces on Magnetically Suspended High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Daniel Mayer

    2004-01-01

    Full Text Available High-speed superexpresses (HSST developed by Japanese airlines (JAL are based on the electrodynamics principle of magnetic suspension. The track contains short-circuited coils and interaction between them and superconductive coils in the vehicle produces its suspension. The paper includes a mathematical model for traction electrodynamics suspension device HSST represented by a system of linear differential equations with coefficients varying in time. Numerical analysis of this model fields the velocity-dependent lift and drag forces acting on the system. The time distribution of the lift force exhibits certain oscillations that may be suppressed by suitable placement of several superconductive levitation wings in the vehicle. The results obtained are in a good agreement with the knowledge found by various authors on prototype vehicles.

  10. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.

    Science.gov (United States)

    Kim, Kwangyoon; Park, Jun-Young; Kim, K B; Lee, Naesung; Seo, Yongho

    2014-01-01

    A quartz tuning fork was used instead of cantilever as a force sensor for the atomic force microscope. A tungsten tip was made by electrochemical etching from a wire of 50 µm diameter. In order to have mechanical stability of the tuning fork, it was attached on an alumina plate. The tungsten tip was attached on the inside end of a prong of a tuning fork. The phase shift was used as a feedback signal to control the distance between the tip and sample, and the amplitude was kept constant using a lock-in amplifier and a homemade automatic gain controller. Due to the mechanical stability, the sensor shows a high quality factor (∼10(3)), and the image quality obtained with this sensor was equivalent to that of the cantilever-based AFM. © 2014 Wiley Periodicals, Inc.

  11. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  12. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  13. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  14. Possible manifestation of long range forces in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.; Ferro, P.; Trentadue, L.

    1997-01-01

    Pion-pion and photon-photon scattering are discussed.. We obtain, starting from the impact representation introduced by Cheng and Wu a new contribution to the high energy hadron-hadron scattering amplitude for small transferred momentum q 2 of the form is (q 2 /m 4 )ln(-q 2 /m 2 ). This behaviour may be interpreted as a manifestation of long transverse-range forces between hadrons which, for ρ>> m -1 fall off as ρ -4 . We consider the examples of pion and photon scattering with photons converted in the intermediate state to two pairs of quarks interacting by exchanging two gluon colorless state. A phenomenological approach for proton impact factor is used to analyze proton-proton scattering. The analysis of the lowest order radiative corrections for the case of photon-photon scattering is done. We discuss the possibility of observing the effects of these long range forces

  15. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  16. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    International Nuclear Information System (INIS)

    Iwata, F.; Ohashi, Y.; Ishisaki, I.; Picco, L.M.; Ushiki, T.

    2013-01-01

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed

  17. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    Science.gov (United States)

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.

  18. Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2007-01-01

    Full Text Available The popularity of multimedia streaming services via wireless networks presents major challenges in the management of network bandwidth. One challenge is to quickly and precisely estimate the available bandwidth for the decision of streaming rates of layered and scalable multimedia services. Previous studies based on wired networks are too burdensome to be applied to multimedia applications in wireless networks. In this paper, a new method, IdleGap, is suggested to estimate the available bandwidth of a wireless LAN based on the information from a low layer in the protocol stack. We use a network simulation tool, NS-2, to evaluate our new method with various ranges of cross-traffic and observation times. Our simulation results show that IdleGap accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps ∼ 1 Mbps with a very short observation time of 10 seconds.

  19. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    National Research Council Canada - National Science Library

    Wilcox, D. R

    2007-01-01

    Intermittent low-bandwidth communication environments, such as those encountered in U.S. Navy tactical radio and satellite links, have special requirements that do not pertain to commercial applications...

  20. Bandwidth allocation and pricing problem for a duopoly market

    Directory of Open Access Journals (Sweden)

    You Peng-Sheng

    2011-01-01

    Full Text Available This research discusses the Internet service provider (ISP bandwidth allocation and pricing problems for a duopoly bandwidth market with two competitive ISPs. According to the contracts between Internet subscribers and ISPs, Internet subscribers can enjoy their services up to their contracted bandwidth limits. However, in reality, many subscribers may experience the facts that their on-line requests are denied or their connection speeds are far below their contracted speed limits. One of the reasons is that ISPs accept too many subscribers as their subscribers. To avoid this problem, ISPs can set limits for their subscribers to enhance their service qualities. This paper develops constrained nonlinear programming to deal with this problem for two competitive ISPs. The condition for reaching the equilibrium between the two competitive firms is derived. The market equilibrium price and bandwidth resource allocations are derived as closed form solutions.

  1. modeling the effect of bandwidth allocation on network performance

    African Journals Online (AJOL)

    Using MATLAB, simulations were then .... of the network resource. Network bandwidth design, simulation, and management ... encoder processes longer signal data blocks, which entails longer ... c is the modulated signal carrier. However, the ...

  2. Bandwidth-dependent transformation of noise data f

    OpenAIRE

    P. Bormann;  

    1998-01-01

    Additional keywords: bandwidth dependence amplitudes, Dynamikbereich, Frequenzband, relative Bandbreite, spektrale Leistungsdichte der Bodenunruhe, Darstellungen der Bodenunruhespektren in verschiedenen kinematischen Einheiten, Transformation kinematischer Einheiten, Transformation von Spektren in Amplituden der Bodenbewegung, Abhaengigkeit der Amplituden von der Bandbreite

  3. Characterization of silver-gallium nanowires for force and mass sensing applications

    International Nuclear Information System (INIS)

    Biedermann, Laura B; Reifenberger, Ronald G; Tung, Ryan C; Raman, Arvind; Yazdanpanah, Mehdi M; Cohn, Robert W

    2010-01-01

    We investigate the mechanical properties of cantilevered silver-gallium (Ag 2 Ga) nanowires using laser Doppler vibrometry. From measurements of the resonant frequencies and associated operating deflection shapes, we demonstrate that these Ag 2 Ga nanowires behave as ideal Euler-Bernoulli beams. Furthermore, radial asymmetries in these nanowires are detected through high resolution measurements of the vibration spectra. These crystalline nanowires possess many ideal characteristics for nanoscale force and mass sensing, including small spring constants (as low as 10 -4 N m -1 ), high frequency bandwidth with resonance frequencies in the 0.02-10 MHz range, small suspended mass (picograms), and relatively high Q-factors (∼2-50) under ambient conditions. We evaluate the utility of Ag 2 Ga nanowires for nanocantilever applications, including ultrasmall mass and high frequency bandwidth piconewton force detection.

  4. TPROXY dan FILTERING SEBAGAI METODE OPTIMASI PEMAKAIAN BANDWIDTH INTERNET

    Directory of Open Access Journals (Sweden)

    Sutiyo Sutiyo

    2015-04-01

    Full Text Available Until now the use of the internet disuatu agencies viewed from the initial planning, use and care, even long-term planning is still not optimal. The main factor lies in the existing human resources, especially in IT personnel and policy makers who do not understand or do not even know at all how your use of the Internet well, optimal, efficient, particularly associated with the consumption of Internet bandwidth. Internet bandwidth capacity greatly affect the speed of web access or other Internet applications. So we need a plan and maintance necessary to obtain good Internet bandwidth consumption efficiency and guaranteed QoS, such as by utilizing Tproxy and filtering methods. TProxy is a development of which has been patched Squid, a proxy to be able to pass traffic without NAT (Network Access Translation. Fitering a firewall system which is used for filtering data packets that do not want filtered dikendaki or akhirmya able to minimize traffic on bandwidth usage. Tproxy and filtering runs on the Linux platform. Linux distributions are often used to Tproxy is a variant Debian, Centos and then to use Mikrotik Filtering. At the end of each request or query from the client or the response of the proxy server does not have meaningful constraints, the bandwidth between the client and the proxy server does not happen limitation, bandwidth capable of running close to capacity including 10 Mbps Ethernet, 100 Mbps, and even a GPS (full speed.

  5. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities

    International Nuclear Information System (INIS)

    Tambe, Nikhil S; Bhushan, Bharat

    2005-01-01

    Tribological studies on the micro/nanoscale conducted using an atomic force microscope (AFM) have been limited to low sliding velocities ( -1 ) due to inherent instrument limitations. Studies of tribological properties of materials, coatings and lubricants that find applications in micro/nanoelectromechanical systems and magnetic head-media in magnetic storage devices that operate at high sliding velocities have thus been rendered inadequate. We have developed a new technique to study nanotribological properties at high sliding velocities (up to 10 mm s -1 ) by modifying the commercial AFM set-up. A custom calibrated nanopositioning piezo stage is used for mounting samples and scanning is achieved by providing a triangular input voltage pulse. A capacitive sensor feedback control system is employed to ensure a constant velocity profile during scanning. Friction data are obtained by processing the AFM laser photo-diode signals using a high sampling rate data acquisition card. The utility of the modified set-up for nanoscale friction studies at high sliding velocities is demonstrated using results obtained from various tests performed to study the effect of scan size, rest time, acceleration and velocity on the frictional force for single crystal silicon (100) with native oxide

  6. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    Science.gov (United States)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  7. A Facile All-Solution-Processed Surface with High Water Contact Angle and High Water Adhesive Force.

    Science.gov (United States)

    Chen, Mei; Hu, Wei; Liang, Xiao; Zou, Cheng; Li, Fasheng; Zhang, Lanying; Chen, Feiwu; Yang, Huai

    2017-07-12

    A series of sticky superhydrophobicity surfaces with high water contact angle and high water adhesive force is facilely prepared via an all-solution-processed method based on polymerization-induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy microspheres (EMSs) with nanofolds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMS coated-surface exhibits high apparent contact angle of 152.0° and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated and, thus, control the wetting properties and water adhesive behaviors. Also, the sticky superhydrophobic surface exhibits excellent chemical stability, as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky superhydrophobic surface and obtain a wide range of use.

  8. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  9. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  10. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    Science.gov (United States)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  11. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    Science.gov (United States)

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  12. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing [School of Aerospace Science and Technology, Xidian University, Xi’an 710071 (China); Guo, Lixin [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Zhang, Hanlu [School of Communication & Information Engineering, Xi’an University of Posts & Telecommunication, Xi’an 710121 (China)

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  13. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  14. Thigh-calf contact parameters for six high knee flexion postures: Onset, maximum angle, total force, contact area, and center of force.

    Science.gov (United States)

    Kingston, David C; Acker, Stacey M

    2018-01-23

    In high knee flexion, contact between the posterior thigh and calf is expected to decrease forces on tibiofemoral contact surfaces, therefore, thigh-calf contact needs to be thoroughly characterized to model its effect. This study measured knee angles and intersegmental contact parameters in fifty-eight young healthy participants for six common high flexion postures using motion tracking and a pressure sensor attached to the right thigh. Additionally, we introduced and assessed the reliability of a method for reducing noise in pressure sensor output. Five repetitions of two squatting, two kneeling, and two unilateral kneeling movements were completed. Interactions of posture by sex occurred for thigh-calf and heel-gluteal center of force, and thigh-calf contact area. Center of force in thigh-calf regions was farther from the knee joint center in females, compared to males, during unilateral kneeling (82 and 67 mm respectively) with an inverted relationship in the heel-gluteal region (331 and 345 mm respectively), although caution is advised when generalizing these findings from a young, relatively fit sample to a population level. Contact area was larger in females when compared to males (mean of 155.61 and 137.33 cm 2 across postures). A posture main effect was observed in contact force and sex main effects were present in onset and max angle. Males had earlier onset (121.0°) and lower max angle (147.4°) with onset and max angles having a range between movements of 8° and 3° respectively. There was a substantial total force difference of 139 N between the largest and smallest activity means. Force parameters measured in this study suggest that knee joint contact models need to incorporate activity-specific parameters when estimating loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    generated by a Fluke 292 arbitrary waveform generator. The signal generator was then fed to two Trek PZD2000A high- voltage amplifiers that drove two...Processes of Impinging Jet Injectors,” NASA Propulsion Engineering Research Center, vol. 2, N94-23042, 1993, pp.69-74. 8 Li, R., and Ashgriz...Instability,” NASA SP-194, 1972 V. Appendix A Figure A1. Instantaneous images of an acoustic cycle for the PAN 5 condition. A large group of

  16. Joining forces: collaborating internationally to deliver high-quality, online postgraduate education in pain management.

    Science.gov (United States)

    Devonshire, Elizabeth; Siddall, Philip

    2011-01-01

    The effective management of pain is a complex and costly global issue, requiring a range of innovative educational strategies to enable culturally appropriate and high-quality health care provision. In response to this issue, the Pain Management Research Institute at the University of Sydney (Sydney, Australia) has established several strategic alliances with other overseas universities to deliver online postgraduate education in pain management. The present article discusses the rationale for joining forces, and the approach adopted in creating and maintaining these alliances. It also provides insights into the benefits, challenges and opportunities associated with collaborative educational initiatives of this nature, from institutional, academic and student perspectives.

  17. Real-time nanofabrication with high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Vicary, J A; Miles, M J

    2009-01-01

    The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previously described high-speed atomic force microscope (AFM) for nanofabrication. The specific fabrication method presented here concerns the modification of a silicon surface by locally oxidizing the region in the vicinity of the AFM tip. Oxide features were fabricated during imaging, with relative tip-sample velocities of up to 10 cm s -1 , and with a data capture rate of 15 fps.

  18. Compensator design for improved counterbalancing in high speed atomic force microscopy.

    Science.gov (United States)

    Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics

  19. Compensator design for improved counterbalancing in high speed atomic force microscopy

    Science.gov (United States)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  20. Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth.

    Science.gov (United States)

    Meese, Tim S; Holmes, David J

    2010-10-01

    Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.

  1. Recommendations for a National High Blood Pressure Community Education Plan. Report of Task Force III--Community Education.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    Hypertensive disease being one of the most important medical problems now facing American medicine brought about the formation of the Federally sponsored National High Blood Pressure Education Program, which included four Task Forces. Task Force 3 reviews in this study information and experience useful for the development of guidelines for…

  2. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  3. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    impingement sheet – Probably due to a impingement point physically moving Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 22...AIAA-92- 0458 30th ASM 7. N. Bremond and E. Villermaux, “Atomization by jet impact”, J. Fluid Mech 2006, vol.549, 273-306 8. W.E. Anderson, H. M. Ryan...Sheets formed by Impinging Jets in High Pressure Environments,” AIAA-2004-3526 40th ASM 11. X. Chen, D. Ma, and V. Yang, “Mechanism Study of Impact Wave

  4. Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, L., E-mail: laurent.daniel@u-psud.fr [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); GeePs (CNRS UMR8507, CentraleSupelec, UPMC, Univ Paris-Sud), 91192 Gif sur Yvette cedex (France); Hall, D. A.; Withers, P. J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Koruza, J.; Webber, K. G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); King, A. [European Synchrotron Radiation Facility (ESRF), 6 rue J. Horowitz, 38043 Grenoble (France); Synchrotron SOLEIL, BP 48, 91192 Gif sur Yvette cedex (France)

    2015-05-07

    The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed in-situ during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (Pb{sub 0.98}Ba{sub 0.01}(Zr{sub 0.51}Ti{sub 0.49}){sub 0.98}Nb{sub 0.02}O{sub 3}). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.

  5. Miniature robust five-dimensional fingertip force/torque sensor with high performance

    International Nuclear Information System (INIS)

    Liang, Qiaokang; Huang, Xiuxiang; Li, Zhongyang; Zhang, Dan; Ge, Yunjian

    2011-01-01

    This paper proposes an innovative design and investigation for a five-dimensional fingertip force/torque sensor with a dual annular diaphragm. This sensor can be applied to a robot hand to measure forces along the X-, Y- and Z-axes (F x , F y and F z ) and moments about the X- and Y-axes (M x and M y ) simultaneously. Particularly, the details of the sensing principle, the structural design and the overload protection mechanism are presented. Afterward, based on the design of experiments approach provided by the software ANSYS®, a finite element analysis and an optimization design are performed. These are performed with the objective of achieving both high sensitivity and stiffness of the sensor. Furthermore, static and dynamic calibrations based on the neural network method are carried out. Finally, an application of the developed sensor on a dexterous robot hand is demonstrated. The results of calibration experiments and the application show that the developed sensor possesses high performance and robustness

  6. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis

    Science.gov (United States)

    Sgouralis, Ioannis; Whitmore, Miles; Lapidus, Lisa; Comstock, Matthew J.; Pressé, Steve

    2018-03-01

    Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword. Most importantly, BNPs are prone to increasing the complexity of the estimated models due to artifactual features present in time traces. Thus, because of experimental challenges unique to single molecule methods, naive application of available BNP tools is not possible. Here we consider traces with time correlations and, as a specific example, we deal with force spectroscopy traces collected at high acquisition rates. While high acquisition rates are required in order to capture dwells in short-lived molecular states, in this setup, a slow response of the optical trap instrumentation (i.e., trapped beads, ambient fluid, and tethering handles) distorts the molecular signals introducing time correlations into the data that may be misinterpreted as true states by naive BNPs. Our adaptation of BNP tools explicitly takes into consideration these response dynamics, in addition to drift and noise, and makes unsupervised time series analysis of correlated single molecule force spectroscopy measurements possible, even at acquisition rates similar to or below the trap's response times.

  7. The role of elastic energy in activities with high force and power requirements: a brief review.

    Science.gov (United States)

    Wilson, Jacob M; Flanagan, Eamonn P

    2008-09-01

    The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.

  8. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  9. Study of high coercive force films made by vacuum deposition of cobalt onto chromium

    International Nuclear Information System (INIS)

    Randet, Denis

    1969-01-01

    A new method to make high coercive force films, by successive evaporations of chromium and cobalt, was demonstrated in 1966 at the 'Laboratoire d'Electronique et de Technologie de l'Informatique'. This work first contains a description of the magnetic properties of these films according to the conditions of preparation. These properties, which are isotropic in the plane of the film, are then related to the crystallographic structure of chromium and cobalt, in particular through electron microscopy. It is concluded that the coercive force is essentially due to the high magneto-crystalline anisotropy of cobalt in its hexagonal phase and depends, altogether with the shape of the hysteresis loop, on the magnetostatic coupling between the grains, which varies according to their dimensions. The chromium underlayer, if its surface is free enough of oxygen contamination, induces the growth of the hexagonal phase and influences the grain size of cobalt by a sort of epitaxy. At last, the behaviour of the Co/Cr films as a magnetic recording material is briefly examined and discussed. (author) [fr

  10. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  11. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  12. Review of single transient oscillographic recorders with gigahertz bandwidth

    International Nuclear Information System (INIS)

    Campbell, D.E.

    1982-01-01

    In laser driven inertial confinement fusion research, at Livermore, we are diagnosing many phenomena that occur in a time frame that exceeds the capabilities of even the most advanced, present day oscillographic recording instruments. Many of the by-products of the interaction between the laser beam and fuel pellet are monitored to determine the specifics of the fusion process. By the use of appropriate detectors, we convert the information contained in the radiated by-products to electrical signals which are recorded on high bandwidth oscillographic recorders. Our present range of recording capabilities for one x-ray diagnostic measurement in use at Livermore is shown. A commonly used configuration consists of an XRD-31 x-ray detector connected to a direct access Tektronix R7912 transient digitizer using 1/2 in. diameter air dielectric coaxial cable. This configuration gives a system fwhm of approximately 335 ps. Our premier configuration, on the other hand, consists of an improved response detector and a French Thomson-CSF TSN-660 oscilloscope with a shorter length of coaxial cable (typically 20 feet). The system fwhm in this case is less than 120 ps which is our fastest oscillographic recording system at the present time

  13. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    Science.gov (United States)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  14. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    Science.gov (United States)

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  15. Approximate model for toroidal force balance in the high-beta stellarator

    International Nuclear Information System (INIS)

    Barnes, D.C.

    1979-03-01

    A simple model for estimating the body force acting on a diffuse plasma confined in a three-dimensional, high-beta stellarator geometry is given. The equilibrium is treated by an asymptotic expansion about a straight theta pinch with diffuse, circular cross section. The expansion parameter delta is the strength of the applied helical fields. This expansion leads to an inconsistent set of equations for the equilibrium in second order. Nevertheless, by averaging the equilibrium equations over the volume of the confined plasma, a unique condition for toroidal equilibrium is obtained. When the results are compared with the predictions of previous equilibrium theory, which is based on the sharp-boundary model, a large deviation is found. This correction is especially large for l = 0,1 systems at high beta and must be accounted for in any confinement experiment

  16. Open-Loop Wide-Bandwidth Phase Modulation Techniques

    Directory of Open Access Journals (Sweden)

    Nitin Nidhi

    2011-01-01

    Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.

  17. High intensity interior aircraft noise increases the risk of high diastolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2009-12-01

    Full Text Available Aim: To analyze the effects of aircraft noise, resting pulse rate, and other factors on the risk of high diastolic blood pressure (DBP in Indonesian Air Force pilots.Methods: A nested case-control study was conducted using data extracted from annual medical check-ups indoctrination aerophysiologic training records at the Saryanto Aviation and Aerospace Health Institute (LAKESPRA in Jakarta from January 2003 – September 2008. For analysis of DBP: the case group with DBP ≥ 90 mmHg were compared with contral group with DBP < 79 mmHG. One case matched to 12 controls.Results: Out of 567 pilots, 544 (95.9% had complete medical records. For this analysis there were 40 cases of high DBP and 480 controls for DBP. Pilots exposed to aircraft noise 90-95 dB rather than 70-80 dB had a 2.7-fold increase for high DBP [adjusted odds ratio (ORa = 2.70; 95% confi dence interval (CI = 1.05-6.97]. Pilots with resting pulse rates of ≥ 81/minute rather than ≤ 80/minute had a 2.7-fold increase for high DBP (ORa = 2.66; 95% CI = 1.26-5.61. In terms of total fl ight hours, pilots who had 1401-11125 hours rather than 147-1400 hours had a 3.2-fold increase for high DBP (ORa = 3.18; 95% CI = 1.01-10.03.Conclusion: High interior aircraft noise, high total flight hours,  and high resting pulse rate, increased risk for high DBP. Self assessment of resting pulse rate can be used to control the risk of high DBP. (Med J Indones 2009; 276: 276-82Keywords: diastolic blood pressure, aircraft noise, resting pulse rate, military pilots

  18. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  19. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  20. A high-force controllable MR fluid damper–liquid spring suspension system

    International Nuclear Information System (INIS)

    Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-01-01

    The goal of the present research is to investigate the feasibility of incorporating a liquid spring in a semi-active suspension system for use in heavy off-road vehicles. A compact compressible magneto-rheological (MR) fluid damper–liquid spring (CMRFD–LS) with high spring rate is designed, developed and tested. Compressible MR fluids with liquid spring and variable damping characteristics are used. These fluids can offer unique functions in reducing the volume/weight of vehicle struts and improving vehicle dynamic stability and safety. The proposed device consists of a cylinder and piston–rod arrangement with an internal annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. Harmonic characterization of the CMRFD–LS is performed and the force–displacement results are presented. A fluid-mechanics based model is also developed to predict the performance of the system at different operating conditions and compared to the experimental results. Good agreement between the experimental results and theoretical predictions has been achieved. (paper)

  1. Moiré volume Bragg grating filter with tunable bandwidth.

    Science.gov (United States)

    Mokhov, Sergiy; Ott, Daniel; Divliansky, Ivan; Zeldovich, Boris; Glebov, Leonid

    2014-08-25

    We propose a monolithic large-aperture narrowband optical filter based on a moiré volume Bragg grating formed by two sequentially recorded gratings with slightly different resonant wavelengths. Such recording creates a spatial modulation of refractive index with a slowly varying sinusoidal envelope. By cutting a specimen at a small angle, to a thickness of one-period of this envelope, the longitudinal envelope profile will shift from a sine profile to a cosine profile across the face of the device. The transmission peak of the filter has a tunable bandwidth while remaining at a fixed resonant wavelength by a transversal shift of incidence position. Analytical expressions for the tunable bandwidth of such a filter are calculated and experimental data from a filter operating at 1064 nm with bandwidth range 30-90 pm is demonstrated.

  2. Development of a bandwidth limiting neutron chopper for CSNS

    Science.gov (United States)

    Wang, P.; Yang, B.; Cai, W. L.

    2015-08-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10-4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests.

  3. Development of a bandwidth limiting neutron chopper for CSNS

    International Nuclear Information System (INIS)

    Wang, P.; Yang, B.; Cai, W.L.

    2015-01-01

    Bandwidth limiting neutron choppers are indispensable key equipments for the time-of-flight neutron scattering spectrometers of China Spallation Neutron Source (CSNS). The main principle is to chop the neutron beam to limit the neutron wavelength bandwidth at the neutron detector. We have successfully developed a bandwidth limiting neutron chopper for CSNS in the CSNS advance research project II. The transmission rate of the neutron absorbing coating is less than 1×10 −4 (for 1 angstrom neutron). The phase control accuracy is ±0.084° (±9.4 μs at 25 Hz). The dynamic balance grade is G1.0. Various experimental technical features have met the design requirements, and it also runs stably and reliably during the long-term tests

  4. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    Science.gov (United States)

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  5. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  6. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    Science.gov (United States)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  7. High bandwidth synaptic communication and frequency tracking in human neocortex

    NARCIS (Netherlands)

    Testa-Silva, Guilherme; Verhoog, Matthijs B; Linaro, Daniele; de Kock, Christiaan P J; Baayen, Johannes C; Meredith, Rhiannon M; De Zeeuw, Chris I; Giugliano, Michele; Mansvelder, Huibert D

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  8. High bandwidth synaptic communication and frequency tracking in human neocortex.

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Linaro, D.; de Kock, C.P.J.; Baayen, J.C.; Meredith, R.M.; Zeeuw, C.I.; Giugliano, M.; Mansvelder, H.D.

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  9. High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex

    NARCIS (Netherlands)

    G. Testa-Silva (Guilherme); M.B. Verhoog (Matthijs); D. Linaro (Daniele); C.P.J. de Kock (Christiaan); J.C. Baayen; R.M. Meredith (Rhiannon); C.I. de Zeeuw (Chris); M. Giugliano (Michele); H.D. Mansvelder (Huibert)

    2014-01-01

    textabstractNeuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we

  10. Wide bandwidth high efficiency power converter for rf amplifiers

    OpenAIRE

    Vasic, Miroslav

    2010-01-01

    Tradicionalmente, en el mundo de la amplificación de potencia de alta frecuencia, se han distinguido dos grandes familias de amplificadores de potencia, atendiendo al efecto de su utilización sobre las señales amplificadas por los mismos: lineales y no lineales. Los amplificadores lineales se han relacionado con las clases de amplificación A, B y AB generalmente poco eficaces en el aprovechamiento de la energía, mientras que los amplificadores no lineales se han asociado a clases de funcionam...

  11. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    Science.gov (United States)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  12. Optimisation of Heterogeneous Migration Paths to High Bandwidth Home Connections

    NARCIS (Netherlands)

    Phillipson, F.

    2017-01-01

    Operators are building architectures and systems for delivering voice, audio, and data services at the required speed for now and in the future. For fixed access networks, this means in many countries a shift from copper based to fibre based access networks. This paper proposes a method to optimise

  13. Stacking it up: Exploring the limits of ultra-high resolution atomic force microscopy

    NARCIS (Netherlands)

    van der Heijden, N.J.

    2017-01-01

    Atomic force microscopy (AFM) is a technique wherein an atomically sharp needle raster scans across a surface, detecting forces between it and the sample. In state-of-the-art AFM experiments the measured forces are typically on the order of pico-Newtons, and the lateral resolution is on the order of

  14. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Directory of Open Access Journals (Sweden)

    Shahid Ameer

    Full Text Available The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands. Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands. The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands ( 4 GHz with limited selective bandwidth.

  15. Optimal design of similariton fiber lasers without gain-bandwidth limitation.

    Science.gov (United States)

    Li, Xingliang; Zhang, Shumin; Yang, Zhenjun

    2017-07-24

    We have numerically investigated broadband high-energy similariton fiber lasers, demonstrated that the self-similar evolution of pulses can locate in a segment of photonic crystal fiber without gain-bandwidth limitation. The effects of various parameters, including the cavity length, the spectral filter bandwidth, the pump power, the length of the photonic crystal fiber and the output coupling ratio have also been studied in detail. Using the optimal parameters, a single pulse with spectral width of 186.6 nm, pulse energy of 23.8 nJ, dechirped pulse duration of 22.5 fs and dechirped pulse peak power of 1.26 MW was obtained. We believe that this detailed analysis of the behaviour of pulses in the similariton regime may have major implications in the development of broadband high-energy fiber lasers.

  16. Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber – Epoxy Composite Tube

    Directory of Open Access Journals (Sweden)

    Roy Y. Allwin

    2017-09-01

    Full Text Available Carbon fiber reinforced polymeric (CFRP composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.

  17. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  18. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wadikhaye, Sachin P., E-mail: sachin.wadikhaye@uon.edu.au; Yong, Yuen Kuan; Reza Moheimani, S. O. [School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW (Australia)

    2014-10-15

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

  19. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  20. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  1. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  2. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Shen Ziyong; Hou Shimin; Zhao Xingyu; Xue Zengquan; Shi Zujin; Gu Zhennan

    2007-01-01

    Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions

  3. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Wadikhaye, Sachin P.; Yong, Yuen Kuan; Reza Moheimani, S. O.

    2014-01-01

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion

  4. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  5. The health and cost implications of high body mass index in Australian defence force personnel

    Directory of Open Access Journals (Sweden)

    Peake Jonathan

    2012-06-01

    Full Text Available Abstract Background Frequent illness and injury among workers with high body mass index (BMI can raise the costs of employee healthcare and reduce workforce maintenance and productivity. These issues are particularly important in vocational settings such as the military, which require good physical health, regular attendance and teamwork to operate efficiently. The purpose of this study was to compare the incidence of injury and illness, absenteeism, productivity, healthcare usage and administrative outcomes among Australian Defence Force personnel with varying BMI. Methods Personnel were grouped into cohorts according to the following ranges for (BMI: normal (18.5 − 24.9 kg/m2; n = 197, overweight (25–29.9 kg/m2; n = 154 and obese (≥30 kg/m2 with restricted body fat (≤28% for females, ≤24% for males (n = 148 and with no restriction on body fat (n = 180. Medical records for each individual were audited retrospectively to record the incidence of injury and illness, absenteeism, productivity, healthcare usage (i.e., consultation with medical specialists, hospital stays, medical investigations, prescriptions and administrative outcomes (e.g., discharge from service over one year. These data were then grouped and compared between the cohorts. Results The prevalence of injury and illness, cost of medical specialist consultations and cost of medical scans were all higher (p  Conclusions High BMI in the military increases healthcare usage, but does not disrupt workforce maintenance. The greater prevalence of injury and illness, greater healthcare usage and lower productivity in obese Australian Defence Force personnel is not related to higher levels of body fat.

  6. Back pain and its consequences among Polish Air Force pilots flying high performance aircraft

    Directory of Open Access Journals (Sweden)

    Aleksandra Truszczyńska

    2014-04-01

    Full Text Available Objectives: Back pain in Air Force fast jet pilots has been studied by several air forces and found to be relatively common. The objective of the study was to determine the prevalence and degree of the pain intensity in the cervical, thoracic and lumbar spine, subjective risk factors and their effect on the pilots' performance while flying high maneuver aircrafts and the consequences for cognitive deficiencies. Material and Methods: The study was designed as a retrospective, anonymous questionnaire survey, collecting data on the age, aircraft type, flying hours, pain characteristics, physical activity, etc. The study was participated by 94 pilots aged 28-45 years (mean age: 35.9±3.3 years, actively flying fast jet aircrafts Su-22, Mig-29 and F-16. The estimates regarding the level of the subjective back pain were established using visual analogue scales (VAS. Results: The values of the Cochran and Cox T-test for heterogeneous variances are as follows: for the total number of flying hours: F = 2.53, p = 0.0145, for the pilot's age: F = 3.15, p = 0.003, and for the BMI factor F = 2.73, p = 0.008. Conclusions: Our questionnaire survey showed a significant problem regarding spinal conditions in high performance aircraft pilots. The determination of the risk factors may lead to solving this problem and help eliminate the effect of the unfavorable environment on piloting jet aircrafts. Experiencing back pain during the flight might influence the mission performance and flight safety. The costs of pilots education are enormous and inability to fly, or even disability, leads to considerable economic loss. More research on specific prevention strategies is warranted in order to improve the in-flight working environment of fighter pilots.

  7. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  8. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    Science.gov (United States)

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  9. Utilising UDT to push the bandwidth envelope

    Science.gov (United States)

    Garrett, B.; Davies, B.

    eScience applications, in particular High Energy Physics, often involve large amounts of data and/or computing and often require secure resource sharing across organizational boundaries, and are thus not easily handled by today's networking infrastructures. By utilising the switched lightpath connections provided by the UKLight network it has been possible to research the use of alternate protocols for data transport. While the HEP projects make use of a number of middleware solutions for data storage and transport, they all rely on GridFTP for WAN transport. The GridFTP protocol runs over TCP as the layer 3 protocol by default, however with the latest released of the Globus toolkit it is possible to utilise alternate protocols at the layer 3 level. One of the alternatives is a reliable version of UDP called UDT. This report presents the results of the tests measuring the performance of single-threaded file transfers using GridFTP running over both TCP and the UDT protocol.

  10. Preamplifier design with wide bandwidth using InGaP/GaAs HBT for 10-Gbps photoreceiver module

    International Nuclear Information System (INIS)

    Hong, S. E.; Lim, J. M.; Kim, S. I.; Nam, E. S.

    2004-01-01

    We report a preamplifier with wide bandwidth using high-speed and reliable InGaP/GaAs HBT applicable for 10-Gbps photoreceiver modules. The three-stage preamplifier with a negative feedback resistor demonstrates an effective transimpedance gain of 43 dBΩ, a -3-dB bandwidth of 14 GHz corresponding to a very high transimpedance-bandwidth product of 2.52 THzΩ, and an output return loss of -18 dB up to -3-dB bandwidth. This compact circuit is fabricated with an area of 800 X 700 μm 2 . A photoreceiver module of surface-mountable package type, that is composed of preamplifier and photodiode of surface-illumination type, demonstrates an optical bandwidth of 7.5 GHz at λ = 1.55 μ m and a 45-psec rise/fall time for 10-Gbps. The module shows higher sensitivity for a 10-Gbps optical transmission system.

  11. Evaluation of the clamping force in high tension bolt by using the ultrasonic nonlinearity

    International Nuclear Information System (INIS)

    Jang, Kyung Young; Cheon, Hae Wha; Ha, Hob; Park, Man Sick; Kim, No You

    2005-01-01

    High tension bolts have been used widely for the clamping of many kinds of large structure. Therefore, its estimation has been regarded as main issue in the maintenance of high tension bolts. This paper proposes a novel method using the ultrasonic nonlinearity, which is based on the dependency of sound speed on the stress. For this we introduce nonlinear elastic constants in the stress-strain relationship, and derive the sound speed as a linear function of stress. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out: The first one is to measure the sound speed when the bolt is stressed by the tension tester. The result showed good agreement with the expected linear relationship between the sound speed and the axial stress. The second one is to measure the sound speed when the bolt is stressed by the torque wrench. The results showed that the sound speed was decreased when the torque was increased. From these results we can say that the proposed method is enough useful to evaluate the clamping force in the high tension bolt.

  12. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  13. Bandwidth trading under misaligned objectives: decentralized measurement-based control

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel); M. Ramakrishnan

    2006-01-01

    htmlabstractThis paper studies the interplay between a profit-maximizing network and a number of users competing for the finite bandwidth on each link. In our setting, the objectives of the network and the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize

  14. Bandwidth trading under misaligned objectives: decentralized measurement-based control

    NARCIS (Netherlands)

    Mandjes, M.R.H.; Ramakrishnan, M.

    2008-01-01

    This paper studies the interplay between a profit-maximizing network and a number of users competing for the finite bandwidth on each link. In our setting, the objectives of the network and the users are ‘misaligned’, in that the prices that optimize the network’s profit do not maximize the

  15. Iterative Available Bandwidth Estimation for Mobile Transport Networks

    DEFF Research Database (Denmark)

    Ubeda Castellanos, Carlos; López Villa, Dimas; Teyeb, Oumer Mohammed

    2007-01-01

    Available bandwidth estimation has lately been proposed to be used for end-to-end resource management in existing and emerging mobile communication systems, whose transport networks could end up being the bottleneck rather than the air interface. Algorithms for admission control, handover...

  16. Come together: African universities collaborate to improve bandwidth

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-02-02

    Feb 2, 2011 ... SEE ALSO... In Reports magazine: Viewpoint: Bandwidth can bring African universities up to speed. In Reports magazine: Brain Drain and Capacity Building in Africa · The AAU Web site. The Connectivity Africa Web site. The World Summit on the Information Society (WSIS) Web site. IDRC's ICT4D Web site ...

  17. Fluid limits for bandwidth-sharing networks with rate constraints

    NARCIS (Netherlands)

    M. Frolkova (Masha); J. Reed (Josh); A.P. Zwart (Bert)

    2013-01-01

    htmlabstractBandwidth-sharing networks as introduced by Massouli\\'e~\\& Roberts (1998) model the dynamic interaction among an evolving population of elastic flows competing for several links. With policies based on optimization procedures, such models are of interest both from a~Queueing Theory and

  18. Estimating auditory filter bandwidth using distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Hauen, Sigurd van; Rukjær, Andreas Harbo; Ordoñez Pizarro, Rodrigo Eduardo

    2017-01-01

    The basic frequency selectivity in the listener’s hearing is often characterized by auditory filters. These filters are determined through listening tests, which determine the masking threshold as a function of frequency of the tone and the bandwidth of the masking sound. The auditory filters hav...

  19. Estimating Bandwidth Requirements using Flow-level Measurements

    NARCIS (Netherlands)

    Bruyère, P.; de Oliveira Schmidt, R.; Sperotto, Anna; Sadre, R.; Pras, Aiko

    Bandwidth provisioning is an important task of network management and it is done aiming to meet desired levels of quality of service. Current practices of provisioning are mostly based on rules-of-thumb and use coarse traffic measurements that may lead to problems of under and over dimensioning of

  20. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be

  1. 47 CFR 15.35 - Measurement detector functions and bandwidths.

    Science.gov (United States)

    2010-10-01

    ... are based on the use of measurement instrumentation employing an average detector function. Unless... in terms of the average value of the emission, and pulsed operation is employed, the measurement... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement detector functions and bandwidths...

  2. A Practical Approach For Excess Bandwidth Distribution for EPONs

    KAUST Repository

    Elrasad, Amr

    2014-03-09

    This paper introduces a novel approach called Delayed Excess Scheduling (DES), which practically reuse the excess bandwidth in EPONs system. DES is suitable for the industrial deployment as it requires no timing constraint and achieves better performance compared to the previously reported schemes.

  3. Come together: African universities collaborate to improve bandwidth

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-02-02

    Feb 2, 2011 ... However, a stumbling block to realizing this vision arose: the cost of access. As Bob Hawkins, a senior education specialist at the WBI, points out, “the average African university pays 50 times more than the amount a North American university pays for Internet access.” Moreover, the bandwidth available to ...

  4. Modeling the Effect of Bandwidth Allocation on Network Performance

    African Journals Online (AJOL)

    ... The proposed model showed improved performance for CDMA networks, but further increase in the bandwidth did not benefit the network; (iii) A reliability measure such as the spectral efficiency is therefore useful to redeem the limitation in (ii). Keywords: Coverage Capacity, CDMA, Mobile Network, Network Throughput ...

  5. BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    Directory of Open Access Journals (Sweden)

    Chao Yin

    2013-01-01

    Full Text Available To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practical perspectives. We developed BMCloud, a new low repair bandwidth, low maintenance cost cloud storage system, which aims to reduce repair bandwidth and maintenance cost. The system employs both functional repair and exact repair while it inherits advantages from the both. We propose the JUDGE_STYLE algorithm, which can judge whether the system should adopt exact repair or functional repair. We implemented a networked storage system prototype and demonstrated our findings. Compared with existing solutions, BMCloud can be used in engineering to save repair bandwidth and degrade maintenance significantly.

  6. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    Science.gov (United States)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  7. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    Science.gov (United States)

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  8. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture.

    Science.gov (United States)

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro

    2016-01-25

    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

  9. Wideband Spectroscopy: The Design and Implementation of a 3 GHz Bandwidth, 8192 Channel, Polyphase Digital Spectrometer

    Science.gov (United States)

    Monroe, Ryan M.

    2011-01-01

    A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution unavailable elsewhere. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved Analog-to-Digital Converters, (ADC). This 6 Gsps (giga-sample per second) digital representation of the analog signal is then processed through an FPGA-based streaming Fast Fourier Transform (FFT), the key development described below. Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers. the implementation, results and underlying math for this spectrometer, as well as, potential for future extension to even higher bandwidth, resolution and channel orthogonality, needed to support proposed future advanced atmospheric science and radioastronomy, are discussed.

  10. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    We demonstrate efficient upconversion of modulated infrared (IR) signals over a wide bandwidth (up to frequencies in excess of 1 GHz) via cavity-enhanced sum-frequency generation (SFG) in a periodically poled LiNbO3. Intensity modulated IR signal is produced by combining beams from two 1547 nm...... narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... the enhanced spectral stability from multiple to single longitudinal mode pumping condition. We describe analytically and demonstrate experimentally the deleterious effects of using a multimode pump to the high-bandwidth RF spectrum of the 630 nm SFG output. Offering enhanced sensitivity without the need...

  11. Aircraft vibration and other factors related to high systolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2013-05-01

    Indonesian Air Force pilots doing annual medical check-ups at the Saryanto Institute for Medical and Health Aviation and Aerospace (LAKESPRA from 2003 – 2008. The data extracted from medical records were age, total flight hours, type of aircraft, fasting blood glucose and cholesterol levels, waist circumference, height and weight (Body Mass Index, and blood pressure.Results: Of 336 pilots, there were 16 with systolic pressure  140 mmHg. The pilot who had high vibration than low vibration had 2.8-fold to be high systolic blood pressure [adjusted odds ratio (ORa = 2.83; 95%confidence interval (CI =1.16-22.04. In term of average flight hours, those who had average flight hours of 300-622 hours per year compared to 29-299 hours per year had 5-fold increased risk to be high systolic blood pressure (ORa = 5.05; 95% CI =1.16-22.04]. Furthermore, those who had high than normal resting pulse rate had 2.4 times to be high systolic blood pressure (ORa = 2.37; 95 CI =0.81-6.97; P = 0.115.Conclusion:High aircraft vibration, high average flight hours per year, and high resting pulse rate increase risk high systolic blood pressure in air force pilots.Keywords: systolic blood pressure, aircraft vibration, resting pulse rate, pilots

  12. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes.

    Science.gov (United States)

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-12-13

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes.

  13. IMPROVING BANDWIDTH OF FLIPPED VOLTAGE FOLLOWER USING GATE-BODY DRIVEN TECHNIQUE

    Directory of Open Access Journals (Sweden)

    VANDANA NIRANJAN

    2017-01-01

    Full Text Available In this paper, a new approach to enhance the bandwidth of flipped voltage follower is explored. The proposed approach is based on gate-body driven technique. This technique boosts the transconductance in a MOS transistor as both gate and body/bulk terminals are tied together and used as signal input. This novel technique appears as a good solution to merge the advantages of gate-driven and bulk-driven techniques and suppress their disadvantages. The gate-body driven technique utilizes body effect to enable low voltage low power operation and improves the overall performance of flipped voltage follower, providing it with low output impedance, high input impedance and bandwidth extension ratio of 2.614. The most attractive feature is that bandwidth enhancement has been achieved without use of any passive component or extra circuitry. Simulations in PSpice environment for 180 nm CMOS technology verified the predicted theoretical results. The improved flipped voltage follower is particularly interesting for high frequency low noise signal processing applications.

  14. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering

    Science.gov (United States)

    Tsakmakidis, K. L.; Shen, L.; Schulz, S. A.; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, A. F.; Boyd, R. W.

    2017-06-01

    A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δt inversely proportional to the bandwidth (Δt·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this “fundamental” limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.

  15. Analytical optimization of active bandwidth and quality factor for TOCSY experiments in NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Coote, Paul, E-mail: paul-coote@hms.harvard.edu [Harvard Medical School (United States); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard; Arthanari, Haribabu, E-mail: hari@hms.harvard.edu [Harvard Medical School (United States)

    2016-09-15

    Active bandwidth and global quality factor are the two main metrics used to quantitatively compare the performance of TOCSY mixing sequences. Active bandwidth refers to the spectral region over which at least 50 % of the magnetization is transferred via a coupling. Global quality factor scores mixing sequences according to the worst-case transfer over a range of possible mixing times and chemical shifts. Both metrics reward high transfer efficiency away from the main diagonal of a two-dimensional spectrum. They can therefore be used to design mixing sequences that will function favorably in experiments. Here, we develop optimization methods tailored to these two metrics, including precise control of off-diagonal cross peak buildup rates. These methods produce square shaped transfer efficiency profiles, directly matching the desirable properties that the metrics are intended to measure. The optimization methods are analytical, rather than numerical. The two resultant shaped pulses have significantly higher active bandwidth and quality factor, respectively, than all other known sequences. They are therefore highly suitable for use in NMR spectroscopy. We include experimental verification of these improved waveforms on small molecule and protein samples.

  16. Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2016-03-01

    Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.

  17. MEMS capacitive force sensors for cellular and flight biomechanics

    International Nuclear Information System (INIS)

    Sun Yu; Nelson, Bradley J

    2007-01-01

    Microelectromechanical systems (MEMS) are playing increasingly important roles in facilitating biological studies. They are capable of providing not only qualitative but also quantitative information on the cellular, sub-cellular and organism levels, which is instrumental to understanding the fundamental elements of biological systems. MEMS force sensors with their high bandwidth and high sensitivity combined with their small size, in particular, have found a role in this domain, because of the importance of quantifying forces and their effect on the function and morphology of many biological structures. This paper describes our research in the development of MEMS capacitive force sensors that have already demonstrated their effectiveness in the areas of cell mechanics and Drosophila flight dynamics studies. (review article)

  18. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.

    Science.gov (United States)

    Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi

    2014-12-01

    To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.

  19. Investigation of polymer derived ceramics cantilevers for application of high speed atomic force microscopy

    Science.gov (United States)

    Wu, Chia-Yun

    High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques

  20. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  1. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  2. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  3. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    International Nuclear Information System (INIS)

    Habib Ullah, M; Islam, M T

    2014-01-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < −10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart. (paper)

  4. A new metasurface reflective structure for simultaneous enhancement of antenna bandwidth and gain

    Science.gov (United States)

    Ullah, M. Habib; Islam, M. T.

    2014-08-01

    A new bi-layered metasurface reflective structure (MRS) on a high-permittivity, low-loss, ceramic-filled, bio-plastic, sandwich-structured, dielectric substrate is proposed for the simultaneous enhancement of the bandwidth and gain of a dual band patch antenna. By incorporating the MRS with a 4 mm air gap between the MRS and the antenna, the bandwidth and gain of the dual band patch antenna are significantly enhanced. The reflection coefficient (S11 < -10 dB) bandwidth of the proposed MRS-loaded antenna increased by 240% (178%), and the average peak gain improved by 595% (128%) compared to the antenna alone in the lower (upper) band. Incremental improvements of the magnitude and directional patterns have been observed from the measured radiation patterns at the three resonant frequencies of 0.9 GHz, 3.7 GHz and 4.5 GHz. The effects of different configurations of the radiating patch and the ground plane on the reflection coefficient have been analyzed. In addition, the voltage standing wave ratio and input impedance have also been validated using a Smith chart.

  5. Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone

    Directory of Open Access Journals (Sweden)

    Marcel Heers

    2018-01-01

    Full Text Available The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ. There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data.

  6. Optimal kernel shape and bandwidth for atomistic support of continuum stress

    International Nuclear Information System (INIS)

    Ulz, Manfred H; Moran, Sean J

    2013-01-01

    The treatment of atomistic scale interactions via molecular dynamics simulations has recently found favour for multiscale modelling within engineering. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. This averaging volume, and therefore the associated stress at a continuum point, is highly dependent on the bandwidth and shape of the kernel. In this paper we propose an effective and entirely data-driven strategy for simultaneously computing the optimal shape and bandwidth for the kernel. We thoroughly evaluate our proposed approach on copper using three classical elasticity problems. Our evaluation yields three key findings: firstly, our technique can provide a physically meaningful estimation of kernel bandwidth; secondly, we show that a uniform kernel is preferred, thereby justifying the default selection of this kernel shape in future work; and thirdly, we can reliably estimate both of these attributes in a data-driven manner, obtaining values that lead to an accurate estimation of the stress at a continuum point. (paper)

  7. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2012-05-31

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniques in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.

  8. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Armstrong, D.J.; Alford, W.J.

    1998-01-01

    We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x,t), rather than Fourier space, (k,ω), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing. copyright 1998 Optical Society of America

  9. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    Science.gov (United States)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  10. Effect of backing material on the transmitting response level and bandwidth of a wideband underwater transmitting transducer using 1-3 piezocomposite

    CSIR Research Space (South Africa)

    Nicolaides, K

    2009-01-01

    Full Text Available : Transducer design The 1-3 piezocomposite (40% VF) active element was designed to resonate at around 300 kHz see figure 2. 1-3 piezocomposite material with 40% VF was selected due its excellent wide bandwidth and high transmitting response characteristics... is shown in figure 3(a). These results demonstrate the wide bandwidth characteristics for such a design. The transmitting response and acoustic characteristics (bandwidth and level) of this configuration will be used as our base line and all...

  11. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode.

    Science.gov (United States)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. 07.79.Lh; 07.79.Sp; 68.37.Ps.

  12. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  13. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  14. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    Science.gov (United States)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  15. An exponential universal scaling law for the volume pinning force of high temperature superconductors

    International Nuclear Information System (INIS)

    Hampshire, D.P.

    1993-01-01

    The exponential magnetic field dependence of the critical current density (J c (B,T)) found in many high temperature superconductors, given by: J c (B,T) α(T)exp(-B/β(T)) where α(T) and β(T) are functions of temperature alone, necessarily implies a Universal Scaling Law for the volume pinning force (F p ) of the form: F p /F PMAX exp(+1).(B/β(T)).exp(-B/β(T)). If the Upper Critical Field is not explicitly measured but is artificially determined by smooth extrapolation of J c (B,T) to zero on a linear J c (B,T) vs B plot, this exponential scaling law can be closely approximated by the Kramer dependence given by: F p /F PMAX C.b p .(1-b) q where p = 0.5, q = 2, C ∼ 3.5 and b = B/B C2 (T). The implications for flux pinning studies are discussed. (orig.)

  16. Technique for forcing high Reynolds number isotropic turbulence in physical space

    Science.gov (United States)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  17. Integrated dynamic and static tactile sensor: focus on static force sensing

    Science.gov (United States)

    Wettels, Nicholas; Pletner, Baruch

    2012-04-01

    Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.

  18. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  19. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  20. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  1. Raman scheme for adjustable-bandwidth quantum memory

    International Nuclear Information System (INIS)

    Le Goueet, J.-L.; Berman, P. R.

    2009-01-01

    We propose a scenario of quantum memory for light based on Raman scattering. The storage medium is a vapor and the different spectral components of the input pulse are stored in different atomic velocity classes. One uses appropriate pulses to reverse the resulting Doppler phase shift and to regenerate the input pulse, without distortion, in the backward direction. The different stages of the protocol are detailed and the recovery efficiency is calculated in the semiclassical picture. Since the memory bandwidth is determined by the Raman transition Doppler width, it can be adjusted by changing the angle between the input pulse wave vector and the control beams. The optical depth also depends on the beam angle. As a consequence the available optical depth can be optimized depending on the needed bandwidth. The predicted recovery efficiency is close to 100% for large optical depth.

  2. The Bandwidths of a Matrix. A Survey of Algorithms

    Directory of Open Access Journals (Sweden)

    Mafteiu-Scai Liviu Octavian

    2014-12-01

    Full Text Available The bandwidth, average bandwidth, envelope, profile and antibandwidth of the matrices have been the subjects of study for at least 45 years. These problems have generated considerable interest over the years because of them practical relevance in areas like: solving the system of equations, finite element methods, circuit design, hypertext layout, chemical kinetics, numerical geophysics etc. In this paper a brief description of these problems are made in terms of their definitions, followed by a comparative study of them, using both approaches: matrix geometry and graph theory. Time evolution of the corresponding algorithms as well as a short description of them are made. The work also contains concrete real applications for which a large part of presented algorithms were developed.

  3. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.

    2013-01-01

    pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping......Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  4. Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues.

    Science.gov (United States)

    Yong, Y K; Moheimani, S O R; Kenton, B J; Leang, K K

    2012-12-01

    Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the kilohertz range. State-of-the-art designs incorporate uniquely designed flexure mechanisms driven by compact and stiff piezoelectric actuators. This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning. Future challenges and research topics are also discussed.

  5. Bandwidth Allocation Considering Priorities among Multimedia Components in Mobile Networks

    OpenAIRE

    Shigeki, Shiokawa; Shuji, Tasaka

    2001-01-01

    This paper proposes a bandwidth allocation scheme which improves degradation of communication quality due to handoffs in mobile multimedia networks. In general, a multimedia call consists of several component calls. For example, a video phone call consists of a voice call and a video call. In realistic environments, each component call included in one multimedia call may have different requirements for quality-of-service (QoS) from each other, and priorities among these component calls often ...

  6. Power Versus Bandwidth Efficiency in Wireless Communication: The Economic Perspective

    OpenAIRE

    Akhtman, Jos; Hanzo, Lajos

    2009-01-01

    We carry out a comprehensive analysis of a range of wireless network efficiency considerations. Firstly, we explore the properties and the implications of the power- versus bandwidth-efficiency criteria. Secondly, we perform a detailed top-down analysis of a typical commercial wireless network, which emphasizes the inherent differences between the aforementioned two efficiency metrics, while demonstrating that the appropriate choice of the network optimization criterion can have a profound ef...

  7. Developing Reliable Telemedicine Platforms with Unreliable and Limited Communication Bandwidth

    Science.gov (United States)

    2017-10-01

    AFRL-SA-WP-TR-2017-0019 Developing Reliable Telemedicine Platforms with Unreliable and Limited Communication Bandwidth Peter F...Wright-Patterson AFB, OH 45433-7913 DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. STINFO COPY NOTICE AND...invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) (http

  8. Bandwidth Management in Wireless Home Networks for IPTV Solutions

    Directory of Open Access Journals (Sweden)

    Tamás Jursonovics

    2013-01-01

    Full Text Available The optimal allocation of the retransmission bandwidth is essential for IPTV service providers to ensure maximal service quality. This paper highlights the relevance of the wireless transport in today’s IPTV solution and discusses how this new media affects the existing broadcast technologies. A new Markovian channel model is developed to address the optimization issues of the retransmission throughput, and a new method is presented which is evaluated by empirical measurements followed by mathematical analysis.

  9. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  10. BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    OpenAIRE

    Yin, Chao; Xie, Changsheng; Wan, Jiguang; Hung, Chih-Cheng; Liu, Jinjiang; Lan, Yihua

    2013-01-01

    To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM) is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practi...

  11. High resolution magnetic force microscopy using focussed ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Summary form only given. Magnetic force microscopy (MFM) is well established for imaging surface magnetic stray fields. With commercial microscopes and magnetic tips, images with 50 nm resolution are quite routine; however, obtaining higher resolutions is experimentally more demanding. Higher

  12. Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces.

    Directory of Open Access Journals (Sweden)

    Kevin G Keenan

    Full Text Available Mobile computing devices (e.g., smartphones and tablets that have low-friction surfaces require well-directed fingertip forces of sufficient and precise magnitudes for proper use. Although general impairments in manual dexterity are well-documented in older adults, it is unclear how these sensorimotor impairments influence the ability of older adults to dexterously manipulate fixed, low-friction surfaces in particular. 21 young and 18 older (65+ yrs adults produced maximal voluntary contractions (MVCs and steady submaximal forces (2.5 and 10% MVC with the fingertip of the index finger. A Teflon covered custom-molded splint was placed on the fingertip. A three-axis force sensor was covered with either Teflon or sandpaper to create low- and high-friction surfaces, respectively. Maximal downward forces (F(z were similar (p = .135 for young and older adults, and decreased by 15% (p<.001 while pressing on Teflon compared to sandpaper. Fluctuations in F(z during the submaximal force-matching tasks were 2.45× greater (p<.001 for older adults than in young adults, and reached a maximum when older adults pressed against the Teflon surface while receiving visual feedback. These age-associated changes in motor performance are explained, in part, by altered muscle activity from three hand muscles and out-of-plane forces. Quantifying the ability to produce steady fingertip forces against low-friction surfaces may be a better indicator of impairment and disability than the current practice of evaluating maximal forces with pinch meters. These age-associated impairments in dexterity while interacting with low-friction surfaces may limit the use of the current generation of computing interfaces by older adults.

  13. Composite GPS Patch Antenna for the AR Bandwidth Enhancement

    Directory of Open Access Journals (Sweden)

    Minkil Park

    2016-01-01

    Full Text Available A composite Global Positioning System (GPS patch antenna with a quadrature 3 dB hybrid coupler was designed and implemented for working RHCP and had a broadband axial ratio (AR bandwidth. We designed two patches as a FR-4 patch and 1.5 mm thickness thin ceramic patch with a quadrature 3 dB hybrid coupler. A CP radiation pattern was achieved, and the AR bandwidth improved by incorporating a quadrature 3 dB hybrid coupler feed structure in a micro-strip patch antenna. SMD by chip elements was applied to the quadrature 3 dB hybrid coupler. For the composite FR-4 and ceramic patch antennas, the VSWR measurement showed a 2 : 1 ratio over the entire design band, and the 3 dB AR bandwidth was 295 and 580 MHz for the FR-4 patch and ceramic patch antennas, respectively. The antenna gains for the composite FR-4 and ceramic patch antennas were measured as 1.36–2.75 and 1.47–2.71 dBi with 15.11–25.3% and 19.25–28.45% efficiency, respectively.

  14. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals…

  15. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  16. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Science.gov (United States)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  17. Quantification of the resist dissolution process: an in situ analysis using high speed atomic force microscopy

    Science.gov (United States)

    Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro

    2016-03-01

    This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.

  18. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  19. Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Science.gov (United States)

    Public Health Service (DHHS), Rockville, MD.

    This is the final report of National Black Health Providers Task Force (NBHPTF) on High Blood Pressure Education and Control. The first chapter of the report recounts the history of the NBHPTF and its objectives. In the second chapter epidemiological evidence is presented to demonstrate the need for a suggested 20 year plan aimed at controlling…

  20. AMELIORATE OF BANDWIDTH AND RETURN LOSS OF RECTANGULAR PATCH ANTENNA USING METAMATERIAL STRUCTURE FOR RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    RAJESH SAHA

    2016-09-01

    Full Text Available Radio Frequency Identification is an emerging research topic to identify any object automatically and it has applications in many fields like manufacture industry, business, animal tracking, vehicle tracking etc. In automatic identification system, the main role of radio frequency identification system is radiation and detection. The reader and the tag are the important components in radio frequency identification technology. In radio frequency identification system, antenna plays very significant role to transmit and receive data in both direction (i.e., from reader to tag and vice versa. An antenna with high gain, high directivity, high bandwidth and more down in negative S11 (dB value works as an effective antenna. So design and optimization of an effective antenna is very necessary for any application. In this paper, firstly itdesigned a rectangular patch antenna and simulated through High Frequency Structure Simulator. In next step, it designed a metamaterial structure having U shape Split Ring Resonator with both one and two port, on the rectangular patch antenna to improve the return loss and bandwidth of patch antenna; so that the performance of the tag can be increased for the radio frequency identification system. By simulation it has been seen that, two port antenna provides maximum return loss and bandwidth of - 41.2dB and 870MHz respectively. Finally, the output parameters such as return loss, gain, directivity that are obtained from simulation of the metamaterial Split Ring Resonator structure antenna are compared with the network output of Artificial Neural Network to find the Mean Square Error between the simulated output and Artificial Neural Network output.

  1. Instantaneous axial force of a high-order Bessel vortex beam of acoustic waves incident upon a rigid movable sphere.

    Science.gov (United States)

    Mitri, F G; Fellah, Z E A

    2011-08-01

    The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Performance of Cableless Magnetic In-Piping Actuator Capable of High-Speed Movement by Means of Inertial Force

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yaguchi

    2011-01-01

    Full Text Available The present paper proposes a novel cableless magnetic actuator with a new propulsion module that exhibits a very high thrusting force. This actuator contains an electrical inverter that directly transforms DC from button batteries into AC. The electrical DC-AC inverter incorporates a mass-spring system, a reed switch, and a curved permanent magnet that switches under an electromagnetic force. The actuator is moved by the inertial force of the mass-spring system due to mechanical resonance energy. The experimental results show that the actuator is able to move upward at a speed of 19.7 mm/s when using 10 button batteries when pulling a 20 g load mass. This cableless magnetic actuator has several possible applications, including narrow pipe inspection and maintenance.

  3. Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem

    Directory of Open Access Journals (Sweden)

    F. C. Cooper

    2013-04-01

    Full Text Available The fluctuation-dissipation theorem (FDT has been proposed as a method of calculating the response of the earth's atmosphere to a forcing. For this problem the high dimensionality of the relevant data sets makes truncation necessary. Here we propose a method of truncation based upon the assumption that the response to a localised forcing is spatially localised, as an alternative to the standard method of choosing a number of the leading empirical orthogonal functions. For systems where this assumption holds, the response to any sufficiently small non-localised forcing may be estimated using a set of truncations that are chosen algorithmically. We test our algorithm using 36 and 72 variable versions of a stochastic Lorenz 95 system of ordinary differential equations. We find that, for long integrations, the bias in the response estimated by the FDT is reduced from ~75% of the true response to ~30%.

  4. On the force relaxation in the magnetic levitation system with a high-Tc superconductor

    International Nuclear Information System (INIS)

    Smolyak, B M; Zakharov, M S

    2014-01-01

    The effect of magnetic flux creep on the lift force in a magnet/superconductor system was studied. It was shown experimentally that in the case of real levitation (when a levitating object bears only on a magnetic field) the suspension height and consequently the lift force did not change over a long period of time. When the levitating object is fixed for some time (i.e. a rigid constraint is imposed on it), the levitation height decreases after removal of the external constraint. It is assumed that free oscillations of the levitating object slow down the flux creep process, which is activated when these oscillations are suppressed. (paper)

  5. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  6. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting

    International Nuclear Information System (INIS)

    Li, Xiangming; Shao, Jinyou; Tian, Hongmiao; Ding, Yucheng; Li, Xiangmeng

    2011-01-01

    We propose a novel method for fabricating high-aspect-ratio micro-/nano-structures by dielectrophoresis-electrocapillary force (DEP-ECF)-driven UV-imprinting. The force of DEP-ECF, acting on an air–liquid interface and an air–liquid–solid three-phase contact line, is generated by applying voltage between an electrically conductive mold and a substrate, and tends to pull the dielectric liquid (a UV-curable pre-polymer) into the mold micro-cavities. The existence of DEP-ECF is explained theoretically and demonstrated experimentally by the electrically induced reduction of the contact angle. Furthermore, DEP-ECF is proven to play a critical role in forcing the polymer to fill into the mold cavities by the real-time observation of the dynamic filling process. Using the DEP-ECF-driven UV-imprinting process, high-aspect-ratio polymer micro-/nano-structures (more than 10:1) are fabricated with high consistency. This patterning method can overcome the drawbacks of the mechanically induced mold deformation and position shift in conventional imprinting lithography and maximize the pattern uniformity which is usually poor in capillary force lithography

  7. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  8. A Statistical Approach for Gain Bandwidth Prediction of Phoenix-Cell Based Reflect arrays

    Directory of Open Access Journals (Sweden)

    Hassan Salti

    2018-01-01

    Full Text Available A new statistical approach to predict the gain bandwidth of Phoenix-cell based reflectarrays is proposed. It combines the effects of both main factors that limit the bandwidth of reflectarrays: spatial phase delays and intrinsic bandwidth of radiating cells. As an illustration, the proposed approach is successfully applied to two reflectarrays based on new Phoenix cells.

  9. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation

  10. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    Science.gov (United States)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results

  11. High temperature reactor: Driving force to convert CO2 to fuel - HTR2008-58132

    International Nuclear Information System (INIS)

    McCormick, J. L.

    2008-01-01

    The rapidly increasing cost of petroleum products and uncertainty of long-term supply have prompted the U.S. military to aggressively pursue production of alternative fuels (synfuels) such as coal-to-liquids (CTL). U.S. Air Force is particularly active in this effort while the entire military is involved in simultaneously developing fuel specifications for alternative fuels that enable a single fuel for the entire battle space; all ground vehicles, aircraft and fuel cells. By limiting its focus on coal, tar sands and oil shale resources, the military risks violating federal law which requires the use of synfuels that have life cycle greenhouse gas emissions less than or equal to emissions from conventional petroleum fuels. A climate-friendly option would use a high temperature nuclear reactor to split water. The hydrogen (H 2 ) would be used in the reverse water gas shift (RWGS) to react with carbon dioxide (CO 2 ) to produce carbon monoxide (CO) and water. The oxygen (O 2 ) would be fed into a supercritical (SC) coal furnace. The flue gas CO 2 emissions would be stripped of impurities before reacting with H 2 in a RWGS process. Resultant carbon monoxide (CO) is fed, with additional H2, (extra H 2 needed to adjust the stoichiometry: 2 moles H 2 to one mole CO) into a conventional Fischer-Tropsch synthesis (FTS) to produce a heavy wax which is cracked and isomerized and refined to Jet Propulsion 8 (JP-8) and Jet Propulsion 5 (JP-5) fuels. The entire process offers valuable carbon-offsets and multiple products that contribute to lower syn-fuel costs and to comply with the federal limitation imposed on syn-fuel purchases. While the entire process is not commercially available, component parts are being researched; their physical and chemical properties understood and some are state-of-the-art technologies. An international consortium should complete physical, chemical and economic flow sheets to determine the feasibility of this concept that, if pursued, has broad

  12. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor

    2014-09-01

    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  13. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  14. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  15. High resolution magnetic force microscopy: instrumentation and application for recording media

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.

    This thesis describes aspects of the use of magnetic force microscopy for the study of magnetic recording media. The maximum achievable storage density in magnetic recording is limited by the magnetic reversal behaviour of the medium and by the stability of the written information. The shape and

  16. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  17. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    Science.gov (United States)

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  18. Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation

    Science.gov (United States)

    Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie

    2009-01-01

    In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

  19. A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2016-01-01

    comparator and a pull-down clocked latch. The feedback signal is generated with voltage DACs based on transmission gates. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The modulator has a bandwidth of 10 MHz with an oversampling......A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...

  20. Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Munish Rattan

    2008-01-01

    Full Text Available Particle swarm optimization (PSO is a new, high-performance evolutionary technique, which has recently been used for optimization problems in antennas and electromagnetics. It is a global optimization technique-like genetic algorithm (GA but has less computational cost compared to GA. In this paper, PSO has been used to optimize the gain, impedance, and bandwidth of Yagi-Uda array. To evaluate the performance of designs, a method of moments code NEC2 has been used. The results are comparable to those obtained using GA.

  1. Simulation-Driven Development and Optimization of a High-Performance Six-Dimensional Wrist Force/Torque Sensor

    Directory of Open Access Journals (Sweden)

    Qiaokang LIANG

    2010-05-01

    Full Text Available This paper describes the Simulation-Driven Development and Optimization (SDDO of a six-dimensional force/torque sensor with high performance. By the implementation of the SDDO, the developed sensor possesses high performance such as high sensitivity, linearity, stiffness and repeatability simultaneously, which is hard for tranditional force/torque sensor. Integrated approach provided by software ANSYS was used to streamline and speed up the process chain and thereby to deliver results significantly faster than traditional approaches. The result of calibration experiment possesses some impressive characters, therefore the developed fore/torque sensor can be usefully used in industry and the methods of design can also be used to develop industrial product.

  2. Bandwidth allocation for video under quality of service constraints

    CERN Document Server

    Anjum, Bushra

    2014-01-01

    We present queueing-based algorithms to calculate the bandwidth required for a video stream so that the three main Quality of Service constraints, i.e., end-to-end delay, jitter and packet loss, are ensured. Conversational and streaming video-based applications are becoming a major part of the everyday Internet usage. The quality of these applications (QoS), as experienced by the user, depends on three main metrics of the underlying network, namely, end-to-end delay, jitter and packet loss. These metrics are, in turn, directly related to the capacity of the links that the video traffic trave

  3. OPTIM, Minimization of Band-Width of Finite Elements Problems

    International Nuclear Information System (INIS)

    Huart, M.

    1977-01-01

    1 - Nature of the physical problem solved: To minimize the band-width of finite element problems. 2 - Method of solution: A surface is constructed from the x-y-coordinates of each node using its node number as z-value. This surface consists of triangles. Nodes are renumbered in such a way as to minimize the surface area. 3 - Restrictions on the complexity of the problem: This program is applicable to 2-D problems. It is dimensioned for a maximum of 1000 elements

  4. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    International Nuclear Information System (INIS)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-01-01

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  5. Modulator reliability and bandwidth improvement: replacing tetrodes with MOSFETs

    International Nuclear Information System (INIS)

    Donaldson, A.R.

    1982-01-01

    Three types of power MOS field effect transistors were studied with the intent of replacing a parallel pair of vacuum tube tetrodes in a linear modulator. The tetrodes have the shortest lifetimes of any other tubes in the system. The FETs offer definite performance advantages when compared to bipolar transistors and definite cost advantages when compared to vacuum tubes. Replacement of the tetrodes does however require careful consideration of voltage, current and to a lesser extent bandwidth capability in order to enhance overall modulator reliability without compromising present performance

  6. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  7. Implementasi Manajemen Bandwidth Dengan Disiplin Antrian Hierarchical Token Bucket (HTB Pada Sistem Operasi Linux

    Directory of Open Access Journals (Sweden)

    Muhammad Nugraha

    2016-09-01

    Full Text Available Important Problem on Internet networking is exhausted resource and bandwidth by some user while other user did not get service properly. To overcome that problem we need to implement traffic control and bandwidth management system in router. In this research author want to implement Hierarchical Token Bucket algorithm as queue discipline (qdisc to get bandwidth management accurately in order the user can get bandwidth properly. The result of this research is form the management bandwidth cheaply and efficiently by using Hierarchical Token Bucket qdisc on Linux operating system were able to manage the user as we want.

  8. IMPLEMENTASI MANAJEMEN BANDWIDTH DENGAN DISIPLIN ANTRIAN HIERARCHICAL TOKEN BUCKET (HTB PADA SISTEM OPERASI LINUX

    Directory of Open Access Journals (Sweden)

    Muhammad Nugraha

    2017-01-01

    Full Text Available Important Problem on Internet networking is exhausted resource and bandwidth by some user while other user did not get service properly. To overcome that problem we need to implement traffic control and bandwidth management system in router. In this research author want to implement Hierarchical Token Bucket algorithm as queue discipline (qdisc to get bandwidth management accurately in order the user can get bandwidth properly. The result of this research is form the management bandwidth cheaply and efficiently by using Hierarchical Token Bucket qdisc on Linux operating system were able to manage the user as we want.

  9. Equivalent Coil Model for Computing Levitation Forces Between Permanent Magnets and High Temperatures Superconductors

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares, L.

    1998-05-01

    A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)

  10. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of active lubricated journal bearings. The main...... of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  11. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  12. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  13. An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process

    Science.gov (United States)

    Yan, Lujiang; Yu, Yugang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Raihan Miah, Mohammad Abu; Liu, Yu-Hsin; Lo, Yu-Hwa

    2017-09-01

    Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.

  14. Bandwidth Optimization in Centralized WLANs for Different Traffic Types

    Directory of Open Access Journals (Sweden)

    Haines RJ

    2007-01-01

    Full Text Available Allocating bandwidth between different forms of coexisting traffic (such as web-browsing, streaming, and telephony within a wireless LAN is a challenging and interesting problem. Centralized coordination functions in wireless LANs offer several advantages over distributed approaches, having the benefit of a system overview at the controller, but obtaining a stable configuration of bandwidth allocation for the system is nontrivial. We present, review, and compare different mechanisms to achieve this end, and a number of different means of obtaining the configurations themselves. We describe an analytical model of the system under consideration and present two mathematical approaches to derive solutions for any system configuration and deployment, along with an adaptive feedback-based solution. We also describe a comprehensive simulation-based model for the problem, and a prototype that allows comparison of these approaches. Our investigations demonstrate that a self-adaptive dynamic approach far outperforms any static scheme, and that using a mathematical model to produce the configurations themselves confers several advantages.

  15. Flexible power and bandwidth allocation in mobile satellites

    Science.gov (United States)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  16. Forced sex, rape and sexual exploitation: attitudes and experiences of high school students in South Kivu, Democratic Republic of Congo.

    Science.gov (United States)

    Mulumeoderhwa, Maroyi; Harris, Geoff

    2015-01-01

    This paper reports on fieldwork carried out in 2011 with the aim of investigating the attitudes and reported behaviour of Congolese high school students concerning sexual relationships. A total of 56 boys and girls aged 16-20 from two urban and two rural high schools in South Kivu Province took part in focus groups, and 40 of these were subsequently interviewed individually. The majority of boys felt that they were entitled to sex from their girlfriends and that if persuasion was unsuccessful, the use of force was legitimate; this, in their minds, did not constitute rape. Girls, on the other hand, were clear that such forced sex was rape. However it may be understood, rape was perceived as having increased in recent years and was explained by weak legal systems, pornography and provocative dressing by girls. Boys were angry at the competition from older, often married, men who were able to provide monetary and other incentives to the girls.

  17. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  18. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    Science.gov (United States)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  19. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  20. Design of RFID Cloud Services in a Low Bandwidth Network Environment

    Directory of Open Access Journals (Sweden)

    John P.T. Mo

    2011-02-01

    Full Text Available The use of Information and Communication Technologies has significantly improved the efficiency of modern supply chains. Existing IT architecture is too rigid to allow new technologies such as RFID technologies to be implemented. With the aid of virtualisation and integrated with cloud services, infrastructure hardware and network devices can be consolidated into a physical device, reducing the cost of ownership. However, for such cloud services model to work correctly, a high speed network is required between each site and the cloud service provider. This poses huge challenges for real‐time system such as RFID‐enabled supply chains. Since modern supply chains operate on a global platform, it is almost impossible to assure availability of high speed networks across the global supply chain. This paper proposes two solutions to supplement the virtualisation and cloud services model. A sub‐cloud services solution, where each service is distributed across multiple hosts across different countries and regions is proposed to enhance accessibility to higher bandwidth networks. The second solution is the Queued Burst Device Compression system incorporates a compression service that compresses RFID data sets into much smaller packages. This solution is proved to work by a multiple‐in‐single‐out queuing model and is suitable for low bandwidth networks such as GPRS and 3G wireless environmenst.

  1. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Science.gov (United States)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  2. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    Directory of Open Access Journals (Sweden)

    James E. Komianos

    2018-04-01

    Full Text Available Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  3. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  4. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    Science.gov (United States)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  5. Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series

    International Nuclear Information System (INIS)

    Li, Renxian; Ren, Kuan Fang; Han, Xiang'e; Wu, Zhensen; Guo, Lixin; Gong, Shuxi

    2013-01-01

    Debye series expansion (DSE) is employed to the analysis of radiation pressure force (RPF) exerted on biological cells induced by high-order Bessel beams (BB). The beam shape coefficients (BSCs) for high-order Bessel beams are calculated using analytical expressions obtained by the integral localized approximation (ILA). Different types of cells, including a real Chinese Hamster Ovary (CHO) cell and a lymphocyte which are respectively modeled by a coated and five-layered sphere, are considered. The RPF induced by high-order Bessel beams is compared with that by Gaussian beams and zeroth-order Bessel beams, and the effect of different scattering processes on RPF is studied. Numerical calculations show that high-order Bessel beams with zero central intensity can also transversely trap particle in the beam center, and some scattering processes can provide longitudinal pulling force. -- Highlights: ► BSCs for high-order Bessel beam (HOBB) is derived using ILA. ► DSE is employed to study the RPF induced by HOBB exerted on multilayered cells. ► RPF is decided by radius relative to the interval of peaks in intensity profile. ► HOBB can also transversely trap high-index particle in the vicinity of beam axis. ► RPF for some scattering processes can longitudinally pull particles back

  6. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game

    DEFF Research Database (Denmark)

    Krustrup, Peter; Ørtenblad, Niels; Nielsen, Joachim

    2011-01-01

    The aim of this study was to examine maximal voluntary knee-extensor contraction force (MVC force), sarcoplasmic reticulum (SR) function and muscle glycogen levels in the days after a high-level soccer game when players ingested an optimised diet. Seven high-level male soccer players had a vastus...... lateralis muscle biopsy and a blood sample collected in a control situation and at 0, 24, 48 and 72 h after a competitive soccer game. MVC force, SR function, muscle glycogen, muscle soreness and plasma myoglobin were measured. MVC force sustained over 1 s was 11 and 10% lower (P ...

  7. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...... accesses (TDMA) techniques as MAC layer protocol. It reduces the collision of packets. Simulation results show that BESDA is energy efficient, with increased throughput, and has less delay as compared with state-of-the-art....

  8. Ultrawide Bandwidth Receiver Based on a Multivariate Generalized Gaussian Distribution

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-04-01

    Multivariate generalized Gaussian density (MGGD) is used to approximate the multiple access interference (MAI) and additive white Gaussian noise in pulse-based ultrawide bandwidth (UWB) system. The MGGD probability density function (pdf) is shown to be a better approximation of a UWB system as compared to multivariate Gaussian, multivariate Laplacian and multivariate Gaussian-Laplacian mixture (GLM). The similarity between the simulated and the approximated pdf is measured with the help of modified Kullback-Leibler distance (KLD). It is also shown that MGGD has the smallest KLD as compared to Gaussian, Laplacian and GLM densities. A receiver based on the principles of minimum bit error rate is designed for the MGGD pdf. As the requirement is stringent, the adaptive implementation of the receiver is also carried out in this paper. Training sequence of the desired user is the only requirement when implementing the detector adaptively. © 2002-2012 IEEE.

  9. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen; Farhat, Mohamed; Bagci, Hakan

    2015-01-01

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  10. Narrow bandwidth detection of vibration signature using fiber lasers

    Science.gov (United States)

    Moore, Sean; Soh, Daniel B.S.

    2018-05-08

    The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.

  11. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  12. Auction-based bandwidth allocation in the Internet

    Science.gov (United States)

    Wei, Jiaolong; Zhang, Chi

    2002-07-01

    It has been widely accepted that auctioning which is the pricing approach with minimal information requirement is a proper tool to manage scare network resources. Previous works focus on Vickrey auction which is incentive compatible in classic auction theory. In the beginning of this paper, the faults of the most representative auction-based mechanisms are discussed. And then a new method called uniform-price auction (UPA), which has the simplest auction rule is proposed and it's incentive compatibility in the network environment is also proved. Finally, the basic mode is extended to support applications which require minimum bandwidth guarantees for a given time period by introducing derivative market, and a market mechanism for network resource allocation which is predictable, riskless, and simple for end-users is completed.

  13. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology

    Science.gov (United States)

    Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.

    2016-11-01

    Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.

  14. Deep neural network-based bandwidth enhancement of photoacoustic data.

    Science.gov (United States)

    Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K

    2017-11-01

    Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Fibre Bragg grating based accelerometer with extended bandwidth

    International Nuclear Information System (INIS)

    Basumallick, Nandini; Biswas, Palas; Dasgupta, Kamal; Bandyopadhyay, Somnath; Chakraborty, Rajib; Chakraborty, Sushanta

    2016-01-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer. (paper)

  16. Unsteady lift forces on highly cambered airfoils moving through a gust

    Science.gov (United States)

    Atassi, H.; Goldstein, M.

    1974-01-01

    An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.

  17. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  18. Pushing Memory Bandwidth Limitations Through Efficient Implementations of Block-Krylov Space Solvers on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M. A. [NVIDIA Corp., Santa Clara; Strelchenko, Alexei [Fermilab; Vaquero, Alejandro [Utah U.; Wagner, Mathias [NVIDIA Corp., Santa Clara; Weinberg, Evan [Boston U.

    2017-10-26

    Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations. Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.

  19. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  20. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    Science.gov (United States)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.