WorldWideScience

Sample records for high average range

  1. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  2. Image Denoising Using Interquartile Range Filter with Local Averaging

    OpenAIRE

    Jassim, Firas Ajil

    2013-01-01

    Image denoising is one of the fundamental problems in image processing. In this paper, a novel approach to suppress noise from the image is conducted by applying the interquartile range (IQR) which is one of the statistical methods used to detect outlier effect from a dataset. A window of size kXk was implemented to support IQR filter. Each pixel outside the IQR range of the kXk window is treated as noisy pixel. The estimation of the noisy pixels was obtained by local averaging. The essential...

  3. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  4. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  5. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.; Turner, W.C.; Watson, J.A.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of ∼ 50-ns duration pulses to > 100 MeV. In this paper the authors report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  6. High average-power induction linacs

    International Nuclear Information System (INIS)

    Prono, D.S.; Barrett, D.; Bowles, E.

    1989-01-01

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs

  7. High average power linear induction accelerator development

    International Nuclear Information System (INIS)

    Bayless, J.R.; Adler, R.J.

    1987-07-01

    There is increasing interest in linear induction accelerators (LIAs) for applications including free electron lasers, high power microwave generators and other types of radiation sources. Lawrence Livermore National Laboratory has developed LIA technology in combination with magnetic pulse compression techniques to achieve very impressive performance levels. In this paper we will briefly discuss the LIA concept and describe our development program. Our goals are to improve the reliability and reduce the cost of LIA systems. An accelerator is presently under construction to demonstrate these improvements at an energy of 1.6 MeV in 2 kA, 65 ns beam pulses at an average beam power of approximately 30 kW. The unique features of this system are a low cost accelerator design and an SCR-switched, magnetically compressed, pulse power system. 4 refs., 7 figs

  8. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  9. High-average-power solid state lasers

    International Nuclear Information System (INIS)

    Summers, M.A.

    1989-01-01

    In 1987, a broad-based, aggressive R ampersand D program aimed at developing the technologies necessary to make possible the use of solid state lasers that are capable of delivering medium- to high-average power in new and demanding applications. Efforts were focused along the following major lines: development of laser and nonlinear optical materials, and of coatings for parasitic suppression and evanescent wave control; development of computational design tools; verification of computational models on thoroughly instrumented test beds; and applications of selected aspects of this technology to specific missions. In the laser materials areas, efforts were directed towards producing strong, low-loss laser glasses and large, high quality garnet crystals. The crystal program consisted of computational and experimental efforts aimed at understanding the physics, thermodynamics, and chemistry of large garnet crystal growth. The laser experimental efforts were directed at understanding thermally induced wave front aberrations in zig-zag slabs, understanding fluid mechanics, heat transfer, and optical interactions in gas-cooled slabs, and conducting critical test-bed experiments with various electro-optic switch geometries. 113 refs., 99 figs., 18 tabs

  10. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  11. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  12. Evaluation of Navigation System Accuracy Indexes for Deviation Reading from Average Range

    Directory of Open Access Journals (Sweden)

    Alexey Boykov

    2017-12-01

    Full Text Available The method for estimating the mean of square error, kurtosis and error correlation coefficient for deviations from the average range of three navigation parameter indications from the outputs of three information sensors is substantiated and developed.

  13. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  14. Longitudinal Patterns of Employment and Postsecondary Education for Adults with Autism and Average-Range IQ

    Science.gov (United States)

    Taylor, Julie Lounds; Henninger, Natalie A.; Mailick, Marsha R.

    2015-01-01

    This study examined correlates of participation in postsecondary education and employment over 12?years for 73 adults with autism spectrum disorders and average-range IQ whose families were part of a larger, longitudinal study. Correlates included demographic (sex, maternal education, paternal education), behavioral (activities of daily living,…

  15. High Average Power Fiber Laser for Satellite Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Very high average power lasers with high electrical-top-optical (E-O) efficiency, which also support pulse position modulation (PPM) formats in the MHz-data rate...

  16. Recent developments in high average power driver technology

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.; Rohwein, G.J.

    1979-01-01

    Inertial confinement fusion (ICF) reactors will require driver systems operating with tens to hundreds of megawatts of average power. The pulse power technology that will be required to build such drivers is in a primitive state of development. Recent developments in repetitive pulse power are discussed. A high-voltage transformer has been developed and operated at 3 MV in a single pulse experiment and is being tested at 1.5 MV, 5 kj and 10 pps. A low-loss, 1 MV, 10 kj, 10 pps Marx generator is being tested. Test results from gas-dynamic spark gaps that operate both in the 100 kV and 700 kV range are reported. A 250 kV, 1.5 kA/cm 2 , 30 ns electron beam diode has operated stably for 1.6 x 10 5 pulses

  17. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  18. High-average-power diode-pumped Yb: YAG lasers

    International Nuclear Information System (INIS)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  19. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  20. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  1. High-average-power laser medium based on silica glass

    Science.gov (United States)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.

  2. Strengthened glass for high average power laser applications

    International Nuclear Information System (INIS)

    Cerqua, K.A.; Lindquist, A.; Jacobs, S.D.; Lambropoulos, J.

    1987-01-01

    Recent advancements in high repetition rate and high average power laser systems have put increasing demands on the development of improved solid state laser materials with high thermal loading capabilities. The authors have developed a process for strengthening a commercially available Nd doped phosphate glass utilizing an ion-exchange process. Results of thermal loading fracture tests on moderate size (160 x 15 x 8 mm) glass slabs have shown a 6-fold improvement in power loading capabilities for strengthened samples over unstrengthened slabs. Fractographic analysis of post-fracture samples has given insight into the mechanism of fracture in both unstrengthened and strengthened samples. Additional stress analysis calculations have supported these findings. In addition to processing the glass' surface during strengthening in a manner which preserves its post-treatment optical quality, the authors have developed an in-house optical fabrication technique utilizing acid polishing to minimize subsurface damage in samples prior to exchange treatment. Finally, extension of the strengthening process to alternate geometries of laser glass has produced encouraging results, which may expand the potential or strengthened glass in laser systems, making it an exciting prospect for many applications

  3. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-01-01

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  4. Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Soler, A.

    1995-01-01

    Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)

  5. A high speed digital signal averager for pulsed NMR

    International Nuclear Information System (INIS)

    Srinivasan, R.; Ramakrishna, J.; Ra agopalan, S.R.

    1978-01-01

    A 256-channel digital signal averager suitable for pulsed nuclear magnetic resonance spectroscopy is described. It implements 'stable averaging' algorithm and hence provides a calibrated display of the average signal at all times during the averaging process on a CRT. It has a maximum sampling rate of 2.5 μ sec and a memory capacity of 256 x 12 bit words. Number of sweeps is selectable through a front panel control in binary steps from 2 3 to 2 12 . The enhanced signal can be displayed either on a CRT or by a 3.5-digit LED display. The maximum S/N improvement that can be achieved with this instrument is 36 dB. (auth.)

  6. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  7. High Average Power UV Free Electron Laser Experiments At JLAB

    International Nuclear Information System (INIS)

    Douglas, David; Benson, Stephen; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle; Tennant, Christopher; Williams, Gwyn

    2012-01-01

    Having produced 14 kW of average power at ∼2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  8. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  9. Short pulse mid-infrared amplifier for high average power

    CSIR Research Space (South Africa)

    Botha, LR

    2006-09-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  10. Picosecond mid-infrared amplifier for high average power.

    CSIR Research Space (South Africa)

    Botha, LR

    2007-04-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  11. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  12. FPGA based computation of average neutron flux and e-folding period for start-up range of reactors

    International Nuclear Information System (INIS)

    Ram, Rajit; Borkar, S.P.; Dixit, M.Y.; Das, Debashis

    2013-01-01

    Pulse processing instrumentation channels used for reactor applications, play a vital role to ensure nuclear safety in startup range of reactor operation and also during fuel loading and first approach to criticality. These channels are intended for continuous run time computation of equivalent reactor core neutron flux and e-folding period. This paper focuses only the computational part of these instrumentation channels which is implemented in single FPGA using 32-bit floating point arithmetic engine. The computations of average count rate, log of average count rate, log rate and reactor period are done in VHDL using digital circuit realization approach. The computation of average count rate is done using fully adaptive window size moving average method, while Taylor series expansion for logarithms is implemented in FPGA to compute log of count rate, log rate and reactor e-folding period. This paper describes the block diagrams of digital logic realization in FPGA and advantage of fully adaptive window size moving average technique over conventional fixed size moving average technique for pulse processing of reactor instrumentations. (author)

  13. Average Anisotropy Characteristics of High Energy Cosmic Ray ...

    Indian Academy of Sciences (India)

    Further Shrivastava & Shukla (1996) reported that there is a high correlation between solar wind velocity and Ap index. As we know from convection diffusion approximate theory, solar wind velocity plays an important role in cosmic ray modulation. In the absence of solar wind data, one can use the daily values of Ap index.

  14. Who Are Most, Average, or High-Functioning Adults?

    Science.gov (United States)

    Gregg, Noel; Coleman, Chris; Lindstrom, Jennifer; Lee, Christopher

    2007-01-01

    The growing number of high-functioning adults seeking accommodations from testing agencies and postsecondary institutions presents an urgent need to ensure reliable and valid diagnostic decision making. The potential for this population to make significant contributions to society will be greater if we provide the learning and testing…

  15. HEVC for high dynamic range services

    Science.gov (United States)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  16. Energy stability in a high average power FEL

    International Nuclear Information System (INIS)

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  17. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  18. High Dynamic Range Imaging Using Multiple Exposures

    Science.gov (United States)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  19. Recent advances in the development of high average power induction accelerators for industrial and environmental applications

    International Nuclear Information System (INIS)

    Neau, E.L.

    1994-01-01

    Short-pulse accelerator technology developed during the early 1960's through the late 1980's is being extended to high average power systems capable of use in industrial and environmental applications. Processes requiring high dose levels and/or high volume throughput will require systems with beam power levels from several hundreds of kilowatts to megawatts. Beam accelerating potentials can range from less than 1 MeV to as much as 10 MeV depending on the type of beam, depth of penetration required, and the density of the product being treated. This paper addresses the present status of a family of high average power systems, with output beam power levels up to 200 kW, now in operation that use saturable core switches to achieve output pulse widths of 50 to 80 nanoseconds. Inductive adders and field emission cathodes are used to generate beams of electrons or x-rays at up to 2.5 MeV over areas of 1000 cm 2 . Similar high average power technology is being used at ≤ 1 MeV to drive repetitive ion beam sources for treatment of material surfaces over 100's of cm 2

  20. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  1. High dynamic range imaging sensors and architectures

    CERN Document Server

    Darmont, Arnaud

    2013-01-01

    Illumination is a crucial element in many applications, matching the luminance of the scene with the operational range of a camera. When luminance cannot be adequately controlled, a high dynamic range (HDR) imaging system may be necessary. These systems are being increasingly used in automotive on-board systems, road traffic monitoring, and other industrial, security, and military applications. This book provides readers with an intermediate discussion of HDR image sensors and techniques for industrial and non-industrial applications. It describes various sensor and pixel architectures capable

  2. Record high-average current from a high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States); and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  3. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  4. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    Science.gov (United States)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  5. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  6. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology

  7. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  8. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  9. Clinical evaluation of a medical high dynamic range display

    International Nuclear Information System (INIS)

    Marchessoux, Cedric; Paepe, Lode de; Vanovermeire, Olivier; Albani, Luigi

    2016-01-01

    Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study used a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM HDR is slightly higher than FoM LDR with 0.09% of difference. For the difficult nodules, the averaged FoM HDR is slightly higher than FoM LDR with 1.38% of difference. The averaged FoM HDR is slightly higher than FoM LDR with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in

  10. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  11. High range electromagnetic fields. Experimental investigations

    International Nuclear Information System (INIS)

    Comino, E.; Boccardo, D.; Quaglino, A.

    2001-01-01

    It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion [it

  12. Predicting Freshman Grade Point Average From College Admissions Test Scores and State High School Test Scores

    OpenAIRE

    Koretz, Daniel; Yu, C; Mbekeani, Preeya Pandya; Langi, M.; Dhaliwal, Tasminda Kaur; Braslow, David Arthur

    2016-01-01

    The current focus on assessing “college and career readiness” raises an empirical question: How do high school tests compare with college admissions tests in predicting performance in college? We explored this using data from the City University of New York and public colleges in Kentucky. These two systems differ in the choice of college admissions test, the stakes for students on the high school test, and demographics. We predicted freshman grade point average (FGPA) from high school GPA an...

  13. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  14. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  15. Total Quality Management (TQM) Practices and School Climate amongst High, Average and Low Performance Secondary Schools

    Science.gov (United States)

    Ismail, Siti Noor

    2014-01-01

    Purpose: This study attempted to determine whether the dimensions of TQM practices are predictors of school climate. It aimed to identify the level of TQM practices and school climate in three different categories of schools, namely high, average and low performance schools. The study also sought to examine which dimensions of TQM practices…

  16. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    Directory of Open Access Journals (Sweden)

    K. Schäfer

    2012-07-01

    Full Text Available Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2 are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s−1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  17. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  18. Development of high-average-power-laser medium based on silica glass

    International Nuclear Information System (INIS)

    Fujimoto, Yasushi; Nakatsuka, Masahiro

    2000-01-01

    We have developed a high-average-power laser material based on silica glass. A new method using Zeolite X is effective for homogeneously dispersing rare earth ions in silica glass to get a high quantum yield. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action, and therefore, we have carefully to treat the gelation and sintering processes, such as, selection of colloidal silica, pH value of for hydrolysis of tetraethylorthosilicate, and sintering history. The quality of the sintered sample and the applications are discussed. (author)

  19. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  20. High average power Q-switched 1314 nm two-crystal Nd:YLF laser

    CSIR Research Space (South Africa)

    Botha, RC

    2015-02-01

    Full Text Available . 40, No. 4 / OPTICS LETTERS High average power Q-switched 1314 nm two-crystal Nd:YLF laser R. C. Botha,1,2,* W. Koen,3 M. J. D. Esser,3,4 C. Bollig,3,5 W. L. Combrinck,1,6 H. M. von Bergmann,2 and H. J. Strauss3 1HartRAO, P.O. Box 443...

  1. High energy, high average power solid state green or UV laser

    Science.gov (United States)

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  2. Specification of optical components for a high average-power laser environment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.; Chow, R.; Rinmdahl, K.A.; Willis, J.B.; Wong, J.N.

    1997-06-25

    Optical component specifications for the high-average-power lasers and transport system used in the Atomic Vapor Laser Isotope Separation (AVLIS) plant must address demanding system performance requirements. The need for high performance optics has to be balanced against the practical desire to reduce the supply risks of cost and schedule. This is addressed in optical system design, careful planning with the optical industry, demonstration of plant quality parts, qualification of optical suppliers and processes, comprehensive procedures for evaluation and test, and a plan for corrective action.

  3. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  4. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  5. Incidence Rates of Clinical Mastitis among Canadian Holsteins Classified as High, Average, or Low Immune Responders

    Science.gov (United States)

    Miglior, Filippo; Mallard, Bonnie A.

    2013-01-01

    The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry. PMID:23175290

  6. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  7. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  8. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    Science.gov (United States)

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  9. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  10. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  11. Predicting Freshman Grade Point Average From College Admissions Test Scores and State High School Test Scores

    Directory of Open Access Journals (Sweden)

    Daniel Koretz

    2016-09-01

    Full Text Available The current focus on assessing “college and career readiness” raises an empirical question: How do high school tests compare with college admissions tests in predicting performance in college? We explored this using data from the City University of New York and public colleges in Kentucky. These two systems differ in the choice of college admissions test, the stakes for students on the high school test, and demographics. We predicted freshman grade point average (FGPA from high school GPA and both college admissions and high school tests in mathematics and English. In both systems, the choice of tests had only trivial effects on the aggregate prediction of FGPA. Adding either test to an equation that included the other had only trivial effects on prediction. Although the findings suggest that the choice of test might advantage or disadvantage different students, it had no substantial effect on the over- and underprediction of FGPA for students classified by race-ethnicity or poverty.

  12. On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging

    KAUST Repository

    Antonelli, Paolo

    2014-01-14

    We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree-Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus. The electrons are supposed to move under the action of a time dependent, rapidly periodically oscillating electromagnetic potential. This can be considered a simplified effective single particle model for an X-ray free electron laser. We prove the existence and uniqueness for the Cauchy problem and the convergence of wave-functions to corresponding solutions of a Schrödinger equation with a time-averaged Coulomb potential in the high frequency limit for the oscillations of the electromagnetic potential. © 2014 Springer-Verlag Berlin Heidelberg.

  13. Cloud-based design of high average power traveling wave linacs

    Science.gov (United States)

    Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.

    2017-12-01

    The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.

  14. Postsurgical outcome in pediatric patients with epilepsy: a comparison of patients with intellectual disabilities, subaverage intelligence, and average-range intelligence.

    Science.gov (United States)

    Gleissner, Ulrike; Clusmann, Hans; Sassen, Robert; Elger, Christian E; Helmstaedter, Christoph

    2006-02-01

    Intellectual disabilities are often associated with bilateral or diffuse morphologic brain damage. The chances of becoming seizure free after focal surgery are therefore considered to be worse in patients with intellectual disabilities. The risk of postoperative cognitive deficits could increase because diffuse brain damage lowers the patient's ability to compensate for surgically induced deficits. Several studies in adult patients have indicated that IQ alone is not a good predictor of postoperative cognitive and seizure outcome. Our study evaluated this subject in children and adolescents. Pediatric patients with intellectual disabilities (IQ intelligence (IQ between 71 and 85), or average-range intelligence (IQ > 85) were matched according to several clinical and etiologic criteria to determine the influence of IQ (N = 66). No dependency of seizure outcome, postoperative cognitive development, and behavioral outcome on the IQ level was found. All groups slightly improved in attention while memory functions tended to decrease and executive functions were stable. School placement remained unchanged for the majority of patients. Between 67 and 78% were seizure free 1 year after surgery (Engel outcome class I). IQ alone is not a good predictor of postoperative outcome in pediatric patients with epilepsy. As with patients of average-range intelligence, the decision to operate on patients with a low level of intelligence should depend on the results of the presurgical diagnostics. If the results of the neuropsychological examination indicate diffuse functional impairment, this should not hinder further steps, if all other findings are consistent.

  15. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty

    Science.gov (United States)

    Ling, J.; Templeton, J.

    2015-08-01

    Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. Feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.

  16. Design and component specifications for high average power laser optical systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  17. Design and component specifications for high average power laser optical systems

    International Nuclear Information System (INIS)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs

  18. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  19. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  20. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Ye Weiguo; Han Hui; Li Pengyu

    2003-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronic is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  1. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Li Pengyu; Han Hui; Ye Yanlin

    2005-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronics is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  2. Leveraging Mechanism Simplicity and Strategic Averaging to Identify Signals from Highly Heterogeneous Spatial and Temporal Ozone Data

    Science.gov (United States)

    Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.

    2017-12-01

    We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.

  3. Generation and Applications of High Average Power Mid-IR Supercontinuum in Chalcogenide Fibers

    OpenAIRE

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm

  4. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    Science.gov (United States)

    Inchang Choi; Seung-Hwan Baek; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  5. RADIANCE DOMAIN COMPOSITING FOR HIGH DYNAMIC RANGE IMAGING

    Directory of Open Access Journals (Sweden)

    M.R. Renu

    2013-02-01

    Full Text Available High dynamic range imaging aims at creating an image with a range of intensity variations larger than the range supported by a camera sensor. Most commonly used methods combine multiple exposure low dynamic range (LDR images, to obtain the high dynamic range (HDR image. Available methods typically neglect the noise term while finding appropriate weighting functions to estimate the camera response function as well as the radiance map. We look at the HDR imaging problem in a denoising frame work and aim at reconstructing a low noise radiance map from noisy low dynamic range images, which is tone mapped to get the LDR equivalent of the HDR image. We propose a maximum aposteriori probability (MAP based reconstruction of the HDR image using Gibb’s prior to model the radiance map, with total variation (TV as the prior to avoid unnecessary smoothing of the radiance field. To make the computation with TV prior efficient, we extend the majorize-minimize method of upper bounding the total variation by a quadratic function to our case which has a nonlinear term arising from the camera response function. A theoretical justification for doing radiance domain denoising as opposed to image domain denoising is also provided.

  6. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  7. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  8. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1985-01-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiences approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here. (orig.)

  9. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  10. High-Capacity Short-Range Optical Communication Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna

    Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...

  11. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  12. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  13. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  14. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  15. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  16. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    Science.gov (United States)

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  17. Gamut mapping in a high-dynamic-range color space

    Science.gov (United States)

    Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp

    2014-01-01

    In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.

  18. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas; Morvan, Jean-Marie; Alouini, Mohamed-Slim

    2015-01-01

    . Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high

  19. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    OpenAIRE

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability fo...

  20. Pedestrian headform testing: inferring performance at impact speeds and for headform masses not tested, and estimating average performance in a range of real-world conditions.

    Science.gov (United States)

    Hutchinson, T Paul; Anderson, Robert W G; Searson, Daniel J

    2012-01-01

    account the relationship between impact severity and variations in impact conditions. Instead, they assess injury risk at a single impact speed. Hence, they may fail to differentiate risks due to the effects of bottoming out under different impact conditions. Because the level of injuriousness changes across a wide range of HIC values, even slight improvements to very stiff structures need to be encouraged through testing. Indications are that the potential of autonomous braking systems is substantial and needs to be weighted highly in vehicle safety assessments.

  1. Development of linear proton accelerators with the high average beam power

    CERN Document Server

    Bomko, V A; Egorov, A M

    2001-01-01

    Review of the current situation in the development of powerful linear proton accelerators carried out in many countries is given. The purpose of their creation is solving problems of safe and efficient nuclear energetics on a basis of the accelerator-reactor complex. In this case a proton beam with the energy up to 1 GeV, the average current of 30 mA is required. At the same time there is a needed in more powerful beams,for example, for production of tritium and transmutation of nuclear waste products. The creation of accelerators of such a power will be followed by the construction of linear accelerators of 1 GeV but with a more moderate beam current. They are intended for investigation of many aspects of neutron physics and neutron engineering. Problems in the creation of efficient constructions for the basic and auxiliary equipment, the reliability of the systems, and minimization of the beam losses in the process of acceleration will be solved.

  2. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  3. Field control in a standing wave structure at high average beam power

    International Nuclear Information System (INIS)

    McKeown, J.; Fraser, J.S.; McMichael, G.E.

    1976-01-01

    A 100% duty factor electron beam has been accelerated through a graded-β side-coupled standing wave structure operating in π/2 mode. Three non-interacting control loops are necessary to provide the accelerating field amplitude and phase and to control structure resonance. The principal disturbances have been identified and measured over the beam current range of 0 to 20 mA. Design details are presented of control loops which regulate the accelerating field amplitude to +-0.3% and its phase to +-0.5 deg for 50% beam loading. (author)

  4. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  5. Hierarchical tone mapping for high dynamic range image visualization

    Science.gov (United States)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  6. Pulse repetition frequency effects in a high average power x-ray preionized excimer laser

    International Nuclear Information System (INIS)

    Fontaine, B.; Forestier, B.; Delaporte, P.; Canarelli, P.

    1989-01-01

    Experimental study of waves damping in a high repetition rate excimer laser is undertaken. Excitation of laser active medium in a subsonic loop is achieved by means of a classical discharge, through transfer capacitors. The discharge stability is controlled by a wire ion plasma (w.i.p.) X-rays gun. The strong acoustic waves induced by the active medium excitation may lead to a decrease, at high PRF, of the energy per pulse. First results of the influence of a damping of induced density perturbations between two successive pulses are presented

  7. In-Vivo High Dynamic Range Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    example with a high dynamic velocity range. Velocities with an order of magnitude apart are detected on the femoral artery of a 41 years old healthy individual. Three distinct heart cycles are captured during a 3 secs acquisition. The estimated vector velocities are compared against each other within...... the heart cycle. The relative standard deviation of the measured velocity magnitude between the three peak systoles was found to be 5.11% with a standard deviation on the detected angle of 1.06◦ . In the diastole, it was 1.46% and 6.18◦ , respectively. Results proves that the method is able to estimate flow...

  8. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  9. Choice of initial operating parameters for high average current linear accelerators

    International Nuclear Information System (INIS)

    Batchelor, K.

    1976-01-01

    In designing an accelerator for high currents it is evident that beam losses in the machine must be minimized, which implies well matched beams, and that adequate acceptance under severe space charge conditions must be met. This paper investigates the input parameters to an Alvarez type drift-tube accelerator resulting from such factors

  10. Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield

    Science.gov (United States)

    Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.

    2012-01-01

    The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely

  11. Choice of initial operating parameters for high average current linear accelerators

    International Nuclear Information System (INIS)

    Batchelor, K.

    1976-01-01

    Recent emphasis on alternative energy sources together with the need for intense neutron sources for testing of materials for CTR has resulted in renewed interest in high current (approximately 100 mA) c.w. proton and deuteron linear accelerators. In desinging an accelerator for such high currents, it is evident that beam losses in the machine must be minimized, which implies well matched beams, and that adequate acceptance under severe space charge conditions must be met. An investigation is presented of the input parameters to an Alvarez type drift-tube accelerator resulting from such factors. The analysis indicates that an accelerator operating at a frequency of 50 MHz is capable of accepting deuteron currents of about 0.4 amperes and proton currents of about 1.2 amperes. These values depend critically on the assumed values of beam emittance and on the ability to properly ''match'' this to the linac acceptance

  12. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  13. Is it better to be average? High and low performance as predictors of employee victimization.

    Science.gov (United States)

    Jensen, Jaclyn M; Patel, Pankaj C; Raver, Jana L

    2014-03-01

    Given increased interest in whether targets' behaviors at work are related to their victimization, we investigated employees' job performance level as a precipitating factor for being victimized by peers in one's work group. Drawing on rational choice theory and the victim precipitation model, we argue that perpetrators take into consideration the risks of aggressing against particular targets, such that high performers tend to experience covert forms of victimization from peers, whereas low performers tend to experience overt forms of victimization. We further contend that the motivation to punish performance deviants will be higher when performance differentials are salient, such that the effects of job performance on covert and overt victimization will be exacerbated by group performance polarization, yet mitigated when the target has high equity sensitivity (benevolence). Finally, we investigate whether victimization is associated with future performance impairments. Results from data collected at 3 time points from 576 individuals in 62 work groups largely support the proposed model. The findings suggest that job performance is a precipitating factor to covert victimization for high performers and overt victimization for low performers in the workplace with implications for subsequent performance.

  14. Gender Gaps in High School GPA and ACT Scores: High School Grade Point Average and ACT Test Score by Subject and Gender. Information Brief 2014-12

    Science.gov (United States)

    ACT, Inc., 2014

    2014-01-01

    Female students who graduated from high school in 2013 averaged higher grades than their male counterparts in all subjects, but male graduates earned higher scores on the math and science sections of the ACT. This information brief looks at high school grade point average and ACT test score by subject and gender

  15. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  16. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  17. Characterization of a klystrode as a RF source for high-average-power accelerators

    International Nuclear Information System (INIS)

    Rees, D.; Keffeler, D.; Roybal, W.; Tallerico, P.J.

    1995-01-01

    The klystrode is a relatively new type of RF source that has demonstrated dc-to-RF conversion efficiencies in excess of 70% and a control characteristic uniquely different from those for klystron amplifiers. The different control characteristic allows the klystrode to achieve this high conversion efficiency while still providing a control margin for regulation of the accelerator cavity fields. The authors present test data from a 267-MHz, 250-kW, continuous-wave (CW) klystrode amplifier and contrast this data with conventional klystron performance, emphasizing the strengths and weaknesses of the klystrode technology for accelerator applications. They present test results describing that limitation for the 250-kW, CW klystrode and extrapolate the data to other frequencies. A summary of the operating regime explains the clear advantages of the klystrode technology over the klystron technology

  18. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  19. Mixed-mode distribution systems for high average power electron cyclotron heating

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.

    1984-01-01

    The ELMO Bumpy Torus-Scale (EBT-S) experiment consists of 24 simple magnetic mirrors joined end-to-end to form a torus of closed magnetic field lines. In this paper, we first describe an 80% efficient mixed-mode unpolarized heating system which couples 28-GHz microwave power to the midplane of the 24 EBT-S cavities. The system consists of two radiused bends feeding a quasi-optical mixed-mode toroidal distribution manifold. Balancing power to the 24 cavities is determined by detailed computer ray tracing. A second 28-GHz electron cyclotron heating (ECH) system using a polarized grid high field launcher is described. The launcher penetrates the fundamental ECH resonant surface without a vacuum window with no observable breakdown up to 1 kW/cm 2 (source limited) with 24 kW delivered to the plasma. This system uses the same mixed-mode output as the first system but polarizes the launched power by using a grid of WR42 apertures. The efficiency of this system is 32%, but can be improved by feeding multiple launchers from a separate distribution manifold

  20. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    Science.gov (United States)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  1. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  2. High dynamic range vision sensor for automotive applications

    Science.gov (United States)

    Grenet, Eric; Gyger, Steve; Heim, Pascal; Heitger, Friedrich; Kaess, Francois; Nussbaum, Pascal; Ruedi, Pierre-Francois

    2005-02-01

    A 128 x 128 pixels, 120 dB vision sensor extracting at the pixel level the contrast magnitude and direction of local image features is used to implement a lane tracking system. The contrast representation (relative change of illumination) delivered by the sensor is independent of the illumination level. Together with the high dynamic range of the sensor, it ensures a very stable image feature representation even with high spatial and temporal inhomogeneities of the illumination. Dispatching off chip image feature is done according to the contrast magnitude, prioritizing features with high contrast magnitude. This allows to reduce drastically the amount of data transmitted out of the chip, hence the processing power required for subsequent processing stages. To compensate for the low fill factor (9%) of the sensor, micro-lenses have been deposited which increase the sensitivity by a factor of 5, corresponding to an equivalent of 2000 ASA. An algorithm exploiting the contrast representation output by the vision sensor has been developed to estimate the position of a vehicle relative to the road markings. The algorithm first detects the road markings based on the contrast direction map. Then, it performs quadratic fits on selected kernel of 3 by 3 pixels to achieve sub-pixel accuracy on the estimation of the lane marking positions. The resulting precision on the estimation of the vehicle lateral position is 1 cm. The algorithm performs efficiently under a wide variety of environmental conditions, including night and rainy conditions.

  3. Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Pinson, Pierre; Clemmensen, Line Katrine Harder

    2017-01-01

    average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled...... with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show...

  4. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  5. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space.

    Science.gov (United States)

    Feng, Lei; Jeon, Tina; Yu, Qiaowen; Ouyang, Minhui; Peng, Qinmu; Mishra, Virendra; Pletikos, Mihovil; Sestan, Nenad; Miller, Michael I; Mori, Susumu; Hsiao, Steven; Liu, Shuwei; Huang, Hao

    2017-12-01

    Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

  6. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  7. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  8. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  9. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  10. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Science.gov (United States)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  11. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  12. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  13. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  14. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, David L., E-mail: alexoff@bnl.gov; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.

    2011-02-15

    Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean{+-}S.D.) escaping the leaf parenchyma were measured to be 59{+-}1.1%, 64{+-}4.4% and 67{+-}1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  15. High voltage wide range marx generator design and construction

    International Nuclear Information System (INIS)

    Thompson, J.E.

    1976-01-01

    A wide range, long pulse, Marx generator has been designed and constructed for the purpose of exciting a thermionic electron gun utilized for quasi-cw gas laser medium ionization. The Marx generator has been specifically designed to operate over a voltage range variable from 100 kV to 200 kV into a resistive load of between 83 kΩ and open circuit. This wide operating range, both in voltage and load impedance, was obtained using interstage coupling capacitors to assure overvoltage and subsequent breakdown of the three element spark gap switches used. This paper will discuss the motivation and specific application for the Marx generator and will present the relevant design procedure with particular emphasis on the interstage coupling and triggering techniques employed. Experimental data regarding the measured Marx generator performance will also be presented

  16. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V., E-mail: paramono@inr.ru [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Philipp, S. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Rybakov, I.; Skassyrskaya, A. [Institute for Nuclear Research of Russian Academy of Sciences, 60-th October Anniversary prospect 7a, 117312 Moscow (Russian Federation); Stephan, F. [Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-05-11

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  17. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  18. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  19. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  20. High fluence effects on ion implantation stopping and range

    International Nuclear Information System (INIS)

    Selvi, S.; Tek, Z.; Oeztarhan, A.; Akbas, N.; Brown, I.G.

    2005-01-01

    We have developed a code STOPPO which can be used to modify the more-widely used ion implantation codes to more accurately predict the mean nuclear and electronic stopping power, preferential sputtering and range of heavy ions in monatomic target materials. In our simulations an effective atomic number and effective atomic mass are introduced into conveniently available analytical stopping cross-sections and a better fitting function for preferential sputtering yield is carefully evaluated for each ion implantation. The accuracy of the code confirmed experimentally by comparison with measured Rutherford backscattering spectrometry (RBS) concentration profiles for 130 keV Zr ions implanted into Be to fluences of 1 x 10 17 , 2 x 10 17 and 4 x 10 17 ions/cm 2 . We find a steady increase in the mean nuclear and electronic stopping powers of the target; the increase in nuclear stopping power is much greater than the increase in electronic stopping power

  1. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  2. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    Energy Technology Data Exchange (ETDEWEB)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  3. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    International Nuclear Information System (INIS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-01-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J

  4. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    Science.gov (United States)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  5. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    Science.gov (United States)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  6. Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2009-02-01

    Full Text Available Abstract Background Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes. Results We applied the iterative BMA algorithm to two cancer datasets: breast cancer and diffuse large B-cell lymphoma (DLBCL data. On the breast cancer data, the algorithm selected a total of 15 predictor genes across 84 contending models from the training data. The maximum likelihood estimates of the selected genes and the posterior probabilities of the selected models from the training data were used to divide patients in the test (or validation dataset into high- and low-risk categories. Using the genes and models determined from the training data, we assigned patients from the test data into highly distinct risk groups (as indicated by a p-value of 7.26e-05 from the log-rank test. Moreover, we achieved comparable results using only the 5 top selected genes with 100% posterior probabilities. On the DLBCL data, our iterative BMA procedure selected a total of 25 genes across 3 contending models from the training data. Once again, we assigned the patients in the validation set to significantly distinct risk groups (p

  7. Alarming decline and range reduction of the highly threatened Great ...

    African Journals Online (AJOL)

    A Great Bustard Otis tarda survey carried out in spring 2015 in Morocco confirmed the decline of this highly endangered population. Bustards were only seen at two of the seven leks occupied ten years ago. The total number of birds counted was 40-44, which represents a 40% decline over the last decade. The sex-ratio ...

  8. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  9. Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry

    Czech Academy of Sciences Publication Activity Database

    Divoký, Martin; Smrž, Martin; Chyla, Michal; Sikocinski, Pawel; Severová, Patricie; Novák, Ondřej; Huynh, Jaroslav; Nagisetty, Siva S.; Miura, Taisuke; Pilař, Jan; Slezák, Jiří; Sawicka, Magdalena; Jambunathan, Venkatesan; Vanda, Jan; Endo, Akira; Lucianetti, Antonio; Rostohar, Danijela; Mason, P.D.; Phillips, P.J.; Ertel, K.; Banerjee, S.; Hernandez-Gomez, C.; Collier, J.L.; Mocek, Tomáš

    2014-01-01

    Roč. 2, SI (2014), s. 1-10 ISSN 2095-4719 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : DPSSL * Yb3C:YAG * thin-disk * multi-slab * pulsed high average power laser Subject RIV: BH - Optics, Masers, Lasers

  10. Spallation model for the high strain rates range

    Science.gov (United States)

    Dekel, E.; Eliezer, S.; Henis, Z.; Moshe, E.; Ludmirsky, A.; Goldberg, I. B.

    1998-11-01

    Measurements of the dynamic spall strength in aluminum and copper shocked by a high power laser to pressures of hundreds of kbars show a rapid increase in the spall strength with the strain rate at values of about 107 s-1. We suggest that this behavior is a result of a change in the spall mechanism. At low strain rates the spall is caused by the motion and coalescence of material's initial flaws. At high strain rates there is not enough time for the flaws to move and the spall is produced by the formation and coalescence of additional cavities where the interatomic forces become dominant. Material under tensile stress is in a metastable condition and cavities of a critical radius are formed in it due to thermal fluctuations. These cavities grow due to the tension. The total volume of the voids grow until the material disintegrates at the spall plane. Simplified calculations based on this model, describing the metal as a viscous liquid, give results in fairly good agreement with the experimental data and predict the increase in spall strength at high strain rates.

  11. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  12. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  13. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  14. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  15. High Dynamic Range Cognitive Radio Front Ends: Architecture to Evaluation

    Science.gov (United States)

    Ashok, Arun; Subbiah, Iyappan; Varga, Gabor; Schrey, Moritz; Heinen, Stefan

    2016-07-01

    Advent of TV white space digitization has released frequencies from 470 MHz to 790 MHz to be utilized opportunistically. The secondary user can utilize these so called TV spaces in the absence of primary users. The most important challenge for this coexistence is mutual interference. While the strong TV stations can completely saturate the receiver of the cognitive radio (CR), the cognitive radio spurious tones can disturb other primary users and white space devices. The aim of this paper is to address the challenges for enabling cognitive radio applications in WLAN and LTE. In this process, architectural considerations for the design of cognitive radio front ends are discussed. With high-IF converters, faster and flexible implementation of CR enabled WLAN and LTE are shown. The effectiveness of the architecture is shown by evaluating the CR front ends for compliance of standards namely 802.11b/g (WLAN) and 3GPP TS 36.101 (LTE).

  16. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sadoun, Raphael [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830 (United States); Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio, E-mail: raphael.sadoun@utah.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  17. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives

    Science.gov (United States)

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2012-01-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  18. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    Science.gov (United States)

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  19. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  20. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  1. ICRF [Ion Cyclotron Range of Frequencies] heating and antenna coupling in a high beta tokamak

    International Nuclear Information System (INIS)

    Elet, R.S.

    1988-01-01

    Maxwell's Equations are solved in two-dimensions for the electromagnetic fields in a toroidal cavity using the cold plasma fluid dielectric tensor in the Ion Cyclotron Range of Frequencies (ICRF). The Vector Wave Equation is transformed to a set of two, coupled second-order partial differential equations with inhomogeneous forcing functions which model a wave launcher. The resulting equations are finite differenced and solved numerically with a complex banded matrix algorithm on a Cray-2 computer using a code described in this report. This code is used to study power coupling characteristics of a wave launcher for low and high beta tokamaks. The low and high beta equilibrium tokamak magnetic fields applied in this model are determined from analytic solutions to the Grad-Shafranov equation. The code shows good correspondence with the results of low field side ICRF heating experiments performed on the Tokamak of Fontenay-Aux-Roses (TFR). Low field side and high field side antenna coupling properties for ICRF heating in the Columbia High Beta Tokamak (HBT) experiment are calculated with this code. Variations of antenna position in the tokamak, ionic concentration and plasma density, and volume-averaged beta have been analyzed for HBT. It is found that the location of the antenna with respect to the plasma has the dominant role in the design of an ICRF heating experiment in HBT. 10 refs., 52 figs., 13 tabs

  2. Stationary average consensus protocol for a class of heterogeneous high-order multi-agent systems with application for aircraft

    Science.gov (United States)

    Rezaei, Mohammad Hadi; Menhaj, Mohammad Bagher

    2018-01-01

    This paper investigates the stationary average consensus problem for a class of heterogeneous-order multi-agent systems. The goal is to bring the positions of agents to the average of their initial positions while letting the other states converge to zero. To this end, three different consensus protocols are proposed. First, based on the auxiliary variables information among the agents under switching directed networks and state-feedback control, a protocol is proposed whereby all the agents achieve stationary average consensus. In the second and third protocols, by resorting to only measurements of relative positions of neighbouring agents under fixed balanced directed networks, two control frameworks are presented with two strategies based on state-feedback and output-feedback control. Finally, simulation results are given to illustrate the effectiveness of the proposed protocols.

  3. Nonlinear mapping of the luminance in dual-layer high dynamic range displays

    Science.gov (United States)

    Guarnieri, Gabriele; Ramponi, Giovanni; Bonfiglio, Silvio; Albani, Luigi

    2009-02-01

    It has long been known that the human visual system (HVS) has a nonlinear response to luminance. This nonlinearity can be quantified using the concept of just noticeable difference (JND), which represents the minimum amplitude of a specified test pattern an average observer can discern from a uniform background. The JND depends on the background luminance following a threshold versus intensity (TVI) function. It is possible to define a curve which maps physical luminances into a perceptually linearized domain. This mapping can be used to optimize a digital encoding, by minimizing the visibility of quantization noise. It is also commonly used in medical applications to display images adapting to the characteristics of the display device. High dynamic range (HDR) displays, which are beginning to appear on the market, can display luminance levels outside the range in which most standard mapping curves are defined. In particular, dual-layer LCD displays are able to extend the gamut of luminance offered by conventional liquid crystals towards the black region; in such areas suitable and HVS-compliant luminance transformations need to be determined. In this paper we propose a method, which is primarily targeted to the extension of the DICOM curve used in medical imaging, but also has a more general application. The method can be modified in order to compensate for the ambient light, which can be significantly greater than the black level of an HDR display and consequently reduce the visibility of the details in dark areas.

  4. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    Science.gov (United States)

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  5. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  6. Predictors of Learned Helplessness among Average and Mildly Gifted Girls and Boys Attending Initial High School Physics Instruction in Germany

    Science.gov (United States)

    Ziegler, Albert; Finsterwald, Monika; Grassinger, Robert

    2005-01-01

    In mathematics, physics, and chemistry, women are still considered to be at a disadvantage. In the present study, the development of the symptoms of learned helplessness was of particular interest. A study involving average and mildly gifted 8th-grade boys and girls (top 60%) investigated whether girls, regardless of ability level, experience…

  7. The two normalization schemes of factorial moments in high energy collisions and the dependence intermittency degree on average transverse momentum

    International Nuclear Information System (INIS)

    Wu Yuanfnag; Liu Lianshou

    1992-01-01

    The two different normalization scheme of factorial moments are analyzed carefully. It is found that in both the cases of fixed multiplicity and of intermittency independent of multiplicity, the intermittency indexes obtained from these two normalization schemes are equal to each other. In the case of non-fixed multiplicity and intermittency depending on multiplicity, the formulae expressing the intermittency indexes from the two different normalization schemes in terms of the dynamical index are given. The experimentally observed dependency of intermittency degree on transverse momentum cut is fully recovered by means of the assumption that intermittency degree depends on average transverse momentum per event. It confirms importance of the dependency of intermittency on average momentum

  8. The theoretical strength of rubber: numerical simulations of polyisoprene networks at high tensile strains evidence the role of average chain tortuosity

    International Nuclear Information System (INIS)

    Hanson, David E; Barber, John L

    2013-01-01

    The ultimate stress and strain of polyisoprene rubber were studied by numerical simulations of three-dimensional random networks, subjected to tensile strains high enough to cause chain rupture. Previously published molecular chain force extension models and a numerical network construction procedure were used to perform the simulations for network crosslink densities between 2 × 10 19 and 1 × 10 20 cm −3 , corresponding to experimental dicumyl-peroxide concentrations of 1–5 parts per hundred. At tensile failure (defined as the point of maximum stress), we find that the fraction of network chains ruptured is between 0.1% and 1%, depending on the crosslink density. The fraction of network chains that are taut, i.e. their end-to-end distance is greater than their unstretched contour length, ranges between 10% and 15% at failure. Our model predicts that the theoretical (defect-free) failure stress should be about twice the highest experimental value reported. For extensions approaching failure, tensile stress is dominated by the network morphology and purely enthalpic bond distortion forces and, in this regime, the model has essentially no free parameters. The average initial chain tortuosity (τ) appears to be an important statistical property of rubber networks; if the stress is scaled by τ and the tensile strain is scaled by τ −1 , we obtain a master curve for stress versus strain, valid for all crosslink densities. We derive an analytic expression for the average tortuosity, which is in agreement with values calculated in the simulations. (paper)

  9. Mitochondrial DNA Marker EST00083 Is Not Associated with High vs. Average IQ in a German Sample.

    Science.gov (United States)

    Moises, Hans W.; Yang, Liu; Kohnke, Michael; Vetter, Peter; Neppert, Jurgen; Petrill, Stephen A.; Plomin, Robert

    1998-01-01

    Tested the association of a mitochondrial DNA marker (EST00083) with high IQ in a sample of 47 German adults with high IQ scores and 77 adults with IQs estimated at lower than 110. Results do not support the hypothesis that high IQ is associated with this marker. (SLD)

  10. Reading and Writing from Multiple Source Documents in History: Effects of Strategy Instruction with Low to Average High School Writers

    Science.gov (United States)

    De La Paz, Susan; Felton, Mark K.

    2010-01-01

    This study examined the effects of historical reasoning strategy instruction on 11th-grade students. Students learned historical inquiry strategies using 20th Century American history topics ranging from the Spanish-American war to the Gulf of Tonkin incident. In addition, students learned a pre-writing strategy for composing argumentative essays…

  11. The measurement of power losses at high magnetic field densities or at small cross-section of test specimen using the averaging

    CERN Document Server

    Gorican, V; Hamler, A; Nakata, T

    2000-01-01

    It is difficult to achieve sufficient accuracy of power loss measurement at high magnetic field densities where the magnetic field strength gets more and more distorted, or in cases where the influence of noise increases (small specimen cross section). The influence of averaging on the accuracy of power loss measurement was studied on the cast amorphous magnetic material Metglas 2605-TCA. The results show that the accuracy of power loss measurements can be improved by using the averaging of data acquisition points.

  12. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    Energy Technology Data Exchange (ETDEWEB)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-05-06

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  13. Highly modular high-brightness diode laser system design for a wide application range

    Science.gov (United States)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  14. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    Science.gov (United States)

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  15. How Well Does High School Grade Point Average Predict College Performance by Student Urbanicity and Timing of College Entry? REL 2017-250

    Science.gov (United States)

    Hodara, Michelle; Lewis, Karyn

    2017-01-01

    This report is a companion to a study that found that high school grade point average was a stronger predictor of performance in college-level English and math than were standardized exam scores among first-time students at the University of Alaska who enrolled directly in college-level courses. This report examines how well high school grade…

  16. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  17. Development of high average power industrial Nd:YAG laser with peak power of 10 kW class

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Soo Sung; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-03-01

    We developed and commercialized an industrial pulsed Nd:YAG laser with peak power of 10 kW class for fine cutting and drilling applications. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum peak power and average power of our laser were 10 kW and 250 W, respectively. Moreover, the laser pulse width could be controlled from 0.5 msec to 20 msec continuously. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accellerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Three Nd:YAG lasers have been assembled and will be tested in industrial manufacturing process to prove the capability of developed Nd:YAG laser with potential users. (Author)

  18. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  19. Parallel sort with a ranged, partitioned key-value store in a high perfomance computing environment

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron; Poole, Stephen W.

    2016-01-26

    Improved sorting techniques are provided that perform a parallel sort using a ranged, partitioned key-value store in a high performance computing (HPC) environment. A plurality of input data files comprising unsorted key-value data in a partitioned key-value store are sorted. The partitioned key-value store comprises a range server for each of a plurality of ranges. Each input data file has an associated reader thread. Each reader thread reads the unsorted key-value data in the corresponding input data file and performs a local sort of the unsorted key-value data to generate sorted key-value data. A plurality of sorted, ranged subsets of each of the sorted key-value data are generated based on the plurality of ranges. Each sorted, ranged subset corresponds to a given one of the ranges and is provided to one of the range servers corresponding to the range of the sorted, ranged subset. Each range server sorts the received sorted, ranged subsets and provides a sorted range. A plurality of the sorted ranges are concatenated to obtain a globally sorted result.

  20. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshinuma, M.; Ohdachi, S.; Ida, K.; Itoh, K.; Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.; Inagaki, S.

    2016-01-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  1. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Itoh, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Moon, C.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I. [National Institute for Fusion Science, Toki 509-5292 (Japan); Inagaki, S. [Research Center for Plasma Turbulence, Kyushu University, Kasuga 816-8580 (Japan); Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  2. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  3. A New Microwave Shield Preparation for Super High Frequency Range: Occupational Approach to Radiation Protection.

    Science.gov (United States)

    Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher

    2016-01-01

    Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects.  According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.

  4. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  5. Numerical simulation on range of high-energy electron moving in accelerator target

    International Nuclear Information System (INIS)

    Shao Wencheng; Sun Punan; Dai Wenjiang

    2008-01-01

    In order to determine the range of high-energy electron moving in accelerator target, the range of electron with the energy range of 1 to 100 MeV moving in common target material of accelerator was calculated by Monte-Carlo method. Comparison between the calculated result and the published data were performed. The results of Monte-Carlo calculation are in good agreement with the published data. Empirical formulas were obtained for the range of high-energy electron with the energy range of 1 to 100 MeV in common target material by curve fitting, offering a series of referenced data for the design of targets in electron accelerator. (authors)

  6. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  7. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  8. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  9. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  10. High-average-power UV generation at 266 and 355 nm in β-BaB/sub 2/O/sub 4/

    International Nuclear Information System (INIS)

    Liu, K.C.; Rhoades, M.

    1987-01-01

    UV light has been generated previously by harmonic conversion from Nd:YAG lasers using the nonlinear crystals KD*P and ADP. Most of the previous studies have employed lasers with high peak power due to the low-harmonic-conversion efficiency of these crystals and also low average power due to the phase mismatch caused by temperature detuning resulting from UV absorption. A new nonlinear crystal β-BaB/sub 2/O/sub 4/ has recently been reported which provides for the possibility of overcoming the aforementioned problems. The authors utilized β-BaB/sub 2/O/sub 4/ to frequency triple and frequency quadruple a high-repetition-rate cw-pumped Nd:YAG laser and achieved up to 1-W average power with Gaussian spatial distribution at 266 and 355 nm. β-BaB/sub 2/O/sub 4/ has demonstrated its advantages for high-average-power UV generation. Its major drawback is a low-angular-acceptance bandwidth which requires a high-quality fundamental pump beam

  11. Method of high precision interval measurement in pulse laser ranging system

    Science.gov (United States)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  12. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun; Kavusi, Sam; Salama, Khaled N.

    2012-01-01

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo

  13. Highly efficient holograms based on c-Si metasurfaces in the visible range.

    Science.gov (United States)

    Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V

    2018-04-16

    This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.

  14. The impact of including children with intellectual disability in general education classrooms on the academic achievement of their low-, average-, and high-achieving peers.

    Science.gov (United States)

    Sermier Dessemontet, Rachel; Bless, Gérard

    2013-03-01

    This study aimed at assessing the impact of including children with intellectual disability (ID) in general education classrooms with support on the academic achievement of their low-, average-, and high-achieving peers without disability. A quasi-experimental study was conducted with an experimental group of 202 pupils from classrooms with an included child with mild or moderate ID, and a control group of 202 pupils from classrooms with no included children with special educational needs (matched pairs sample). The progress of these 2 groups in their academic achievement was compared over a period of 1 school year. No significant difference was found in the progress of the low-, average-, or high-achieving pupils from classrooms with or without inclusion. The results suggest that including children with ID in primary general education classrooms with support does not have a negative impact on the progress of pupils without disability.

  15. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  16. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    Science.gov (United States)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  17. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  18. Rolling estimations of long range dependence volatility for high frequency S&P500 index

    Science.gov (United States)

    Cheong, Chin Wen; Pei, Tan Pei

    2015-10-01

    This study evaluates the time-varying long range dependence behaviors of the S&P500 volatility index using the modified rescaled adjusted range (R/S) statistic. For better computational result, a high frequency rolling bipower variation realized volatility estimates are used to avoid possible abrupt jump. The empirical analysis findings allow us to understand better the informationally market efficiency before and after the subprime mortgage crisis.

  19. A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Lee, Thomas H.; Bruun, Erik

    2005-01-01

    This paper presents a highly programmable front-end filter and amplifier intended to replace SAW filters and low noise amplifiers (LNA) in multi-mode direct conversion radio receivers. The filter has a 42 MHz bandwidth, is tunable from 1850 to 2400 MHz, achieves a 5.8 dB NF, -25 dBm in-band 1-d...

  20. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: Influence of contaminated fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.C. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Lin, W.T. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Liao, P.C. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Su, H.J. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Chen, H.L. [Department of Industrial Safety and Health, Hung Kuang University, Taichung, 34 Chung Chie Rd. Sha Lu, Taichung 433, Taiwan (China)]. E-mail: hsiulin@sunrise.hk.edu.tw

    2006-05-15

    An abandoned pentachlorophenol plant and nearby area in southern Taiwan was heavily contaminated by dioxins, impurities formed in the PCP production process. The investigation showed that the average serum PCDD/Fs of residents living nearby area (62.5 pg WHO-TEQ/g lipid) was higher than those living in the non-polluted area (22.5 and 18.2 pg WHO-TEQ/g lipid) (P < 0.05). In biota samples, average PCDD/F of milkfish in sea reservoir (28.3 pg WHO-TEQ/g) was higher than those in the nearby fish farm (0.15 pg WHO-TEQ/g), and Tilapia and shrimp showed the similar trend. The average daily PCDD/Fs intake of 38% participants was higher than 4 pg WHO-TEQ/kg/day suggested by the world health organization. Serum PCDD/F was positively associated with average daily intake (ADI) after adjustment for age, sex, BMI, and smoking status. In addition, a prospective cohort study is suggested to determine the long-term health effects on the people living near factory. - Inhabitants living near a deserted PCP factory are exposed to high PCDD/F levels.

  1. Average nuclear surface properties

    International Nuclear Information System (INIS)

    Groote, H. von.

    1979-01-01

    The definition of the nuclear surface energy is discussed for semi-infinite matter. This definition is extended also for the case that there is a neutron gas instead of vacuum on the one side of the plane surface. The calculations were performed with the Thomas-Fermi Model of Syler and Blanchard. The parameters of the interaction of this model were determined by a least squares fit to experimental masses. The quality of this fit is discussed with respect to nuclear masses and density distributions. The average surface properties were calculated for different particle asymmetry of the nucleon-matter ranging from symmetry beyond the neutron-drip line until the system no longer can maintain the surface boundary and becomes homogeneous. The results of the calculations are incorporated in the nuclear Droplet Model which then was fitted to experimental masses. (orig.)

  2. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Short communication: Prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody- and cell-mediated immune responders.

    Science.gov (United States)

    Cartwright, S L; Malchiodi, F; Thompson-Crispi, K; Miglior, F; Mallard, B A

    2017-10-01

    Lameness is a major animal welfare issue affecting Canadian dairy producers, and it can lead to production, reproduction, and health problems in dairy cattle herds. Although several different lesions affect dairy cattle hooves, studies show that digital dermatitis is the most common lesion identified in Canadian dairy herds. It has also been shown that dairy cattle classified as having high immune response (IR) have lower incidence of disease compared with those animals with average and low IR; therefore, it has been hypothesized that IR plays a role in preventing infectious hoof lesions. The objective of this study was to compare the prevalence of digital dermatitis in Canadian dairy cattle that were classified for antibody-mediated (AMIR) and cell-mediated (CMIR) immune response. Cattle (n = 329) from 5 commercial dairy farms in Ontario were evaluated for IR using a patented test protocol that captures both AMIR and CMIR. Individuals were classified as high, average, or low responders based on standardized residuals for AMIR and CMIR. Residuals were calculated using a general linear model that included the effects of herd, parity, stage of lactation, and stage of pregnancy. Hoof health data were collected from 2011 to 2013 by the farm's hoof trimmer using Hoof Supervisor software (KS Dairy Consulting Inc., Dresser, WI). All trim events were included for each animal, and lesions were assessed as a binary trait at each trim event. Hoof health data were analyzed using a mixed model that included the effects of herd, stage of lactation (at trim date), parity (at trim date), IR category (high, average, and low), and the random effect of animal. All data were presented as prevalence within IR category. Results showed that cows with high AMIR had significantly lower prevalence of digital dermatitis than cattle with average and low AMIR. No significant difference in prevalence of digital dermatitis was observed between high, average, and low CMIR cows. These results

  4. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Science.gov (United States)

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  5. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  6. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  7. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  8. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  9. Aircraft micro-doppler feature extraction from high range resolution profiles

    CSIR Research Space (South Africa)

    Berndt, RJ

    2015-10-01

    Full Text Available The use of high range resolution measurements and the micro-Doppler effect produced by rotating or vibrating parts of a target has been well documented. This paper presents a technique for extracting features related to helicopter rotors...

  10. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  11. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J., E-mail: gsimpson@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  12. Home ranges of lions in the Kalahari, Botswana exhibit vast sizes and high temporal variability.

    Science.gov (United States)

    Zehnder, André; Henley, Stephen; Weibel, Robert

    2018-06-01

    The central Kalahari region in Botswana is one of the few remaining ecosystems with a stable lion population. Yet, relatively little is known about the ecology of the lions there. As an entry point, home range estimations provide information about the space utilization of the studied animals. The home ranges of eight lions in this region were determined to investigate their spatial overlaps and spatiotemporal variations. We found that, except for MCP, all home range estimators yielded comparable results regarding size and shape. The home ranges of all individuals were located predominantly inside the protected reserves. Their areas were among the largest known for lions with 1131 - 4314km 2 (95%), with no significant differences between males and females. Numerous overlaps between lions of different sexes were detected, although these originate from different groups. A distance chart confirmed that most of these lions directly encountered each other once or several times. Strong temporal variations of the home ranges were observed that did not match a seasonal pattern. The exceptionally large home ranges are likely to be caused by the sparse and dynamic prey populations. Since the ungulates in the study area move in an opportunistic way, too, strong spatiotemporal home range variations emerge. This can lead to misleading home ranges. We therefore recommend clarifying the stability of the home ranges by applying several levels of temporal aggregation. The lack of strict territoriality is likely an adaptation to the variable prey base and the high energetic costs associated with defending a large area. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Stopping power and range relations for low and high Z ions in solids: a critical analysis

    International Nuclear Information System (INIS)

    Virk, H.S.; Randhawa, G.S.

    1997-01-01

    A critical analysis of various stopping power and range formulations has been made by comparing the calculated stopping power and range values with corresponding experimental values for different low Z (1≤Z≤8) and high Z projectiles (54≤Z≤92) in different targets, e.g. Be, C, Al, Au, Pb, CR-39, Lexan, Mylar, LR-115, CH, (CH)n, TRIFOL-TN, etc. atvarious low and high energies. A comparative study has been made by taking into consideration different target and projectile combinations, e.g., heavy ion-light target, light ion-heavy target and light ion -light target etc., Overall the Ziegler formulation (TRIM-95) provides the best agreement with the experimental results for all projectile and target combinations except for heavy ion-light target combination where it underestimates the stopping power data and overestimates the range data in the range, 2-50 MeV/u. Mukherjee and Nayak formulation totally fails at relativistic and low energies of the projectile, irrespective of the projectile-target combination. Northcliffe and Schilling formulation does not show any particular trend. Benton and Henke formulation gives good agreement between experimental and theoretical data within the range of experimental errors. (orig.)

  14. Differences in Learning Characteristics Between Students With High, Average, and Low Levels of Academic Procrastination: Students’ Views on Factors Influencing Their Learning

    Directory of Open Access Journals (Sweden)

    Lennart Visser

    2018-05-01

    Full Text Available Within the field of procrastination, much research has been conducted on factors that have an influence on academic procrastination. Less is known about how such factors may differ for various students. In addition, not much is known about differences in the process of how factors influence students’ learning and what creates differences in procrastination behavior between students with different levels of academic procrastination. In this study learning characteristics and the self-regulation behavior of three groups of students with different levels of academic procrastination were compared. The rationale behind this was that certain learning characteristics and self-regulation behaviors may play out differently in students with different levels of academic procrastination. Participants were first-year students (N = 22 with different levels of academic procrastination enrolled in an elementary teacher education program. The selection of the participants into three groups of students (low procrastination, n = 8; average procrastination, n = 8; high procrastination, n = 6 was based on their scores on a questionnaire measuring the students’ levels of academic procrastination. From semi-structured interviews, six themes emerged that describe how students in the three groups deal with factors that influence the students’ learning: degree program choice, getting started with study activities, engagement in study activities, ways of reacting to failure, view of oneself, and study results. This study shows the importance of looking at differences in how students deal with certain factors possibly negatively influencing their learning. Within the group of students with average and high levels of academic procrastination, factors influencing their learning are regularly present. These factors lead to procrastination behavior among students with high levels of academic procrastination, but this seems not the case among students with an average

  15. Differences in Learning Characteristics Between Students With High, Average, and Low Levels of Academic Procrastination: Students' Views on Factors Influencing Their Learning.

    Science.gov (United States)

    Visser, Lennart; Korthagen, Fred A J; Schoonenboom, Judith

    2018-01-01

    Within the field of procrastination, much research has been conducted on factors that have an influence on academic procrastination. Less is known about how such factors may differ for various students. In addition, not much is known about differences in the process of how factors influence students' learning and what creates differences in procrastination behavior between students with different levels of academic procrastination. In this study learning characteristics and the self-regulation behavior of three groups of students with different levels of academic procrastination were compared. The rationale behind this was that certain learning characteristics and self-regulation behaviors may play out differently in students with different levels of academic procrastination. Participants were first-year students ( N = 22) with different levels of academic procrastination enrolled in an elementary teacher education program. The selection of the participants into three groups of students (low procrastination, n = 8; average procrastination, n = 8; high procrastination, n = 6) was based on their scores on a questionnaire measuring the students' levels of academic procrastination. From semi-structured interviews, six themes emerged that describe how students in the three groups deal with factors that influence the students' learning: degree program choice, getting started with study activities, engagement in study activities, ways of reacting to failure, view of oneself, and study results. This study shows the importance of looking at differences in how students deal with certain factors possibly negatively influencing their learning. Within the group of students with average and high levels of academic procrastination, factors influencing their learning are regularly present. These factors lead to procrastination behavior among students with high levels of academic procrastination, but this seems not the case among students with an average level of academic

  16. Differences in Learning Characteristics Between Students With High, Average, and Low Levels of Academic Procrastination: Students’ Views on Factors Influencing Their Learning

    Science.gov (United States)

    Visser, Lennart; Korthagen, Fred A. J.; Schoonenboom, Judith

    2018-01-01

    Within the field of procrastination, much research has been conducted on factors that have an influence on academic procrastination. Less is known about how such factors may differ for various students. In addition, not much is known about differences in the process of how factors influence students’ learning and what creates differences in procrastination behavior between students with different levels of academic procrastination. In this study learning characteristics and the self-regulation behavior of three groups of students with different levels of academic procrastination were compared. The rationale behind this was that certain learning characteristics and self-regulation behaviors may play out differently in students with different levels of academic procrastination. Participants were first-year students (N = 22) with different levels of academic procrastination enrolled in an elementary teacher education program. The selection of the participants into three groups of students (low procrastination, n = 8; average procrastination, n = 8; high procrastination, n = 6) was based on their scores on a questionnaire measuring the students’ levels of academic procrastination. From semi-structured interviews, six themes emerged that describe how students in the three groups deal with factors that influence the students’ learning: degree program choice, getting started with study activities, engagement in study activities, ways of reacting to failure, view of oneself, and study results. This study shows the importance of looking at differences in how students deal with certain factors possibly negatively influencing their learning. Within the group of students with average and high levels of academic procrastination, factors influencing their learning are regularly present. These factors lead to procrastination behavior among students with high levels of academic procrastination, but this seems not the case among students with an average level of academic

  17. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  18. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  19. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  20. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  1. High speed display algorithm for 3D medical images using Multi Layer Range Image

    International Nuclear Information System (INIS)

    Ban, Hideyuki; Suzuki, Ryuuichi

    1993-01-01

    We propose high speed algorithm that display 3D voxel images obtained from medical imaging systems such as MRI. This algorithm convert voxel image data to 6 Multi Layer Range Image (MLRI) data, which is an augmentation of the range image data. To avoid the calculation for invisible voxels, the algorithm selects at most 3 MLRI data from 6 in accordance with the view direction. The proposed algorithm displays 256 x 256 x 256 voxel data within 0.6 seconds using 22 MIPS Workstation without a special hardware such as Graphics Engine. Real-time display will be possible on 100 MIPS class Workstation by our algorithm. (author)

  2. Americans' Average Radiation Exposure

    International Nuclear Information System (INIS)

    2000-01-01

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body

  3. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  4. Dissipative Effects on Inertial-Range Statistics at High Reynolds Numbers.

    Science.gov (United States)

    Sinhuber, Michael; Bewley, Gregory P; Bodenschatz, Eberhard

    2017-09-29

    Using the unique capabilities of the Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization, Göttingen, we report experimental measurements in classical grid turbulence that uncover oscillations of the velocity structure functions in the inertial range. This was made possible by measuring extremely long time series of up to 10^{10} samples of the turbulent fluctuating velocity, which corresponds to O(10^{7}) integral length scales. The measurements were conducted in a well-controlled environment at a wide range of high Reynolds numbers from R_{λ}=110 up to R_{λ}=1600, using both traditional hot-wire probes as well as the nanoscale thermal anemometry probe developed at Princeton University. An implication of the observed oscillations is that dissipation influences the inertial-range statistics of turbulent flows at scales significantly larger than predicted by current models and theories.

  5. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  6. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity

    International Nuclear Information System (INIS)

    Donner, R.V.; Potirakis, S.M.; Barbosa, S.M.; Matos, J.A.O.; Pereira, A.J.S.C.; Neves, L.J.M.F.

    2015-01-01

    The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. (authors)

  7. Back pain in physically inactive students compared to physical education students with a high and average level of physical activity studying in Poland.

    Science.gov (United States)

    Kędra, Agnieszka; Kolwicz-Gańko, Aleksandra; Kędra, Przemysław; Bochenek, Anna; Czaprowski, Dariusz

    2017-11-28

    The aim of the study was (1) to characterise back pain in physically inactive students as well as in trained (with a high level of physical activity) and untrained (with an average level of physical activity) physical education (PE) students and (2) to find out whether there exist differences regarding the declared incidence of back pain (within the last 12 months) between physically inactive students and PE students as well as between trained (with a high level of physical activity) and untrained (with an average level of physical activity) PE students. The study included 1321 1st-, 2nd- and 3rd-year students (full-time bachelor degree course) of Physical Education, Physiotherapy, Pedagogy as well as Tourism and Recreation from 4 universities in Poland. A questionnaire prepared by the authors was applied as a research tool. The 10-point Visual Analogue Scale (VAS) was used to assess pain intensity. Prior to the study, the reliability of the questionnaire was assessed by conducting it on the group of 20 participants twice with a shorter interval. No significant differences between the results obtained in the two surveys were revealed (p education (p > 0.05). Back pain was more common in the group of trained students than among untrained individuals (p education students (p > 0.05). The trained students declared back pain more often than their untrained counterparts (p < 0.05).

  8. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    Science.gov (United States)

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  9. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    Science.gov (United States)

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  10. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Lee, Hyung Kew; Kim, Wan-Seop

    2017-01-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF–1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z -matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10 −6 –10 −5 , proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range. (paper)

  11. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  12. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  13. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  14. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

    International Nuclear Information System (INIS)

    Ciufolini, I.

    1986-01-01

    We describe a new method of measuring the Lense-Thirring relativistic nodal drag using LAGEOS together with another high-altitude, laser-ranged, similar satellite with appropriately chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II have an inclination supplementary to that of LAGEOS. The experiment proposed here would provide a method for experimental verification of the general relativistic formulation of Mach's principle and measurement of the gravitomagnetic field

  15. Rabbit System. Low cost, high reliability front end electronics featuring 16 bit dynamic range

    International Nuclear Information System (INIS)

    Drake, G.; Droege, T.F.; Nelson, C.A. Jr.; Turner, K.J.; Ohska, T.K.

    1985-10-01

    A new crate-based front end system has been built which features low cost, compact packaging, command capability, 16 bit dynamic range digitization, and a high degree of redundancy. The crate can contain a variety of instrumentation modules, and is designed to be situated close to the detector. The system is suitable for readout of a large number of channels via parallel multiprocessor data acquisition

  16. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  17. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  18. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  19. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.; Levin, E.

    2015-01-01

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  20. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  1. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  2. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3

  3. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  4. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  5. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  6. Cavities at the Si projected range by high dose and energy Si ion implantation in Si

    International Nuclear Information System (INIS)

    Canino, M.; Regula, G.; Lancin, M.; Xu, M.; Pichaud, B.; Ntzoenzok, E.; Barthe, M.F.

    2009-01-01

    Two series of n-type Si samples α and β are implanted with Si ions at high dose (1 x 10 16 ) and high energies, 0.3 and 1.0 MeV, respectively. Both sort of samples are then implanted with 5 x 10 16 He cm -2 (at 10 or 50 keV) and eventually with B atoms. Some of the samples are annealed at temperatures ranging from 800 to 1000 deg. C to allow the thermal growth of He-cavities, located between sample surface and the projected range (R p ) of Si. After the triple ion implantation, which corresponds to defect engineering, samples were characterized by cross-section transmission electron microscopy (XTEM). Voids (or bubbles) are observed not only at the R p (He) on all annealed samples, but also at the R p (Si) on β samples implanted with He at 50 keV. The samples are also studied by positron annihilation spectroscopy (PAS) and the spectra confirm that as-implanted samples contain di-vacancies and that the annealed ones, even at high temperature have bigger open volumes, which are assumed to be the same voids observed by XTEM. It is demonstrated that a sole Si implantation at high energy and dose is efficient to create cavities which are thermally stable up to 1000 deg. C only in the presence of He.

  7. High Dynamic Range adaptive ΔΣ-based Focal Plane Array architecture

    KAUST Repository

    Yao, Shun

    2012-10-16

    In this paper, an Adaptive Delta-Sigma based architecture for High Dynamic Range (HDR) Focal Plane Arrays is presented. The noise shaping effect of the Delta-Sigma modulation in the low end, and the distortion noise induced in the high end of Photo-diode current were analyzed in detail. The proposed architecture can extend the DR for about 20N log2 dB at the high end of Photo-diode current with an N bit Up-Down counter. At the low end, it can compensate for the larger readout noise by employing Extended Counting. The Adaptive Delta-Sigma architecture employing a 4-bit Up-Down counter achieved about 160dB in the DR, with a Peak SNR (PSNR) of 80dB at the high end. Compared to the other HDR architectures, the Adaptive Delta-Sigma based architecture provides the widest DR with the best SNR performance in the extended range.

  8. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  9. Long Range Polymer Chain Dynamics of Highly Flexible Polysiloxane in Solution Probed by Pyrene Excimer Fluorescence

    Directory of Open Access Journals (Sweden)

    Janine L. Thoma

    2018-03-01

    Full Text Available A poly(dimethylsiloxane-co-(3-aminopropylmethylsiloxane polymer (PDMS with 20.3 mol % of (3-aminopropylmethyl siloxane monomer has been labeled randomly with 1-pyreneacetyl groups to generate a series of polysiloxanes (Py-PDMS with pyrenyl contents ranging from 0.7 mol % to 5.2 mol % of the total number of structural units. The remainder of the amino groups were acetylated to avoid intra-chain quenching of the excited singlet states of pyrene via exciplex formation with free amino groups while allowing the formation of excimers to proceed. The fluorescence spectra and temporal decays of the Py-PDMS samples were acquired in tetrahydrofuran (THF, N,N-dimethylformamide (DMF, and dioxane. blob, the average rate constant for intra-chain pyrene excimer formation, was determined from the analysis of the fluorescence decays. blob was found to equal 1.16 (±0.13 × 109, 1.14 (±0.12 × 109, and 0.99 (±0.10 × 109 s−1 in THF, DMF, and dioxane, respectively, at room temperature. They are the largest values found to date for any polymeric backbone in these solvents. The qualitative relationship found here between blob and the chemical structures of the polymers indicates that the luminescence characteristics of randomly labeled polymers is a very useful method to probe the long range dynamics of chains of almost any polymer that is amenable to substitution by a lumophore.

  10. Multi-exposure high dynamic range image synthesis with camera shake correction

    Science.gov (United States)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  11. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    Science.gov (United States)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  12. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  13. Eye safe high power laser diode in the 1410-1550nm range

    Science.gov (United States)

    Boucart, Julien; de Largy, Brian; Kearley, Mark; Lichtenstein, Norbert

    2010-02-01

    The demand for high power lasers emitting in the 14xx-15xxnm range is growing for applications in fields such as medical or homeland security. We demonstrate high power laser diodes with emission at 1430, 1470 and 1560 nm. Single multimode emitters at 1470nm emit about 3.5W in CW operation. Power conversion efficiency can reach values as high as 38.5%. With this base material, single and multi-emitter fiber coupled modules are built. Additionally, bars on passive and microchannel coolers are fabricated that deliver 25W and 38W respectively in CW mode, while obtaining more than 80 W in pulsed mode. All reliability tests show an outstanding stability of the material with no signs of wearout after 3750 hrs under strong acceleration conditions.

  14. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  15. Possible manifestation of long range forces in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.; Ferro, P.; Trentadue, L.

    1997-01-01

    Pion-pion and photon-photon scattering are discussed.. We obtain, starting from the impact representation introduced by Cheng and Wu a new contribution to the high energy hadron-hadron scattering amplitude for small transferred momentum q 2 of the form is (q 2 /m 4 )ln(-q 2 /m 2 ). This behaviour may be interpreted as a manifestation of long transverse-range forces between hadrons which, for ρ>> m -1 fall off as ρ -4 . We consider the examples of pion and photon scattering with photons converted in the intermediate state to two pairs of quarks interacting by exchanging two gluon colorless state. A phenomenological approach for proton impact factor is used to analyze proton-proton scattering. The analysis of the lowest order radiative corrections for the case of photon-photon scattering is done. We discuss the possibility of observing the effects of these long range forces

  16. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Science.gov (United States)

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  17. Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range

    Directory of Open Access Journals (Sweden)

    Abdul kareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6

  18. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  19. SiGe HBT linear-in-dB high dynamic range RF envelope detectors and wideband high linearity amplifiers

    OpenAIRE

    Pan, Hsuan-yu

    2010-01-01

    This research work aims on exploiting SiGe HBT technologies in high dynamic range wideband RF linear-in- dB envelope detectors and linear amplifiers. First, an improved all-npn broadband highly linear SiGe HBT differential amplifier is presented based on a variation of Caprio's Quad. A broadband linear amplifier with 46dBm OIP₃ at 20MHz, 34dBm OIP₃ at 1GHz, 6dB noise figure and 10.3dBm P₁dB is demonstrated. Second, an improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain...

  20. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    Science.gov (United States)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  1. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  2. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  3. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  4. Applichation of the sulphate ceric dosimetric in the high doses range

    International Nuclear Information System (INIS)

    Prieto Miranda, F.

    1991-01-01

    The ceric-cerous dosimetric system is one of the system more employed in the high dose dosimetry. The spectrophotometric procedure to measure the ceric-concentration is an usual analityc method to determine the absorbed dose. On the other hand, due at increase employ of the irradiation process control. In this paper is realized the ceric-cerous dosimetric calibration in the dose range of 0,6 - 5 kGy and the application in the irradiation process control to differents absorbed dose values

  5. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  6. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shafinaz [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Terracol, Stephane F. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Drury, Owen B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Friedrich, Stephan [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-270, Livermore, CA 94550 (United States)]. E-mail: friedrich1@llnl.gov

    2006-04-15

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm{sup 3} Sn absorber is 50-90 eV FWHM for {gamma}-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range.

  7. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    Science.gov (United States)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient

  8. Stereo Vision-Based High Dynamic Range Imaging Using Differently-Exposed Image Pair

    Directory of Open Access Journals (Sweden)

    Won-Jae Park

    2017-06-01

    Full Text Available In this paper, a high dynamic range (HDR imaging method based on the stereo vision system is presented. The proposed method uses differently exposed low dynamic range (LDR images captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR images using the inverse camera response function estimated from the LDR images. However, due to the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed regions of the initial main-view (MV HDR image can be lost. To restore these radiance values, the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images. Specifically, the auxiliary-view (AV HDR image is warped by using the estimated disparity between initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image. To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the initial MV HDR image using the weight map. The experimental results demonstrate objectively and subjectively that the proposed stereo HDR imaging method provides better performance compared to the conventional method.

  9. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  10. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2015-11-15

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  11. High-power laser delocalization in plasmas leading to long-range beam merging

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsutsumi, M; Marques, J R; Antici, P; Bourgeois, N; Romagnani, L; Audebert, P; Fuchs, J [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M; Kodama, R [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J L; Nicolai, P [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)

    2010-07-01

    Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)

  12. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  13. Highly Specific and Wide Range NO2 Sensor with Color Readout.

    Science.gov (United States)

    Fàbrega, Cristian; Fernández, Luis; Monereo, Oriol; Pons-Balagué, Alba; Xuriguera, Elena; Casals, Olga; Waag, Andreas; Prades, Joan Daniel

    2017-11-22

    We present a simple and inexpensive method to implement a Griess-Saltzman-type reaction that combines the advantages of the liquid phase method (high specificity and fast response time) with the benefits of a solid implementation (easy to handle). We demonstrate that the measurements can be carried out using conventional RGB sensors; circumventing all the limitations around the measurement of the samples with spectrometers. We also present a method to optimize the measurement protocol and target a specific range of NO 2 concentrations. We demonstrate that it is possible to measure the concentration of NO 2 from 50 ppb to 300 ppm with high specificity and without modifying the Griess-Saltzman reagent.

  14. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    Science.gov (United States)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  15. Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants

    Directory of Open Access Journals (Sweden)

    Somieh HAJEBRAHIMI

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Among several Phytophthora spp. reported previously from Pistacia vera in Iran, a high temperature species recently identified as P. parsiana (formerly known as high temperature P. cryptogea is becoming important in woody plants, including P. vera. The host range of this newly recognised species, including both annual and perennial plants, is reported here. The pathogen infected 4–5 month-old glasshouse grown seedlings of P. vera, Ficus carica, Malus pumila and Prunus dulcis, and detached stems of 23 woody plants collected during dormant and growing seasons. Nineteen field and vegetable crops and 17 weed species were not infected by  P. parsiana in these pathogenicity assays.

  16. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio

    Science.gov (United States)

    Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang

    2017-05-01

    The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.

  17. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    Science.gov (United States)

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  18. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    the dynamic range of conventional rectifiers. Unlike the continuously self-biased rectifier proposed in the second part, this adaptive rectifier extends the dynamic range while maintaining both the high PCE peak and the sensitivity advantage of the conventional cross-coupled scheme, and can operates in the GHz range.

  19. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  20. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film

    International Nuclear Information System (INIS)

    Mani, Ganesh Kumar; Rayappan, John Bosco Balaguru

    2015-01-01

    Graphical abstract: - Highlights: • Cobalt doped nanostructured ZnO thin films were spray deposited on glass substrates. • Co-doped ZnO film was highly selective towards ammonia than ethanol, methanol, etc. • The range of ammonia detection was improved significantly by doping cobalt in ZnO. - Abstract: Ammonia sensing characteristics of undoped and cobalt (Co)-doped nanostructured ZnO thin films were investigated. Polycrystalline nature with hexagonal wurtzite structure and high crystalline quality with dominant (0 0 2) plane orientation of Co-doped ZnO film were confirmed by the X-ray diffractogram. Scanning electron micrographs of the undoped film demonstrated the uniform deposition of sphere-shaped grains. But, smaller particles with no clear grain boundaries were observed for Co-doped ZnO thin film. Band gap values were found to be 3.26 eV and 3.22 eV for undoped and Co-doped ZnO thin films. Ammonia sensing characteristics of Co-doped ZnO film at room temperature were investigated in the concentration range of 15–1000 ppm. Variation in the sensing performances of Co-doped and pure ZnO thin films has been analyzed and compared

  1. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  2. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  3. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  4. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  5. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  6. ZPR-3 Assembly 11: A cylindrical sssembly of highly enriched uranium and depleted uranium with an average 235U enrichment of 12 atom % and a depleted uranium reflector

    International Nuclear Information System (INIS)

    Lell, R.M.; McKnight, R.D.; Tsiboulia, A.; Rozhikhin, Y.

    2010-01-01

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was 235 U or 239 Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core 235 U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working Group (CSEWG) Benchmark

  7. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  8. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  9. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    Directory of Open Access Journals (Sweden)

    Kessler Sharon E

    2012-11-01

    Full Text Available Abstract Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus, a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1 Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2 High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3 Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged.

  10. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  11. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  12. Average effect estimates remain similar as evidence evolves from single trials to high-quality bodies of evidence: a meta-epidemiologic study.

    Science.gov (United States)

    Gartlehner, Gerald; Dobrescu, Andreea; Evans, Tammeka Swinson; Thaler, Kylie; Nussbaumer, Barbara; Sommer, Isolde; Lohr, Kathleen N

    2016-01-01

    The objective of our study was to use a diverse sample of medical interventions to assess empirically whether first trials rendered substantially different treatment effect estimates than reliable, high-quality bodies of evidence. We used a meta-epidemiologic study design using 100 randomly selected bodies of evidence from Cochrane reports that had been graded as high quality of evidence. To determine the concordance of effect estimates between first and subsequent trials, we applied both quantitative and qualitative approaches. For quantitative assessment, we used Lin's concordance correlation and calculated z-scores; to determine the magnitude of differences of treatment effects, we calculated standardized mean differences (SMDs) and ratios of relative risks. We determined qualitative concordance based on a two-tiered approach incorporating changes in statistical significance and magnitude of effect. First trials both overestimated and underestimated the true treatment effects in no discernible pattern. Nevertheless, depending on the definition of concordance, effect estimates of first trials were concordant with pooled subsequent studies in at least 33% but up to 50% of comparisons. The pooled magnitude of change as bodies of evidence advanced from single trials to high-quality bodies of evidence was 0.16 SMD [95% confidence interval (CI): 0.12, 0.21]. In 80% of comparisons, the difference in effect estimates was smaller than 0.5 SMDs. In first trials with large treatment effects (>0.5 SMD), however, estimates of effect substantially changed as new evidence accrued (mean change 0.68 SMD; 95% CI: 0.50, 0.86). Results of first trials often change, but the magnitude of change, on average, is small. Exceptions are first trials that present large treatment effects, which often dissipate as new evidence accrues. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reynolds-averaged Navier-Stokes investigation of high-lift low-pressure turbine blade aerodynamics at low Reynolds number

    Science.gov (United States)

    Arko, Bryan M.

    Design trends for the low-pressure turbine (LPT) section of modern gas turbine engines include increasing the loading per airfoil, which promises a decreased airfoil count resulting in reduced manufacturing and operating costs. Accurate Reynolds-Averaged Navier-Stokes predictions of separated boundary layers and transition to turbulence are needed, as the lack of an economical and reliable computational model has contributed to this high-lift concept not reaching its full potential. Presented here for what is believed to be the first time applied to low-Re computations of high-lift linear cascade simulations is the Abe-Kondoh-Nagano (AKN) linear low-Re two-equation turbulence model which utilizes the Kolmogorov velocity scale for improved predictions of separated boundary layers. A second turbulence model investigated is the Kato-Launder modified version of the AKN, denoted MPAKN, which damps turbulent production in highly strained regions of flow. Fully Laminar solutions have also been calculated in an effort to elucidate the transitional quality of the turbulence model solutions. Time accurate simulations of three modern high-lift blades at a Reynolds number of 25,000 are compared to experimental data and higher-order computations in order to judge the accuracy of the results, where it is shown that the RANS simulations with highly refined grids can produce both quantitatively and qualitatively similar separation behavior as found in experiments. In particular, the MPAKN model is shown to predict the correct boundary layer behavior for all three blades, and evidence of transition is found through inspection of the components of the Reynolds Stress Tensor, spectral analysis, and the turbulence production parameter. Unfortunately, definitively stating that transition is occurring becomes an uncertain task, as similar evidence of the transition process is found in the Laminar predictions. This reveals that boundary layer reattachment may be a result of laminar

  14. Report of the subpanel on long-range planning for the US High-Energy-Physics Program of the High-Energy-Physics Advisory Panel

    International Nuclear Information System (INIS)

    1982-01-01

    The US High Energy Program remains strong, but it faces vigorous competition from other regions of the world. To maintain its vitality and preeminence over the next decade it requires the following major ingredients: (1) strong exploitation of existing facilities; (2) the expeditious completion of construction projects which will expand these facilities over the next few years; (3) the construction of a substantial new facility to be ready for research by the end of the 1980's; and (4) the vigorous pursuit of a wide range of advanced accelerator R and D programs in preparation for the design and construction of a higher energy accelerator which would probably be initiated near the end of this decade. The Subpanel has considered how best to accomplish these goals under two different budgetary assumptions; namely, average yearly support levels of $440M DOE, $35M NSF, and $395M DOE, $34M NSF (FY 1982 dollars). It has also considered the impact of a yet lower support level of $360M DOE and $32M NSF. A description of facilities in high energy physics is given, and facility recommendations and long range plans are discussed. Recommendations for international collaboration are included

  15. Unattended real-time re-establishment of visibility in high dynamic range video and stills

    Science.gov (United States)

    Abidi, B.

    2014-05-01

    We describe a portable unattended persistent surveillance system that corrects for harsh illumination conditions, where bright sun light creates mixed contrast effects, i.e., heavy shadows and washouts. These effects result in high dynamic range scenes, where illuminance can vary from few luxes to a 6 figure value. When using regular monitors and cameras, such wide span of illuminations can only be visualized if the actual range of values is compressed, leading to the creation of saturated and/or dark noisy areas and a loss of information in these areas. Images containing extreme mixed contrast cannot be fully enhanced from a single exposure, simply because all information is not present in the original data. The active intervention in the acquisition process is required. A software package, capable of integrating multiple types of COTS and custom cameras, ranging from Unmanned Aerial Systems (UAS) data links to digital single-lens reflex cameras (DSLR), is described. Hardware and software are integrated via a novel smart data acquisition algorithm, which communicates to the camera the parameters that would maximize information content in the final processed scene. A fusion mechanism is then applied to the smartly acquired data, resulting in an enhanced scene where information in both dark and bright areas is revealed. Multi-threading and parallel processing are exploited to produce automatic real time full motion corrected video. A novel enhancement algorithm was also devised to process data from legacy and non-controllable cameras. The software accepts and processes pre-recorded sequences and stills, enhances visible, night vision, and Infrared data, and successfully applies to night time and dark scenes. Various user options are available, integrating custom functionalities of the application into intuitive and easy to use graphical interfaces. The ensuing increase in visibility in surveillance video and intelligence imagery will expand the performance and

  16. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  17. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance.

    Directory of Open Access Journals (Sweden)

    Huiling He

    Full Text Available Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C in a large pedigree displaying non-medullary thyroid carcinoma (NMTC. This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.

  18. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  19. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    Science.gov (United States)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  20. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  1. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  2. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  3. Preamplifier development for high count-rate, large dynamic range readout of inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Keshelashvili, Irakli; Erni, Werner; Steinacher, Michael; Krusche, Bernd; Collaboration: PANDA-Collaboration

    2013-07-01

    Electromagnetic calorimeter are central component of many experiments in nuclear and particle physics. Modern ''trigger less'' detectors run with very high count-rates, require good time and energy resolution, and large dynamic range. In addition photosensors and preamplifiers must work in hostile environments (magnetic fields). Due to later constraints mainly Avalanche Photo Diodes (APD's), Vacuum Photo Triodes (VPT's), and Vacuum Photo Tetrodes (VPTT's) are used. A disadvantage is their low gain which together with other requirements is a challenge for the preamplifier design. Our group has developed special Low Noise / Low Power (LNP) preamplifier for this purpose. They will be used to equip PANDA EMC forward end-cap (dynamic range 15'000, rate 1MHz), where the PWO II crystals and preamplifier have to run in an environment cooled down to -25{sup o}C. Further application is the upgrade of the Crystal Barrel detector at the Bonn ELSA accelerator with APD readout for which special temperature comparison of the APD gain and good time resolution is necessary. Development and all test procedures after the mass production done by our group during past several years in Basel University will be reported.

  4. High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Directory of Open Access Journals (Sweden)

    J.-M. Wu

    2012-06-01

    Full Text Available This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC for worldwide interoperability for microwave access (WiMAX receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA with noise cancellation, an RF bandpass filter (BPF, a downconverter with linearization, and an intermediate frequency (IF BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3 of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf of the RF front end by 3.5 dB.

  5. An improved method to estimate reflectance parameters for high dynamic range imaging

    Science.gov (United States)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  6. Increase of the dynamic range of catchup experiments by high-pass filtering

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.J.

    1995-08-01

    The release-catchup shock experiment is an important tool for measuring the speed of sound in compressed matter. The catchup of the release wave to the leading shock is sensitively detected optically, through an indicating fluid which produces light approximately to the 4th power of the shock pressure. However, this sensitivity demands a dynamic range which exceeds the capabilities of our digitizer. The catchup signature lies at the top of a flat pulse, thus any signal clipping is a catastrophic loss of data. We have invented a simple and accurate method for recording the catchup signature that is insensitive to signal clipping. A high pass circuit prior to the digitizer is used with post experiment integration. The insensitivity to clipping allows recording the catchup signature at higher gain, and thus with an improved signal to noise ratio.

  7. Evidence for short range corelations from high Q2 (e,e') reactions

    International Nuclear Information System (INIS)

    Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.

    1994-01-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e') reactions, where Q 2 > 1 (GeV/c) 2 , x = Q 2 /2mq o > 1 and 1 GeV > q o > 300 ∼ 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration

  8. Operating Range for High Temperature Borosilicate Waste Glasses: (Simulated Hanford Enveloped)

    International Nuclear Information System (INIS)

    Mohammad, J.; Ramsey, W. G.; Toghiani, R. K.

    2003-01-01

    The following results are a part of an independent thesis study conducted at Diagnostic Instrumentation and Analysis Laboratory-Mississippi State University. A series of small-scale borosilicate glass melts from high-level waste simulant were produced with waste loadings ranging from 20% to 55% (by mass). Crushed glass was allowed to react in an aqueous environment under static conditions for 7 days. The data obtained from the chemical analysis of the leachate solutions were used to test the durability of the resulting glasses. Studies were performed to determine the qualitative effects of increasing the B2O3 content on the overall waste glass leaching behavior. Structural changes in a glass arising due to B2O3 were detected indirectly by its chemical durability, which is a strong function of composition and structure. Modeling was performed to predict glass durability quantitatively in an aqueous environment as a direct function of oxide composition

  9. Observation of plasma-facing-wall via high dynamic range imaging

    International Nuclear Information System (INIS)

    Villamayor, Michelle Marie S.; Rosario, Leo Mendel D.; Viloan, Rommel Paulo B.

    2013-01-01

    Pictures of plasmas and deposits in a discharge chamber taken by varying shutter speeds have been integrated into high dynamic range (HDR) images. The HDR images of a graphite target surface of a compact planar magnetron (CPM) discharge device have clearly indicated the erosion pattern of the target, which are correlated to the light intensity distribution of plasma during operation. Based upon the HDR image technique coupled to colorimetry, a formation history of dust-like deposits inside of the CPM chamber has been recorded. The obtained HDR images have shown how the patterns of deposits changed in accordance with discharge duration. Results show that deposition takes place near the evacuation ports during the early stage of the plasma discharge. Discoloration of the plasma-facing-walls indicating erosion and redeposition eventually spreads at the periphery after several hours of operation. (author)

  10. Tensile properties and fracture mechanism of IN-100 superalloy in high temperature range

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2017-06-01

    Full Text Available Tensile properties and fracture mechanism of a polycrystalline IN-100 superalloy have been investigated in the range from room temperature to 900°C. Optical microscopy (OM and transmission electron microscopy (TEM applying replica technique were used for microstructural investigation, whereas scanning electron microscopy (SEM was utilized for fracture study. High temperature tensile tests were carried out in vacuumed chamber. Results show that strength increases up to 700°C, and then sharply decreases with further increase in temperature. Elongation increases very slowly (6-7.5% till 500°C, then decreases to 4.5% at 900°C. Change in elongation may be ascribed to a change of fracture mechanism. Appearance of a great number of microvoids prevails up to 500°C resulting in a slow increase of elongation, whereas above this temperature elongation decrease is correlated with intergranular crystallographic fracture and fracture of carbides.

  11. Satellite bands of the RbCs molecule in the range of highly excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rakić, Mario; Beuc, Robert; Skenderović, Hrvoje, E-mail: hrvoje@ifs.hr [Institute of Physics, Bijenička cesta 46, Zagreb 10000 (Croatia); Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, Bât. 505, Campus d’Orsay, Orsay Cedex 91405 (France); Pichler, Goran [Physics Department, Kuwait University, PO Box 5969, Safat—13060 (Kuwait)

    2016-05-28

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

  12. Event-Based Color Segmentation With a High Dynamic Range Sensor

    Directory of Open Access Journals (Sweden)

    Alexandre Marcireau

    2018-04-01

    Full Text Available This paper introduces a color asynchronous neuromorphic event-based camera and a methodology to process color output from the device to perform color segmentation and tracking at the native temporal resolution of the sensor (down to one microsecond. Our color vision sensor prototype is a combination of three Asynchronous Time-based Image Sensors, sensitive to absolute color information. We devise a color processing algorithm leveraging this information. It is designed to be computationally cheap, thus showing how low level processing benefits from asynchronous acquisition and high temporal resolution data. The resulting color segmentation and tracking performance is assessed both with an indoor controlled scene and two outdoor uncontrolled scenes. The tracking's mean error to the ground truth for the objects of the outdoor scenes ranges from two to twenty pixels.

  13. Cell-Averaged discretization for incompressible Navier-Stokes with embedded boundaries and locally refined Cartesian meshes: a high-order finite volume approach

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team

    2017-11-01

    We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).

  14. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    Science.gov (United States)

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  15. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  16. High genetic diversity and structured populations of the oriental fruit moth in its range of origin.

    Directory of Open Access Journals (Sweden)

    Yan Zheng

    Full Text Available The oriental fruit moth Grapholita ( = Cydia molesta is a key fruit pest globally. Despite its economic importance, little is known about its population genetics in its putative native range that includes China. We used five polymorphic microsatellite loci and two mitochondrial gene sequences to characterize the population genetic diversity and genetic structure of G. molesta from nine sublocations in three regions of a major fruit growing area of China. Larval samples were collected throughout the season from peach, and in late season, after host switch by the moth to pome fruit, also from apple and pear. We found high numbers of microsatellite alleles and mitochondrial DNA haplotypes in all regions, together with a high number of private alleles and of haplotypes at all sublocations, providing strong evidence that the sampled area belongs to the origin of this species. Samples collected from peach at all sublocations were geographically structured, and a significant albeit weak pattern of isolation-by-distance was found among populations, likely reflecting the low flight capacity of this moth. Interestingly, populations sampled from apple and pear in the late season showed a structure differing from that of populations sampled from peach throughout the season, indicating a selective host switch of a certain part of the population only. The recently detected various olfactory genotypes in G. molesta may underly this selective host switch. These genetic data yield, for the first time, an understanding of population dynamics of G. molesta in its native range, and of a selective host switch from peach to pome fruit, which may have a broad applicability to other global fruit production areas for designing suitable pest management strategies.

  17. How to average logarithmic retrievals?

    Directory of Open Access Journals (Sweden)

    B. Funke

    2012-04-01

    Full Text Available Calculation of mean trace gas contributions from profiles obtained by retrievals of the logarithm of the abundance rather than retrievals of the abundance itself are prone to biases. By means of a system simulator, biases of linear versus logarithmic averaging were evaluated for both maximum likelihood and maximum a priori retrievals, for various signal to noise ratios and atmospheric variabilities. These biases can easily reach ten percent or more. As a rule of thumb we found for maximum likelihood retrievals that linear averaging better represents the true mean value in cases of large local natural variability and high signal to noise ratios, while for small local natural variability logarithmic averaging often is superior. In the case of maximum a posteriori retrievals, the mean is dominated by the a priori information used in the retrievals and the method of averaging is of minor concern. For larger natural variabilities, the appropriateness of the one or the other method of averaging depends on the particular case because the various biasing mechanisms partly compensate in an unpredictable manner. This complication arises mainly because of the fact that in logarithmic retrievals the weight of the prior information depends on abundance of the gas itself. No simple rule was found on which kind of averaging is superior, and instead of suggesting simple recipes we cannot do much more than to create awareness of the traps related with averaging of mixing ratios obtained from logarithmic retrievals.

  18. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  19. Determining average yarding distance.

    Science.gov (United States)

    Roger H. Twito; Charles N. Mann

    1979-01-01

    Emphasis on environmental and esthetic quality in timber harvesting has brought about increased use of complex boundaries of cutting units and a consequent need for a rapid and accurate method of determining the average yarding distance and area of these units. These values, needed for evaluation of road and landing locations in planning timber harvests, are easily and...

  20. Average Revisited in Context

    Science.gov (United States)

    Watson, Jane; Chick, Helen

    2012-01-01

    This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…

  1. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  2. Average-energy games

    Directory of Open Access Journals (Sweden)

    Patricia Bouyer

    2015-09-01

    Full Text Available Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.

  3. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  4. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    Science.gov (United States)

    Wang, Ning; Jin, Yirong; Li, Shao; Ren, Yufeng; Tian, Ye; Chen, Yingfei; Li, Jie; Chen, Genghua; Zheng, Dongning

    2012-12-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-Tc dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  5. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    International Nuclear Information System (INIS)

    Wang Ning; Jin Yirong; Li Shao; Ren Yufeng; Tian Ye; Chen Yingfei; Li Jie; Chen Genghua; Zheng Dongning

    2012-01-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-T c dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1 H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  6. Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Adriana; et al.

    2017-05-01

    Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.

  7. Experimental investigation of piercing of high-strength steels within a critical range of slant angle

    Science.gov (United States)

    Senn, S.; Liewald, M.

    2017-09-01

    Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.

  8. Acceleration Data Reveal Highly Individually Structured Energetic Landscapes in Free-Ranging Fishers (Pekania pennanti.

    Directory of Open Access Journals (Sweden)

    Anne K Scharf

    Full Text Available Investigating animal energy expenditure across space and time may provide more detailed insight into how animals interact with their environment. This insight should improve our understanding of how changes in the environment affect animal energy budgets and is particularly relevant for animals living near or within human altered environments where habitat change can occur rapidly. We modeled fisher (Pekania pennanti energy expenditure within their home ranges and investigated the potential environmental and spatial drivers of the predicted spatial patterns. As a proxy for energy expenditure we used overall dynamic body acceleration (ODBA that we quantified from tri-axial accelerometer data during the active phases of 12 individuals. We used a generalized additive model (GAM to investigate the spatial distribution of ODBA by associating the acceleration data to the animals' GPS-recorded locations. We related the spatial patterns of ODBA to the utilization distributions and habitat suitability estimates across individuals. The ODBA of fishers appears highly structured in space and was related to individual utilization distribution and habitat suitability estimates. However, we were not able to predict ODBA using the environmental data we selected. Our results suggest an unexpected complexity in the space use of animals that was only captured partially by re-location data-based concepts of home range and habitat suitability. We suggest future studies recognize the limits of ODBA that arise from the fact that acceleration is often collected at much finer spatio-temporal scales than the environmental data and that ODBA lacks a behavioral correspondence. Overcoming these limits would improve the interpretation of energy expenditure in relation to the environment.

  9. Improved averaging for non-null interferometry

    Science.gov (United States)

    Fleig, Jon F.; Murphy, Paul E.

    2013-09-01

    Arithmetic averaging of interferometric phase measurements is a well-established method for reducing the effects of time varying disturbances, such as air turbulence and vibration. Calculating a map of the standard deviation for each pixel in the average map can provide a useful estimate of its variability. However, phase maps of complex and/or high density fringe fields frequently contain defects that severely impair the effectiveness of simple phase averaging and bias the variability estimate. These defects include large or small-area phase unwrapping artifacts, large alignment components, and voids that change in number, location, or size. Inclusion of a single phase map with a large area defect into the average is usually sufficient to spoil the entire result. Small-area phase unwrapping and void defects may not render the average map metrologically useless, but they pessimistically bias the variance estimate for the overwhelming majority of the data. We present an algorithm that obtains phase average and variance estimates that are robust against both large and small-area phase defects. It identifies and rejects phase maps containing large area voids or unwrapping artifacts. It also identifies and prunes the unreliable areas of otherwise useful phase maps, and removes the effect of alignment drift from the variance estimate. The algorithm has several run-time adjustable parameters to adjust the rejection criteria for bad data. However, a single nominal setting has been effective over a wide range of conditions. This enhanced averaging algorithm can be efficiently integrated with the phase map acquisition process to minimize the number of phase samples required to approach the practical noise floor of the metrology environment.

  10. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  11. High fidelity does not preclude colonization: range expansion of molting Black Brant on the Arctic coast of Alaska

    Science.gov (United States)

    Flint, Paul L.; Meixell, Brandt W.; Mallek, Edward J.

    2014-01-01

    High rates of site fidelity have been assumed to infer static distributions of molting geese in some cases. To test this assumption, we examined movements of individually marked birds to understand the underlying mechanisms of range expansion of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain (ACP) of Alaska. The Teshekpuk Lake Special Area (TLSA) on the ACP was created to protect the primary molting area of Brant. When established in 1977, the TLSA was thought to include most, if not all, wetlands used by molting Brant on the ACP. From 2010 to 2013, we surveyed areas outside the TLSA and counted an average of 9800 Brant per year, representing 29–37% of all molting Brant counted on the ACP. We captured and banded molting Brant in 2011 and 2012 both within the TLSA and outside the TLSA at the Piasuk River Delta and Cape Simpson to assess movements of birds among areas across years. Estimates of movement rates out of the TLSA exceeded those into the TLSA, demonstrating overall directional dispersal. We found differences in sex and age ratios and proportions of adult females with brood patches, but no differences in mass dynamics for birds captured within and outside the TLSA. Overall fidelity rates to specific lakes (0.81, range = 0.49–0.92) were unchanged from comparable estimates obtained in the early 1990s. We conclude that Brant are dispersing from the TLSA into new molting areas while simultaneously redistributing within the TLSA, likely as a consequence of changes in relative habitat quality. Shifts in distribution resulted from colonization of new areas by young birds as well as low levels of directional dispersal of birds that previously molted in the TLSA. Based on combined counts, the overall number of molting Brant across the ACP has increased substantially.

  12. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  13. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    Science.gov (United States)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  14. Fast and accurate: high-speed metrological large-range AFM for surface and nanometrology

    Science.gov (United States)

    Dai, Gaoliang; Koenders, Ludger; Fluegge, Jens; Hemmleb, Matthias

    2018-05-01

    Low measurement speed remains a major shortcoming of the scanning probe microscopic technique. It not only leads to a low measurement throughput, but a significant measurement drift over the long measurement time needed (up to hours or even days). To overcome this challenge, PTB, the national metrology institute of Germany, has developed a high-speed metrological large-range atomic force microscope (HS Met. LR-AFM) capable of measuring speeds up to 1 mm s‑1. This paper has introduced the design concept in detail. After modelling scanning probe microscopic measurements, our results suggest that the signal spectrum of the surface to be measured is the spatial spectrum of the surface scaled by the scanning speed. The higher the scanning speed , the broader the spectrum to be measured. To realise an accurate HS Met. LR-AFM, our solution is to combine different stages/sensors synchronously in measurements, which provide a much larger spectrum area for high-speed measurement capability. Two application examples have been demonstrated. The first is a new concept called reference areal surface metrology. Using the developed HS Met. LR-AFM, surfaces are measured accurately and traceably at a speed of 500 µm s‑1 and the results are applied as a reference 3D data map of the surfaces. By correlating the reference 3D data sets and 3D data sets of tools under calibration, which are measured at the same surface, it has the potential to comprehensively characterise the tools, for instance, the spectrum properties of the tools. The investigation results of two commercial confocal microscopes are demonstrated, indicating very promising results. The second example is the calibration of a kind of 3D nano standard, which has spatially distributed landmarks, i.e. special unique features defined by 3D-coordinates. Experimental investigations confirmed that the calibration accuracy is maintained at a measurement speed of 100 µm s‑1, which improves the calibration efficiency by a

  15. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  16. The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps

    Directory of Open Access Journals (Sweden)

    Leanda D. Mason

    2018-05-01

    Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.

  17. Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others

    1994-04-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.

  18. Realization of High Dynamic Range Imaging in the GLORIA Network and Its Effect on Astronomical Measurement

    Directory of Open Access Journals (Sweden)

    Stanislav Vítek

    2016-01-01

    Full Text Available Citizen science project GLORIA (GLObal Robotic-telescopes Intelligent Array is a first free- and open-access network of robotic telescopes in the world. It provides a web-based environment where users can do research in astronomy by observing with robotic telescopes and/or by analyzing data that other users have acquired with GLORIA or from other free-access databases. Network of 17 telescopes allows users to control selected telescopes in real time or schedule any more demanding observation. This paper deals with new opportunity that GLORIA project provides to teachers and students of various levels of education. At the moment, there are prepared educational materials related to events like Sun eclipse (measuring local atmosphere changes, Aurora Borealis (calculation of Northern Lights height, or transit of Venus (measurement of the Earth-Sun distance. Student should be able to learn principles of CCD imaging, spectral analysis, basic calibration like dark frames subtraction, or advanced methods of noise suppression. Every user of the network can design his own experiment. We propose advanced experiment aimed at obtaining astronomical image data with high dynamic range. We also introduce methods of objective image quality evaluation in order to discover how HDR methods are affecting astronomical measurements.

  19. Towards high dynamic range extensions of HEVC: subjective evaluation of potential coding technologies

    Science.gov (United States)

    Hanhart, Philippe; Řeřábek, Martin; Ebrahimi, Touradj

    2015-09-01

    This paper reports the details and results of the subjective evaluations conducted at EPFL to evaluate the responses to the Call for Evidence (CfE) for High Dynamic Range (HDR) and Wide Color Gamut (WCG) Video Coding issued by Moving Picture Experts Group (MPEG). The CfE on HDR/WCG Video Coding aims to explore whether the coding efficiency and/or the functionality of the current version of HEVC standard can be signi_cantly improved for HDR and WCG content. In total, nine submissions, five for Category 1 and four for Category 3a, were compared to the HEVC Main 10 Profile based Anchor. More particularly, five HDR video contents, compressed at four bit rates by each proponent responding to the CfE, were used in the subjective evaluations. Further, the side-by-side presentation methodology was used for the subjective experiment to discriminate small differences between the Anchor and proponents. Subjective results shows that the proposals provide evidence that the coding efficiency can be improved in a statistically noticeable way over MPEG CfE Anchors in terms of perceived quality within the investigated content. The paper further benchmarks the selected objective metrics based on their correlations with the subjective ratings. It is shown that PSNR-DE1000, HDRVDP- 2, and PSNR-Lx can reliably detect visible differences between the proposed encoding solutions and current HEVC standard.

  20. Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation

    Science.gov (United States)

    Pollmeier, V. M.; Thurman, S. W.

    1992-01-01

    The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.

  1. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  2. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  3. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  4. Predicting Long-Term College Success through Degree Completion Using ACT[R] Composite Score, ACT Benchmarks, and High School Grade Point Average. ACT Research Report Series, 2012 (5)

    Science.gov (United States)

    Radunzel, Justine; Noble, Julie

    2012-01-01

    This study compared the effectiveness of ACT[R] Composite score and high school grade point average (HSGPA) for predicting long-term college success. Outcomes included annual progress towards a degree (based on cumulative credit-bearing hours earned), degree completion, and cumulative grade point average (GPA) at 150% of normal time to degree…

  5. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: influence of contaminated fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee Ching-Chang; Lin Wu-Ting; Liao Po-Chi; Su Huey-Jen [Dept. of Environmental and Occupational Health/Research Center of Environmental Trace Toxic substances, Medical Coll., National Cheng Kung Univ., Tainan (Taiwan); Chen Hsiu-Lin [Inst. of Basic Medical Sciences, Medical Coll., National Cheng Kung Univ., Tainan (Taiwan)

    2004-09-15

    Many reports have suggested that PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) contribute to immune deficiency, liver damage, human carcinogenesis, and neuromotor maturation in children. Therefore, beginning in 1999, the Taiwan Environmental Protection Agency (EPA) conducted a survey to determine serum levels of PCDD/Fs in the general populations living around 19 incinerators in Taiwan. Relatively high average serum PCDD/F levels were unexpectedly found in Tainan city, a less industrialized area in southwestern Taiwan, than in other urban areas. We therefore reviewed the usage history of the land and found that a factory situated between Hsien-Gong Li and Lu-Erh Li, two administrative units of Tainan city, had been manufacturing pentachlorophenol (PCP) between 1967 and 1982. PCDD/Fs are formed as byproducts in the PCP manufacturing process. Exposure to PCP and its derivatives via the food chain is the most significant intake route of PCDD/Fs in consumers in the European Union (EU). In Japan, in addition to combustion processes, PCP and chlornitrofen (CNP) have also been identified as the major sources of PCDD/Fs in Tokyo Bay7. A preliminary investigation showed that the soil in the PCP factory and sediments in the sea reservoir (13 hectares) near the deserted factory were seriously contaminated with PCDD/Fs (260-184,000 and 20-6220 pg I-TEQ/g, respectively), levels higher than those in other countries. Therefore, the aim of this study was to compare the PCDD/F levels of fish meat in the sea reservoir and the serum in inhabitants living in the vicinity of the closed PCP plant and other nearby areas. The data from human and other biota samples might clarify the transmission pathway of the PCDD/F contaminants from the PCP factory to local residents, provide information about the exposure status of those living in the vicinity of the deserted PCP factory, and also lead to useful suggestions for controlling PCDD/F accumulation in those living near such

  6. Average is Over

    Science.gov (United States)

    Eliazar, Iddo

    2018-02-01

    The popular perception of statistical distributions is depicted by the iconic bell curve which comprises of a massive bulk of 'middle-class' values, and two thin tails - one of small left-wing values, and one of large right-wing values. The shape of the bell curve is unimodal, and its peak represents both the mode and the mean. Thomas Friedman, the famous New York Times columnist, recently asserted that we have entered a human era in which "Average is Over" . In this paper we present mathematical models for the phenomenon that Friedman highlighted. While the models are derived via different modeling approaches, they share a common foundation. Inherent tipping points cause the models to phase-shift from a 'normal' bell-shape statistical behavior to an 'anomalous' statistical behavior: the unimodal shape changes to an unbounded monotone shape, the mode vanishes, and the mean diverges. Hence: (i) there is an explosion of small values; (ii) large values become super-large; (iii) 'middle-class' values are wiped out, leaving an infinite rift between the small and the super large values; and (iv) "Average is Over" indeed.

  7. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  8. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  9. Local contrast-enhanced MR images via high dynamic range processing.

    Science.gov (United States)

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Evaluations of average level spacings

    International Nuclear Information System (INIS)

    Liou, H.I.

    1980-01-01

    The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of 168 Er data. 19 figures, 2 tables

  11. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-01-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core

  12. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600) Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  13. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    Science.gov (United States)

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  14. Geochemistry balance for the high basin of the Medellin River, central mountain range (Antioquia, Colombia)

    International Nuclear Information System (INIS)

    Osorio, Juan Carlos; Lopez Rendon, Jorge E; Hermelin Michel

    2003-01-01

    The solute budget in the upper Medellin - Porce river catchment (Colombia) was obtained through chemical and physical water analyses (rainfall and runoff). Samples were taken every two weeks between 04/07/00 and 16/02/01. Balance was carried out for the dissolved ion concentrations in surface waters averaging rainy and dry seasons values. We estimated that runoff contributes with 88% of the principal dissolved solids that flow out of the catchment (H 2 CO 3 , SiO 2 , Ca+2, Na+, Mg+2 K) relative mobility is Ca> Mg> SiO 2 > Na> K. The percentage of dissolved Mg in the Medellin River duplicated the world average for rivers draining plutonic and metamorphic rocks. A chemical weathering rate estimate of 138 kg/ha/yr was derived for the SiO 2 budget and of 48 kg/ha/yr for the sum of major dissolved cations

  15. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  16. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  17. High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas

    DEFF Research Database (Denmark)

    Sonne, Jesper; Martín González, Ana M.; Maruyama, Pietro K.

    2016-01-01

    Ecological communities that experience stable climate conditions have been speculated to preserve more specialized interspecific associations and have higher proportions of smaller ranged species (SRS). Thus, areas with disproportionally large numbers of SRS are expected to coincide geographicall...

  18. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  19. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  20. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  1. High dynamic range isotope ratio measurements using an analog electron multiplier

    Czech Academy of Sciences Publication Activity Database

    Williams, P.; Lorinčík, Jan; Franzreb, K.; Herwig, R.

    2013-01-01

    Roč. 45, č. 1 (2013), s. 549-552 ISSN 0142-2421 R&D Projects: GA MŠk ME 894 Institutional support: RVO:67985882 Keywords : Isotope ratios * electron multiplier * dynamic range Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.393, year: 2013

  2. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  3. An accurate energy-range relationship for high-energy electron beams in arbitrary materials

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Brahme, A.

    1994-01-01

    A general analytical energy-range relationship has been derived to relate the practical range, R p to the most probable energy, E p , of incident electron beams in the range 1 to 50 MeV and above, for absorbers of any atomic number. In the present study only Monte Carlo data determined with the new ITS.3 code have been employed. The standard deviations of the mean deviation from the Monte Carlo data at any energy are about 0.10, 0.12, 0.04, 0.11, 0.04, 0.03, 0.02 mm for Be, C, H 2 O, Al, Cu, Ag and U, respectively, and the relative standard deviation of the mean is about 0.5% for all materials. The fitting program gives some priority to water-equivalent materials, which explains the low standard deviation for water. A small error in the fall-off slope can give a different value for R p . We describe a new method which reduces the uncertainty in the R p determination, by fitting an odd function to the descending portion of the depth-dose curve in order to accurately determine the tangent at the inflection point, and thereby the practical range. An approximate inverse relation is given expressing the most probable energy of an electron beam as a function of the practical range. The resultant relative standard error of the energy is less than 0.7%, and the maximum energy error ΔE p is less than 0.3 MeV. (author)

  4. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    CERN Document Server

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  5. Probing the short range behavior of nuclei with high PT photo- and electro-nuclear reactions

    International Nuclear Information System (INIS)

    Laget, J.M.

    1990-01-01

    The short range behavior of the nucleus and the use of the nucleus as a filter are studied. Special emphasis is given to photon and hadron induced reactions. The components of the nuclear wave function are described. The evidences of hard scattering processes in reactions induced by real photons as well as by hadrons on free nucleus are reviewed. The spin observables are also investigated. The perspectives opened by these studies in the nuclear environment are considered

  6. Simulation of wire-compensation of long range beam beam interaction in high energy accelerators

    International Nuclear Information System (INIS)

    Dorda, U.; )

    2006-01-01

    Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)

  7. Efficient Wide Range Converters (EWiRaC): A new family of high efficient AC-DC Converters

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2006-01-01

    The performance in terms of efficiency of the existing power supplies used for PFC is very dependent on the input voltage range. The boost converter is the most commonly used PFC converter because of its simplicity and high efficiency. But, the boost converter as well as other known converters...... suffers a major penalty in efficiency when used at the low end of the voltage range (90VAC) in a universal voltage range application (90-270VAC). This paper addresses this problem by suggesting a new family of converters that effectively reduces the apparent voltage range with a factor of 2 by changing...... the converter topology according to the input voltage. This new converter type has been named: efficient wide range converter (EWiRaC). The performance of the EWiRaC is experimental verified in a universal input range (90-270VAC) application with an output voltage of 185VDC capable of 500W output power. The EWi...

  8. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  9. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Frontier applications of rf superconductivity for high energy physics in the TeV range

    International Nuclear Information System (INIS)

    Tigner, M.; Padamsee, H.

    1988-01-01

    The authors present understanding of the fundamental nature of matter is embodied in the standard theory. This theory views all matter as composed of families of quarks and leptons with their interactions mediated by the family of force-carrying particles. Progress in particle accelerators has been a vital element in bringing about this level of understanding. Although the standard theory is successful in relating a wide range of phenomena, it raises deeper questions about the basic nature of matter and energy. Among these are: why are the masses of the various elementary particles and the strengths of the basic forces what they are? It is expected that over the next decade a new generation of accelerators spanning the 100 Gev mass range will shed light on some of these questions. These accelerators, will provide the means to thoroughly explore the energy regime corresponding to the mass scale of the weak interactions to reveal intimate details of the force carrying particles, the weak bosons, Z0 and W+-. Superconducting rf technology will feature in a major way in the electron storage rings. Current theoretical ideas predict that to make further progress towards a more fundamental theory of matter, it will be necessary to penetrate the TeV energy regime. At this scale a whole new range of phenomena will manifest the nature of the symmetry breaking mechanism that must be responsible for the differences they observe in the familiar weak and electromagnetic forces. History has shown that unexpected discoveries made in a new energy regime have proven to be the main engine of progress. The experimental challenge to accelerator designers and builders is clear. 11 references, 3 figures, 1 table

  11. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    Science.gov (United States)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  12. High-power cw laser bars of the 750 – 790-nm wavelength range

    International Nuclear Information System (INIS)

    Degtyareva, N S; Kondakov, S A; Mikayelyan, G T; Gorlachuk, P V; Ladugin, M A; Marmalyuk, Aleksandr A; Ryaboshtan, Yu L; Yarotskaya, I V

    2013-01-01

    We have developed the effective design of semiconductor heterostructures, which allow one to fabricate cw laser diodes emitting in the 750 – 790-nm spectral range. The optimal conditions for fabrication of GaAsP/AlGaInP/GaAs heterostructures by MOCVD have been determined. It is shown that the use of quantum wells with a precisely defined quantity mismatch reduces the threshold current density and increases the external differential efficiency. The results of studies of characteristics of diode laser bars fabricated from these heterostructures are presented. (lasers)

  13. High resolution axicon-based endoscopic FD OCT imaging with a large depth range

    Science.gov (United States)

    Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.

    2010-02-01

    Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.

  14. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  15. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10 3 to 1 x 10 6 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350 0 C (660 0 F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9 0 C above ambient (25 0 F) at a flowing temperature of 350 0 C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  16. LIDAR pulse coding for high resolution range imaging at improved refresh rate.

    Science.gov (United States)

    Kim, Gunzung; Park, Yongwan

    2016-10-17

    In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

  17. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  18. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques

    International Nuclear Information System (INIS)

    Vargas, Javier; Gonzalez-Fernandez, Luis; Quiroga, Juan Antonio; Belenguer, Tomas

    2010-01-01

    In the optical quality measuring process of an optical system, including diamond-turning components, the use of a laser light source can produce an undesirable speckle effect in a Shack-Hartmann (SH) CCD sensor. This speckle noise can deteriorate the precision and accuracy of the wavefront sensor measurement. Here we present a SH centroid detection method founded on computer-based techniques and capable of measurement in the presence of strong speckle noise. The method extends the dynamic range imaging capabilities of the SH sensor through the use of a set of different CCD integration times. The resultant extended range spot map is normalized to accurately obtain the spot centroids. The proposed method has been applied to measure the optical quality of the main optical system (MOS) of the mid-infrared instrument telescope smulator. The wavefront at the exit of this optical system is affected by speckle noise when it is illuminated by a laser source and by air turbulence because it has a long back focal length (3017 mm). Using the proposed technique, the MOS wavefront error was measured and satisfactory results were obtained.

  19. Averaging and sampling for magnetic-observatory hourly data

    Directory of Open Access Journals (Sweden)

    J. J. Love

    2010-11-01

    Full Text Available A time and frequency-domain analysis is made of the effects of averaging and sampling methods used for constructing magnetic-observatory hourly data values. Using 1-min data as a proxy for continuous, geomagnetic variation, we construct synthetic hourly values of two standard types: instantaneous "spot" measurements and simple 1-h "boxcar" averages. We compare these average-sample types with others: 2-h average, Gaussian, and "brick-wall" low-frequency-pass. Hourly spot measurements provide a statistically unbiased representation of the amplitude range of geomagnetic-field variation, but as a representation of continuous field variation over time, they are significantly affected by aliasing, especially at high latitudes. The 1-h, 2-h, and Gaussian average-samples are affected by a combination of amplitude distortion and aliasing. Brick-wall values are not affected by either amplitude distortion or aliasing, but constructing them is, in an operational setting, relatively more difficult than it is for other average-sample types. It is noteworthy that 1-h average-samples, the present standard for observatory hourly data, have properties similar to Gaussian average-samples that have been optimized for a minimum residual sum of amplitude distortion and aliasing. For 1-h average-samples from medium and low-latitude observatories, the average of the combination of amplitude distortion and aliasing is less than the 5.0 nT accuracy standard established by Intermagnet for modern 1-min data. For medium and low-latitude observatories, average differences between monthly means constructed from 1-min data and monthly means constructed from any of the hourly average-sample types considered here are less than the 1.0 nT resolution of standard databases. We recommend that observatories and World Data Centers continue the standard practice of reporting simple 1-h-average hourly values.

  20. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.

  1. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    International Nuclear Information System (INIS)

    Soltani Bozchalooi, I.; Youcef-Toumi, K.

    2014-01-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube

  2. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    Science.gov (United States)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  3. Development of a wide range vortex shedding flowmeter for high temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-07-01

    A flowmeter was required to measure recirculating helium gas flow over a wide range of conditions in a gas-cooled fast reactor (GCFR) core flow simulator, the ORNL Core Flow Test Loop (CFTL). The flow measurement requirements of the CFTL exceeded the proven performance of any single conventional flowmeter. Therefore, a special purpose vortex shedding flowmeter (VSFM) was developed. A single flowmeter capable of meeting all the CFTL requirements would provide significant economic and performance advantages in the operation of the loop. The development, conceptual design, and final design of a modified VSFM are described. The results of extensive flow calibration of the flowmeter at the Colorado Engineering Experiment Station (CEES) are presented. The report closes with recommendations for application of the VSFM to the CFTL and for future development work.

  4. Radiation of transient high-current arcs: energy measurements in the optical range

    International Nuclear Information System (INIS)

    Bauchire, J M; Hong, D; Rabat, H; Riquel, G

    2012-01-01

    When no protection is used, the radiation emitted by a high-power electric arc can be dangerous for the eyes and the skin of a person. To ensure effective protection, it is first necessary to know the energy emitted by such arcs. The aim of our work was to experimentally determine the energy emitted by high-current (from 4 to 40 kA) transient arcs, for two different (10 cm and 2 m) lengths and for electrodes in copper or steel. These experiments enabled the radiative energy of the arcs to be quantified and also showed the influence of metal vapors in the spectral distribution of the radiation.

  5. Determination of boundaries between ranges of high and low gradient of beam profile.

    Science.gov (United States)

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  6. A High-Resolution Thermometer for the Range 0.75-1.0 K

    Science.gov (United States)

    Panek, J.; Nash, A.; Larson, M.; Mulders, N.

    1999-01-01

    We report on a new high-resolution thermometer (HRT) for use near the tricritical point in 3He-4He mixtures. It is based on an existing HRT design that uses a DC-SQUID to detect the magnetization of a paramagnetic sensing element.

  7. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    -speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  8. Voice Range Profiles of Middle School and High School Choral Directors

    Science.gov (United States)

    Schwartz, Sandra M.

    2009-01-01

    Vocal demands of teaching are significant, and this challenge is compounded for choral directors who depend on the voice for communicating information or demonstrating music concepts. The purpose of this study is to examine the frequency and intensity of middle and high school choral directors' voices and to compare choral directors' voices with…

  9. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly

    OpenAIRE

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Springer, Ramit Ravona; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (

  10. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  11. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  12. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  13. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  14. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  15. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  16. Auroral radar measurements at 16-cm wavelength with high range and time resolution

    International Nuclear Information System (INIS)

    Schlegel, K.; Turunen, T.; Moorcroft, D.R.

    1990-01-01

    Auroral radar measurements performed with the EISCAT facility are presented. Backscatter cross sections of the irregularities produced by the two-stream (Farley-Buneman) or gradient drift plasma instabilities have been recorded with a range separation of 1.5 km, corresponding to a spacing of successive values in height of about 0.4 km. The apparent height profiles of the backscatter have a width of about 5-6 km and occur between 95 and 112 km altitude, with a mean at 104 km. Very often, fast motions of the backscatter layers are observed which can be explained as fast moving ionospheric structures controlled by magnetospheric convection. The maximal time resolution of the measurements is 12.5 ms. The statistics of the backscatter amplitudes at this time resolution is close to a Rice distribution with a Rice parameter a ∼ 3.7. The observed backscatter spectra do not change significantly in shape when the integration time is reduced from 5 s to 100 ms

  17. Improving the effectiveness of detailed processing by dynamic control of processing with high sports range

    Directory of Open Access Journals (Sweden)

    Yu.V. Shapoval

    2017-12-01

    Full Text Available In this article the possibility of increasing the efficiency of the processing of parts with a diameter of up to 20 mm is analyzed, namely: vibration resistance of the cutting process at pinching due to cutting speed control in the processing, forecasting and selection of rotational frequencies, which ensure the stability of the processing system, controlling the dynamics of the process of displacement of the additional mass. The method of investigation of vibration processes during the sharpening is developed. As a result of the processing of experimental data, it was found that when an oscillatory motion is applied to the spindle rotation, the overall level of oscillation decreases, which is reflected on the quality of the treated surface. The choice of a previously known spindle rotation frequency range at which the lowest value of the oscillation amplitude of the instrument is observed in the radial direction to the detail part, allows you to increase the processing efficiency while maintaining the drawing requirements for roughness by increasing the spindle rotational speed. The combination of the node of the own forms of oscillation and the cutting zone, by dynamically controlling the fluctuations of the lathe armature due to the increase of the inertia characteristics of the machine and the reduction of the oscillation amplitude of the tool, can improve the accuracy of machining and roughness of the processed surface of the component at higher spindle speeds.

  18. Psychological distress is associated with a range of high-priority health conditions affecting working Australians.

    Science.gov (United States)

    Holden, Libby; Scuffham, Paul; Hilton, Michael; Vecchio, Nerina; Whiteford, Harvey

    2010-06-01

    Psychological distress is growing in prevalence in Australia. Comorbid psychological distress and/or depressive symptoms are often associated with poorer health, higher healthcare utilisation and decreased adherence to medical treatments. The Australian Work Outcomes Research Cost-benefit (WORC) study cross-sectional screening dataset was used to explore the association between psychological distress and a range of health conditions in a sample of approximately 78,000 working Australians. The study uses the World Health Organization Health and Productivity Questionnaire (HPQ), to identify self-reported health status. Within the HPQ is the Kessler 6 (K6), a six-item scale of psychological distress which strongly discriminates between those with and without a mental disorder. Potential confounders of age, sex, marital status, number of children, education level and annual income were included in multivariate logistic regression models. Psychological distress was significantly associated with all investigated health conditions in both crude and adjusted estimates. The conditions with the strongest adjusted association were, in order from highest: drug and alcohol problems, fatigue, migraine, CVD, COPD, injury and obesity. Psychological distress is strongly associated with all 14 health conditions or risk factors investigated in this study. Comorbid psychological distress is a growing public health issue affecting Australian workers.

  19. Prevalence of sleep duration on an average school night among 4 nationally representative successive samples of American high school students, 2007-2013.

    Science.gov (United States)

    Basch, Charles E; Basch, Corey H; Ruggles, Kelly V; Rajan, Sonali

    2014-12-11

    Consistency, quality, and duration of sleep are important determinants of health. We describe sleep patterns among demographically defined subgroups from the Youth Risk Behavior Surveillance System reported in 4 successive biennial representative samples of American high school students (2007 to 2013). Across the 4 waves of data collection, 6.2% to 7.7% of females and 8.0% to 9.4% of males reported obtaining 9 or more hours of sleep. Insufficient duration of sleep is pervasive among American high school students. Despite substantive public health implications, intervention research on this topic has received little attention.

  20. Application of high precision two-way S-band ranging to the navigation of the Galileo Earth encounters

    Science.gov (United States)

    Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.

    1993-01-01

    The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.

  1. Teachers' Adherence to Highly Effective Instructional Practices as Related to Graduation Rates in Average-Need School Districts in New York State

    Science.gov (United States)

    Yannucci, Michael J.

    2014-01-01

    The purpose of this study was to investigate school administrators' perceptions of teachers' adherence to the highly effective critical attributes of the four domains of Charlotte Danielson's "Framework for Teaching" (Planning and Preparation, The Classroom Environment, Instruction, and Professional Responsibilities) in kindergarten…

  2. The Relationship of High School Type to Persistence and Grade Point Average of First-Year Students at Faith-Based Liberal Arts Colleges

    Science.gov (United States)

    Litscher, Kenneth Michael

    2015-01-01

    Based on previous research, there are several student characteristics that have been identified to affect academic success of first-year students in college. However, there are few studies that examine if the type of high school (public, private faith-based, private secular, or homeschool) from which a student graduates affects grade point average…

  3. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Science.gov (United States)

    Zhang, Xinghua; Xu, Jianzhong; Kang, Shichang; Liu, Yanmei; Zhang, Qi

    2018-04-01

    An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m-3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (˜ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  4. High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yu [Université Paris-Saclay, NIMBE, CEA, CNRS (France); Chu, Minglee [Academia Sinica, Institute of Physics (China); Chang, Chi-Fon [Academia Sinica, Genomics Research Center (China); Yu, Tsunai; Huang, Tai-huang, E-mail: bmthh@gate.sinica.edu.tw [Academia Sinica, Institute of Biomedical Science (China); Sakellariou, Dimitris, E-mail: dimitrios.sakellariou@cea.fr [Université Paris-Saclay, NIMBE, CEA, CNRS (France)

    2016-11-15

    Field-dependent NMR studies of bio-molecular systems using a sample shuttling hardware operating on a high-field NMR apparatus have provided valuable structural and dynamic information. We have recently published a design of a compact sample transportation device, called “field-cycler”, which was installed in a commercial spectrometer and which provided highly precise positioning and stability during high speed shuttling. In this communication, we demonstrate the first use of a sample shuttling device on a commercial high field standard bore NMR spectrometer, equipped with a commercial triple resonance cryogenically cooled NMR probe. The performance and robustness of the hardware operating in 1D and 2D field cycling experiments, as well as the impact of the sample shuttling time on the signal intensity are discussed.

  5. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    Science.gov (United States)

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Frequency Comb Driven Raman Transitions in the THz Range: High Precision Isotope Shift Measurements in Ca+

    DEFF Research Database (Denmark)

    Meyer, Steffen

    2017-01-01

    and frequency resolved optical gating (FROG) are used, and the two frequency comb systems used for the experiments are thoroughly characterized, a Coherent Mira Ti:sapph oscillator and a MenloSystems fiber based frequency comb system. The potential of frequency comb driven Raman transitions is shown...... transition frequencies typically are on the order of a few THz. High precision measurements on these ions have many intriguing applications, for example the test of time-variations of fundamental constants, ultracold chemistry on the quantum level, and quantum information and computing, to name just a few...

  7. Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I.; Careaga Houck, A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); AlGhamdi, J. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Department of Chemistry, College of Science, University of Dammam, Dammam (Saudi Arabia); Youcef-Toumi, K. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-01-15

    This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6 μm out-of-plane and 120 μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5 μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20 MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time. - Highlights: • High-speed AFM imaging is extended to large lateral and vertical scan ranges. • A general multi-actuation approach to atomic force microscopy is presented. • A high-speed AFM is designed and implemented based on the proposed method. • Multi-actuator control is designed auxiliary to a PID unit to maintain flexibility. • Influence of calcite crystal structure on dissolution is visualized in video form.

  8. Range shifts and global warming: ecological responses of Empetrum nigrum L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin

    International Nuclear Information System (INIS)

    Buizer, Bert; Weijers, Stef; Van Bodegom, Peter M; Van Breda, Johan; De Korte, Maarten; Van Rijckevorsel, Jaap; Rozema, Jelte; Alsos, Inger Greve; Eidesen, Pernille Bronken

    2012-01-01

    Global change is expected to lead to range shifts of plant species. The ecological mechanisms underpinning these shifts are currently not well understood. Here, we compared ecological responses possibly underlying southern range contraction and northern range expansion of Empetrum nigrum, a key species in northern heathlands, which may be related to global change. We hypothesized a negative response to warming in the ‘south’ (i.e. the Netherlands) and a positive response at the northern range margin (the tundra on Svalbard). Open top chambers (OTCs) were used to simulate global warming. In the ‘south’, OTC warming caused enhanced shoot growth and growth rate, biomass increment, advanced phenology, larger and heavier berries of Empetrum, while its growing season was extended by 75 days. Under OTC warming co-occurring Calluna vulgaris also showed an increased growing season length (by 98 days) as well as increased shoot growth rate and biomass growth, plant cover and height. Still, we found no evidence for increased competitiveness relative to Empetrum. In the ‘north’, Empetrum responded with increased shoot and biomass growth, enhanced berry development and ripening to warming. These responses exceeded those of co-occurring Cassiope tetragona with the exception of its biomass response. The direct and indirect ecological responses found do not readily explain the observed northward retreat of Empetrum at the southern range margin. The direct ecological responses found at its northern range margin are, on the other hand, in line with the increased occurrences of this species on Svalbard. (letter)

  9. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    Science.gov (United States)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  10. Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System

    CERN Document Server

    Venturini, G; Dehning, B; Effinger, E

    2010-01-01

    The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...

  11. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    Science.gov (United States)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  12. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    Science.gov (United States)

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  13. [Characteristics of Nutrition in Competitive Sports, Ranging from Leisure Activities to High-Performance Athletics].

    Science.gov (United States)

    Braun, H

    2016-08-01

    Nutrition has a crucial influence on physical and mental performance ability and is an important measure along sidetraining in high-performance athletes. However, this form of nutritionis not applicable for every athlete and in every situation. The question of optimal nutrition requires involvement with the particular type of sports, an athlete's current training stage, and athletes' individual requirements and objectives. Implementation takes time and individual motivation on the part of athletes and the specialist staff who engage intensively with the nutritional needs of athletes. In addition to adequate energy provision, it is important to divide the energy sensibly among the energy sources carbohydrates, fats, and protein. Performance athletes' higher need for protein can usually be covered in their regular diet; supplements are needed only in exceptional cases. Studies have shown that small amounts of 15 - 25 g protein are sensible after weight training, in order to stimulate muscle protein synthesis. The need for carbohydrates increases dynamically with the intensity and duration of physical exertion. A sufficient supply is crucial for achieving maximum performance. Low carb diets are unsuitable for performance athletes. So called low-glycogen training, however, can lead to better adjustment/adaptation processes in selected training stages and can increase performance ability. © Georg Thieme Verlag KG Stuttgart · New York.

  14. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    Science.gov (United States)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  15. Raptor community composition in the Texas Southern High Plains lesser prairie-chicken range

    Science.gov (United States)

    Behney, A.C.; Boal, Clint W.; Whitlaw, Heather A.; Lucia, D.R.

    2012-01-01

    Predation can be a factor in preventing prey population growth and sustainability when prey populations are small and fragmented, and when predator density is unrelated to the density of the single prey species. We conducted monthly raptor surveys from February 2007 to May 2009 in adjacent areas of the Texas Southern High Plains (USA) that do and do not support lesser prairie-chickens (Tympanuchus pallidicinctus), a candidate for protection under the Endangered Species Act. During the summer period corresponding to prairie-chicken nesting and brood-rearing, Swainson's hawks (Buteo swainsoni) were the most abundant raptor. During the lekking and overwintering period, the raptor community was diverse, with northern harriers (Circus cyaneus) being the most abundant species. Raptor abundance peaked during the early autumn and was lowest during the spring. Utility poles were a significant predictor of raptor density at survey points and Swainson's hawks and all raptors, pooled, were found in greater densities in non-prairie-chicken habitat dominated by mesquite (Prosopis glandulosa). Avian predation risk on prairie-chickens, based on presence and abundance of raptors, appears to be greatest during winter when there is a more abundant and diverse raptor community, and in areas with utility poles.

  16. Database of average-power damage thresholds at 1064 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Hildum, E.A.; Milam, D.

    1987-01-01

    We have completed a database of average-power, laser-induced, damage thresholds at 1064 nm on a variety of materials. Measurements were made with a newly constructed laser to provide design input for moderate and high average-power laser projects. The measurements were conducted with 16-ns pulses at pulse-repetition frequencies ranging from 6 to 120 Hz. Samples were typically irradiated for time ranging from a fraction of a second up to 5 minutes (36,000 shots). We tested seven categories of samples which included antireflective coatings, high reflectors, polarizers, single and multiple layers of the same material, bare and overcoated metal surfaces, bare polished surfaces, and bulk materials. The measured damage threshold ranged from 2 for some metals to > 46 J/cm 2 for a bare polished glass substrate. 4 refs., 7 figs., 1 tab

  17. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NARCIS (Netherlands)

    Cvetkovic, S.D.; Schirris, J.; With, de P.H.N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are

  18. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  19. Fluid hydration to prevent post-ERCP pancreatitis in average- to high-risk patients receiving prophylactic rectal NSAIDs (FLUYT trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Smeets, Xavier J N M; da Costa, David W; Fockens, Paul; Mulder, Chris J J; Timmer, Robin; Kievit, Wietske; Zegers, Marieke; Bruno, Marco J; Besselink, Marc G H; Vleggaar, Frank P; van der Hulst, Rene W M; Poen, Alexander C; Heine, Gerbrand D N; Venneman, Niels G; Kolkman, Jeroen J; Baak, Lubbertus C; Römkens, Tessa E H; van Dijk, Sven M; Hallensleben, Nora D L; van de Vrie, Wim; Seerden, Tom C J; Tan, Adriaan C I T L; Voorburg, Annet M C J; Poley, Jan-Werner; Witteman, Ben J; Bhalla, Abha; Hadithi, Muhammed; Thijs, Willem J; Schwartz, Matthijs P; Vrolijk, Jan Maarten; Verdonk, Robert C; van Delft, Foke; Keulemans, Yolande; van Goor, Harry; Drenth, Joost P H; van Geenen, Erwin J M

    2018-04-02

    Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) is the most common complication of ERCP and may run a severe course. Evidence suggests that vigorous periprocedural hydration can prevent PEP, but studies to date have significant methodological drawbacks. Importantly, evidence for its added value in patients already receiving prophylactic rectal non-steroidal anti-inflammatory drugs (NSAIDs) is lacking and the cost-effectiveness of the approach has not been investigated. We hypothesize that combination therapy of rectal NSAIDs and periprocedural hydration would significantly lower the incidence of post-ERCP pancreatitis compared to rectal NSAIDs alone in moderate- to high-risk patients undergoing ERCP. The FLUYT trial is a multicenter, parallel group, open label, superiority randomized controlled trial. A total of 826 moderate- to high-risk patients undergoing ERCP that receive prophylactic rectal NSAIDs will be randomized to a control group (no fluids or normal saline with a maximum of 1.5 mL/kg/h and 3 L/24 h) or intervention group (lactated Ringer's solution with 20 mL/kg over 60 min at start of ERCP, followed by 3 mL/kg/h for 8 h thereafter). The primary endpoint is the incidence of post-ERCP pancreatitis. Secondary endpoints include PEP severity, hydration-related complications, and cost-effectiveness. The FLUYT trial design, including hydration schedule, fluid type, and sample size, maximize its power of identifying a potential difference in post-ERCP pancreatitis incidence in patients receiving prophylactic rectal NSAIDs. EudraCT: 2015-000829-37 . Registered on 18 February 2015. 13659155 . Registered on 18 May 2015.

  20. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    Science.gov (United States)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be

  1. More controlling child-feeding practices are found among parents of boys with an average body mass index compared with parents of boys with a high body mass index.

    Science.gov (United States)

    Brann, Lynn S; Skinner, Jean D

    2005-09-01

    To determine if differences existed in mothers' and fathers' perceptions of their sons' weight, controlling child-feeding practices (ie, restriction, monitoring, and pressure to eat), and parenting styles (ie, authoritarian, authoritative, and permissive) by their sons' body mass index (BMI). One person (L.S.B.) interviewed mothers and boys using validated questionnaires and measured boys' weight and height; fathers completed questionnaires independently. Subjects were white, preadolescent boys and their parents. Boys were grouped by their BMI into an average BMI group (n=25; BMI percentile between 33rd and 68th) and a high BMI group (n=24; BMI percentile > or = 85th). Multivariate analyses of variance and analyses of variance. Mothers and fathers of boys with a high BMI saw their sons as more overweight (mothers P=.03, fathers P=.01), were more concerned about their sons' weight (Pfathers of boys with an average BMI (Pfathers of boys with a high BMI monitored their sons' eating less often than fathers of boys with an average BMI (P=.006). No differences were found in parenting by boys' BMI groups for either mothers or fathers. More controlling child-feeding practices were found among mothers (pressure to eat) and fathers (pressure to eat and monitoring) of boys with an average BMI compared with parents of boys with a high BMI. A better understanding of the relationships between feeding practices and boys' weight is necessary. However, longitudinal research is needed to provide evidence of causal association.

  2. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    International Nuclear Information System (INIS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  3. Influence of high range of mass transfer coefficient and convection heat transfer on direct contact membrane distillation performance

    KAUST Repository

    Lee, Jung Gil

    2017-11-03

    In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.

  4. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    Science.gov (United States)

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (levels may have an impact on cognitive function.

  5. High Dynamic Range Video

    CERN Document Server

    Myszkowski, Karol

    2008-01-01

    This book presents a complete pipeline forHDR image and video processing fromacquisition, through compression and quality evaluation, to display. At the HDR image and video acquisition stage specialized HDR sensors or multi-exposure techniques suitable for traditional cameras are discussed. Then, we present a practical solution for pixel values calibration in terms of photometric or radiometric quantities, which are required in some technically oriented applications. Also, we cover the problem of efficient image and video compression and encoding either for storage or transmission purposes, in

  6. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  7. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  8. High Prevalence of Aleutian Mink Disease Virus in Free-ranging Mink on a Remote Danish Island

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Christensen, Laurids Siig; Chriél, Mariann

    2012-01-01

    Aleutian mink disease virus (AMDV) causes severe disease in farmed mink (Neovison vison) worldwide. In Denmark, AMDV in farmed mink has been confined to the northern part of the mainland since 2002. From 1998 to 2009, samples from 396 free-ranging mink were collected from mainland Denmark......, and a low AMDV antibody prevalence (3% of 296) was found using countercurrent immune electrophoresis. However, on the island of Bornholm in the Baltic Sea, a high prevalence (45% of 142 mink) was detected in the free-ranging mink. Aleutian mink disease virus was detected by polymerase chain reaction in 32...... of 49 antibody-positive free-ranging mink on Bornholm, but not in mink collected from other parts of Denmark. Sequence analysis of 370 base pairs of the nonstructural gene of the AMDV of 17 samples revealed two clusters with closest similarity to Swedish AMDV strains....

  9. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    International Nuclear Information System (INIS)

    Liu, Hanghui; Lam, Lily; Yan, Lin; Chi, Bert; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times

  10. High serum bicarbonate level within the normal range prevents the progression of chronic kidney disease in elderly chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Kanda Eiichiro

    2013-01-01

    Full Text Available Abstract Background Metabolic acidosis leads to chronic kidney disease (CKD progression. The guidelines recommend a lower limit of serum bicarbonate level, but no upper limit. For serum bicarbonate level to be clinically useful as a therapeutic target marker, it is necessary to investigate the target serum bicarbonate level within the normal range to prevent CKD progression. Methods One hundred and thirteen elderly CKD patients, whose serum bicarbonate level was controlled within the normal range, were enrolled in this retrospective cohort study in Ibaraki, Japan. Outcome was defined as a decrease of 25% or more in estimated glomerular filtration rate (eGFR or starting dialysis. We used Cox proportional hazard models adjusted for patients’ characteristics to examine the association between serum bicarbonate level and the outcome. Results Female patients were 36.3%: average age (SD, 70.4 (6.6 years; eGFR, 25.7 (13.6 ml/min/1.73 m2; serum bicarbonate level, 27.4 (3.2 mEq/l. Patients with the lowest quartile of serum bicarbonate levels [23.4 (1.8 mEq/l] showed a high risk of CKD progression compared with patients with high serum bicarbonate levels [28.8 (2.3 mEq/l]: adjusted hazard ratio (HR, 3.511 (95% CI, 1.342-9.186. A 1 mEq/l increase in serum bicarbonate level was associated with a low risk of CKD progression: adjusted HR, 0.791 [95% confidence interval (CI, 0.684-0.914]. Conclusions In elderly CKD patients, our findings suggest that serum bicarbonate level is independently associated with CKD progression, and that a high serum bicarbonate level is associated with a low risk of CKD progression. A high target serum bicarbonate level within the normal range may be effective for preventing CKD progression.

  11. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Watanabe, Soichi; Sakurai, Kiyoko; Kunieda, Etsuo; Watanabe, Satoshi; Taki, Masao; Yamanaka, Yukio

    2004-01-01

    With advances in computer performance, the use of high-resolution voxel models of the entire human body has become more frequent in numerical dosimetries of electromagnetic waves. Using magnetic resonance imaging, we have developed realistic high-resolution whole-body voxel models for Japanese adult males and females of average height and weight. The developed models consist of cubic voxels of 2 mm on each side; the models are segmented into 51 anatomic regions. The adult female model is the first of its kind in the world and both are the first Asian voxel models (representing average Japanese) that enable numerical evaluation of electromagnetic dosimetry at high frequencies of up to 3 GHz. In this paper, we will also describe the basic SAR characteristics of the developed models for the VHF/UHF bands, calculated using the finite-difference time-domain method

  12. Shoulder range of motion measures as risk factors for shoulder and elbow injuries in high school softball and baseball players.

    Science.gov (United States)

    Shanley, Ellen; Rauh, Mitchell J; Michener, Lori A; Ellenbecker, Todd S; Garrison, J Craig; Thigpen, Charles A

    2011-09-01

    Range of motion deficits in shoulder external rotation (ER), internal rotation (IR), total rotation range of motion (ER + IR), and horizontal adduction (HA) have been retrospectively associated with overhand athletes' arm injuries. The authors expected the incidence of upper extremity injury in high school softball and baseball players with side-to-side shoulder range of motion deficits to be greater than the incidence of upper extremity injury in players with normal shoulder range of motion. Cohort study (prognosis); Level of evidence, 2. High school softball and baseball players (N = 246) participated. Before the start of the season, passive shoulder ER, IR, and HA were assessed at 90° of abduction with the scapula stabilized. Relative risk (RR) was calculated to examine range of motion measure, by categorical criteria, and risk of upper extremity injury. Twenty-seven shoulder and elbow injuries (9 softball, 18 baseball) were observed during the season. The dominant shoulder of all injured players and baseball players displayed a significant decrease in HA (P = .05) and IR (P = .04). The dominant shoulder total rotation of injured baseball players displayed a significant decrease (mean difference = 8.0° ± 0.1°; P = .05) as compared with the dominant shoulder of uninjured baseball players. Players who displayed a decrease of ≥25° of IR in the dominant shoulder were at 4 times greater risk of upper extremity injury compared with players with a .05). There are large mean deficits in shoulder IR and HA between injured and noninjured players, but not in ER or total rotation. Passive shoulder IR loss ≥25° as compared bilaterally was predictive of arm injury. Shoulder range of motion deficits differed between sports and appeared more predictive of injury for baseball players.

  13. Optical timing receiver for the NASA Spaceborne Ranging System. Part II: high precision event-timing digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, Branko; Turko, Bojan

    1978-08-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the timeresolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to the time-resolution capabilities, and to develop a very low time walk timing discriminator and a high-resolution event-timing digitizer to be used in the high-resolution spaceborne laser ranging system receiver. This part of the report describes the development of a high precision event-timing digitizer. The event-timing digitizer is basically a combination of a very accurate high resolution real time digital clock and an interval timer. The timing digitizer is a high resolution multiple stop clock, counting the time up to 131 days in 19.5 ps increments.

  14. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    Science.gov (United States)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  15. The difference between alternative averages

    Directory of Open Access Journals (Sweden)

    James Vaupel

    2012-09-01

    Full Text Available BACKGROUND Demographers have long been interested in how compositional change, e.g., change in age structure, affects population averages. OBJECTIVE We want to deepen understanding of how compositional change affects population averages. RESULTS The difference between two averages of a variable, calculated using alternative weighting functions, equals the covariance between the variable and the ratio of the weighting functions, divided by the average of the ratio. We compare weighted and unweighted averages and also provide examples of use of the relationship in analyses of fertility and mortality. COMMENTS Other uses of covariances in formal demography are worth exploring.

  16. On generation of high power x-rays in the range 7-20 keV

    International Nuclear Information System (INIS)

    Ratakhin, N.A.

    1997-01-01

    An attempt is made on the base of general relations to evaluate possibility of two approaches to the problem of receiving powerful x-radiation id spectral range of (7-20) keV. Extremely cut possibilities of electron beams of vacuum diodes and Z-pinch plasma thermal radiation are shown. Some perspectives of increasing such radiation power in connection with possibility of generation of high-energy electrons in Z-pinch plasma are noted

  17. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    Science.gov (United States)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and

  18. Food Abundance Is the Main Determinant of High-Altitude Range Use in Snub-Nosed Monkeys

    Directory of Open Access Journals (Sweden)

    Cyril C. Grueter

    2012-01-01

    Full Text Available High-altitude dwelling primates have to optimize navigating a space that contains both a vertical and horizontal component. Black-and-white or Yunnan snub-nosed monkeys (Rhinopithecus bieti are extreme by primate standards in inhabiting relatively cold subalpine temperate forests at very high altitudes where large seasonal variation in climate and food availability is expected to profoundly modulate their ranging strategies so as to ensure a positive energy balance. A “semi-nomadic” group of R. bieti was followed for 20 months in the montane Samage Forest, Baimaxueshan Nature Reserve, Yunnan, PRC, which consisted of evergreen conifers, oaks, and deciduous broadleaf trees. The aim of this study was to disentangle the effects of climate and phenology on patterns of altitudinal range use. Altitude used by the group ranged from a maximum of 3550 m in July 2007 to a minimum of 3060 m in April 2006. The proportional use of lichen, the monkeys’ staple fallback food, in the diet explained more variation in monthly use of altitudes than climatic factors and availability of flush and fruit. The abundance of lichens at high altitudes, the lack of alternative foods in winter, and the need to satisfy the monkey's basal energetic requirements explain the effect of lichenivory on use of altitudes.

  19. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  20. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    OpenAIRE

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M.

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞)...

  1. Highly accurate nuclear and electronic stopping cross sections derived using Monte Carlo simulations to reproduce measured range data

    Science.gov (United States)

    Wittmaack, Klaus; Mutzke, Andreas

    2017-03-01

    We have examined and confirmed the previously unexplored concept of using Monte Carlo calculations in combination with measured projected ranges of ions implanted in solids to derive a quantitative description of nuclear interaction and electronic stopping. The study involved 98 ranges of 11B in Si between 1 keV and 8 MeV, contained in 12 sets of 10 different groups. Systematic errors by up to ±8% were removed to establish a refined data base with 93 ranges featuring only statistical uncertainties (±1.8%). The Monte Carlo calculations could be set up to reproduce the refined ranges with a mean ratio 1.002 ± 1.7%. The input parameters required for this very high level of agreement are as follows. Nuclear interaction is best described by the Kr-C potential, but in obligatory combination with the Lindhard-Scharff (LS) screening length. Up to 300 keV, the electronic stopping cross section is proportional to the projectile velocity, Se = kSe,LS, with k = 1.46 ± 0.01. At higher energies, Se falls progressively short of kSe,LS. Around the Bragg peak, i.e., between 0.8 and 10 MeV, Se is modeled by an adjustable function serving to tailor the peak shape properly. Calculated and measured isotope effects for ranges of 10B and 11B in Si agree within the experimental uncertainty (±0.25%). The range-based Se,R(E) reported here predicts the scarce experimental data derived from the energy loss in projectile transmission through thin Si foils to within 2% or better. By contrast, Se(E) data of available stopping power tables exhibit deviations from Se,R(E) between -40% and +14%.

  2. Optimal Design of a High Efficiency LLC Resonant Converter with a Narrow Frequency Range for Voltage Regulation

    Directory of Open Access Journals (Sweden)

    Junhao Luo

    2018-05-01

    Full Text Available As a key factor in the design of a voltage-adjustable LLC resonant converter, frequency regulation range is very important to the optimization of magnetic components and efficiency improvement. This paper presents a novel optimal design method for LLC resonant converters, which can narrow the frequency variation range and ensure high efficiency under the premise of a required gain achievement. A simplified gain model was utilized to simplify the calculation and the expected efficiency was initially set as 96.5%. The restricted area of parameter optimization design can be obtained by taking the intersection of the gain requirement, the efficiency requirement, and three restrictions of ZVS (Zero Voltage Switch. The proposed method was verified by simulation and experiments of a 150 W prototype. The results show that the proposed method can achieve ZVS from full-load to no-load conditions and can reach 1.6 times the normalized voltage gain in the frequency variation range of 18 kHz with a peak efficiency of up to 96.3%. Moreover, the expected efficiency is adjustable, which means a converter with a higher efficiency can be designed. The proposed method can also be used for the design of large-power LLC resonant converters to obtain a wide output voltage range and higher efficiency.

  3. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Zhiyuan Gao

    2015-11-01

    Full Text Available This paper presents a dynamic range (DR enhanced readout technique with a two-step time-to-digital converter (TDC for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  4. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    Directory of Open Access Journals (Sweden)

    F. Xu

    2017-08-01

    Full Text Available The determination of area-averaged evapotranspiration (ET at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC sites and four groups of large-aperture scintillometers (LASs, were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this

  5. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2018-04-01

    Full Text Available An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l. in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1 and obtain the dynamic processes (emissions, transport, and chemical evolution of biomass burning (BB, frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ PM1 mass concentration was 4.44 (±4.54 µg m−3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA was the dominant PM1 species (accounting for 54.3 % of total PM1 on average followed by black carbon (BC (25.0 %, sulfate (9.3 %, ammonium (5.8 %, nitrate (5.1 %, and chloride (0.4 %. The average size distributions of PM1 species all peaked at an overlapping accumulation mode (∼ 500 nm, suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %, a nitrogen-containing OA (NOA, 13.9 % and a more-oxidized oxygenated OA (MO-OOA, 42.4 %. Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

  6. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    Science.gov (United States)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  7. High female mortality resulting in herd collapse in free-ranging domesticated reindeer (Rangifer tarandus tarandus in Sweden.

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    Full Text Available Reindeer herding in Sweden is a form of pastoralism practised by the indigenous Sámi population. The economy is mainly based on meat production. Herd size is generally regulated by harvest in order not to overuse grazing ranges and keep a productive herd. Nonetheless, herd growth and room for harvest is currently small in many areas. Negative herd growth and low harvest rate were observed in one of two herds in a reindeer herding community in Central Sweden. The herds (A and B used the same ranges from April until the autumn gathering in October-December, but were separated on different ranges over winter. Analyses of capture-recapture for 723 adult female reindeer over five years (2007-2012 revealed high annual losses (7.1% and 18.4%, for herd A and B respectively. A continuing decline in the total reindeer number in herd B demonstrated an inability to maintain the herd size in spite of a very small harvest. An estimated breakpoint for when herd size cannot be kept stable confirmed that the observed female mortality rate in herd B represented a state of herd collapse. Lower calving success in herd B compared to A indicated differences in winter foraging conditions. However, we found only minor differences in animal body condition between the herds in autumn. We found no evidence that a lower autumn body mass generally increased the risk for a female of dying from one autumn to the next. We conclude that the prime driver of the on-going collapse of herd B is not high animal density or poor body condition. Accidents or disease seem unlikely as major causes of mortality. Predation, primarily by lynx and wolverine, appears to be the most plausible reason for the high female mortality and state of collapse in the studied reindeer herding community.

  8. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  9. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  10. Evaluation of dynamic range for LLNL streak cameras using high contrast pulsed and pulse podiatry on the Nova laser system

    International Nuclear Information System (INIS)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-01-01

    This paper reports on a standard LLNL streak camera that has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1

  11. A wideband large dynamic range and high linearity RF front-end for U-band mobile DTV

    International Nuclear Information System (INIS)

    Liu Rongjiang; Liu Shengyou; Guo Guiliang; Cheng Xu; Yan Yuepeng

    2013-01-01

    A wideband large dynamic range and high linearity U-band RF front-end for mobile DTV is introduced, and includes a noise-cancelling low-noise amplifier (LNA), an RF programmable gain amplifier (RFPGA) and a current communicating passive mixer. The noise/distortion cancelling structure and RC post-distortion compensation are employed to improve the linearity of the LNA. An RFPGA with five stages provides large dynamic range and fine gain resolution. A simple resistor voltage network in the passive mixer decreases the gate bias voltage of the mixing transistor, and optimum linearity and symmetrical mixing is obtained at the same time. The RF front-end is implemented in a 0.25 μm CMOS process. Tests show that it achieves an IIP3 (third-order intercept point) of −17 dBm, a conversion gain of 39 dB, and a noise figure of 5.8 dB. The RFPGA achieves a dynamic range of −36.2 to 23.5 dB with a resolution of 0.32 dB. (semiconductor integrated circuits)

  12. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles

    Directory of Open Access Journals (Sweden)

    Patricia López-Rodríguez

    2014-12-01

    Full Text Available Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising.

  13. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  14. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  15. High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography.

    Science.gov (United States)

    Leong-Hoi, Audrey; Montgomery, Paul C; Serio, Bruno; Twardowski, Patrice; Uhring, Wilfried

    2016-04-01

    By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 μm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected.

  16. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    Science.gov (United States)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  17. Lagrangian averaging with geodesic mean.

    Science.gov (United States)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  18. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  19. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  20. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  1. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  2. High Dynamic Range Imaging at the Quantum Limit with Single Photon Avalanche Diode-Based Image Sensors †

    Science.gov (United States)

    Mattioli Della Rocca, Francescopaolo

    2018-01-01

    This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479

  3. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  4. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  5. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  6. Averaging models: parameters estimation with the R-Average procedure

    Directory of Open Access Journals (Sweden)

    S. Noventa

    2010-01-01

    Full Text Available The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982, can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto & Vicentini, 2007 can be used to estimate the parameters of these models. By the use of multiple information criteria in the model selection procedure, R-Average allows for the identification of the best subset of parameters that account for the data. After a review of the general method, we present an implementation of the procedure in the framework of R-project, followed by some experiments using a Monte Carlo method.

  7. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    Science.gov (United States)

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age <75 years than females and age ≥75 years. The effect of DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  9. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  10. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  11. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  12. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    Science.gov (United States)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  13. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  14. High efficiency AlGaInN-based light emitting diode in the 360-380 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hisao; Wang, Hong-Xing; Sato, Daisuke; Takaki, Ryohei; Wada, Naoki; Tanahashi, Tetsuya; Yamashita, Kenji; Kawano, Shunsuke; Mizobuchi, Takashi; Dempo, Akihiko; Morioka, Kenji; Kimura, Masahiro; Nohda, Suguru [Nitride Semiconductors Co., Ltd., 115-7 Itayajima, Akinokami, Seto-cho, Naruto, Tokushima 771-0360 (Japan); Sugahara, Tomoya [Satellite Venture Business Laboratory, The University of Tokushima (Japan); Sakai, Shiro [Department of Electrical and Electronic Engineering, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2003-11-01

    High performance LEDs emitting in the wavelength range 360-380 nm, are fabricated on sapphire substrates by one-time metalorganic chemical vapor deposition (MOCVD) without using epitaxial lateral overgrowth (ELO) or similar techniques. By improving layer structures and growth conditions, the output power of the LEDs was much improved. The light output power of the LEDs at an injection current of 20 mA is 3.2 mW, 2.5 mW and 1 mW at wavelengths of 378 nm, 373 nm and 363 nm, which correspond to an external quantum efficiency of 4.8%, 3.8% and 1.4%, respectively. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Broadband and high absorption in Fibonacci photonic crystal including MoS2 monolayer in the visible range

    Science.gov (United States)

    Ansari, Narges; Mohebbi, Ensiyeh

    2018-03-01

    2D molybdenum disulfide MoS2, has represented potential applications in optoelectronic devices based on their promising optical absorption responses. However, for practical applications, absorption should increase furthermore in a wide wavelength window. In this paper, we design Fibonacci photonic crystals (PCs) based on Si, SiO2 and MoS2 monolayer and we calculate their absorption responses based on the transfer matrix method. The optical refractive index of the MoS2 monolayer was determined based on the Lorentz-Drude-Gauss model. Effects of Fibonacci order, periodicity, incident light angle and polarization are included in our calculations. Finally, an absorption as large as 90% in a wide optical wavelength range is achieved for both polarizations and incident angle down to 60°. Our results are useful for designing photonic devices with high absorption efficiency.

  16. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  17. Threatened plant resources: distribution and ecosystem services in the world's high elevation park of the karakoram ranges

    International Nuclear Information System (INIS)

    Shedayi, A.; Xu, M.; Hussain, F.; Sadia, S.; Bano, S.

    2016-01-01

    This study aims to investigate diversity, distribution, status, ecosystem services and threats to the plant resources in the study area based on field survey and ethno ecological knowledge for effective conservation and sustainable ecosystem services. The present study was conducted in the world's high elevation Khunjerab National Park (KNP) of the Karakoram ranges in Pakistan bordering China. Tremendous ecosystem services are obtained from the park and considered the most important habitat for many plant biodiversity and wildlife species. Field surveys were conducted to collect plants in transect along the road side of seven valleys ranging from 3160m to 4934m altitudinal variation. The names and traditional uses were recorded from the local people of the area by semi structured questionnaires and direct interviews. The data was analyzed by excel spreadsheets, direct matrix ranking, and pair comparison tests. Asteraceae was the dominant family with 15% species followed by Chenopodiaceae 10%, Poaceae 8%, Papilionaceae and Rocaceae 7% each, Brasicaceae 6%. Plant resources contribute direct and indirect ecosystem services such as food, medicine, fuel, timber, thatching, water purification, mineral and soil retention, and most importantly as sink of global carbon stock especially in the high altitude peatlands. Herbs were the dominant species in the area with 89%. Fodder is the most common usage for plants, followed by medicine. Plants with percentages 27% and 39% found to be highly palatable and palatable respectively. Competition for food between wildlife and livestock was high recorded for 60% plants. Plants used to cure various diseases including stomachache, asthma, cancer and tuberculosis etc. Plant resources in KNP are unique and vary with climate and altitude. This floral wealth is under tremendous threats of global climate change and anthropogenic activities like overgrazing, increasing population, and a rapidly declining traditional knowledge for

  18. Average and local structure of α-CuI by configurational averaging

    International Nuclear Information System (INIS)

    Mohn, Chris E; Stoelen, Svein

    2007-01-01

    Configurational Boltzmann averaging together with density functional theory are used to study in detail the average and local structure of the superionic α-CuI. We find that the coppers are spread out with peaks in the atom-density at the tetrahedral sites of the fcc sublattice of iodines. We calculate Cu-Cu, Cu-I and I-I pair radial distribution functions, the distribution of coordination numbers and the distribution of Cu-I-Cu, I-Cu-I and Cu-Cu-Cu bond-angles. The partial pair distribution functions are in good agreement with experimental neutron diffraction-reverse Monte Carlo, extended x-ray absorption fine structure and ab initio molecular dynamics results. In particular, our results confirm the presence of a prominent peak at around 2.7 A in the Cu-Cu pair distribution function as well as a broader, less intense peak at roughly 4.3 A. We find highly flexible bonds and a range of coordination numbers for both iodines and coppers. This structural flexibility is of key importance in order to understand the exceptional conductivity of coppers in α-CuI; the iodines can easily respond to changes in the local environment as the coppers diffuse, and a myriad of different diffusion-pathways is expected due to the large variation in the local motifs

  19. Application of long-range ordering in the synthesis of a nanoscale Ni2 (Cr,Mo) superlattice with high strength and high ductility

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    2009-01-01

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni 2 (Cr,Mo) isomorphous with Pt 2 Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility

  20. Application of long-range ordering in the synthesis of a nanoscale Ni{sub 2} (Cr,Mo) superlattice with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Tawancy, H.M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1639, Dhahran 31261 (Saudi Arabia)], E-mail: tawancy@kfupm.edu.sa; Aboelfotoh, M.O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7909 (United States)

    2009-01-25

    We demonstrate that bulk nanoscale materials with high strength and high ductility can be synthesized by using long-range ordering in certain alloy systems. In the case of a Ni-18.6 atomic % Mo-15.1 atomic % Cr, a bulk nanoscale superlattice of Ni{sub 2}(Cr,Mo) isomorphous with Pt{sub 2}Mo has been synthesized by thermal aging at 700 deg. C. The superlattice is shown to have high strength and high ductility as well as high thermal stability. Although the yield strength is nearly doubled in the ordered state exceeding 800 MPa, the material is found to maintain about 70% of its initial tensile ductility corresponding to 42% engineering strain. This behavior has been related to the crystallography of the ordering transformation. Although most of the slip systems of the parent face-centered cubic lattice are suppressed by ordering, most of the twinning systems remain energetically favorable. Therefore, deformation in the ordered state is found to predominantly occur by twinning rather than by slip giving rise to the observed combination of high strength and high ductility.

  1. Ergodic averages via dominating processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Mengersen, Kerrie

    2006-01-01

    We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary...... Markov chain and we eliminate the problem of whether an appropriate burn-in is determined or not. Moreover, when a central limit theorem applies, we show how confidence intervals for the mean can be estimated by bounding the asymptotic variance of the ergodic average based on the equilibrium chain....

  2. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    International Nuclear Information System (INIS)

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-01-01

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  3. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.

    Science.gov (United States)

    Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G

    2017-08-24

    Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A transimpedance CMOS multichannel amplifier with a 50 Ω-wide output range buffer for high counting rate applications

    International Nuclear Information System (INIS)

    Haralabidis, N.; Loukas, D.; Misiakos, K.; Katsafouros, S.

    1997-01-01

    A fast transimpedance multichannel amplifier has been designed, fabricated in CMOS 1.2-microm technology and tested. Each channel consists of a current sensitive preamplifier followed by a voltage amplification stage and an on-chip buffer able to drive 50 Ω loads with an output range of ±800 mV. Measured peaking time at the output is 40 ns and the circuit recovers to baseline in 90 ns. This results in a counting capability of more than 10 7 hits/s. Signals of both polarities can be handled. The first two stages consume a total of 2 mW per channel and the 50 Ω buffer consumes another 17 mW. The equivalent noise charge (ENC) is 1,100 e - rms with a slope of 40e - /pF. The IC is intended for use in gas and solid-state detectors with high particle rate and extensive charge release as in high energy calorimetry

  5. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    Science.gov (United States)

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    Science.gov (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  7. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  8. Technical and economic feasibility of development innovative technological solutions for expansion the adjustment range of high-power CCP

    Science.gov (United States)

    Arakelyan, E. K.; Andryushin, A. V.; Burtsev, S. Y.; Andryushin, K. A.

    2017-11-01

    The analysis of technical and parametric constraints on the adjustment range of highpower CCP and recommended technological solutions in the technical literature for their elimination. Established that in the conditions of toughening the requirements for economy, reliability and maneuverability on the part of the system operator with the participation of CCP in control the frequency and power in the power system, existing methods do not ensure the fulfillment of these requirements. The current situation in the energy sector — the lack of highly manoeuvrable power equipment leads to the need participate in control of power consumption diagrams for all types of power plants, including CCP, although initially they were intended primarily for basic loads. Large-scale research conducted at the department of Automated control systems of technological processes, showed the possibility of a significant expansion of the adjustment range of CCP when it operating in the condensing mode and in the heating mode. The report presents the main results of these research for example the CCP-450 and CCP-450T. Various technological solutions are considered: when CCP in the condensation mode — the use of bypass steam distribution schemes, the transfer of a part of the steam turbine into a low-steam mode; when CCP operation in the heating mode — bypass steam distribution and the transfer CCP to gas turbine unit — power heating plants mode with the transfer the steam turbine to the motor mode. Data on the evaluation of the technical and economic feasibility of the proposed innovative technological solutions are presented in comparison with the methods used to solve this problem, which are used in practice, such as passing through the failures of the electric load graphs by transferring the CCP to the mode of operation with incomplete equipment. When comparing, both the economics, and the maneuverability and reliability of the equipment are considered.

  9. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar

    Directory of Open Access Journals (Sweden)

    Sajid Shah

    2015-05-01

    Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.

  10. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    Science.gov (United States)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  11. Building block diode laser concept for high brightness laser output in the kW range and its applications

    Science.gov (United States)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific applications, materials processing such as cutting and welding of copper aluminum or steel and also medical application. Typical operating at wavelengths in the 9XX nm range, these systems are designed for and mainly used in cutting and welding applications, but adapted wavelength ranges such as 793 nm and 1530 nm are also offered. Around 15XX nm the diodes are already successfully used for resonant pumping of Erbium lasers [1]. Furthermore, the fully integrated electronic

  12. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems

    Science.gov (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.

    2017-12-01

    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  13. Benchmarking statistical averaging of spectra with HULLAC

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2008-11-01

    Knowledge of radiative properties of hot plasmas is important for ICF, astrophysics, etc When mid-Z or high-Z elements are present, the spectra are so complex that one commonly uses statistically averaged description of atomic systems [1]. In a recent experiment on Fe[2], performed under controlled conditions, high resolution transmission spectra were obtained. The new version of HULLAC [3] allows the use of the same model with different levels of details/averaging. We will take advantage of this feature to check the effect of averaging with comparison with experiment. [1] A Bar-Shalom, J Oreg, and M Klapisch, J. Quant. Spectros. Rad. Transf. 65, 43 (2000). [2] J. E. Bailey, G. A. Rochau, C. A. Iglesias et al., Phys. Rev. Lett. 99, 265002-4 (2007). [3]. M. Klapisch, M. Busquet, and A. Bar-Shalom, AIP Conference Proceedings 926, 206-15 (2007).

  14. When good = better than average

    Directory of Open Access Journals (Sweden)

    Don A. Moore

    2007-10-01

    Full Text Available People report themselves to be above average on simple tasks and below average on difficult tasks. This paper proposes an explanation for this effect that is simpler than prior explanations. The new explanation is that people conflate relative with absolute evaluation, especially on subjective measures. The paper then presents a series of four studies that test this conflation explanation. These tests distinguish conflation from other explanations, such as differential weighting and selecting the wrong referent. The results suggest that conflation occurs at the response stage during which people attempt to disambiguate subjective response scales in order to choose an answer. This is because conflation has little effect on objective measures, which would be equally affected if the conflation occurred at encoding.

  15. Autoregressive Moving Average Graph Filtering

    OpenAIRE

    Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert

    2016-01-01

    One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...

  16. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  17. Averaging Robertson-Walker cosmologies

    International Nuclear Information System (INIS)

    Brown, Iain A.; Robbers, Georg; Behrend, Juliane

    2009-01-01

    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ω eff 0 ≈ 4 × 10 −6 , with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10 −8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w eff < −1/3 can be found for strongly phantom models

  18. The range and effectiveness of short-term measures to reduce traffic emissions during high air pollution episodes

    International Nuclear Information System (INIS)

    Elsom, Derek M.

    1999-01-01

    Concern for continuing poor urban air quality, caused primarily by motor vehicles emissions, and the slow progress being made towards reducing total vehicle emissions by long-term measures, such as improving fuel and vehicle technologies, has prompted some authorities to try to reduce the severity and duration of high air pollution episodes by implementing short-term traffic restraint measures. This paper reviews the range of episodic air quality management schemes applied in cities around the world and comments on the effectiveness of such schemes. The difficulty of targeting vehicles according to the contribution they make to the air quality problem is highlighted. The problem of some schemes simply causing a displacement of the area of excessive vehicle emissions rather than reducing total emissions is reviewed. Rapid developments in telematics and improved urban air quality and traffic monitoring networks (e.g. Urban Traffic Management and Control systems) may offer significant improvements in the effectiveness of episodic management schemes in the future. (Author)

  19. Analysis of the quasi-continuum band emitted by highly ionised tungsten atoms in the 4-7 nm range

    International Nuclear Information System (INIS)

    Madeira, T.I.; Amorim, P.; Marques, J.P.; Parente, F.; Indelicato, P.

    2013-01-01

    For the next upcoming generation of fusion experiments, such as ITER,Tungsten has been chosen as the materials for plasma facing components. Spectra emitted by highly ionized tungsten atoms from magnetically confined plasmas show a common feature: a narrow structured quasi-continuum emission band most prominent in the range 4-7 nm, which accounts for 40-80% of the radiated power. This band has been fairly well explained by unresolved transitions from groups 4d-4p, 4f-4d (Δn = 0) and 5d-4f, 5g-4f and 5p-4d (Δn = 1). In this work we use a Multi-Configuration Dirac-Fock code in Breit self-consistent field mode to compute level energies and transition probabilities for W 27+ to W 37+ ions contributing to this emission band. Intra-shell correlation was introduced in the calculation for both initial and final states and all dipole and quadrupole radiative transitions have been considered. The wavefunctions in the initial and final states are optimized separately and the resulting non-orthogonality effect is fully taken into account. The importance of some satellite lines was assessed. Together with the ionic distributions obtained by using the FLYCHK application and assuming that the initial states population depends statistically on the temperature we were able to synthesize plasma emission spectrum profiles for several electron temperatures. (authors)

  20. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....