WorldWideScience

Sample records for high average density

  1. Average density and porosity of high-strength lightweight concrete

    Directory of Open Access Journals (Sweden)

    A.S. Inozemtcev

    2014-11-01

    Full Text Available The analysis results of high-strength lightweight concrete (HSLWC structure are presented in this paper. The X-ray tomography, optical microscopy and other methods are used for researching of average density and porosity. It has been revealed that mixtures of HSLWC with density 1300…1500 kg/m3 have a homogeneous structure. The developed concrete has a uniform distribution of the hollow filler and a uniform layer of cement-mineral matrix. The highly saturated gas phase which is divided by denser large particles of quartz sand and products of cement hydration in the contact area allow forming a composite material with low average density, big porosity (up to 40% and high strength (compressive strength is more than 40 MPa. Special modifiers increase adhesion, compacts structure in the contact area, decrease water absorption of high-strength lightweight concrete (up to 1 % and ensure its high water resistance (water resistance coefficient is more than 0.95.

  2. AVERAGE GEOMETRICAL FEATURES OF THE ELECTRON WAVE PACKAGES DISTRIBUTION IN METALLIC CONDUCTORS WITH PULSED AXIAL CURRENT OF HIGH DENSITY

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2016-11-01

    Full Text Available Purpose. Calculation and experimental determination of average geometrical features of distributing of macroscopic electron wave packages (EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Methodology. Theoretical bases of the electrical engineering, bases of atomic and quantum physics, electrophysics bases of technique of high voltage and high pulsed currents. Results. The results of the conducted calculation and experimental researches are resulted on close determination of average geometrical features of distribution of longitudinal and radial EWP of macroscopic sizes in the indicated conductors. These descriptions are included by the average widths of «hot» and «cold» longitudinal and radial areas of conductor, and also average steps of division into the periods of similar areas. Results of the executed calculations and high temperature experiments for average geometrical features of longitudinal EWP in the zincked steel wire of diameter of 1.6 mm and length of 320 mm with the aperiodic impulse of current of temporal form 9 ms/160 ms and by amplitude 745 A coincide within the limits of 19 %. Originality. First with the use of methods of atomic and quantum physics the features of the stochastic distributing and mean values of basic geometrical sizes are analysed macroscopic longitudinal and radial EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Practical value. Drawing on the got results in practice will allow more reliably to forecast geometrical sizes and places of localization of arising up in the probed metallic conductors with pulsed axial current of high density longitudinal and radial EWP.

  3. Spacetime Average Density (SAD) Cosmological Measures

    CERN Document Server

    Page, Don N

    2014-01-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmolo...

  4. Bootstrapping Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    Employing the "small bandwidth" asymptotic framework of Cattaneo, Crump, and Jansson (2009), this paper studies the properties of a variety of bootstrap-based inference procedures associated with the kernel-based density-weighted averaged derivative estimator proposed by Powell, Stock, and Stoker...

  5. Surface layer structure and average contact temperature of copper-containing materials under dry sliding with high electric current density

    Science.gov (United States)

    Fadin, V. V.; Aleutdinova, M. I.; Rubtsov, V. Ye.; Aleutdinov, K. A.

    2016-11-01

    Dry sliding of copper and powder composites of Cu-Fe and Cu-Fe-graphite compositions against 1045 steel under electric current of contact density higher than 250 A/cm2 has been studied, which demonstrated the change in surface layer structure and formation of tribolayer consisting of iron, copper and FeO oxide. Signs of quasi-viscous flow of worn surface were observed. It was noted that the thin contact layer containing about 40 at % of oxygen and 40% of Fe was the main factor decreasing the adhesion interaction. It was affirmed that the introduction of graphite into the primary structure of the composite leads to rather low content of FeO oxide and to the increased tendency of surface layer to catastrophic deterioration under sliding with contact current density of about 300 A/cm2. The temperature of contact did not exceed 400°C.

  6. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    J C Travers

    2010-11-01

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.

  7. High-Average Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  8. Inferring Average Ground Profiles of the Muon Density of Inclined Air Showers from Monte-Carlo Simulations at Ultra-High Energy

    CERN Document Server

    Dembinski, Hans; Deligny, Olivier; Hebbeker, Thomas

    2009-01-01

    A standard method to measure ultra-high energy cosmic rays is the sampling of the ground particle profile of the extensive air shower that is produced in the atmosphere with an array of surface detectors. The primary energy of inclined air showers with zenith angles >60 Deg can be reconstructed by using simulated 2-D profiles of the ground density of muons. We will present an effective way to extract such profiles from a library of Monte-Carlo simulated air showers. Also, we will demonstrate a way to speed up the simulation of ground profiles of the muon density in very inclined showers by three orders of magnitude, if only the muon component in the shower is of interest.

  9. Small Bandwidth Asymptotics for Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors...

  10. High Average Power Yb:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  11. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  12. High average-power induction linacs

    Energy Technology Data Exchange (ETDEWEB)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.

    1989-03-15

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs.

  13. Materials for high average power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Marion, J.E.; Pertica, A.J.

    1989-01-01

    Unique materials properties requirements for solid state high average power (HAP) lasers dictate a materials development research program. A review of the desirable laser, optical and thermo-mechanical properties for HAP lasers precedes an assessment of the development status for crystalline and glass hosts optimized for HAP lasers. 24 refs., 7 figs., 1 tab.

  14. Average Density of States for Hermitian Wigner Matrices

    CERN Document Server

    Maltsev, Anna

    2010-01-01

    We consider ensembles of $N \\times N$ Hermitian Wigner matrices, whose entries are (up to the symmetry constraints) independent and identically distributed random variables. Assuming sufficient regularity for the probability density function of the entries, we show that the expectation of the density of states on {\\it arbitrarily} small intervals converges to the semicircle law, as $N$ tends to infinity.

  15. MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert

    2003-05-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.

  16. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  17. High Density Matter

    Directory of Open Access Journals (Sweden)

    Stone J.R.

    2013-12-01

    Full Text Available The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has led to the necessary reliance on theoretical models. There remains great uncertainty in these models which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this contribution latest developments in construction of the Equation of State (EoS of high-density matter at zero and finite temperature assuming different composition of matter will be discussed. Critical comparison of model EoS with available experimental data from heavy ion collisions and observations on neutron stars, including gravitational mass, radii and cooling patterns and data on X-ray burst sources and low mass X-ray binaries are made. Fundamental differences between the EoS of low-density, high temperature matter, such as is created in heavy ion collisions and of high-density, low temperature compact objects is discussed.

  18. Baroclinic pressure gradient difference schemes of subtracting the local averaged density stratification in sigma coordinates models

    Institute of Scientific and Technical Information of China (English)

    ZHU Shouxian; ZHANG Wenjing

    2008-01-01

    Much has been written of the error in computing the baroclinic pressure gradient (BPG) with sigma coordinates in ocean or atmos- pheric numerical models. The usual way to reduce the error is to subtract area-averaged density stratification of the whole computa- tion region. But if there is great difference between the area-averaged and the local averaged density stratification, the error will be obvious. An example is given to show that the error from this method may be larger than that from no correction sometimes. The definition of local area is put forward. Then, four improved BPG difference schemes of subtracting the local averaged density strat- ification are designed to reduce the error. Two of them are for diagnostic calculation (density field is fixed), and the others are for prognostic calculation (density field is not fixed). The results show that the errors from these schemes all significantly decrease.

  19. Average OH density in alternating current dielectric barrier discharge by laser-induced fluorescence technique

    Science.gov (United States)

    Yang, Hongliang; Feng, Chunlei; Gao, Liang; Ding, Hongbin

    2015-10-01

    The average OH density in atmospheric He-H2O(0.4%) needle-plate dielectric barrier discharge (DBD) was measured by the asynchronous laser-induced fluorescence (LIF) technique and the fluctuation of OH radical density was measured simultaneously to prove that the average OH density can be obtained by the asynchronous LIF technique. The evolution of the average OH density in four different discharge patterns, namely, negative barrier corona discharge, glow discharge, multi glow discharge, and streamer discharge, was studied, and it was found that the average OH density has an observable increase from corona discharge to streamer discharge. The main mechanism of OH production in the four different discharge patterns was analyzed. It was shown that the main mechanism of OH production in negative barrier corona discharge is electron direct collision dissociation, whereas in the other three discharge patterns the He metastable Penning ionization is the main process.

  20. Ensemble Averaged Probability Density Function (APDF) for Compressible Turbulent Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    In this paper, we present a concept of the averaged probability density function (APDF) for studying compressible turbulent reacting flows. The APDF is defined as an ensemble average of the fine grained probability density function (FG-PDF) with a mass density weighting. It can be used to exactly deduce the mass density weighted, ensemble averaged turbulent mean variables. The transport equation for APDF can be derived in two ways. One is the traditional way that starts from the transport equation of FG-PDF, in which the compressible Navier- Stokes equations are embedded. The resulting transport equation of APDF is then in a traditional form that contains conditional means of all terms from the right hand side of the Navier-Stokes equations except for the chemical reaction term. These conditional means are new unknown quantities that need to be modeled. Another way of deriving the transport equation of APDF is to start directly from the ensemble averaged Navier-Stokes equations. The resulting transport equation of APDF derived from this approach appears in a closed form without any need for additional modeling. The methodology of ensemble averaging presented in this paper can be extended to other averaging procedures: for example, the Reynolds time averaging for statistically steady flow and the Reynolds spatial averaging for statistically homogeneous flow. It can also be extended to a time or spatial filtering procedure to construct the filtered density function (FDF) for the large eddy simulation (LES) of compressible turbulent reacting flows.

  1. High Density QCD

    CERN Document Server

    Ducati, M B G

    2001-01-01

    The dynamics of high partonic density QCD is presented considering, in the double logarithm approximation, the parton recombination mechanism built in the AGL formalism, developed including unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are under theoretical control. The resulting non linear evolution equation is solved in the asymptotic regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like $F_2$, $F_L$, $F_2^c$. $\\partial F_2/ \\partial \\ln Q^2$, $\\partial F^A_2/ \\partial \\ln Q^2$, etc, is presented. The connection of our formalism with the DGLAP and BFKL dynamics, and with other perturbative (K) and non-perturbative (MV-JKLW) approaches is analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of this effect in ion physics and heavy quark production is emphasized. The implications to e-RHIC, HERA-A, and LHC physics and some open questions are mentioned.

  2. Analysis of average density difference effect in a new two-lane lattice model

    Science.gov (United States)

    Zhang, Geng; Sun, Di-Hua; Zhao, Min; Liu, Wei-Ning; Cheng, Sen-Lin

    2015-11-01

    A new lattice model is proposed by taking the average density difference effect into account for two-lane traffic system according to Transportation Cyber-physical Systems. The influence of average density difference effect on the stability of traffic flow is investigated through linear stability theory and nonlinear reductive perturbation method. The linear analysis results reveal that the unstable region would be reduced by considering the average density difference effect. The nonlinear kink-antikink soliton solution derived from the mKdV equation is analyzed to describe the properties of traffic jamming transition near the critical point. Numerical simulations confirm the analytical results showing that traffic jam can be suppressed efficiently by considering the average density difference effect for two-lane traffic system.

  3. High Brightness, High Average Current Injector Development at Cornell

    CERN Document Server

    Sinclair, C K

    2005-01-01

    Cornell University is constructing a 100 mA average current, high brightness electron injector for a planned Energy Recovery Linac (ERL) hard X-ray synchrotron radiation source. This injector will employ a very high voltage DC gun with a negative electron affinity photoemission cathode. Relatively long duration electron pulses from the photocathode will be drift bunched, and accelerated to 5-15 MeV with five two-cell, 1300 MHz superconducting cavities. The total beam power will be limited to 575 kW by the DC and RF power sources. A genetic algorithm based computational optimization of this injector has resulted in simulated rms normalized emittances of 0.1 mm-mrad at 80 pC/bunch, and 0.7 mm-mrad at 1 nC/bunch. The many technical issues and their design solutions will be discussed. Construction of the gun and the SRF cavities is well underway. The schedule for completion, and the planned measurements, will be presented.

  4. Entanglement in random pure states: spectral density and average von Neumann entropy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh; Pandey, Akhilesh, E-mail: skumar.physics@gmail.com, E-mail: ap0700@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2011-11-04

    Quantum entanglement plays a crucial role in quantum information, quantum teleportation and quantum computation. The information about the entanglement content between subsystems of the composite system is encoded in the Schmidt eigenvalues. We derive here closed expressions for the spectral density of Schmidt eigenvalues for all three invariant classes of random matrix ensembles. We also obtain exact results for average von Neumann entropy. We find that maximum average entanglement is achieved if the system belongs to the symplectic invariant class. (paper)

  5. Robust Data-Driven Inference for Density-Weighted Average Derivatives

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper presents a new data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density- weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error...

  6. High density photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  7. High Average Current Electron Guns for High-Power FELs

    Science.gov (United States)

    2009-12-09

    FELs 10 Appendix B: Thermionic Injectors 11 Appendix C: Grid Fields and Bunch Emittance 13 Appendix D: PARMELA Simulation of an IOT Gun 16...Inductive Output Tube ( IOT ) amplifiers [32-34] and can generate average currents of ~1 A, peak currents of ~ 5-10 A, cathode-anode voltages of ~ 35...of grid wires, centered at z = zG and x = ±a, ±3a, ±5a, ..., is given by <D(JC,Z) = - X n = ±l.±3. Fa(x,z) Gn(x,z) ( C3 ) where *0 = (1 / 2

  8. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  9. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  10. High-average-power diode-pumped Yb: YAG lasers

    Energy Technology Data Exchange (ETDEWEB)

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-10-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M{sup 2} = 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M{sup 2} value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M{sup 2} < 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods.

  11. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  12. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  13. Eighth CW and High Average Power RF Workshop

    CERN Document Server

    2014-01-01

    We are pleased to announce the next Continuous Wave and High Average RF Power Workshop, CWRF2014, to take place at Hotel NH Trieste, Trieste, Italy from 13 to 16 May, 2014. This is the eighth in the CWRF workshop series and will be hosted by Elettra - Sincrotrone Trieste S.C.p.A. (www.elettra.eu). CWRF2014 will provide an opportunity for designers and users of CW and high average power RF systems to meet and interact in a convivial environment to share experiences and ideas on applications which utilize high-power klystrons, gridded tubes, combined solid-state architectures, high-voltage power supplies, high-voltage modulators, high-power combiners, circulators, cavities, power couplers and tuners. New ideas for high-power RF system upgrades and novel ways of RF power generation and distribution will also be discussed. CWRF2014 sessions will start on Tuesday morning and will conclude on Friday lunchtime. A visit to Elettra and FERMI will be organized during the workshop. ORGANIZING COMMITTEE (OC): Al...

  14. Saturation and High Density QCD

    OpenAIRE

    Mueller, A. H.

    2005-01-01

    Recent progress in understanding general properties of high energy scattering near the unitarity limit, where high density gluon components of the wavefunction are dominant, is reviewed. The similarity of the QCD problem and that of reaction-diffusion processes in statistical physics is emphasized. The energy dependence of the saturation momentum and the status of geometric scaling are discussed.

  15. Modification of SOL profiles and fluctuations with line-average density and divertor flux expansion in TCV

    DEFF Research Database (Denmark)

    Vianello, N.; Tsui, C.; Theiler, C.

    2017-01-01

    that this modification does not influence neither the detachment density threshold, nor the development of a flat SOL density profile which instead depends strongly on the increase of the core line average density. The modification of the SOL upstream profile, with the appearance of what is generally called a density...

  16. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra

    CERN Document Server

    Bilous, A; Kramer, M; Keane, E; Hessels, J; Stappers, B; Malofeev, V; Sobey, C; Breton, R; Cooper, S; Falcke, H; Karastergiou, A; Michilli, D; Osłowski, S; Sanidas, S; ter Veen, S; van Leeuwen, J; Verbiest, J; Weltevrede, P; Zarka, P; Grießmeier, J -M; Serylak, M; Bell, M; Broderick, J; Eislöffel, J; Markoff, S; Rowlinson, A

    2015-01-01

    We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec$> 8^\\circ$ and Galactic latitudes |Gb|$> 3^\\circ$, regardless of their expected flux densities and scattering times. Each pulsar was observed contiguously in the frequency range from 110$-$188 MHz and for $\\geq 20$ minutes, recording full-Stokes data. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures ($1.5 \\times 10^{-4}$ pc cm$^{-3}$) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, the choice between single and broken power-laws, as well as the location of the spectral bre...

  17. A new approach on seismic mortality estimations based on average population density

    Science.gov (United States)

    Zhu, Xiaoxin; Sun, Baiqing; Jin, Zhanyong

    2016-12-01

    This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the population density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.

  18. A high average power electro-optic switch using KTP

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C.A.; Cook, W.M.; Velsko, S.P.

    1994-04-01

    High damage threshold, high thermal conductivity, and small thermo-optic coefficients make KTiOPO{sub 4} (KTP) an attractive material for use in a high average power Q-switch. However, electro-chromic damage and refractive index homogeneity have prevented the utilization of KTP in such a device in the past. This work shows that electro-chromic damage is effectively suppressed using capacitive coupling, and a KTP crystal can be Q-switched for 1.5 {times} 10{sup 9} shots without any detectable electro-chromic damage. In addition, KTP with the high uniformity and large aperture size needed for a KTP electro-optic Q-switch can be obtained from flux crystals grown at constant temperature. A thermally compensated, dual crystal KTP Q-switch, which successfully produced 50 mJ pulses with a pulse width of 8 ns (FWHM), has been constructed. In addition, in off-line testing the Q-switch showed less than 7% depolarization at an average power loading of 3.2 kW/cm{sup 2}.

  19. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.;

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  20. High density matter at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    2004-02-01

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

  1. Time-dependent density functional theory with twist-averaged boundary conditions

    CERN Document Server

    Schuetrumpf, B; Reinhard, P -G

    2016-01-01

    Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a box. For finite quantum systems (atoms, molecules, nuclei), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. These artifacts can be practically cured by introducing absorbing boundary conditions (ABC) through an absorbing potential in a certain boundary region sufficiently far from the described system. But also the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust) suffer artifacts from a finite computational box. In this regime, twist- averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we exte...

  2. High density fluoride glass calorimeter

    Science.gov (United States)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  3. Partial ionization in dense plasmas: Comparisons among average-atom density functional models

    Science.gov (United States)

    Murillo, Michael S.; Weisheit, Jon; Hansen, Stephanie B.; Dharma-wardana, M. W. C.

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  4. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    Science.gov (United States)

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  5. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  6. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  7. A high-average-power FEL for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.; Benson, S.; Bisognano, J.

    1995-12-31

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability and pulse structure. 4 refs., 3 figs., 2 tabs.

  8. Potential of high-average-power solid state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  9. Probability density functions of the average and difference intensities of Friedel opposites.

    Science.gov (United States)

    Shmueli, U; Flack, H D

    2010-11-01

    Trigonometric series for the average (A) and difference (D) intensities of Friedel opposites were carefully rederived and were normalized to minimize their dependence on sin(theta)/lambda. Probability density functions (hereafter p.d.f.s) of these series were then derived by the Fourier method [Shmueli, Weiss, Kiefer & Wilson (1984). Acta Cryst. A40, 651-660] and their expressions, which admit any chemical composition of the unit-cell contents, were obtained for the space group P1. Histograms of A and D were then calculated for an assumed random-structure model and for 3135 Friedel pairs of a published solved crystal structure, and were compared with the p.d.f.s after the latter were scaled up to the histograms. Good agreement was obtained for the random-structure model and a qualitative one for the published solved structure. The results indicate that the residual discrepancy is mainly due to the presumed statistical independence of the p.d.f.'s characteristic function on the contributions of the interatomic vectors.

  10. Size and average density spectra of macromolecules obtained from hydrodynamic data.

    Science.gov (United States)

    Pavlov, G M

    2007-02-01

    It is proposed to normalize the Mark-Kuhn-Houwink-Sakurada type of equation relating the hydrodynamic characteristics, such as intrinsic viscosity, velocity sedimentation coefficient and translational diffusion coefficient of linear macromolecules to their molecular masses for the values of linear density M(L) and the statistical segment length A. When the set of data covering virtually all known experimental information is normalized for M(L), it is presented as a size spectrum of linear polymer molecules. Further normalization for the A value reduces all data to two regions: namely the region exhibiting volume interactions and that showing hydrodynamic draining. For chains without intachain excluded volume effects these results may be reproduced using the Yamakawa-Fujii theory of wormlike cylinders. Data analyzed here cover a range of contour lengths of linear chains varying by three orders of magnitude, with the range of statistical segment lengths varying approximately 500 times. The plot of the dependence of [eta]M on M represents the spectrum of average specific volumes occupied by linear and branched macromolecules. Dendrimers and globular proteins for which the volume occupied by the molecule in solution is directly proportional to M have the lowest specific volume. The homologous series of macromolecules in these plots are arranged following their fractal dimensionality.

  11. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.

    Science.gov (United States)

    Aoki, Masahiko; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Fujioka, Ichitaro; Tanaka, Mitsuki; Ono, Shuichi; Takai, Yoshihiro

    2016-07-01

    The purpose of this study was to investigate the prognostic significance of average iodine density as assessed by dual-energy computed tomography (DE-CT) for lung tumors treated with stereotactic body radiotherapy (SBRT). From March 2011 to August 2014, 93 medically inoperable patients with 74 primary lung cancers and 19 lung metastases underwent DE-CT prior to SBRT of a total dose of 45-60 Gy in 5-10 fractions. Of these 93 patients, nine patients had two lung tumors. Thus, 102 lung tumors were included in this study. DE-CT was performed for pretreatment evaluation. Regions of interest were set for the entire tumor, and average iodine density was obtained using a dedicated imaging software and evaluated with regard to local control. The median follow-up period was 23.4 months (range, 1.5-54.5 months). The median value of the average iodine density was 1.86 mg/cm(3) (range, 0.40-9.27 mg/cm(3)). Two-year local control rates for the high and low average iodine density groups divided by the median value of the average iodine density were 96.9% and 75.7% (P = 0.006), respectively. Tumors with lower average iodine density showed a worse prognosis, possibly reflecting a hypoxic cell population in the tumor. The average iodine density exhibited a significant impact on local control. Our preliminary results indicate that iodine density evaluated using dual-energy spectral CT may be a useful, noninvasive and quantitative assessment of radio-resistance caused by presumably hypoxic cell populations in tumors.

  12. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  13. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  14. Picosecond mid-infrared amplifier for high average power.

    CSIR Research Space (South Africa)

    Botha, LR

    2007-04-01

    Full Text Available are similar. The saturation fluence for a multi level system can be written as z PhEsat σ υ 2 = With σ the stimulated emission cross section and P the pressure of the laser. 1/z... is essentially the average number of populated rotational levels. For our case z=0.07 and 181054.1 −×=σ cm2. Thus for a 10 atm laser the saturation fluence is: 2 18 1334 /1173 07.01017/12 10109.210626.6 cmmJxEsat = ××× ××× = − − The maximum...

  15. Density limits investigation and high density operation in EAST tokamak

    Science.gov (United States)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team

    2016-05-01

    Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H  →  L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H  →  L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.

  16. Dual-scale turbulence in filamenting laser beams at high average power

    CERN Document Server

    Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut

    2016-01-01

    We investigate the self-induced turbulence of high repetition rate laser filaments over a wide range of average powers (1 mW to 100 W) and its sensitivity to external atmospheric turbulence. Although both externally-imposed and self-generated turbulences can have comparable magnitudes, they act on different temporal and spatial scales. While the former drives the shot-to-shot motion at the millisecond time scale, the latter acts on the 0.5 s scale. As a consequence, their effects are decoupled, preventing beam stabilization by the thermally-induced low-density channel produced by the laser filaments.

  17. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    Science.gov (United States)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  18. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  19. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  20. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    Science.gov (United States)

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  1. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    Science.gov (United States)

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2016-05-12

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

  2. Wigner Function:from Ensemble Average of Density Operator to Its Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    We show that the Wigner function W=Tr(Δρ)( an ensemble average of the density operator ρ,Δis the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states.In doing so,converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise,The entangled states are defined in the enlarged Fock space with a fictitious freedom.

  3. Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2002-01-01

    We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.

  4. Nuclear Level Density at High Spin and Excitation Energy

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; Z. Kargar

    2001-01-01

    The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``

  5. Cesium telluride cathodes for the next generation of high-average current high-brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Filippetto, D., E-mail: dfilippetto@lbl.gov; Qian, H.; Sannibale, F. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720 (United States)

    2015-07-27

    We report on the performances of a Cs{sub 2}Te photocathode under extreme conditions of high peak time-dependent accelerating fields, continuous wave operations, and MHz pulse extraction with up to 0.3 mA average current. The measurements, performed in a normal conducting cavity, show extended lifetime and robustness, elucidate the main mechanisms for cathode degradation, and set the required system vacuum performance for compatibility with the operations of a high average power X-ray free electron laser user facility, opening the doors to the next generation of MHz-scale ultrafast scientific instruments.

  6. Diode-Pumped High Energy and High Average Power All-Solid-State Picosecond Amplifier Systems

    OpenAIRE

    Jiaxing Liu; Wei Wang; Zhaohua Wang; Zhiguo Lv; Zhiyuan Zhang; Zhiyi Wei

    2015-01-01

    We present our research on the high energy picosecond laser operating at a repetition rate of 1 kHz and the high average power picosecond laser running at 100 kHz based on bulk Nd-doped crystals. With diode-pumped solid state (DPSS) hybrid amplifiers consisting of a picosecond oscillator, a regenerative amplifier, end-pumped single-pass amplifiers, and a side-pumped amplifier, an output energy of 64.8 mJ at a repetition rate of 1 kHz was achieved. An average power of 37.5 W at a repetition ra...

  7. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Anrholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...... cherry-pick some elements while leaving fundamental aspects out. The study nevertheless indicates that a lack of coherency and model-fit to Danish industrial relations might hamper the positive effects of the organising strategy....

  8. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  9. Diode-Pumped High Energy and High Average Power All-Solid-State Picosecond Amplifier Systems

    Directory of Open Access Journals (Sweden)

    Jiaxing Liu

    2015-12-01

    Full Text Available We present our research on the high energy picosecond laser operating at a repetition rate of 1 kHz and the high average power picosecond laser running at 100 kHz based on bulk Nd-doped crystals. With diode-pumped solid state (DPSS hybrid amplifiers consisting of a picosecond oscillator, a regenerative amplifier, end-pumped single-pass amplifiers, and a side-pumped amplifier, an output energy of 64.8 mJ at a repetition rate of 1 kHz was achieved. An average power of 37.5 W at a repetition rate of 100 kHz pumped by continuous wave laser diodes was obtained. Compact, stable and high power DPSS laser amplifier systems with good beam qualities are excellent picosecond sources for high power optical parametric chirped pulse amplification (OPCPA and high-efficiency laser processing.

  10. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  11. High regression rate, high density hybrid fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  12. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  13. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  14. Average power density spectrum of Swift long gamma-ray bursts in the observer and in the source rest frames

    CERN Document Server

    Guidorzi, C; Amati, L; Campana, S; Orlandini, M; Romano, P; Stamatikos, M; Tagliaferri, G

    2012-01-01

    We calculate the average power density spectra (PDS) of 244 long gamma-ray bursts detected with the Swift Burst Alert Telescope in the 15-150 keV band from January 2005 to August 2011. For the first time we derived the average PDS in the source rest frame of 97 GRBs with known redshift. For 49 of them an average PDS was also obtained in a common source-frame energy band to account for the dependence of time profiles on energy. Previous results obtained on BATSE GRBs with unknown redshift showed that the average spectrum in the 25-2000 keV band could be modelled with a power-law with a 5/3 index over nearly two decades of frequency with a break at ~1 Hz. Depending on the normalisation and on the subset of GRBs considered, our results show analogous to steeper slopes (between 1.7 and 2.0) of the power-law. However, no clear evidence for the break at ~1 Hz was found, although the softer energy band of BAT compared with BATSE might account for that. We instead find a break at lower frequency corresponding to a ty...

  15. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    DEFF Research Database (Denmark)

    Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N

    2017-01-01

    Abstract White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result....... While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from these simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo....

  16. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation.

    Science.gov (United States)

    Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei

    2015-06-15

    Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.

  17. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  18. Wavelength and average power density dependency of the recrystallization of tooth dentin using a MIR-FEL

    Science.gov (United States)

    Heya, Manabu; Awazu, Kunio

    2002-04-01

    Recrystallization of tooth dentin by the application of mid- infrared (MIR) pulsed-laser irradiation is one candidate for a novel, non-invasive treatment for the prevention of tooth decay. Recrystallized dentin functions in a similar way to dental enamel. To recrystallize the dentin effectively and non-invasively it is essential to estimate quantitatively and qualitatively the laser parameters, such as the wavelength and the average power density, required for recrystallization. The laser-tissue interaction is initiated effectively by selective excitation of phosphate acid ions (PO4) in the dentin. Using a tunable, MIR Free Electron Laser (FEL) in the wavelength region of 8.8- 10.6micrometers , corresponding to intense absorption bands due to PO4 vibration modes, we have investigated macroscopically extent of surface modification of dentin, and we have obtained experimental results related to the ablation depth, the MIR absorption spectrum, and the elemental chemical composition. From these results, it was found that (1) the laser parameters at which efficient surface modification, without enhanced ablation effects, occurred were estimated to be approximately in the wavelength and average power density regions of ~9.4- 10.3micrometers and ~10-20 W/cm2, and that (2) in this region PO4 vibration modes with lower binding energy were preferentially excluded from the dentin.

  19. Crossatron switch as thyratron replacement in high repetition rate, high average power modulators

    Science.gov (United States)

    Sullivan, J. S.

    1988-06-01

    The Crossatron is a cold cathode, low pressure, gas discharge switch with opening and closing capabilities. Due to its cold cathode operation, the Crossatron may offer lifetime advantages compared to the hydrogen thyratron. Unfortunately, little information regarding Crossatron lifetime and performance in high repetition rate, high average power, pulse modulators exists. Four prototype Crossatron devices, fabricated by Hughes Aircraft, were obtained to evaluate their performance and lifetime in high repetition rate, high average power, pulse modulators that had previously been equipped with hydrogen thyratrons. The prototype Crossatrons were evaluated over a range of operating parameters. Various grid drive, keep alive power levels and triggering schemes were employed in the tests. Switch parameters such as trigger time, anode fall time, jitter, recovery time, peak di/dt, switch efficiency, and the gas pumping effect of the discharge were observed. One Crossatron prototype was also subjected to lifetime tests that accumulated tens of billions of pulses. Lifetime data will be compared to various thyratron models tested similarly.

  20. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  1. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  2. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    Science.gov (United States)

    Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam

    2017-04-01

    White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and

  3. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model......, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from...

  4. The high density Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    McCall, G.H.

    1988-01-01

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  5. Analytical gradients of the state-average complete active space self-consistent field method with density fitting

    Energy Technology Data Exchange (ETDEWEB)

    Delcey, Mickaël G. [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Pedersen, Thomas Bondo [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway); Aquilante, Francesco [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Dipartimento di chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna (Italy); Lindh, Roland, E-mail: roland.lindh@kemi.uu.se [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden); Uppsala Center for Computational Chemistry - UC_3, Uppsala University, P.O. Box 518, 751 20 Uppsala (Sweden)

    2015-07-28

    An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.

  6. Averaged strain energy density-based synthesis of crack initiation life in notched steel bars under torsional fatigue

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-10-01

    Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles

  7. Constraining the density dependence of the symmetry energy using the multiplicity and average pT ratios of charged pions

    Science.gov (United States)

    Cozma, M. D.

    2017-01-01

    The charged pion multiplicity ratio in intermediate-energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector Δ (1232 ) potential in nuclear matter. As there is no knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints on the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average pT of charged pions / in the list of fitted observables, the noted problem can be circumvented. A realistic description of this observable requires accounting for the interaction of pions with the dense nuclear matter environment by the incorporation of the so-called S -wave and P -wave pion optical potentials. This is performed within the framework of a quantum molecular dynamics transport model that enforces the conservation of the total energy of the system. It is shown that constraints on the slope of the symmetry energy at saturation density and the strength of the Δ (1232) potential can be simultaneously extracted. A symmetry energy with a value of the slope parameter L >50 MeV is favored, at 1 σ confidence level, from a comparison with published FOPI experimental data. A precise constraint will require experimental data more accurate than presently available, particularly for the charged pion multiplicity ratio, and better knowledge of the density and momentum dependence of the pion potential for the whole range of these two variables probed in intermediate-energy heavy-ion collisions.

  8. High Density Metamaterials for Visible Light

    Science.gov (United States)

    2016-11-28

    Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum,” Adv. Opt. Mater., vol. 2, no. 3, pp. 280–285...AFRL-AFOSR-JP-TR-2016-0097 High density metamaterials for visible light Dao Hua Zhang NANYANG TECHNOLOGICAL UNIVERSITY Final Report 11/28/2016...COVERED (From - To)  16 Jul 2014 to 15 Jul 2016 4. TITLE AND SUBTITLE High density metamaterials for visible light 5a.  CONTRACT NUMBER 5b.  GRANT

  9. A quarksonic matter at high isospin density

    CERN Document Server

    Cao, Gaoqing; Huang, Xu-Guang

    2016-01-01

    Analogous to the quarkyonic matter at high baryon density in which the quark Fermi seas and the baryonic excitations coexist, it is argued that a "quarksonic matter" phase appears at high isospin density where the quark (antiquark) Fermi seas and the mesonic excitations coexist. We explore this phase in detail in both large $N_c$ and asymptotically free limits: In large $N_c$ limit, we sketch a phase diagram for the quarksonic matter. In the asymptotically free limit, we study the pion superfluidity and thermodynamics of the quarksonic matter by using both perturbative calculations and effective model.

  10. An investigation of the role of the time averaged ion beam current density upon the defect densities in thin film SIMOX

    Science.gov (United States)

    Nejim, A.; Marsh, C. D.; Giles, L. F.; Hemment, P. L. F.; Li, Y.; Chater, RJ.; Kilner, J. A.; Booker, G. R.

    1994-02-01

    The effect of the time averaged ion beam current density on the material quality of thin film SIMOX has been investigated. Thin film SOI/SIMOX material has been produced by 200 keV oxygen implantation into 3 in. Fz wafers with a background temperature of 680°C. The dose range of 5 × 10 17-7 × 10 17O+/ cm2 was selected to be near the dose threshold for the formation of a continuous buried oxide after implantation and annealing which is thought to be between 5 × 10 17 and 6 × 10 17 O +/cm 2 for 200 keV [A.E. White et al., Appl. Phys. Lett. 50 (1987) 19; P.L.F. Hemment et al., Vacuum 36 (1986) 877; Y. Li et al., in: Proc. V Int. Symp. on SOI Technology and Devices (The Electrochemical Society, 1992) p. 368 [1-3

  11. High-gain Yb:YAG amplifier for ultrashort pulse laser at high-average power

    Science.gov (United States)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.; Du, Detao

    2016-03-01

    We report on a Yb:YAG laser amplifier for ultrashort pulse applications at kW-class average power. The laser uses two large-aperture, disk-type gain elements fabricated from composite ceramic YAG material, and a multi-pass extraction architecture to obtain high gain in a chirped-pulse amplification system. The disks are edge-pumped, thus allowing for reduced doping of host material with laser ions, which translates to lower lasing threshold and lower heat dissipation in the Yb:YAG material. The latter makes it possible to amplify a near diffraction-limited seed without significant thermo-optical distortions. This work presents results of testing the laser amplifier with relay optics configured for energy extraction with up to 40 passes through the disks. Applications for the ultrashort pulse laser amplifier include producing laser-induced plasma channel, laser material ablation, and laser acceleration of atomic particles.

  12. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients.

    Science.gov (United States)

    Paniagua, Ramón; Ventura, María-de-Jesús; Avila-Díaz, Marcela; Cisneros, Alejandra; Vicenté-Martínez, Marlén; Furlong, María-Del-Carmen; García-González, Zuzel; Villanueva, Diana; Orihuela, Oscar; Prado-Uribe, María-Del-Carmen; Alcántara, Guadalupe; Amato, Dante

    2009-01-01

    Icodextrin-based solutions (ICO) have clinical and theoretical advantages over glucose-based solutions (GLU) in fluid and metabolic management of diabetic peritoneal dialysis (PD) patients; however, these advantages have not yet been tested in a randomized fashion. To analyze the effects of ICO on metabolic and fluid control in high and high-average transport diabetic patients on continuous ambulatory PD (CAPD). A 12-month, multicenter, open-label, randomized controlled trial was conducted to compare ICO (n = 30) versus GLU (n = 29) in diabetic CAPD patients with high-average and high peritoneal transport characteristics. The basic daily schedule was 3 x 2 L GLU (1.5%) and either 1 x 2 L ICO (7.5%) or 1 x 2 L GLU (2.5%) for the long-dwell exchange, with substitution of 2.5% or 4.25% for 1.5% GLU being allowed when clinically necessary. Variables related to metabolic and fluid control were measured each month. Groups were similar at baseline in all measured variables. More than 66% of the patients using GLU, but only 9% using ICO, needed prescriptions of higher glucose concentration solutions. Ultrafiltration (UF) was higher (198 +/- 101 mL/day, p ICO group than in the GLU group over time. Changes from baseline were more pronounced in the ICO group than in the GLU group for extracellular fluid volume (0.23 +/- 1.38 vs -1.0 +/- 1.48 L, p ICO group had better metabolic control than those in the GLU group: glucose absorption was more reduced (-17 +/- 44 vs -64 +/- 35 g/day) as were insulin needs (3.6 +/- 3.4 vs - 9.1 +/- 4.7 U/day, p ICO group had fewer adverse events related to fluid and glucose control than patients in the GLU group. Icodextrin represents a significant advantage in the management of high transport diabetic patients on PD, improving peritoneal UF and fluid control and reducing the burden of glucose overexposure, thereby facilitating metabolic control.

  13. High-average-power high-beam-quality vis-UV sources based on kinetically enhanced copper vapor lasers

    Science.gov (United States)

    Brown, Daniel J. W.; Withford, Michael J.; Carman, Robert J.; Mildren, Richard P.; Piper, James A.

    2000-04-01

    Investigations of the factors that limit average power scaling of elemental copper vapor lasers (CVLs) have demonstrated that decay of the electron density in the interpulse period is critical in restricting pulse repetition rate and laser aperture scaling. We have recently developed the 'kinetic enhancement' (or KE) technique to overcome these limitations, whereby optimal plasma conditions are engineered using low concentrations of HCl/H2 additive gases in the Ne buffer. Dissociative electron attachment of HCl and subsequent mutual neutralization of Cl- and Cu+ promote rapid plasma relaxation and fast recovery of Cu densities, permitting operation at elevated Cu densities and pulse rates for given apertures. Using this approach, we have demonstrated increases in output power and efficiency of a factor of 2 or higher over conventional CVLs of the same size. For a 38 mm- bore KE-CVL, output powers up to 150 W have been achieved at 22 kHz, corresponding to record specific powers (80 mW/cm3) for such a 'small/medium-scale' device. In addition, kinetic enhancement significantly extends the gain duration and restores gain on-axis, even for high pulse rates, thereby promoting substantial increases (5 - 10x) in high- beam-quality power levels when operating with unstable resonators. This has enabled us to achieve much higher powers in second-harmonic generation from the visible copper laser output to the ultraviolet (e.g. 5 W at 255 nm from a small- scale KE-CVL). Our approach to developing KE-CVLs including computer modeling and experimental studies will be reviewed, and most recent results in pulse rate scaling and scaling of high-beam-quality power using oscillator-amplifier configurations, will be presented.

  14. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  15. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  16. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  17. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  18. Average Transient Lifetime and Lyapunov Dimension for Transient Chaos in a High-Dimensional System

    Institute of Scientific and Technical Information of China (English)

    陈洪; 汤建新; 唐少炎; 向红; 陈新

    2001-01-01

    The average transient lifetime of a chaotic transient versus the Lyapunov dimension of a chaotic saddle is studied for high-dimensional nonlinear dynamical systems. Typically the average lifetime depends upon not only the system parameter but also the Lyapunov dimension of the chaotic saddle. The numerical example uses the delayed feedback differential equation.

  19. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    Science.gov (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  20. Constraining the density dependence of the symmetry energy using the multiplicity and average $p_T$ ratios of charged pions

    CERN Document Server

    Cozma, M D

    2016-01-01

    The charged pion multiplicity ratio in intermediate energy heavy-ion collisions, a probe of the density dependence of symmetry energy above the saturation point, has been proven in a previous study to be extremely sensitive to the strength of the isovector $\\Delta$(1232) potential in nuclear matter. As there is no current knowledge, either from theory or experiment, about the magnitude of this quantity, the extraction of constraints for the slope of the symmetry energy at saturation by using exclusively the mentioned observable is hindered at present. It is shown that, by including the ratio of average $p_T$ of charged pions $\\langle p_T^{(\\pi^+)}\\rangle/\\langle p_T^{(\\pi^-)}\\rangle$ in the list of fitted observables, the noted problem can be circumvented. A realistic description of this observable requires the accounting for the interaction of pions with the dense nuclear matter environment by the incorporation of the so called S-wave and P-wave pion optical potentials. This is performed within the framework...

  1. Two-color QCD at high density

    Energy Technology Data Exchange (ETDEWEB)

    Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  2. Vibrational resonance: a study with high-order word-series averaging

    CERN Document Server

    Murua, Ander

    2016-01-01

    We study a model problem describing vibrational resonance by means of a high-order averaging technique based on so-called word series. With the tech- nique applied here, the tasks of constructing the averaged system and the associ- ated change of variables are divided into two parts. It is first necessary to build recursively a set of so-called word basis functions and, after that, all the required manipulations involve only scalar coefficients that are computed by means of sim- ple recursions. As distinct from the situation with other approaches, with word- series, high-order averaged systems may be derived without having to compute the associated change of variables. In the system considered here, the construction of high-order averaged systems makes it possible to obtain very precise approxima- tions to the true dynamics.

  3. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  4. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    Science.gov (United States)

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  5. Preparation of high viscosity average molecular mass poly-L-lactide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-hua; RUAN Jian-ming; ZOU Jian-peng; ZHOU Zhong-cheng; SHEN Xiong-jun

    2006-01-01

    Poly-L-lactide(PLLA) was synthesized by ring-opening polymerization from high purity L-lactide with tin octoate as initiator, and characterized by means of infrared, and 1H-nuclear magnetic resonance. The influences of initiator concentration,polymerization temperature and polymerization time on the viscosity average molecular mass of PLLA were investigated. The effects of different purification methods on the concentration of initiator and viscosity average molecular mass were also studied. PLLA with a viscosity average molecular mass of about 50.5×104 was obtained when polymerization was conducted for 24 h at 140 ℃ with the molar ratio of monomer to purification initator being 12 000. After purification, the concentration of tin octoate decreases; however,the effect of different purification methods on the viscosity average molecular mass of PLLA is different, and the obtained PLLA is a typical amorphous polymeric material. The crystallinity of PLLA decreases with the increase of viscosity average molecular mass.

  6. Performance and production requirements for the optical components in a high-average-power laser system

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  7. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  8. Method of high-density foil fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  9. Crimes and the Bell Curve: The Role of People with High, Average, and Low Intelligence

    OpenAIRE

    Burhan, Nik Ahmad Sufian; Kurniawan, Yohan; Sidek, Abdul Halim; Mohamad, Mohd Rosli

    2014-01-01

    The present study examines whether crime rates can be reduced by increasing the IQ of people with high, average, and low IQ. Previous studies have shown that as a determinant of the national level of income per capita growth and technological achievement, the IQ of the intellectual class (those at the 95th percentile of the Bell curve distribution of population intelligence) is more important than the IQ of those with average ability at the 50th percentile. Extending these findings, our study...

  10. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  11. A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell

    Science.gov (United States)

    Li, Y.; Han, B. C.; Gao, M.; Wan, Y. Z.; Yang, J.; Du, H. W.; Ma, Z. Q.

    2017-09-01

    On the basis of a photon-assisted high frequency capacitance-voltage (C-V) method (1 MHz C-V), an effective approach is developed to evaluate the average interface state density (Dit) of an ITO-SiOx/n-Si heterojunction structure. Tin-doped indium oxide (ITO) films with different thicknesses were directly deposited on (100) n-type crystalline silicon by magnetron sputtering to fabricate semiconductor-insulator-semiconductor (SIS) hetero-interface regions where an ultra-thin SiOx passivation layer was naturally created. The morphology of the SiOx layer was confirmed by X-ray photoelectron spectroscopy depth profiling and transmission electron microscope analysis. The thinness of this SiOx layer was the main reason for the SIS interface state density being more difficult to detect than that of a typical metal-oxide-semiconductor structure. A light was used for photon injection while measuring the C-V of the device, thus enabling the photon-assisted C-V measurement of the Dit. By quantifying decreases of the light-induced-voltage as a variation of the capacitance caused by parasitic charge at interface states the passivation quality within the interface of ITO-SiOx/n-Si could be reasonably evaluated. The average interface state density of these SIS devices was measured as 1.2-1.7 × 1011 eV-1 cm-2 and declined as the passivation layer was made thicker. The lifetime of the minority carriers, dark leakage current, and the other photovoltaic parameters of the devices were also used to determine the passivation.

  12. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  13. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  14. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  15. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  16. High Average Power Diode Pumped Solid State Lasers: Power Scaling With High Spectral and Spatial Coherence

    Science.gov (United States)

    2009-03-30

    sensing and coherent LIDAR systems, will require kW class lasers in the near future. The zigzag slab architecture [2], with its nearly one-dimensional... photodetectors ; PM1, PM2, PM3: thermal power meters; HBS1: 1064 nm holographic beam sampler; HBS2: 532-nm holographic beam sampler; LD: laser diode; CCD: charge...recombining pairs is measured by a photodetector . This measurement shows higher PL intensity as the material is improved by reducing defect density. We tried

  17. Recycling of irradiated high-density polyethylene

    Science.gov (United States)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  18. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  19. Problem-Solving Processes of High and Average Performers in Physics.

    Science.gov (United States)

    Coleman, Elaine B.; Shore, Bruce

    1991-01-01

    This study examined the problem-solving protocols of 21 students in a grade 11 enriched physics course as well as 3 adult "experts" in physics. Experts and high performing students made more correct metastatements and more references to prior knowledge than did average performing students. (DB)

  20. Total Quality Management (TQM) Practices and School Climate amongst High, Average and Low Performance Secondary Schools

    Science.gov (United States)

    Ismail, Siti Noor

    2014-01-01

    Purpose: This study attempted to determine whether the dimensions of TQM practices are predictors of school climate. It aimed to identify the level of TQM practices and school climate in three different categories of schools, namely high, average and low performance schools. The study also sought to examine which dimensions of TQM practices…

  1. High-frequency averaging in semi-classical Hartree-type equations

    CERN Document Server

    Giannoulis, Johannes; Sparber, Christof

    2009-01-01

    We investigate the asymptotic behavior of solutions to semi-classical Schroedinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.

  2. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  3. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  4. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  5. Kilowatt high average power narrow-linewidth nanosecond all-fiber laser

    Institute of Scientific and Technical Information of China (English)

    Rongtao; Su; Pu; Zhou; Xiaolin; Wang; Rumao; Tao; Xiaojun; Xu

    2014-01-01

    A high power narrow-linewidth nanosecond all-fiber laser based on the master oscillator power amplifier(MOPA)configuration is demonstrated. A pulsed seed with high repetition rate of 10 MHz was generated by modulating a continuous-wave(CW) single-frequency fiber laser at ~1064 nm by using an electro-optic intensity modulator(EOIM).After multi-stage cascaded power amplification, the average power was boosted to be kilowatt level. The pulses from the main amplifier had a pulse width of ~3 ns and an average/peak power of 913 W/28.6 kW. Further power scaling of the pulses was limited by stimulated Raman scattering(SRS) for the moment, method for SRS suppression and further power scaling was briefly discussed.

  6. Influence of the surface averaging procedure of the current density in assessing compliance with the ICNIRP low-frequency basic restrictions by means of numerical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zoppetti, N; Andreuccetti, D [IFAC-CNR (' Nello Carrara' Institute for Applied Physics of the Italian National Research Council), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)], E-mail: N.Zoppetti@ifac.cnr.it, E-mail: D.Andreuccetti@ifac.cnr.it

    2009-08-07

    Although the calculation of the surface average of the low-frequency current density distribution over a cross-section of 1 cm{sup 2} is required by ICNIRP guidelines, no reference averaging algorithm is indicated, neither in the ICNIRP guidelines nor in the Directive 2004/40/EC that is based on them. The lack of a general standard algorithm that fulfils the ICNIRP guidelines' requirements is particularly critical in the prospective of the 2004/40/EC Directive endorsement, since the compliance to normative limits refers to well-defined procedures. In this paper, two case studies are considered, in which the calculation of the surface average is performed using a simplified approach widely used in the literature and an original averaging procedure. This analysis, aimed at quantifying the expected differences and to single out their sources, shows that the choice of the averaging algorithm represents an important source of uncertainty in the application of the guideline requirements.

  7. Temperature-insensitive frequency tripling for generating high-average power UV lasers.

    Science.gov (United States)

    Zhong, Haizhe; Yuan, Peng; Wen, Shuangchun; Qian, Liejia

    2014-02-24

    Aimed for generating high-average power ultraviolet (UV) lasers via third-harmonic generation (THG) consisting of frequency doubling and tripling stages, we numerically and experimentally demonstrate a novel frequency tripling scheme capable of supporting temperature-insensitive phase-matching (PM). Two cascaded tripling crystals, with opposite signs of the temperature derivation of phase-mismatch, are proposed and theoretically studied for improving the temperature-acceptance of PM. The proof-of-principle tripling experiment using two crystals of LBO and BBO shows that the temperature acceptance can be ~1.5 times larger than that of using a single tripling crystal. In addition, the phase shift caused by air dispersion, along with its influence on the temperature-insensitive PM, are also discussed. To illustrate the potential applications of proposed two-crystal tripling design in the high-average-power regime, full numerical simulations for the tripling process, are implemented based on the realistic crystals. The demonstrated two-crystal tripling scheme may provide a promising route to high-average-power THG in the UV region.

  8. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V. (Lawrence Livermore Lab., CA); Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  9. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    Science.gov (United States)

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-09

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

  10. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  11. High energy, high average power solid state green or UV laser

    Science.gov (United States)

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  12. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    Science.gov (United States)

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system.

  13. Nanobiotechnology applications of reconstituted high density lipoprotein.

    Science.gov (United States)

    Ryan, Robert O

    2010-12-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  14. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  15. Galaxy interactions II: High density environments

    CERN Document Server

    Alonso, Sol; Padilla, Nelson; Lambas, Diego G

    2011-01-01

    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and...

  16. Strangeness production in high density baryon matter

    CERN Document Server

    Ganz, R E

    1999-01-01

    Strangeness production in heavy-ion collisions, when compared to proton proton collisions, is potentially a sensitive probe for collective energy deposition and therefore for reaction mechanisms in general. It may therefore provide insight into possible QGP formation in dense nuclear matter. To establish an understanding of the observed yields, a systematic study of high density baryon matter at different beam energies is essential. This might also reveal possible discontinuities in the energy dependence of the reaction mechanism. We present preliminary results for kaon production in Au+Au collisions at beam kinetic energies of 6, 8, and 10.7 GeV/u obtained by the E917 experiment at the AGS (BNL). These measurements complement those carried out by the E866 collaboration at 2, 4, and 10.7 GeV/u with a significantly enlarged data sample. In both experiments a large range of rapidities was covered by taking data at different angular settings of the magnetic spectrometer.

  17. High-density electroencephalography developmental neurophysiological trajectories.

    Science.gov (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  18. Spatial profiles of electron density, electron temperature, average ionic charge, and EUV emission of laser-produced Sn plasmas for EUV lithography

    Science.gov (United States)

    Sato, Yuta; Tomita, Kentaro; Tsukiyama, Syoichi; Eguchi, Toshiaki; Uchino, Kiichiro; Kouge, Kouichiro; Tomuro, Hiroaki; Yanagida, Tatsuya; Wada, Yasunori; Kunishima, Masahito; Kodama, Takeshi; Mizoguchi, Hakaru

    2017-03-01

    Spatial profiles of the electron density (n e), electron temperature (T e), and average ionic charge (Z) of laser-produced Sn plasmas for EUV lithography, whose conversion efficiency (CE) is sufficiently high for practical use, were measured using a collective Thomson scattering (TS) technique. For plasma production, Sn droplets of 26 µm diameter were used as a fuel. First, a picosecond-pulsed laser was used to expand a Sn target. Next, a CO2 laser was used to generate plasmas. By changing the injection timing of the picosecond and CO2 lasers, three different types of plasmas were generated. The CEs of the three types of plasmas differed, and ranged from 2.8 to 4.0%. Regarding the different plasma conditions, the spatial profiles of n e, T e, and Z clearly differed. However, under all plasma conditions, intense EUV was only observed at a sufficiently high T e (> 25 eV) and in an adequate n e range [1024–(2 × 1025) m‑3]. These plasma parameters lie in the efficient-EUV light source range, as predicted by simulations.

  19. 14 CFR 93.123 - High density traffic airports.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  20. High-altitude atomic nitrogen densities

    Science.gov (United States)

    Oran, E. S.; Strobel, D. F.; Mauersberger, K.

    1978-01-01

    Theoretical calculations of the seasonal and diurnal variations of atomic nitrogen are compared with measurements made by the open source neutral mass spectrometer on the AE-C satellite. With the simultaneous measurements of molecular nitrogen and atomic oxygen densities as input, model calculations of odd nitrogen densities predict the same trends in atomic nitrogen as those observed. From these comparisons it is inferred that horizontal transport significantly reduces the diurnal variation of atomic nitrogen. Estimates are given of the sensitivity of atomic nitrogen densities to variations in the photoelectron flux, the neutral temperatures, and the neutral winds.

  1. Incidence Rates of Clinical Mastitis among Canadian Holsteins Classified as High, Average, or Low Immune Responders

    Science.gov (United States)

    Miglior, Filippo; Mallard, Bonnie A.

    2013-01-01

    The objective of this study was to compare the incidence rate of clinical mastitis (IRCM) between cows classified as high, average, or low for antibody-mediated immune responses (AMIR) and cell-mediated immune responses (CMIR). In collaboration with the Canadian Bovine Mastitis Research Network, 458 lactating Holsteins from 41 herds were immunized with a type 1 and a type 2 test antigen to stimulate adaptive immune responses. A delayed-type hypersensitivity test to the type 1 test antigen was used as an indicator of CMIR, and serum antibody of the IgG1 isotype to the type 2 test antigen was used for AMIR determination. By using estimated breeding values for these traits, cows were classified as high, average, or low responders. The IRCM was calculated as the number of cases of mastitis experienced over the total time at risk throughout the 2-year study period. High-AMIR cows had an IRCM of 17.1 cases per 100 cow-years, which was significantly lower than average and low responders, with 27.9 and 30.7 cases per 100 cow-years, respectively. Low-AMIR cows tended to have the most severe mastitis. No differences in the IRCM were noted when cows were classified based on CMIR, likely due to the extracellular nature of mastitis-causing pathogens. The results of this study demonstrate the desirability of breeding dairy cattle for enhanced immune responses to decrease the incidence and severity of mastitis in the Canadian dairy industry. PMID:23175290

  2. Strongly interacting matter at high densities with a soliton model

    Science.gov (United States)

    Johnson, Charles Webster

    1998-12-01

    One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of

  3. New generation of high average power industry grade ultrafast ytterbium fiber lasers

    Science.gov (United States)

    Yusim, Alex; Samartsev, Igor; Shkurikhin, Oleg; Myasnikov, Daniil; Bordenyuk, Andrey; Platonov, Nikolai; Kancharla, Vijay; Gapontsev, Valentin

    2016-03-01

    We report an industrial grade picosecond and femtosecond pulse Yb fiber lasers with >100 μJ pulse energy and hundreds of Watts of average power for improved laser machining speed of sapphire and glass. This highly efficient laser offers >25% wall plug efficiency within a compact 3U rack-mountable configuration plus a long >2m fiber delivery cable. Reconfigurable features such as controllable repetition rate, fine pulse duration control, burst mode operation and adjustable pulse energy permit the customer to tailor the laser to their application.

  4. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  5. Facile in situ characterization of gold nanoparticles on electrode surfaces by electrochemical techniques: average size, number density and morphology determination.

    Science.gov (United States)

    Wang, Ying; Laborda, Eduardo; Salter, Chris; Crossley, Alison; Compton, Richard G

    2012-10-21

    A fast and cheap in situ approach is presented for the characterization of gold nanoparticles from electrochemical experiments. The average size and number of nanoparticles deposited on a glassy carbon electrode are determined from the values of the total surface area and amount of gold obtained by lead underpotential deposition and by stripping of gold in hydrochloric acid solution, respectively. The morphology of the nanoparticle surface can also be analyzed from the "fingerprint" in lead deposition/stripping experiments. The method is tested through the study of gold nanoparticles deposited on a glassy carbon substrate by seed-mediated growth method which enables an easy control of the nanoparticle size. The procedure is also applied to the characterization of supplied gold nanoparticles. The results are in satisfactory agreement with those obtained via scanning electron microscopy.

  6. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  7. High Density Lipoprotein Metabolism in Man

    Science.gov (United States)

    Blum, Conrad B.; Levy, Robert I.; Eisenberg, Shlomo; Hall, Marshall; Goebel, Robert H.; Berman, Mones

    1977-01-01

    The turnover of 125I-high density lipoprotein (HDL) was examined in a total of 14 studies in eight normal volunteers in an attempt to determine the metabolic relationship between apolipoproteins A-I (apoA-I) and A-II (apoA-II) of HDL and to define further some of the determinants of HDL metabolism. All subjects were first studied under conditions of an isocaloric balanced diet (40% fat, 40% carbohydrate). Four were then studied with an 80% carbohydrate diet, and two were studied while receiving nicotinic acid (1 g three times daily) and ingesting the same isocaloric balanced diet. The decay of autologous 125I-HDL and the appearance of urinary radioactivity were followed for at least 2 wk in each study. ApoA-I and apoA-II were isolated by Sephadex G-200 chromatography from serial plasma samples in each study. The specific activities of these peptides were then measured directly. It was found that the decay of specific activity of apoA-I and apoA-II were parallel to one another in all studies. The mean half-life of the terminal portion of decay was 5.8 days during the studies with a balanced diet. Mathematical modeling of the decay of plasma radioactivity and appearance of urinary radioactivity was most consistent with a two-compartment model. One compartment is within the plasma and exchanges with a nonplasma component. Catabolism occurs from both of these compartments. With a balanced isocaloric diet, the mean synthetic rate for HDL protein was 8.51 mg/kg per day. HDL synthesis was not altered by the high carbohydrate diet and was only slightly decreased by nicotinic acid treatment. These perturbations had effects on HDL catabolic pathways that were reciprocal in many respects. With an 80% carbohydrate diet, the rate of catabolism from the plasma compartment rose by a mean of 39.1%; with nicotinic acid treatment, it fell by 42.2%. Changes in the rate of catabolism from the second compartment were generally opposite those in the rate of catabolism from the plasma

  8. Development and significance of a fetal electrocardiogram recorded by signal-averaged high-amplification electrocardiography.

    Science.gov (United States)

    Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru

    2009-03-01

    Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.

  9. Status of HiLASE project: High average power pulsed DPSSL systems for research and industry

    Directory of Open Access Journals (Sweden)

    Mocek T.

    2013-11-01

    Full Text Available We introduce the Czech national R&D project HiLASE which focuses on strategic development of advanced high-repetition rate, diode pumped solid state laser (DPSSL systems that may find use in research, high-tech industry and in the future European large-scale facilities such as HiPER and ELI. Within HiLASE we explore two major concepts: thin-disk and cryogenically cooled multislab amplifiers capable of delivering average output powers above 1 kW level in picosecond-to-nanosecond pulsed regime. In particular, we have started a programme of technology development to demonstrate the scalability of multislab concept up to the kJ level at repetition rate of 1–10 Hz.

  10. Status of HiLASE project: High average power pulsed DPSSL systems for research and industry

    Science.gov (United States)

    Mocek, T.; Divoky, M.; Smrz, M.; Sawicka, M.; Chyla, M.; Sikocinski, P.; Vohnikova, H.; Severova, P.; Lucianetti, A.; Novak, J.; Rus, B.

    2013-11-01

    We introduce the Czech national R&D project HiLASE which focuses on strategic development of advanced high-repetition rate, diode pumped solid state laser (DPSSL) systems that may find use in research, high-tech industry and in the future European large-scale facilities such as HiPER and ELI. Within HiLASE we explore two major concepts: thin-disk and cryogenically cooled multislab amplifiers capable of delivering average output powers above 1 kW level in picosecond-to-nanosecond pulsed regime. In particular, we have started a programme of technology development to demonstrate the scalability of multislab concept up to the kJ level at repetition rate of 1-10 Hz.

  11. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    CERN Document Server

    Sadoun, Raphael; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2015-01-01

    We use high-resolution cosmological zoom-in simulations in order to analyze galaxy evolution at redshifts z~6-12 in highly-overdense 5 sigma density peaks. Strong stellar feedback, in the form of galactic winds, is expected to play an important role in the evolution of these regions. We investigate the effects of these winds by comparing different galactic outflow prescriptions, including (i) a constant velocity model (CW), (ii) a variable velocity model scaling with galaxy properties (VW), and (iii) a model with no outflows (NW). The CW model is also applied to a simulation of an average density region to study the impact of environment on galaxy evolution. A direct consequence of the overdensity is a shallow galaxy mass function slope at the low-mass end and an accelerated evolution of dark matter and baryonic structures. The overdensity hosts massive haloes, up to ~10^{12} Msun, with embedded galaxies up to ~10^{11} Msun in stellar mass by z~6, which are absent in the "normal" region. The CW model leads to...

  12. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Chen, Sow-Hsin, E-mail: sowhsin@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Liu, Kao-Hsiang [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Harriger, Leland; Leão, Juscelino B. [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-07-07

    The average density of D{sub 2}O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ∼210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D{sub 2}O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called “low-density liquid” and “high-density liquid” phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

  13. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  14. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  15. Synchrotron radiation absorber for high density loads

    Science.gov (United States)

    Anashin, V. V.; Kuzminych, V. S.; Trakhtenberg, E. M.; Zholents, A. A.

    1991-10-01

    A design of a special synchrotron radiation absorber for the storage ring VEPP-4M is presented. The density of the synchrotron radiation power on the absorber surface is up to 500 W/mm 2. The absorber is made from a beryllium plate, brazed inside to the copper vacuum chamber, which is intensively water-cooled from outside.

  16. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  17. High average power CO II laser MOPA system for Tin target LPP EUV light source

    Science.gov (United States)

    Ariga, Tatsuya; Hoshino, Hideo; Endo, Akira

    2007-02-01

    Extreme ultraviolet lithography (EUVL) is the candidate for next generation lithography to be introduced by the semiconductor industry to HVM (high volume manufacturing) in 2013. The power of the EUVL light source has to be at least 115W at a wavelength of 13.5nm. A laser produced plasma (LPP) is the main candidate for this light source but a cost effective laser driver is the key requirement for the realization of this concept. We are currently developing a high power and high repetition rate CO II laser system to achieve 50 W intermediate focus EUV power with a Tin droplet target. We have achieved CE of 2.8% with solid Tin wire target by a transversely excited atmospheric (TEA) CO II laser MOPA system with pulse width, pulse energy and pulse repetition rate as 10~15 ns, 30 mJ and 10 Hz, respectively. A CO II laser system with a short pulse length less than 15 ns, a nominal average power of a few kW, and a repetition rate of 100 kHz, based on RF-excited, fast axial flow CO II laser amplifiers is under development. Output power of about 3 kW has been achieved with a pulse length of 15 ns at 130 kHz repletion rate in a small signal amplification condition with P(20) single line. The phase distortion of the laser beam after amplification is negligible and the beam can be focused to about 150μm diameter in 1/e2. The CO II laser system is reported on short pulse amplification performance using RF-excited fast axial flow lasers as amplifiers. And the CO II laser average output power scaling is shown towards 5~10 kW with pulse width of 15 ns from a MOPA system.

  18. Average Anisotropy Characteristics of High Energy Cosmic Ray Particles and Geomagnetic Disturbance Index Ap

    Indian Academy of Sciences (India)

    C. M. Tiwari; D. P. Tiwari; Ajay K. Pandey; Pankaj K. Shrivastava

    2005-12-01

    The average characteristics of the diurnal and semi-diurnal anisotropy of cosmic ray intensity at relativistic energies have been obtained by using data from the worldwide grid of neutron monitor for the period 1989 to 1996. The complex behaviour of the diurnal amplitudes and time of maxima (phase) and its association with the Ap index on a long-term and day-to-day basis have been studied. Even though the general characteristics, on a yearly average basis, have not changed significantly during this period, both the diurnal and semi-diurnal amplitudes and phases vary significantly, besides significant changes being observed for different interplanetary conditions on a short-term basis. It is found that the relationship between the Ap index and the diurnal vector is out of phase during the period 1991 to 1995. On a long-term basis, the correlation of diurnal variation with Ap index has been found to vary during the solar cycle. On a short-term basis, it has been observed that the high Ap days are usually associated with higher amplitudes with phase shifted to earlier hours.

  19. A high-sensitivity 2x2 multi-aperture color camera based on selective averaging

    Science.gov (United States)

    Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min-Woong; Yasutomi, Keita; Kawahito, Shoji

    2015-03-01

    To demonstrate the low-noise performance of the multi-aperture imaging system using a selective averaging method, an ultra-high-sensitivity multi-aperture color camera with 2×2 apertures is being developed. In low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible, which greatly degrades the quality of the image. To reduce these kinds of noise as well as to increase the number of incident photons, the multi-aperture imaging system composed of an array of lens and CMOS image sensor (CIS), and the selective averaging for minimizing the synthetic sensor noise at every pixel is utilized. It is verified by simulation that the effective noise at the peak of noise histogram is reduced from 1.44 e- to 0.73 e- in a 2×2-aperture system, where RTS noise and dark current white defects have been successfully removed. In this work, a prototype based on low-noise color sensors with 1280×1024 pixels fabricated in 0.18um CIS technology is considered. The pixel pitch is 7.1μm×7.1μm. The noise of the sensor is around 1e- based on the folding-integration and cyclic column ADCs, and the low voltage differential signaling (LVDS) is used to improve the noise immunity. The synthetic F-number of the prototype is 0.6.

  20. High density and high temperature plasmas in Large Helical Device

    Science.gov (United States)

    Komori, Akio

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than ~ 1 × 1021 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  1. High density and high temperature plasmas in Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio, E-mail: komori@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than {approx} 1 x 10{sup 21} m{sup -3} is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is {approx} 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  2. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  3. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  4. Optimisation of high average power optical parametric generation using a photonic crystal fiber.

    Science.gov (United States)

    Sloanes, Trefor; McEwan, Ken; Lowans, Brian; Michaille, Laurent

    2008-11-24

    In this paper the length of a photonic crystal fiber is optimised to perform high average output power parametric generation with maximum efficiency. It is shown that the fiber length has to be increased up to 150 m, well beyond the walk-off distance between the pump and signal/idler, to optimize the generation efficiency. In this regime, the Raman process can take over from four-wave mixing and lead to supercontinuum generation. It is shown that the parametric wavelength conversion is directional; probably due to small variations in the core dimensions along the fiber length. The fiber exhibits up to 40% conversion efficiency, with the idler (0.9 microm) and the signal (1.3 microm) having a combined output power of over 1.5 W.

  5. The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A; Armstrong, P; Ault, E; Beach, R; Bibeau, C; Caird, J; Campbell, R; Chai, B; Dawson, J; Ebbers, C; Erlandson, A; Fei, Y; Freitas, B; Kent, R; Liao, Z; Ladran, T; Menapace, J; Molander, B; Payne, S; Peterson, N; Randles, M; Schaffers, K; Sutton, S; Tassano, J; Telford, S; Utterback, E

    2006-11-03

    Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontium fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).

  6. On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging

    KAUST Repository

    Antonelli, Paolo

    2014-01-14

    We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree-Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus. The electrons are supposed to move under the action of a time dependent, rapidly periodically oscillating electromagnetic potential. This can be considered a simplified effective single particle model for an X-ray free electron laser. We prove the existence and uniqueness for the Cauchy problem and the convergence of wave-functions to corresponding solutions of a Schrödinger equation with a time-averaged Coulomb potential in the high frequency limit for the oscillations of the electromagnetic potential. © 2014 Springer-Verlag Berlin Heidelberg.

  7. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  8. Cryogenic nanosecond and picosecond high average and peak power(HAPP) pump lasers for ultrafast applications

    Institute of Scientific and Technical Information of China (English)

    David C.Brown; Sten Tornegrd; Joseph Kolis

    2016-01-01

    Using cryogenic laser technology, it is now possible to design and demonstrate lasers that have concomitant high average and peak powers, with near-diffraction-limited beam quality. We refer to these new laser systems as HAPP lasers. In this paper, we review important laser crystal materials properties at cryogenic temperature, with an emphasis on Yb lasers, and discuss the important design considerations, including the laser-induced damage threshold, nonlinear effects and thermal effects. A comprehensive model is presented to describe diode pulsed pumping with arbitrary duration and repetition rate, and is used with the Frantz–Nodvik equation to describe, to first order, the performance of HAPP laser systems. A computer code with representative results is also described.

  9. Comparative Study of Reynolds Averaged and Embedded Large Eddy Simulations of a High Pressure Turbine Stage

    Science.gov (United States)

    Jones, Sam; Jemcov, Aleksandar; Corke, Thomas

    2016-11-01

    An Embedded Large Eddy Simulation (ELES) approach is used to simulate the flow path through a high pressure turbine stage that includes the entry duct, stationary inlet and exit guide vanes, and a rotor. The flowfield around the rotor is simulated using LES. A Reynolds Averaged Simulation (RAS) is used for the rest of the flow domain. The interface between RAS and LES domains uses the RAS turbulence quantities as a means of obtaining length scales that are used in computing the vorticity required to trigger a proper energy cascade within the LES part of the flow field. The objective is to resolve the unsteady vortical motions that eminate from the gap between the rotor tip and duct walls that are presumably under-resolved in a RAS approach. A comparative analysis between RAS and ELES approaches for this turbomachinery problem is then presented. APS Fellow.

  10. High average power Q-switched 1314 nm two-crystal Nd:YLF laser

    CSIR Research Space (South Africa)

    Botha, RC

    2015-02-01

    Full Text Available . 40, No. 4 / OPTICS LETTERS High average power Q-switched 1314 nm two-crystal Nd:YLF laser R. C. Botha,1,2,* W. Koen,3 M. J. D. Esser,3,4 C. Bollig,3,5 W. L. Combrinck,1,6 H. M. von Bergmann,2 and H. J. Strauss3 1HartRAO, P.O. Box 443..., Krugersdorp, 1740 South Africa 2Stellenbosch University, P/Bag X1, Matieland, 7602 South Africa 3National Laser Centre, CSIR, PO Box 395, Pretoria, 0001 South Africa 4Formerly at CSIR, now at Heriot-Watt University, EH14 4AS Edinburgh, UK 5Formerly at CSIR...

  11. Selling students short: Racial differences in teachers' evaluations of high, average, and low performing students.

    Science.gov (United States)

    Irizarry, Yasmiyn

    2015-07-01

    Education scholars document notable racial differences in teachers' perceptions of students' academic skills. Using data from the Early Childhood Longitudinal Study-Kindergarten Cohort, this study advances research on teacher perceptions by investigating whether racial differences in teachers' evaluations of first grade students' overall literacy skills vary for high, average, and low performing students. Results highlight both the overall accuracy of teachers' perceptions, and the extent and nature of possible inaccuracies, as demonstrated by remaining racial gaps net literacy test performance. Racial differences in teachers' perceptions of Black, non-White Latino, and Asian students (compared to White students) exist net teacher and school characteristics and vary considerably across literacy skill levels. Skill specific literacy assessments appear to explain the remaining racial gap for Asian students, but not for Black and non-White Latino students. Implications of these findings for education scholarship, gifted education, and the achievement gap are discussed.

  12. Efficient Pumping Schemes for High Average Brightness Collisional X-ray Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R; Dunn, J; Shlyaptsev, V N; Smith, R F; Patel, P K; Price, D F

    2003-10-07

    Advances in transient collisional x-ray lasers have been demonstrated over the last 5 years as a technique for achieving tabletop soft x-ray lasers using 2-10 J of laser pump energy. The high peak brightness of these sources operating in the high output saturation regime, in the range of 10{sup 24}-10{sup 25} ph. mm{sup -2} mrad{sup -2} s-1 (0.1% BW){sup -1}, is ideal for many applications requiring high photon fluence in a single short burst. However, the pump energy required for these x-ray lasers is still relatively high and limits the x-ray laser repetition rate to 1 shot every few minutes. Higher repetition rate collisional schemes have been reported and show some promise for high output in the future. We report a novel technique for enhancing the coupling efficiency of the laser pump into the gain medium that could lead to enhanced x-ray inversion with a factor of ten reduction in the drive energy. This has been applied to the collisional excitation scheme for Ni-like Mo at 18.9 nm and x-ray laser output has been demonstrated. Preliminary results show lasing on a single shot of the optical laser operating at 10 Hz and with 70 mJ in the short pulse. Such a proposed source would have higher average brightness, {approx}10{sup 14} ph. mm{sup -2} mrad{sup -2} s{sup -1} (0.1% BW){sup -1}, than present bending magnet 3rd generation synchrotron sources operating at the same spectral range.

  13. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  14. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    2004-01-01

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  15. Intraindividual neuropsychological test variability in healthy individuals with high average intelligence and educational attainment.

    Science.gov (United States)

    Heyanka, Daniel J; Holster, Jessica L; Golden, Charles J

    2013-08-01

    Knowledge of patterns of neuropsychological performance among normal, healthy individuals is integral to the practice of clinical neuropsychology, because clinicians may not always account for intraindividual variability (IIV) before coming to diagnostic conclusions. The IIV was assessed among a sample of 46 healthy individuals with high average intelligence and educational attainment, utilizing a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) and Wechsler Memory Scale, Fourth Edition (WMS-IV). The data indicated substantial variability in neurocognitive abilities. All participants were found to demonstrate scores considered impaired by at least 2 standard deviations (SDs). Despite adjusting for outliers, no participant produced a "normal" testing profile with an intraindividual maximum discrepancy (MD) of less than 1 SD in either direction. When WAIS-IV Full Scale IQ (FSIQ) was considered, participants generally demonstrated cognitive test scores ranging from 2 SDs less than to 1.5 SDs greater than their FSIQ. Furthermore, after demographic corrections, the majority (59%) of participants demonstrated at least 1 impaired cognitive test score, as defined by being 1 to 1.5 SDs below the mean. Overall, results substantiate the need for clinicians to consider FSIQ and educational attainment in interpretation of neuropsychological testing results, given the relevant commonality of "abnormal" test scores within this population. This may ultimately reduce the likelihood of making false-positive conclusions of impairment when educational attainment and intelligence are high, thus improving diagnostic accuracy.

  16. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  17. A Comparison of Strategic Development for Multiplication Problem Solving in Low-, Average-, and High-Achieving Students

    Science.gov (United States)

    Zhang, Dake; Ding, Yi; Barrett, Dave E.; Xin, Yan Ping; Liu, Ru-de

    2014-01-01

    The present study investigated the differences of strategy use between low-, average-, and high-achieving students when solving different multiplication problems. Nineteen high-, 48 average-, and 17 low-achieving students participated in this study. All participants were asked to complete three different multiplication tests and to explain how…

  18. High density semiconductor nanodots by direct laser fabrication

    Science.gov (United States)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  19. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  20. MAC Support for High Density Wireless Sensor Networks

    NARCIS (Netherlands)

    Taddia, C.; Meratnia, Nirvana; van Hoesel, L.F.W.; Mazzini, G.; Havinga, Paul J.M.

    Large scale and high density networks of tiny sensor nodes offer promising solutions for event detection and actuating applications. In this paper we address the effect of high density of wireless sensor network performance with a specific MAC protocol, the Lightweight Medium Access Control (LMAC).

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  2. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  3. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  4. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... The high density of the adsorbent allowed the EBA to be operated at linear velocity as high as 657 cm/h ... through precipitation and even dialyzed before sample ... In EBA process, upward fluidized stationary phase with.

  5. Response of thermosphere density to high-latitude forcing

    Science.gov (United States)

    Yamazaki, Y.; Kosch, M. J.; Vickers, H.; Sutton, E. K.; Ogawa, Y.

    2014-12-01

    Solar wind-magnetospheric disturbances cause enhancements in the energy input to the high-latitude upper atmosphere through particle precipitation and Joule heating. As the upper atmosphere is heated and expanded during geomagnetically disturbed periods, the neutral density in the thermosphere increases at a fixed altitude. Conversely, the thermosphere contracts during the recovery phase of the disturbance, resulting in a decrease of the density. The main objectives of this study are (1) to determine the morphology of the global thermospheric density response to high-latitude forcing, and (2) to determine the recovery speed of the thermosphere density after geomagnetic disturbances. For (1), we use thermospheric density data measured by the Challenging Minisatellite Payload (CHAMP) satellite during 2000-2010. It is demonstrated that the density enhancement during disturbed periods occurs first in the dayside cusp region, and the density at other regions slowly follows it. The reverse process is observed when geomagnetic activity ceases; the density enhancement in the cusp region fades away first, then the global density slowly goes back to the quiet level. For (2), we analyze EISCAT Svalbard radar and Tromso UHF radar data to estimate thermospheric densities during the recovery phase of geomagnetic disturbances. We attempt to determine the time constant for the density recovery both inside and outside the cusp region.

  6. Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai [ORNL; Hanson, Paul J [ORNL; Riggs, Jeffery S [ORNL; Pallardy, Stephen G. [University of Missouri; Hosman, K. P. [University of Missouri; Meyers, T. P. [NOAA ATDD; Wullschleger, Stan D [ORNL; Gu, Lianhong [ORNL; Heuer, Mark [ATDD, NOAA

    2007-01-01

    be subject to the site properties, e.g., canopy architecture and the resulted thermodynamic and flow structures. If CO2 density from a single profile is averaged in time and then used in assessing CO2 storage to make this measurement more spatially representative, biases associated with this averaging procedure become inevitable. Generally, larger window sizes used in averaging CO2 density generate poorer estimates of CO2 storage. If absolute errors are concerned, it appears that the more significant the CO2 storage is during a period (nighttime and early morning hours versus late morning and afternoon, peak growing season versus early growing season), the larger effects the averaging procedure has.

  7. Information Entropy- and Average-Based High-Resolution Digital Storage Oscilloscope

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2014-01-01

    Full Text Available Vertical resolution is an essential indicator of digital storage oscilloscope (DSO and the key to improving resolution is to increase digitalizing bits and lower noise. Averaging is a typical method to improve signal to noise ratio (SNR and the effective number of bits (ENOB. The existing averaging algorithm is apt to be restricted by the repetitiveness of signal and be influenced by gross error in quantization, and therefore its effect on restricting noise and improving resolution is limited. An information entropy-based data fusion and average-based decimation filtering algorithm, proceeding from improving average algorithm and in combination with relevant theories of information entropy, are proposed in this paper to improve the resolution of oscilloscope. For single acquiring signal, resolution is improved through eliminating gross error in quantization by utilizing the maximum entropy of sample data with further noise filtering via average-based decimation after data fusion of efficient sample data under the premise of oversampling. No subjective assumptions and constraints are added to the signal under test in the whole process without any impact on the analog bandwidth of oscilloscope under actual sampling rate.

  8. Average gene length is highly conserved in prokaryotes and eukaryotes and diverges only between the two kingdoms.

    Science.gov (United States)

    Xu, Lin; Chen, Hong; Hu, Xiaohua; Zhang, Rongmei; Zhang, Ze; Luo, Z W

    2006-06-01

    The average length of genes in a eukaryote is larger than in a prokaryote, implying that evolution of complexity is related to change of gene lengths. Here, we show that although the average lengths of genes in prokaryotes and eukaryotes are much different, the average lengths of genes are highly conserved within either of the two kingdoms. This suggests that natural selection has clearly set a strong limitation on gene elongation within the kingdom. Furthermore, the average gene size adds another distinct characteristic for the discrimination between the two kingdoms of organisms.

  9. Breast density estimation from high spectral and spatial resolution MRI.

    Science.gov (United States)

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  10. Numerical Investigation of Thermal Effect in Plasma Electrode Pockels Cell for High Average Power

    Institute of Scientific and Technical Information of China (English)

    CAO Ding-Xiang; ZHANG Xiong-Jun; ZHENG Wan-Guo; HE Shao-Bo; SUI Zhan

    2006-01-01

    @@ The average power of a Pockels cell is limited by thermal effects arising from the optical absorption of the laser pulse. These thermal effects can be managed by configuring the switch as a plasma-electrode thin plate Pockels cell, which works under heat-capacity operation. Simulation results show that, based on KD*P (in thickness 0.5cm) at an average power loading of 1 kW, the aperture integrated depolarization loss at 1.06 um is less than 10% in 5min working time.

  11. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  12. The development of early numeracy skills in kindergarten in low-, average- and high-performance groups

    NARCIS (Netherlands)

    Aunio, P.; Heiskari, P.; van Luit, J.E.H.; Vuorio, J.-M.

    2015-01-01

    In this study, we investigated how early numeracy skills develop in kindergarten-age children. The participants were 235 Finnish children (111 girls and 124 boys). At the time of the first measurement, the average age of the children was 6 years. The measurements were conducted three times during 1

  13. Generation and applications of high average power Mid-IR supercontinuum in chalcogenide fibres

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm....

  14. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  15. Calvarial reconstruction using high-density porous polyethylene cranial hemispheres

    Directory of Open Access Journals (Sweden)

    Nitin J Mokal

    2011-01-01

    Full Text Available Aims: Cranial vault reconstruction can be performed with a variety of autologous or alloplastic materials. We describe our experience using high-density porous polyethylene (HDPE cranial hemisphere for cosmetic and functional restoration of skull defects. The porous nature of the implant allows soft tissue ingrowth, which decreases the incidence of infection. Hence, it can be used in proximity to paranasal sinuses and where previous alloplastic cranioplasties have failed due to implant infection. Materials and Methods: We used the HDPE implant in seven patients over a three-year period for reconstruction of moderate to large cranial defects. Two patients had composite defects, which required additional soft tissue in the form of free flap and tissue expansion. Results: In our series, decompressive craniectomy following trauma was the commonest aetiology and all defects were located in the fronto-parieto-temporal region. The defect size was 10 cm on average in the largest diameter. All patients had good post-operative cranial contour and we encountered no infections, implant exposure or implant migration. Conclusions: Our results indicate that the biocompatibility and flexibility of the HDPE cranial hemisphere implant make it an excellent alternative to existing methods of calvarial reconstruction.

  16. Anti-Viral Antibody Profiling by High Density Protein Arrays

    Science.gov (United States)

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  17. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari

    2013-01-01

    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  18. State Averages

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of a variety of averages for each state or territory as well as the national average, including each quality measure, staffing, fine amount and number of...

  19. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power

    Institute of Scientific and Technical Information of China (English)

    Dingxiang Cao; Xiongjun Zhang; Wanguo Zheng; Shaobo He; Zhan Sui

    2007-01-01

    We numerically study thermally induced birefringence and distortion in plasma electrode Pockels cell based on KD*P as the electro-optic material. This device can repetitively operate under the heat capacity mode.Simulation results indicate that the excellent switching performances and low wave-front distortion are achieved within several tens seconds working time at average power in excess of 1 kW.

  20. A comment on the average foil-hit number for a high-intensity proton ring

    CERN Document Server

    Yamane, I

    2002-01-01

    The minimum value of the average foil-hit number is derived for H sup - charge-exchange injection using a stripping foil, in which the H sup - beam is injected at a corner of the stripper foil and the cross-sectional area of the ring beam is increased as a function of time, kt sup 1 sup / sup n , where k and n are constants.

  1. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  2. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  3. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  4. High energy density nanocomposite capacitors using non-ferroelectric nanowires

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-02-01

    A high energy density nanocomposite capacitor is fabricated by incorporating high aspect ratio functionalized TiO2 nanowires (NWs) into a polyvinylidene-fluoride matrix. These nanocomposites exhibited energy density as high as 12.4 J/cc at 450 MV/m, which is nine times larger than commercial biaxially oriented polypropylene polypropylene capacitors (1.2 J/cc at 640 MV/m). Also, the power density can reach 1.77 MW/cc with a discharge speed of 2.89 μs. The results presented here demonstrate that nanowires can be used to develop nanocomposite capacitors with high energy density and fast discharge speed for future pulsed-power applications.

  5. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    The usefulness of total cholesterol and high density lipoprotein - cholesterol ratio in ... cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. ... Article Metrics.

  6. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca;

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  7. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  8. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  9. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    Science.gov (United States)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  10. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  11. Multi-session complex averaging for high resolution high SNR 3T MR visualization of ex vivo hippocampus and insula

    Science.gov (United States)

    Stamm, Aymeric; Singh, Jolene M.; Scherrer, Benoit; Afacan, Onur; Warfield, Simon K.

    2015-03-01

    The hippocampus and the insula are responsible for episodic memory formation and retrieval. Hence, visualization of the cytoarchitecture of such structures is of primary importance to understand the underpinnings of conscious experience. Magnetic Resonance Imaging (MRI) offers an opportunity to non-invasively image these crucial structures. However, current clinical MR imaging operates at the millimeter scale while these anatomical landmarks are organized into sub-millimeter structures. For instance, the hippocampus contains several layers, including the CA3-dentate network responsible for encoding events and experiences. To investigate whether memory loss is a result of injury or degradation of CA3/dentate, spatial resolution must exceed one hundred micron, isotropic, voxel size. Going from one millimeter voxels to one hundred micron voxels results in a 1000× signal loss, making the measured signal close to or even way below the precision of the receiving coils. Consequently, the signal magnitude that forms the structural images will be biased and noisy, which results in inaccurate contrast and less than optimal signal-to-noise ratio (SNR). In this paper, we propose a strategy to perform high spatial resolution MR imaging of the hippocampus and insula with 3T scanners that enables accurate contrast (no systematic bias) and arbitrarily high SNR. This requires the collection of additional repeated measurements of the same image and a proper averaging of the k-space data in the complex domain. This comes at the cost of additional scan time, but long single-session scan times are not practical for obvious reasons. Hence, we also develop an approach to combine k-space data from multiple sessions, which enables the total scan time to be split into arbitrarily short sessions, where the patient is allowed to move and rest in-between. For validation, we hereby illustrate our multi-session complex averaging strategy by providing high spatial resolution 3T MR visualization

  12. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    Science.gov (United States)

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  13. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards.

    Science.gov (United States)

    Díez, Concepción M; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems ("Arbequina," Arbequina IRTA-i·18, "Arbosana," "Fs-17," and "Koroneiki") and nine SHD designs ranging from 780 to 2254 trees ha(-1) for the cultivar "Arbequina." Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha(-1). Only "Fs-17" did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha(-1)) of the other cultivars. In the density trial for "Arbequina," both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha(-1) for the lowest density (780 trees ha(-1)) to 29.9 t ha(-1) for the highest (2254 trees ha(-1)). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation.

  14. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  15. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    Science.gov (United States)

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-04-14

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  16. Highly efficient sparse-matrix inversion techniques and average procedures applied to collisional-radiative codes

    CERN Document Server

    Poirier, M

    2009-01-01

    The behavior of non-local thermal-equilibrium (NLTE) plasmas plays a central role in many fields of modern-day physics, such as laser-produced plasmas, astrophysics, inertial or magnetic confinement fusion devices, or X-ray sources. The proper description of these media in stationary cases requires to solve linear systems of thousands or more rate equations. A possible simplification for this arduous numerical task may lie in some type of statistical average, such as configuration or superconfiguration average. However to assess the validity of this procedure and to handle cases where isolated lines play an important role, it may be important to deal with detailed levels systems. This involves matrices with sometimes billions of elements, which are rather sparse but still involve thousands of diagonals. We propose here a numerical algorithm based on the LU decomposition for such linear systems. This method turns out to be orders of magnitude faster than the traditional Gauss elimination. And at variance with ...

  17. Fabrication of very high density fuel pellets of thorium dioxide

    Science.gov (United States)

    Shiratori, Tetsuo; Fukuda, Kosaku

    1993-06-01

    Very high density ThO 2 pellets were prepared without binders and lubricants from the ThO 2 powder originated by the thorium oxalate, which was aimed to simplify the fabrication process by skipping a preheat treatment. The as-received ThO 2 powder with a surface area of 4.56 m 2/g was ball-milled up to about 9 m 2/g in order to increase the green pellet density as high as possible. Both of the single-sided and the double-sided pressing were tested in the range from 2 to 5 t/cm 2 in the green pellet formation. Sintering temperature was such low as 1550°C. The pellet prepared in this experiment had a very high density in the range from about 96 to 98% TD without any cracks, in which a difference of the pellet density was not recognized in the single-sided pressing methods.

  18. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  19. Stability of high cell density brewery fermentations during serial repitching.

    Science.gov (United States)

    Verbelen, Pieter J; Dekoninck, Tinne M L; Van Mulders, Sebastiaan E; Saerens, Sofie M G; Delvaux, Filip; Delvaux, Freddy R

    2009-11-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O(2) conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.

  20. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J

    2008-01-01

    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  1. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  2. STUDY ON THE BULK DENSITY OF HIGH CONSISTENCY PULP AND ENGINEERING APPLICATION IN THE BLEACHING TOWER

    Directory of Open Access Journals (Sweden)

    Ke-Fu Chen

    2011-02-01

    Full Text Available From experimental simulation of the process of high consistency pulp moving in a bleaching tower, the aerated bulk density and packed bulk density were measured and studied by using a self-made experimental system. The scattered experimental data – pressure p, and bulk density difference, which was between packed bulk density and aerated bulk density (ρ-ρ0 – were fitted by using Matlab software, and some good-fitting regression curves and equations were obtained. The results showed there was a break point W in the regression curves; within the range of pressure between zero and W the relationship between (ρ-ρ0 and p was a linear function, while for pressure between W and 70000 the relationship was a power function. To effectively meet with the bleaching response for the different kinds and different consistencies of pulp in the tower, by using the fitting regression equations combined with the expressions of average bulk density and pressure in the tower caused by gravity-driven pulp, two equations for average packed density ρa were deduced with the aim of deciding the maximum volume value of the tower, in agreement with the sizes of the towers presently used by major companies.

  3. Noise reduction in muon tomography for detecting high density objects

    CERN Document Server

    Benettoni, M; Bonomi, G; Calvagno, G; Calvini, P; Checchia, P; Cortelazzo, G; Cossutta, L; Donzella, A; Furlan, M; Gonella, F; Pegoraro, M; Garola, A Rigoni; Ronchese, P; Squarcia, S; Subieta, M; Vanini, S; Viesti, G; Zanuttigh, P; Zenoni, A; Zumerle, G

    2013-01-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. A new and innovative method is presented in this paper to handle the density fluctuations (noise) of reconstructed images, that are a known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect in short times high density materials, such as lead, when surrounded by light or medium density material. A comparison with algorithms published in literature is also presented.

  4. Noise reduction in muon tomography for detecting high density objects

    Science.gov (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  5. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  6. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  7. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca

    2012-01-01

    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state...... than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV....

  8. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    Science.gov (United States)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  9. Microbial Carbon Substrate Utilization Differences among High- and Average-Yield Soybean Areas

    National Research Council Canada - National Science Library

    Taylor C. Adams; Kristofor R. Brye; Mary C. Savin; Jung Ae Lee; Edward E. Gbur

    2017-01-01

    Since soybean (Glycine max L. (Merr.)) yields greater than 6719 kg ha−1 have only recently and infrequently been achieved, little is known about the soil microbiological environment related to high-yield soybean production...

  10. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert

    2014-01-01

    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL chol

  11. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    Science.gov (United States)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  12. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  13. Formation of Los Angeles's low density and high car dependence

    Institute of Scientific and Technical Information of China (English)

    DAI Te-qi; JIN Feng-jun

    2009-01-01

    As a typical car-dependent city, Los Angeles (LA) is extensively used as an example in research to illustrate car influences on city form. Focusing on the features of LA's geologic conditions and civil circumstances, we argued that the relationship between LA's low-density pattern and car dependence is more involved than previously deemed simple causality. The low density should be primarily credited to the spacious requirement of the mining industry, frequent earthquakes and multiethnic population of the city. Oil reserves in LA fueled its economic boom and fast urbanization that coincided with the start of mass production of cheap cars, and cars became medium-priced consumables for average families. Politicians preference for short construction-peried projects enabled fast establishment of LA's highway infrastructure. The popularity of car use in return faciliatated further development of the low-density pattern of the city. The low-density urban form and car dependence created environmental and social problems for LA. Looking at P. R. China's motorization and urban development, we found that the trajectory of Beijing's motorization between 1978 and 2003 coincides with that of the U.S. in the 1910s and 1920s. Lessons from LA's urban and transportation development should be suggestive to China's urban and transportation planning.

  14. The relation between star formation, morphology and local density in high redshift clusters and groups

    CERN Document Server

    Poggianti, Bianca M; Finn, Rose; Bamford, Steven; De Lucia, Gabriella; Varela, Jesus; Aragon-Salamanca, Alfonso; Halliday, Claire; Noll, Stefan; Saglia, Roberto; Zaritsky, Dennis; Best, Philip; Clowe, Douglas; Milvang-Jensen, Bo; Jablonka, Pascale; Pello, Roser; Rudnick, Gregory; Simard, Luc; von der Linden, Anja; White, Simon

    2008-01-01

    We investigate how the [OII] properties and the morphologies of galaxies in clusters and groups at z=0.4-0.8 depend on projected local galaxy density, and compare with the field at similar redshifts and clusters at low-z. In both nearby and distant clusters, higher-density regions contain proportionally fewer star-forming galaxies, and the average [OII] equivalent width of star-forming galaxies is independent of local density. However, in distant clusters the average current star formation rate (SFR) in star-forming galaxies seems to peak at densities ~15-40 galaxies Mpc^{-2}. At odds with low-z results, at high-z the relation between star-forming fraction and local density varies from high- to low-mass clusters. Overall, our results suggest that at high-z the current star formation (SF) activity in star-forming galaxies does not depend strongly on global or local environment, though the possible SFR peak seems at odds with this conclusion. We find that the cluster SFR normalized by cluster mass anticorrelate...

  15. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu

    2017-01-23

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.

  16. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadoura, Ahmad; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.

  17. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    KAUST Repository

    Kadoura, Ahmad Salim

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.

  18. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  19. High performance power-configurable preamplifier in a high-density paralleloptical receiver

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoxia; Wang Zhigong

    2012-01-01

    A power-configurable high performance preamplifier was implemented in standard 180-nm CMOS technology for 12 × 10 Gb/s high-density ultra-high speed parallel optical communication system.With critical limitations on power consumption,area and fabrication cost,the preamplifier achieves high performance,e.g.high bandwidth,high trans-impedance gain,low noise and high stability.A novel feed-forward common gate (FCG)stage is adopted to alleviate contradictions on trans-impedance gain and bandwidth by using a low headroom consuming approach to isolate a large input capacitance and using complex pole peaking techniques to substitute inductors to achieve bandwidth extension.A multi-supply power-configurable scheme was employed to avoid wasteful power caused by a pessimistic estimation of process-voltage-temperature (PVT) variation.Two representative samples provide a trans-impedance gain of 53.9 dBΩ,a 3-dB bandwidth of 6.8 GHz,a power dissipation of 6.26 mW without power-configuration and a trans-impedance gain of 52.1 dBΩ,a 3-dB bandwidth of 8.1 GHz,a power dissipation of 6.35 mW with power-configuration,respectively.The measured average input-referred noise-current spectral density is no more than 28 pA/√Hz.The chip area is only 0.08 × 0.08 mm2.

  20. Is it better to be average? High and low performance as predictors of employee victimization.

    Science.gov (United States)

    Jensen, Jaclyn M; Patel, Pankaj C; Raver, Jana L

    2014-03-01

    Given increased interest in whether targets' behaviors at work are related to their victimization, we investigated employees' job performance level as a precipitating factor for being victimized by peers in one's work group. Drawing on rational choice theory and the victim precipitation model, we argue that perpetrators take into consideration the risks of aggressing against particular targets, such that high performers tend to experience covert forms of victimization from peers, whereas low performers tend to experience overt forms of victimization. We further contend that the motivation to punish performance deviants will be higher when performance differentials are salient, such that the effects of job performance on covert and overt victimization will be exacerbated by group performance polarization, yet mitigated when the target has high equity sensitivity (benevolence). Finally, we investigate whether victimization is associated with future performance impairments. Results from data collected at 3 time points from 576 individuals in 62 work groups largely support the proposed model. The findings suggest that job performance is a precipitating factor to covert victimization for high performers and overt victimization for low performers in the workplace with implications for subsequent performance.

  1. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  2. Solid State Raman Materials Characterization for High Average Power 1.3 micrometer Laser Frequency Shift

    Science.gov (United States)

    1999-01-01

    reflectivity at 1067 rim wavelength. Solid state phototrop filter based on gallium -scandium- gadolinium garnet doped with chromium was used as a passive Q-switch... gadolinium tungstate, KGd(W0 4)2 exhibited efficient Raman properties . In spite of the fact that its Raman gain coefficient at 1064 nm (6 cm/GW) is twice less...studied by high- temperature Raman scattering (HTRS) technique. According to [1], the lattice cell of KGd(W04) 2 low - temperature modification is a base

  3. The Effect of Computer Based Instructional Technique for the Learning of Elementary Level Mathematics among High, Average and Low Achievers

    Science.gov (United States)

    Afzal, Muhammad Tanveer; Gondal, Bashir; Fatima, Nuzhat

    2014-01-01

    The major objective of the study was to elicit the effect of three instructional methods for teaching of mathematics on low, average and high achiever elementary school students. Three methods: traditional instructional method, computer assisted instruction (CAI) and teacher facilitated mathematics learning software were employed for the teaching…

  4. Are Confidence Ratings Test- or Trait-Driven? Individual Differences among High, Average, and Low Comprehenders in Fourth Grade

    Science.gov (United States)

    Kasperski, Ronen; Katzir, Tami

    2013-01-01

    The aim of this study was to examine whether low, average, and high comprehenders (LC, AC, and HC, respectively) differed in their reading self-confidence and bias ratings, and whether confidence ratings were driven by reading ability or distributed evenly among diverse readers. Seventy fourth-graders with good decoding abilities were administered…

  5. Are Confidence Ratings Test- or Trait-Driven? Individual Differences among High, Average, and Low Comprehenders in Fourth Grade

    Science.gov (United States)

    Kasperski, Ronen; Katzir, Tami

    2013-01-01

    The aim of this study was to examine whether low, average, and high comprehenders (LC, AC, and HC, respectively) differed in their reading self-confidence and bias ratings, and whether confidence ratings were driven by reading ability or distributed evenly among diverse readers. Seventy fourth-graders with good decoding abilities were administered…

  6. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  7. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  8. Method for optical pumping of thin laser media at high average power

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis E. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2004-07-13

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  9. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  10. Overview of the HiLASE project: high average power pulsed DPSSL systems for research and industry

    Institute of Scientific and Technical Information of China (English)

    M.Divoky; M.Smrz; M.Chyla; P.Sikocinski; P.Severova; O.Novak; J.Huynh; S.S.Nagisetty; T.Miura; J.Pila; O.Slezak; M.Sawicka; V.Jambunathan; J.Vanda; A.Endo; A.Lucianetti; D.Rostohar; P.D.Mason; P.J.Phillips; K.Ertel; S.Banerjee; C.Hernandez-Gomez; J.L.Collier; T.Mocek

    2014-01-01

    An overview of the Czech national R&D project HiLASE(High average power pulsed laser) is presented. The project focuses on the development of advanced high repetition rate, diode pumped solid state laser(DPSSL) systems with energies in the range from mJ to 100 J and repetition rates in the range from 10 Hz to 100 kHz. Some applications of these lasers in research and hi-tech industry are also presented.

  11. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  12. Origins and Impacts of High-Density Symmetry Energy

    CERN Document Server

    Li, Bao-An

    2016-01-01

    What is nuclear symmetry energy? Why is it important? What do we know about it? Why is it so uncertain especially at high densities? Can the total symmetry energy or its kinetic part be negative? What are the effects of three-body and/or tensor force on symmetry energy? How can we probe the density dependence of nuclear symmetry energy with terrestrial nuclear experiments? What observables of heavy-ion reactions are sensitive to the high-density behavior of nuclear symmetry energy? How does the symmetry energy affect properties of neutron stars, gravitational waves and our understanding about the nature of strong-field gravity? In this lecture, we try to answer these questions as best as we can based on some of our recent work and/or understanding of research done by others. This note summarizes the main points of the lecture.

  13. Preparation of spherical cobalt carbonate powder with high tap density

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; WANG Jian-feng; LIU Yong-dong; LI Jie; LIU Ye-xiang

    2006-01-01

    Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25 ± 0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.

  14. Optical Fibre Beam Delivery of High Average Power NEODYMIUM:YAG Laser Radiation

    Science.gov (United States)

    Boechat, Alvaro A. P.

    Available from UMI in association with The British Library. This thesis presents a study of the waveguiding properties of large core (200-1000mum core diameter), relatively short length (5-50m) multimode optical fibres used for delivery of Nd:YAG laser radiation at a wavelength of 1.06mum. A major objective of the study was to provide design information for beam delivery systems used in high power materials processing application. Experimental and theoretical investigation of the optical losses produced by bending the fibre lead to a model which can be used to predict the magnitude of the bend loss as a function of launching conditions, bend geometry and fibre parameters. The study confirms the importance of using large numerical aperture, small core diameter fibres to minimise losses. It has been shown that the beam output near field profile from a fibre is a function of the launching conditions. Theoretical and experimental study of the effect for both step and graded index fibres is presented. Geometric optics and phase space theory was used to develop a model in which a relationship between input and output beam quality from a graded index fibre was established. The results showed that there is an optimum launching condition for which the beam quality may be preserved for fibres with quadratic index profiles. The effect of curvature induced mode coupling on beam quality has been studied experimentally, and compared with intrinsic mode coupling effects. The study was supported by the development of a simple theoretical mode coupling model. Finally, a new monitoring technique for beam delivery systems was developed, based on detection of power in the fibre cladding. Applications include determining laser -fibre coupling efficiency, fibre integrity monitoring, and providing real time process information.

  15. High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system.

    Science.gov (United States)

    Luo, Hongyu; Li, Jianfneg; Xie, Jitao; Zhai, Bo; Wei, Chen; Liu, Yong

    2016-12-12

    We reported a high average power and energy microsecond pulse erbium-doped fluoride fiber MOPA system centered at 2786.8 nm. The master oscillator was a passively Q-switched erbium-doped fluoride fiber laser based on SESAM in a linear cavity. Then a one-stage erbium-doped fluoride fiber amplifier was used to boost its average output power to 4.2 W and pulse energy to 58.87 μJ. The pulse duration and repetition rate were 2.29 µs and 71.73 kHz, respectively. To the best of our knowledge, the achieved average output power and pulse energy are the recorded levels for the passively Q-switched fiber lasers at 3 μm wavelength region.

  16. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  17. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  18. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  19. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin

  20. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture resemblin

  1. Two-Dimensional Super High Density Multi-Fiber Connector

    Institute of Scientific and Technical Information of China (English)

    Takashi Shigenaga; Katsuki Suematsu; Masao Shinoda; Takayuki Ando

    2003-01-01

    We have developed 32-fiber and 60-fiber super high density multi fiber connector. This 32-fiber connector can be applicable for single-mode fiber and 60-fiber connector for multi-mode fiber. We have also established PC (physical contact) connection technology by optimizing polishing condition and clamping force.

  2. Interaction effects in high density magnetic particulate media

    Energy Technology Data Exchange (ETDEWEB)

    Cerchez, Mihai; Stoleriu, Laurentiu; Stancu, Alexandru

    2004-01-01

    The paper presents a micromagnetic study of the particulate high density recording media. The main difference in the behavior of such a system is the appearance of magnetic clusters which lead to a different behavior of the system. New hypotheses for interpreting such systems are presented.

  3. Metabolism of high density lipoproteins in liver cancer

    Institute of Scientific and Technical Information of China (English)

    Jing-Ting Jiang; Ning Xu; Chang-Ping Wu

    2007-01-01

    Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.

  4. High Energy Density Physics and Exotic Acceleration Schemes

    Science.gov (United States)

    Cowan, Thomas; Colby, Eric

    2002-12-01

    We summarize the reported results and the principal technical discussions that occurred in our Working Group on High Energy Density Physics and Exotic Acceleration Schemes at the 2002 workshop on Advanced Accelerator Concepts at the Mandalay Beach resort, June 22-28, 2002.

  5. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture

  6. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  7. High follicle density does not decrease sweat gland density in Huacaya alpacas.

    Science.gov (United States)

    Moore, K E; Maloney, S K; Blache, D

    2015-01-01

    When exposed to high ambient temperatures, mammals lose heat evaporatively by either sweating from glands in the skin or by respiratory panting. Like other camelids, alpacas are thought to evaporate more water by sweating than panting, despite a thick fleece, unlike sheep which mostly pant in response to heat stress. Alpacas were brought to Australia to develop an alternative fibre industry to sheep wool. In Australia, alpacas can be exposed to ambient temperatures higher than in their native South America. As a young industry there is a great deal of variation in the quality and quantity of the fleece produced in the national flock. There is selection pressure towards animals with finer and denser fleeces. Because the fibre from secondary follicles is finer than that from primary follicles, selecting for finer fibres might alter the ratio of primary and secondary follicles. In turn the selection might alter sweat gland density because the sweat glands are associated with the primary follicle. Skin biopsy and fibre samples were obtained from the mid-section of 33 Huacaya alpacas and the skin sections were processed into horizontal sections at the sebaceous gland level. Total, primary, and secondary follicles and the number of sweat gland ducts were quantified. Fibre samples from each alpaca were further analysed for mean fibre diameter. The finer-fibred animals had a higher total follicle density (P<0.001) and more sweat glands (P<0.001) than the thicker-fibred animals. The fibre diameter and total follicle density were negatively correlated (R(2)=0.56, P<0.001). Given that the finer-fibred animals had higher follicle density and more sweat glands than animals with thicker fibres, we conclude that alpacas with high follicle density should not be limited for potential sweating ability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  9. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  10. Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model

    CERN Document Server

    Qauli, A I

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...

  11. The Effect of High School Socioeconomic Status on the Predictive Validity of SAT Scores and High School Grade-Point Average

    Science.gov (United States)

    Zwick, Rebecca; Himelfarb, Igor

    2011-01-01

    Research has often found that, when high school grades and SAT scores are used to predict first-year college grade-point average (FGPA) via regression analysis, African-American and Latino students, are, on average, predicted to earn higher FGPAs than they actually do. Under various plausible models, this phenomenon can be explained in terms of…

  12. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    Institute of Scientific and Technical Information of China (English)

    MAO Ping; ZHANG Zhi-Gang; PAN Li-Yang; XU Jun; CHEN Pei-Yi

    2009-01-01

    @@ Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3×1012 cm-2 ), small size (2-4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs.

  13. Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Naderi, Mahdi; Keyvanshokooh, Saeed; Salati, Amir Parviz; Ghaedi, Alireza

    2017-05-10

    The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m(-3) and high stocking density (HD) = 80 kg m(-3)). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.

  14. Bond Orientational Order, Molecular Motion and Free Energy of High Density DNA Mesophases

    CERN Document Server

    Podgornik, R; Gawrisch, K; Rau, D C; Rupprecht, A; Parsegian, V A

    1995-01-01

    By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid crystalline phase digram: a higher-density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction; and a lower-density cholesteric region with fluid-like positional order. X-rays scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a six-fold azimuthal modulation of the first order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order that had been expected from the change in optical birefringence patterns and that is consistent with a rap...

  15. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  16. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  17. Collapsing Bubble in Metal for High Energy Density Physics Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  18. Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards

    Science.gov (United States)

    Díez, Concepción M.; Moral, Juan; Cabello, Diego; Morello, Pablo; Rallo, Luis; Barranco, Diego

    2016-01-01

    Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems (“Arbequina,” Arbequina IRTA-i·18, “Arbosana,” “Fs-17,” and “Koroneiki”) and nine SHD designs ranging from 780 to 2254 trees ha−1 for the cultivar “Arbequina.” Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha−1. Only “Fs-17” did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha−1) of the other cultivars. In the density trial for “Arbequina,” both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha−1 for the lowest density (780 trees ha−1) to 29.9 t ha−1 for the highest (2254 trees ha−1). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation. PMID:27602035

  19. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  20. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  1. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    Science.gov (United States)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  2. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  3. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  4. The High Density Region of QCD from an Effective Model

    CERN Document Server

    De Pietri, R; Seiler, E; Stamatescu, I O

    2007-01-01

    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov-type loops as the main dynamical variables representing the fermionic matter. This model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the simulated Monte Carlo ensemble with the true one. We review the main features of the model and present results concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the Polykov loop susceptibility, which may be used to characterize the various phases expected at high baryonic density. In this way, we obtain information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints about the behaviour of non-zero density QCD.

  5. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  6. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif

    2010-03-15

    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  7. High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier.

    Science.gov (United States)

    Liu, Jiang; Xu, Jia; Liu, Kun; Tan, Fangzhou; Wang, Pu

    2013-10-15

    We demonstrate a high-power, picosecond, thulium-doped, all-fiber master oscillator power amplifier with average power of 120.4 W. The compact fiber oscillator is carefully designed with high repetition rate for the purpose of overcoming the detrimental effects of fiber nonlinearity in the later fiber amplifiers. The pulse duration of 16 ps at 333.75 MHz repetition rate results in a peak power of 22.5 kW in the final fiber power amplifier. To the best of our knowledge, this is the first demonstration of average power exceeding 100 W from an ultrashort pulse laser at 2 μm wavelength. On the other hand, by decreasing the fiber oscillator repetition rate and pulse duration for enhancing the fiber nonlinearity effects, we also demonstrate a high-power supercontinuum source with average power of 36 W from 1.95 μm to beyond 2.4 μm in the final fiber power amplifier.

  8. Effects of Visible and Invisible Hyperlinks on Vocabulary Acquisition and Reading Comprehension for High- and Average-Foreign Language Achievers

    Directory of Open Access Journals (Sweden)

    Ofelia R. Nikolova

    2004-12-01

    Full Text Available This study investigated the effects of visible and invisible links for annotated words in a computer module for learning French on the vocabulary acquisition and reading comprehension of two types of students – high – and average-achievers. Two hundred and sixty four second-semester students of French were identified as high- or average-achievers. Each type of students was then randomly assigned to two groups – with visible or invisible hyperlinks. All students were instructed to read a short passage in French (181 words for general comprehension and allowed to consult the annotated words (made visible by bold face for the visible links group as much as they needed. The students took a vocabulary pretest and an immediate and delayed (two weeks vocabulary and reading comprehension posttest. The results of the study showed that average- achievers benefited more from the visible links for vocabulary acquisition and reading comprehension than high-achievers. The results are discussed in light of second language acquisition and gifted-student theories and suggestions for future research are made.

  9. Design of High Power Density Amplifiers: Application to Ka Band

    Science.gov (United States)

    Passi, Davide; Leggieri, Alberto; Di Paolo, Franco; Bartocci, Marco; Tafuto, Antonio

    2017-06-01

    Recent developments in the design of high-power-high-frequency amplifiers are assessed in this paper by the analysis and measurements of a high power density amplifier operating in the Ka Band. Design procedure is presented and a technical investigation is reported. The proposed device has shown over 23% of useful frequency bandwidth. It is an ensemble of 16 monolithic solid state power amplifiers that employees mixed technologies as spatial and planar combiners. Test performed have given maximum delivered power of 47.2 dBm.

  10. High-repetition rate industrial TEA CO2 laser with average output power of 1.5 kW

    Science.gov (United States)

    Wan, Chongyi; Liu, Shiming; Zhou, Jinwen; Qi, Jilan; Yang, Xiaola; Wu, Jin; Tan, Rongqing; Wang, Lichun; Mei, Qichu

    1995-03-01

    High power high repetition rate TEA CO2 laser has potential importance in material processing such as shock hardening, glazing, drilling, welding, and cutting for high damage threshold materials, as well as in chemical reaction and isotope separation. This paper describes a transverse-flow closed-cycle UV-preionized TEA CO2 laser with peak pulse power of 20 MW, maximum average power of 1.5 KW at repetition rate of 300 HZ. The laser has compact constructure of gas flow circulation system using tangential fans. With addition of small amounts of H2 and CO to the normal CO2-N2-He gas mixture, one filling sealed operating lifetime is up to millions of pulses. A novel spark gap switch has been developed for very high repetition rate laser discharge in the condition of high pulse power.

  11. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  12. A Tale of Two Electrons: Correlation at High Density

    CERN Document Server

    Loos, Pierre-François

    2010-01-01

    We review our recent progress in the determination of the high-density correlation energy $\\Ec$ in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting {\\em via} a Coulomb potential is given by $\\Ec \\sim -1/(8D^2)$ for any radial external potential $V(r)$, where $D$ is the dimensionality of the space. This result explains the similarity of $\\Ec$ in the previous two-electron systems for $D=3$.

  13. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  14. High energy density capacitor testing for the AFWL SHIVA

    Science.gov (United States)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  15. Polypropylene-(high density polyethylene) precipitation from stirred solutions

    OpenAIRE

    Esperidião,Maria Cecília Azevedo; Galembeck,Fernando

    1993-01-01

    Texto completo: acesso restrito. p.993–997 The fast precipitation of mixtures of polypropylene (PP) with high density polyethylene (HDPE) from decalin solutions is affected by the stirring rate of the solutions. With fast stirring, two types of precipitates were obtained viz. globules dispersed in the liquid phase and fibres adhering to the stirrer. Studies by i.r., WAXD, DSC and optical microscopy indicated that the fibrous precipitate is more birefringent, richer in HDPE and richer in th...

  16. Flexible and Lightweight Fuel Cell with High Specific Power Density.

    Science.gov (United States)

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun

    2017-06-27

    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm(2) working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L(-1), which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  17. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  18. Nanostructured thin solid oxide fuel cells with high power density.

    Science.gov (United States)

    Ignatiev, Alex; Chen, Xin; Wu, Naijuan; Lu, Zigui; Smith, Laverne

    2008-10-28

    Nanostructured thin film solid oxide fuel cells (SOFC) have been developed for reduced temperature operation, with high power density, and to be self reforming. A thin film electrolyte (1-2 microm thickness), e.g., yttria-stabilized zirconia (YSZ), is deposited on a nickel foil substrate. The electrolyte thin film is polycrystalline when deposited on a polycrystalline nickel foil substrate, and is (100) textured when deposited on an atomically textured nickel foil substrate. The Ni foil substrate is then converted into a porous SOFC anode by photolithographic patterning and etching to develop porosity. A composite La(0.5)Sr(0.5)CoO(3) cathode is then deposited on the thin film electrolyte. The resultant thin film hetero structure fuel cells have operated at a significantly reduced temperature: as low as 470 degrees C, with a maximum power density of 140 mW cm(-2) at 575 degrees C, and an efficiency of >50%. This drastic reduction in operating temperature for an SOFC now also allows for the use of hydrocarbon fuels without the need for a separate reformer as the nickel anode effectively dissociates hydrocarbons within this temperature range. These nanostructured fuel cells show excellent potential for high power density, small volume, high efficiency fuel cells for power generation applications.

  19. An ensemble average method to estimate absolute TEC using radio beacon-based differential phase measurements: Applicability to regions of large latitudinal gradients in plasma density

    Science.gov (United States)

    Thampi, Smitha V.; Bagiya, Mala S.; Chakrabarty, D.; Acharya, Y. B.; Yamamoto, M.

    2014-12-01

    A GNU Radio Beacon Receiver (GRBR) system for total electron content (TEC) measurements using 150 and 400 MHz transmissions from Low-Earth Orbiting Satellites (LEOS) is fabricated in house and made operational at Ahmedabad (23.04°N, 72.54°E geographic, dip latitude 17°N) since May 2013. This system receives the 150 and 400 MHz transmissions from high-inclination LEOS. The first few days of observations are presented in this work to bring out the efficacy of an ensemble average method to convert the relative TECs to absolute TECs. This method is a modified version of the differential Doppler-based method proposed by de Mendonca (1962) and suitable even for ionospheric regions with large spatial gradients. Comparison of TECs derived from a collocated GPS receiver shows that the absolute TECs estimated by this method are reliable estimates over regions with large spatial gradient. This method is useful even when only one receiving station is available. The differences between these observations are discussed to bring out the importance of the spatial differences between the ionospheric pierce points of these satellites. A few examples of the latitudinal variation of TEC during different local times using GRBR measurements are also presented, which demonstrates the potential of radio beacon measurements in capturing the large-scale plasma transport processes in the low-latitude ionosphere.

  20. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  1. High Energy Density Physics and Exotic Acceleration Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  2. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  3. Hydrodynamic Instabilities in High-Energy-Density Settings

    Science.gov (United States)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. Aromatic Polyurea Possessing High Electrical Energy Density and Low Loss

    Science.gov (United States)

    Thakur, Yash; Lin, Minren; Wu, Shan; Zhang, Q. M.

    2016-10-01

    We report the development of a dielectric polymer, poly (ether methyl ether urea) (PEMEU), which possesses a dielectric constant of 4 and is thermally stable up to 150°C. The experimental results show that the ether units are effective in softening the rigid polymer and making it thermally processable, while the high dipole moment of urea units and glass structure of the polymer leads to a low dielectric loss and low conduction loss. As a result, PEMEU high quality thin films can be fabricated which exhibit exceptionally high breakdown field of >1.5 GV/m, and a low conduction loss at fields up to the breakdown. Consequently, the PEMEU films exhibit a high charge-discharge efficiency of 90% and a high discharged energy density of 36 J/cm3.

  5. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  6. Screening for hepatitis C in average and high-risk populations of Qatar using rapid point-of-care testing

    Science.gov (United States)

    Al Kaabi, Saad; John, Anil K; Al Dweik, Nazeeh; Ullah Wani, Hameed; Babu Thandassary, Ragesh; Derbala, Moutaz F; Al Ejji, Khalid; Sultan, Khaleel; Pasic, Fuad; Al Mohannadi, Munnera; Yacoub, Rafae; Butt, Mohd Tariq; Singh, Rajvir

    2015-01-01

    Background Screening for hepatitis C has been found to be beneficial in high-risk individuals and ‘baby boomers’. Objective Our aim was to screen for hepatitis C in average and high-risk individuals and compare the disease characteristics and response to treatment among the screened group (SG) and non-screened group (NSG). Method Community-based screening for hepatitis C was done in the average and high-risk populations of Qatar. Screening was done using rapid point-of-care testing. All patients with stage 1 fibrosis on liver biopsy were treated with pegylated interferon and ribavirin. Results In total, 13,704 people were screened and 272 (2%, 95% CI (1.8–2.2%) had positive antibodies to hepatitis C. During the same period, 237 non-screened patients (NSG) with hepatitis C were referred for treatment. Alanine and aspartate aminotransferases (ALT, AST) and overall fibrosis were significantly lower in the SG as compared with the NSG (p = 0.04, 0.04 and 0.01, respectively). The response to treatment was similar in the SG as compared with the NSG (sustained viral response 61.7 % versus 69.1%, p = 0.55). Average-risk patients had significantly lower ALT levels (p = 0.04) but had similar response to treatment as the high-risk individuals (sustained viral response 63.2 % versus 61%, p = 0.87). Conclusion Screening detects hepatitis C with lesser fibrosis but does not result in better response to pegylated interferon and ribavirin as compared with non-screened patients. PMID:26279845

  7. High-density cervical ureaplasma urealyticum colonization in pregnant women

    Directory of Open Access Journals (Sweden)

    Ranđelović Gordana

    2006-01-01

    Full Text Available Background/aim: Ureaplasma urealyticum, a common commensal of the female lower genital tract, has been observed as an important opportunistic pathogen during pregnancy. The aims of this study were to determine the degree of cervical colonization with U. urealyticum in pregnant women with risk pregnancy and in pregnant women with normal term delivery and to evaluate the correlation between high-density cervical U. urealyticum colonization and premature rupture of membranes (PROM as well. Methods. This research was conducted on the samples comprising 130 hospitalized pregnant women with threatening preterm delivery and premature rupture of membranes. The control group consisted of 39 pregnant women with term delivery without PROM. In addition to standard bacteriological examination and performing direct immunofluorescence test to detect Chlamydia trachomatis, cervical swabs were also examined for the presence of U. urealyticum and Mycoplasma hominis by commercially available Mycofast Evolution 2 test (International Microbio, France. Results. The number of findings with isolated high-density U. urealyticum in the target group was 69 (53.08%, while in the control group was 14 (35.90%. Premature rupture of membranes (PROM occurred in 43 (33.08% examinees: 29 were pPROM, and 14 were PROM. The finding of U.urealyticum ≥104 was determined in 25 (58.14% pregnant women with rupture, 17 were pPROM, and 8 were PROM. There was statistically significant difference in the finding of high-density U. urealyticum between the pregnant women with PROM and the control group (χ² = 4.06, p < 0.05. U. urealyticum was predominant bacterial species found in 62.79% of isolates in the PROM cases, while in 32.56% it was isolated alone. Among the 49 pregnant women with preterm delivery, pPROM occurred in 29 (59.18% examinees, and in 70.83% of pregnant women with findings of high-density U. urealyticum pPROM was observed. Conclusion. Cervical colonization with U

  8. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  9. An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator

    Science.gov (United States)

    Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.

  10. A satellite snow depth multi-year average derived from SSM/I for the high latitude regions

    Science.gov (United States)

    Biancamaria, S.; Mognard, N.M.; Boone, A.; Grippa, M.; Josberger, E.G.

    2008-01-01

    The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia. The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth multi-year field for the time period 1987-1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation coefficient with GSWP2 data for January is - 0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field (correlation coefficient - 0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with GSWP2 snow depth equal to 0.65) than over North America

  11. Areal density optimizations for heat-assisted magnetic recording of high-density media

    Science.gov (United States)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter; Praetorius, Dirk

    2016-06-01

    Heat-assisted magnetic recording (HAMR) is hoped to be the future recording technique for high-density storage devices. Nevertheless, there exist several realization strategies. With a coarse-grained Landau-Lifshitz-Bloch model, we investigate in detail the benefits and disadvantages of a continuous and pulsed laser spot recording of shingled and conventional bit-patterned media. Additionally, we compare single-phase grains and bits having a bilayer structure with graded Curie temperature, consisting of a hard magnetic layer with high TC and a soft magnetic one with low TC, respectively. To describe the whole write process as realistically as possible, a distribution of the grain sizes and Curie temperatures, a displacement jitter of the head, and the bit positions are considered. For all these cases, we calculate bit error rates of various grain patterns, temperatures, and write head positions to optimize the achievable areal storage density. Within our analysis, shingled HAMR with a continuous laser pulse moving over the medium reaches the best results and thus has the highest potential to become the next-generation storage device.

  12. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  13. Patterned Platinum Etching Studies in an Argon High Density Plasma

    Science.gov (United States)

    Delprat, Sébastien; Chaker, Mohamed; Margot, Joëlle; Pépin, Henri; Tan, Liang; Smy, Tom

    1998-10-01

    A high-density surface-wave Ar plasma operated in the low pressure regime is used to study pure physical etching characteristics of platinum thin films. The platinum samples are RF biased so as to obtain a maximum DC self-bias voltage of 150 V. The sputter-etching characteristics are investigated as a function of the magnetic field intensity, the self-bias voltage and the gas pressure. At 1 mtorr, the etch rate is found to be a unique linear function of both the self-bias voltage and the ion density, independently of the magnetic field intensity value. However, even though the ion density increases, the etch rate is found to decrease with increasing pressure. In the low pressure regime, etch rates as high as 2000 A/min are obtained with a good selectivity over resist. Without any optimization of the etching process, we were able to etch 0.5 micron Pt trenches, 0.6 micron thick yielding fence-free profiles and sidewall angles (75º) that already meets the present industrial requirements of NVRAM technology.

  14. Density Profiles in Molecular Cloud Cores Associated with High-Mass Star-Forming Regions

    CERN Document Server

    Pirogov, Lev E

    2009-01-01

    Radial density profiles for the sample of dense cores associated with high-mass star-forming regions from southern hemisphere have been derived using the data of observations in continuum at 250 GHz. Radial density profiles for the inner regions of 16 cores (at distances $\\la 0.2-0.8$ pc from the center) are close on average to the $\\rho\\propto r^{-\\alpha}$ dependence, where $\\alpha=1.6\\pm 0.3$. In the outer regions density drops steeper. An analysis with various hydrostatic models showed that the modified Bonnor-Ebert model, which describes turbulent sphere confined by external pressure, is preferable compared with the logotrope and polytrope models practically in all cases. With a help of the Bonnor-Ebert model, estimates of central density in a core, non-thermal velocity dispersion and core size are obtained. The comparison of central densities with the densities derived earlier from the CS modeling reveals differences in several cases. The reasons of such differences are probably connected with the presen...

  15. Generation of a neutral, high-density electron-positron plasma in the laboratory

    CERN Document Server

    Sarri, G; Cole, J; Schumaker, W; Di Piazza, A; Reville, B; Doria, D; Dromey, B; Gizzi, L; Green, A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kushel, S; Mangles, S; Najmudin, Z; Thomas, A G R; Vargas, M; Zepf, M

    2013-01-01

    We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($\\gamma_{e/p} \\approx 15$), small divergence ($\\theta_{e/p} \\approx 10 - 20$ mrad), and high density ($n_{e/p}\\simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.

  16. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... assessments of these specific VSCs so that their power densities and reliabilities are quantitatively determined, which requires extensive utilization of the electro-thermal models of the VSCs under investigation. In this thesis, the three-level neutral-point-clamped VSCs (3L-NPC-VSCs), which are classified......-HB-VSCs). As the switch technology for realizing these 3L-VSCs, press-pack IGBTs are chosen to ensure high power density and reliability. Based on the selected 3L-VSCs and switch technology, the converter electro-thermal models are developed comprehensively, implemented practically, and validated via a full-scale 3L...

  17. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  18. Plasma wakefield excitation by incoherent laser pulses: a path towards high-average power laser-plasma accelerators

    CERN Document Server

    Benedetti, C; Esarey, E; Leemans, W P

    2014-01-01

    In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structures. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.

  19. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  20. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  1. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-06-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  2. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  3. Multifractal analysis of high resolution solar wind proton density measurements

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  4. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  5. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    Science.gov (United States)

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  6. High-Throughput Laser Peening of Metals Using a High-Average-Power Nd: Glass Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Dane, C.B.; Hackel, L.A.; Halpin, J.; Daly, J.; Harrisson, J.; Harris, J.

    1999-11-01

    Laser shot peening, a surface treatment for metals, is known to induce residual compressive stresses to depths of over 1 mm providing improved component resistance to various forms of failure. Recent information also suggests that thermal relaxation of the laser induced stress is significantly less than that experienced by other forms of surface stressing that involve significantly higher levels of cold work. We have developed a unique solid state laser technology employing Nd:glass amplifier slabs and SBS phase conjugation that enables this process to move into high throughput production processing.

  7. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  8. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  9. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target.

  10. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  11. A New Hard Switching Bidirectional Converter With High Power Density

    Directory of Open Access Journals (Sweden)

    Bahador Fani

    2010-01-01

    Full Text Available In this paper, a new isolated dc-dc bidirectional converter is proposed. This converter consists of two transformers (flyback and forward and only one switch in primary side and one switch in secondary side of transformers. In this converter energy transfers to the output in both on and off switch states so power density of this converter is high This converter controlled by PWM signal. Also this converter operates over a wide input voltage range. Theoretical analysis is presented and computer simulation and experimental results verify the converter analysis.

  12. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  13. On high-order perturbative calculations at finite density

    Science.gov (United States)

    Ghişoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-02-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes - a result reminiscent of a previously proposed "naive real-time formalism" for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  14. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    34Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries," ACS Nano, vol. 4, pp. 6121- 6131...2010/10/26 2010. [2] S. L. Chou, et al., "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0170 TR-2013-0170 ULTRA HIGH ENERGY DENSITY CATHODES WITH CARBON NANOTUBES Brian J. Landi, et al. Rochester

  15. High density QCD and entropy production at heavy ion colliders

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    The role of entropy production in the context of probing QCD properties at high densities and finite temperatures in ultra-relativistic collisions of heavy nuclei is inspected. It is argued that the entropy generated in these reactions provides a powerful tool to investigate the space-time evolution and the question whether and how a deconfined plasma of quarks and gluons is formed. I will address the questions how entropy is produced, and how it is measurable. The uncertainties in predicting the different contributions to the total entropy and particle multiplicities during the course of heavy ion collisions are also discussed.

  16. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  17. The physics of ultra-high-density magnetic recording

    CERN Document Server

    Ek, Johannes; Weller, Dieter

    2001-01-01

    In this book, 17 experts in magnetic recording focus on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives. In 11 chapters, an examination is made of the fundamental physical concepts and their impact on recording mechanisms, with special emphasis on thin-film longitudinal, perpendicular, patterned and nanoparticle media. Theoretical and experimental investigations are presented which serve to enhance our basic understanding of thin-film dynamics, medium dynamics and thermal effects. Fundamental aspects of magnetotransport are discussed and an overview is given of recording head designs.

  18. Antarctic marine gravity field from high-density satellite altimetry

    Science.gov (United States)

    Sandwell, David T.

    1992-01-01

    High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.

  19. A Cherenkov Radiation Detector with High Density Aerogels

    CERN Document Server

    Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

    2009-01-01

    We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

  20. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    Science.gov (United States)

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  1. Investigation of heavy current discharges with high initial gas density

    Energy Technology Data Exchange (ETDEWEB)

    Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, P.; Shirokov, N. [Institute of Problems of Electrophysics of Russian Academy of Sciences, Dvortsovayanab., 18, St. Petersburg, 191065 (Russia)

    1996-05-01

    Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 {mu}s were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7{center_dot}10{sup 21}cm{sup {minus}3}, dI/dt=6{center_dot}10{sup 11}A/s, and I{sub max}=560kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2{center_dot}4km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for I{sub max}{approximately}1MA and an initial concentration of 10{sup 21}cm{sup {minus}3}. {copyright} {ital 1996 American Institute of Physics.}

  2. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Science.gov (United States)

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  3. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    Science.gov (United States)

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  4. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    Directory of Open Access Journals (Sweden)

    Maoqi Chen

    2016-01-01

    Full Text Available Decomposition of electromyograms (EMG is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6±4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85±1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  5. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  6. Simulating deposition of high density tailings using smoothed particle hydrodynamics

    Science.gov (United States)

    Babaoglu, Yagmur; Simms, Paul H.

    2017-08-01

    Tailings are a slurry of silt-sized residual material derived from the milling of rock. High density (HD) tailings are tailings that have been sufficiently dewatered to a point where they exhibit a yield stress upon deposition. They form gently sloped stacks on the surface when deposited; this eliminates or minimizes the need for dams or embankments for containment. Understanding the flow behaviour of high density tailings is essential for estimating the final stack geometry and overall slope angle. This paper focuses on modelling the flow behaviour of HD tailings using smoothed particle hydrodynamics (SPH) method incorporating a `bi-viscosity' model to simulate the non-Newtonian behaviour. The model is validated by comparing the numerical results with bench scale experiments simulating single or multi-layer deposits in two-dimensions. The results indicate that the model agreed fairly well with the experimental work, excepting some repulsion of particles away from the bottom boundary closer to the toe of the deposits. Novel aspects of the work, compared to other simulation of Bingham fluids by SPH, are the simulation of multilayer deposits and the use of a stopping criteria to characterize the rest state.

  7. Multiple parton interactions in high-density QCD matter

    CERN Document Server

    Srivastava, D K; Srivastava, Dinesh K.; Geiger, Klaus

    1999-01-01

    Multiple interactions of quarks and gluons in high-energy heavy-ion collisions may give rise to interesting phemomena of color charges propagating in high-density QCD matter. We study the dynamics of multi-parton systems produced in nucleus-nucleus collisions at energies corresponding the the CERN SPS and the future BNL RHIC experiments. Due to the complexity of the multi-particle dynamics we choose to employ the parton cascade model in order to simulate the development of multiple parton scatterings and associated stimulated emision processes. Our results indicate a non-linear increase with nuclear mass A of, e.g., parton multiplicity, energy density, strangeness, and contrast a linear A-scaling as in Glauber-type approaches. If multiple interactions are suppressed and only single parton scatterings (no re-interactions) are considered, we recover such a linear behavior. It remains to be studied whether these results on the parton level can be experimentally seen in final-state observables, such as the charge...

  8. Development Status of High-Thrust Density Electrostatic Engines

    Science.gov (United States)

    Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.

    2017-01-01

    Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.

  9. Strongly Interacting Matter at Very High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2011-06-05

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  10. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  11. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  12. Diagnostics for ion beam driven high energy density physics experimentsa)

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; Ni, P. A.

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K+ beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  13. Enhanced flat adenoma detection rate with high definition colonoscopy plus i-scan for average-risk colorectal cancer screening

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-D'Jesús

    Full Text Available Background and aim: The usefulness of high definition colonoscopy plus i-scan (HD+i-SCAN for average-risk colorectal cancer screening has not been fully assessed. The detection rate of adenomas and other measurements such as the number of adenomas per colonoscopy and the flat adenoma detection rate have been recognized as markers of colonoscopy quality. The aim of the present study was to compare the diagnostic performance of an HD+i-SCAN with that of standard resolution white-light colonoscope. Methods: This is a retrospective analysis of a prospectively collected screening colonoscopy database. A comparative analysis of the diagnostic yield of an HD+i-SCAN or standard resolution colonoscopy for average-risk colorectal screening was conducted. Results: During the period of study, 155/163 (95.1% patients met the inclusion criteria. The mean age was 56.9 years. Sixty of 155 (39% colonoscopies were performed using a HD+i-SCAN. Adenoma-detection-rates during the withdrawal of the standard resolution versus HD+i-SCAN colonoscopies were 29.5% and 30% (p = n.s.. Adenoma/colonoscopy values for standard resolution versus HD+i-SCAN colonoscopies were 0.46 (SD = 0.9 and 0.72 (SD = 1.3 (p = n.s.. A greater number of flat adenomas were detected in the HD+i-SCAN group (6/60 vs. 2/95 (p < .05. Likewise, serrated adenomas/polyps per colonoscopy were also higher in the HD+i-SCAN group. Conclusions: A HD+i-SCAN colonoscopy increases the flat adenoma detection rate and serrated adenomas/polyps per colonoscopy compared to a standard colonoscopy in average-risk screening population. HD+i-SCAN is a simple, available procedure that can be helpful, even for experienced providers. The performance of HD+i-SCAN and substantial prevalence of flat lesions in our average-risk screening cohort support its usefulness in improving the efficacy of screening colonoscopies.

  14. High-density EMG e-textile systems for the control of active prostheses

    DEFF Research Database (Denmark)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals...... classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing....

  15. Iterative Bayesian Model Averaging: a method for the application of survival analysis to high-dimensional microarray data

    Directory of Open Access Journals (Sweden)

    Raftery Adrian E

    2009-02-01

    Full Text Available Abstract Background Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes. Results We applied the iterative BMA algorithm to two cancer datasets: breast cancer and diffuse large B-cell lymphoma (DLBCL data. On the breast cancer data, the algorithm selected a total of 15 predictor genes across 84 contending models from the training data. The maximum likelihood estimates of the selected genes and the posterior probabilities of the selected models from the training data were used to divide patients in the test (or validation dataset into high- and low-risk categories. Using the genes and models determined from the training data, we assigned patients from the test data into highly distinct risk groups (as indicated by a p-value of 7.26e-05 from the log-rank test. Moreover, we achieved comparable results using only the 5 top selected genes with 100% posterior probabilities. On the DLBCL data, our iterative BMA procedure selected a total of 25 genes across 3 contending models from the training data. Once again, we assigned the patients in the validation set to significantly distinct risk groups (p

  16. Investigation of cognitive abilities related to reading and spelling in Korean: readers with high, average, and low skill levels.

    Science.gov (United States)

    Park, Hyun-Rin; Uno, Akira

    2012-11-01

    In this study, we investigated the characteristics of cognitive abilities as predictors of Korean reading and spelling ability, and the characteristics of the cognition of reading difficulty in Korean. In 103 Korean third-grade children, we tested ability to read and spell, nonverbal intelligence, vocabulary size, phonological cognitive processing, visual cognitive processing, and naming speed. Our results indicated that receptive vocabulary, phoneme awareness, and naming speed served as factors for predicting reading test score; receptive vocabulary served as a factor for predicting spelling test score. We found that low reading-level groups had significantly slower performance on the naming speed task and lower scores on the receptive vocabulary test, as compared with the other groups (average and high reading-level groups). The present results have implications concerning useful tasks for screening for Korean poor readers. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Temperature dependence of the optical properties of high-density GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ryan P.; Kim, Jongsu [Yeungnam University, Gyeongsan (Korea, Republic of); Lee, Sangjun; Noh, Samkyu [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jinsoo [Chonbuk National University, Jeonju (Korea, Republic of); Leem, Jaeyoung [Inje University, Gimhae (Korea, Republic of); Song, Jindong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-05-15

    We investigate the effect of the quantum dot (QD) density on the thermal escape and the retrapping processes of carriers for unstrained GaAs/AlGaAs QDs through temperature-dependent photoluminescence measurements. We fabricated high-density GaAs QDs (8.4 x 10{sup 10}/cm{sup 2}, dot-dot distance ∼34 nm) on an Al{sub 0.3}Ga{sub 0.7}As/GaAs (111)A surface by using droplet epitaxy. The average lateral size and height of the GaAs QDs are 24 and 6 nm, respectively. Temperature-dependent photoluminescence (PL) studies show that high-density GaAs QDs undergo a sigmoidal-shape energy shift. The sigmoidal dependence of the PL peak energy can be explained by thermal escaping of carriers followed by re-trapping by QDs. Our analysis indicates that the re-trapping probability of thermally-escaped carriers increases with decreasing dot-to-dot distance (corresponding to an increase in the QD density).

  18. Exploring high-density baryonic matter: Maximum freeze-out density

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Joergen [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-08-15

    The hadronic freeze-out line is calculated in terms of the net baryon density and the energy density instead of the usual T and μ{sub B}. This analysis makes it apparent that the freeze-out density exhibits a maximum as the collision energy is varied. This maximum freeze-out density has μ{sub B} = 400 - 500 MeV, which is above the critical value, and it is reached for a fixed-target bombarding energy of 20-30 GeV/N well within the parameters of the proposed NICA collider facility. (orig.)

  19. Development of high energy density electrical double layer capacitors

    Science.gov (United States)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction

  20. Perpendicular patterned media for high density magnetic storage

    Science.gov (United States)

    Wong, Joyce Y.

    2000-11-01

    Current longitudinal thin-film media in magnetic hard- disk drives are facing an oncoming limit caused by the superparamagnetic effect, in which the individual grains in the medium become so small that they are no longer stable against thermal fluctuation. This situation is undesirable as the stored information may be lost within an unexpectedly short time frame. There have been several proposed solutions in addressing the superparamagnetic limit, and one of them is perpendicular patterned media. In this approach, a periodic array of magnetic pillars is defined lithographically on a non-magnetic substrate. Binary data of ``1'' or ``0'' can be stored in each of these elements, which have two possible magnetization directions perpendicular to the plane of the medium. In our perpendicular patterned media design, Ni columns of 150-230nm diameter with a 6:1 aspect ratio are embedded in an (AlGa)2O 3/GaAs substrate. The fabrication procedure uses a combination of high resolution electron beam lithography, dry etching, and electroplating. The high aspect ratio in the column is achieved by taking advantage of the high etching rate and selectivity of AlGaAs/GaAs over (AlGa)2O 3 in the Cl2 chemically assisted ion beam etching process. In addition to being a robust etching mask, the (AlGa)2O3 layer also plays an important role in the chemical mechanical polishing procedure to remove the overplated Ni mushrooms. Once the Ni columns are fabricated, magnetic characterization is performed using magnetic force microscopy and scanning magnetoresistance microscopy. The former measurement confirms that the electroplated Ni columns are magnetic while the latter determines whether the individual columns are stable enough to retain the recorded information. We have successfully demonstrated recording in our 170nm diameter Ni column array arranged in a square format using a commercial read/write head. This is the first demonstration of single magnetic column per bit data storage in a

  1. High Stocking Density Controls Phillyrea Angustifolia in Mediterranean Grasslands

    Science.gov (United States)

    Mesléard, François; Yavercovski, Nicole; Lefebvre, Gaétan; Willm, Loic; Bonis, Anne

    2017-03-01

    Extensive grazing applied in the form of low instantaneous pressure over a long period is a widespread management practice in protected areas. However this kind of stocking method does not always achieve the expected results, in particular because it fails to limit colonization by woody plants.This is the case in the relict xero-halophytic grasslands of the northern Mediterranean coastal region, subjected to widespread colonization by the shrub Phillyrea angustifolia despite the presence of extensive grazing. In this study, we investigated, for an equal annual stocking rate, the respective impact of high stocking density applied over a short period (mob grazing) and low stocking density applied over a long period on both P. angustifolia and herbaceous cover, using an in situ experimental design run for 7 years. Only mob grazing was effective both in controlling the establishment and increasing the mortality of P. angustifolia individuals. We did not find any difference after the 7 years of experimentation between the two stocking methods with regard to the herbaceous community parameters tested: species richness, diversity, evenness, contribution of annual characteristic species. By contrast, the exclusion of domestic grazing led to a strong reduction of these values.The use of mob grazing may be well suited for meeting conservation goals such as maintaining open habitats in these grasslands.

  2. High density collinear holographic data storage system (Conference Presentation)

    Science.gov (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong

    2016-09-01

    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  3. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  4. Formation of FRCs on the Pulsed High Density Experiment

    Science.gov (United States)

    Andreason, Samuel; Slough, John

    2008-11-01

    The Pulsed High Density (PHD) experiment has been reassembled at a new facility with sufficient space to continue through the full acceleration and compression stages to reach breakeven. The intention here is to produce a large FRC, but remain in the kinetic regime where the FRC is stable and the transport sufficiently low that a Q > 1 plasma can be attained at moderate densities ˜ 10^23 m-3. During reassembly a more complete analysis of previous experimental results has been made. One of the issues in the early phase of the experiment was inefficient flux trapping during field reversal due to the large scale of the FRC source (0.4 m radius). The on-axis seed plasma was unable to diffuse out to the walls on a timescale commensurate with the introduction of bias fields. This resulted in more than half of the initial bias flux lost before sheath formation halted flux loss. An annular array of plasma sources has been constructed that solves this problem and greatly enhances the flux retention. Dynamic formation has been employed on PHD and analysis tools capable of interpreting the magnetic loop diagnostic array have been developed. Results with comparison to numerical models will be presented.

  5. OLEOPHOBIC AND HYDROPHOBIC FEATURE EXPERIMENTS OF FLUORINATED HIGH DENSITY POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    杨宏伟; 魏贤勇; 费逸伟; 孙世安; 李晓越

    2013-01-01

    The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra ,scanning electron microscopy (SEM) and contact angle (CA) system . The SEM images show that there is a three-layer structure called the reaction ,virgin and boundary layer structure . The depth of fluorinated layer is 5.75 μm with 1 h fluorination time and 7.86 μm with 2 h . The depths are 5.46 μm and 5.07 μm when fluorine density is 2% and 1% ,respectively .CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5° to 104.5° .Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments .It is shown that the in-crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel .

  6. Status of the High Average Power Diode-Pumped Solid State Laser Development at HiLASE

    Directory of Open Access Journals (Sweden)

    Ondřej Novák

    2015-09-01

    Full Text Available An overview of the latest developments of kilowatt-level diode pumped solid state lasers for advanced applications at the HiLASE Centre is presented. An overview of subcontracted and in-house-developed laser beamlines is presented. The aim of development is to build kW-class beamlines delivering picosecond pulses between 1- and 100-kHz repetition rates and high-energy nanosecond pulses at 10 Hz. The picosecond beamlines are based on Yb:YAG thin-disk amplifiers and chirped pulse amplification. The current status of the beamlines’ performance is reported. The advantages of zero-phonon line and pulsed pumping are demonstrated with respect to efficiency, thin disk temperature and beam quality. New diagnostics methods supporting the high average power lasers’ development, such as the high-resolution spectroscopy of Yb-doped materials, in situ thin disk deformation measurements, single-shot M2 measurement, realization of wavefront correction by a deformable mirror and the laser performance of a new mixed garnet ceramics, are described. The energetic, thermal and fluid-mechanical numerical modeling for the optimization of the multi-slab amplifiers is also described.

  7. Recycling high density tungsten alloy powder by oxidization-reduction process

    Institute of Scientific and Technical Information of China (English)

    张兆森; 陈立宝; 贺跃辉; 黄伯云

    2002-01-01

    The processes of directly recycling high density tungsten alloy by oxidation-reduction technique were investigated. The particle size of recycled powder is fine, and the shape of powder particle is regular when the final reduction temperature is 850℃, in which the average size of the tungsten alloy particles reduced is about 1.5μm. The average size of the alloy particles increase to 6μm and 9μm when increasing the reduction temperature to 900℃ and 950℃, respectively. However, if the reduction temperature is higher than 900℃, the surface feature of powder is complicated. Increasing reduction temperature from 900℃ to 950℃, the content of oxygen of recycled powder decreases from 0.2314% to 0.1700%, and powder particles grow slightly. It has been also found that the chemical composition of the recycled alloy powder is the same as the initial powder.

  8. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  9. A ferroelectric DRAM cell for high-density NVRAM's

    Science.gov (United States)

    Moazzami, Reza; Hu, Chenming; Shepherd, William H.

    1990-10-01

    The operation of a ferroelectric DRAM (dynamic random-access memory) cell for nonvolatile RAM (NVRAM) applications is described. Because polarization reversal only occurs during nonvolatile store/recall operations and not during read/write operations, ferroelectric fatigue is not a serious endurance problem. For a 3-V power supply, the worst-case effective silicon dioxide thickness of the unoptimized lead zirconate titanate film studied is less than 1.7 nm. The resistivity and endurance properties of ferroelectric films can be optimized by modifying the composition of the film. This cell can be the basis of a very-high-density NVRAM with practically no read/write cycle limit and at least 10 to the 10th nonvolatile store/recall cycles.

  10. [Cholesterol in serum high density lipoprotein fraction (author's transl)].

    Science.gov (United States)

    Schatz, C; Jeanblanc, B; Offner, M

    1980-11-22

    The risk of atheroma can be assessed and valid epidemiological surveys can be carried out by measuring cholesterol in serum high density lipoprotein fraction (HDL) and calculating the HDL cholesterol: VLDL + LDL ratio. This was done in 39 patients free from surgically confirmed atheromatous lesions and in 51 patients presenting with such lesions. Of the four different techniques used for separation in these patients (ultracentrifugation, precipitation with heparin-Mn2+, precipitation with phosphotungstate-Mg2+ and electrophoresis), precipitation with phosphotungstate-Mg/2+ seems to be the most suitable, since there is no degradation of the HDL fraction as during electrophoresis on polyacrylamide gel, and less floculation of the supernatant after separation. Contrary to ultracentrifugation, which requires sophisticated equipment and good technical skill, the technique is easily carried out.

  11. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    . The transvinylene response in air to gamma radiation is linear with dose and has relatively low yield compared with the response to electrons, whereas the response in deaerated polyethylene samples is also linear, but is more sensitive, and has negligible dose-rate dependence in its response to gamma rays...... and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene...

  12. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  13. Scoping study. High density polyethylene (HDPE) in salstone service

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  14. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  15. Ultracold molecular Rydberg physics in a high density environment

    CERN Document Server

    Eiles, Matthew T; Robicheaux, F; Greene, Chris H

    2016-01-01

    Sufficiently high densities in Bose-Einstein condensates provide favorable conditions for the production of ultralong-range polyatomic molecules consisting of one Rydberg atom and a number of neutral ground state atoms. The chemical binding properties and electronic wave functions of these exotic molecules are investigated analytically via hybridized diatomic states. The effects of the molecular geometry on the system's properties are studied through comparisons of the adiabatic potential curves and electronic structures for both symmetric and randomly configured molecular geometries. General properties of these molecules with increasing numbers of constituent atoms and in different geometries are presented. These polyatomic states have spectral signatures that lead to non-Lorentzian line-profiles.

  16. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  17. Characterization of high density through silicon vias with spectral reflectometry.

    Science.gov (United States)

    Ku, Yi-Sha; Huang, Kuo Cheng; Hsu, Weite

    2011-03-28

    Measurement and control is an important step for production-worthy through silicon vias etch. We demonstrate the use and enhancement of an existing wafer metrology tool, spectral reflectometer by implementing novel theoretical model and measurement algorithm for high density through-silicon via (HDTSV) inspection. It is capable of measuring depth and depth variations of array vias by Discrete Fourier Transform (DFT) analysis in one shot measurement. Surface roughness of via bottom can also be extracted by scattering model fitting. Our non-destructive solution can measure TSV profile diameters as small as 5 μm and aspect ratios greater than 13:1. The measurement precision is in the range of 0.02 μm. Metrology results from actual 3D interconnect processing wafers are presented.

  18. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  19. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  20. High-density avalanche chambers for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Manfrass, P.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hohmuth, K.

    1988-12-15

    A positron tomograph for radiopharmaceutical and medical research is under construction. In its final stage it will cover six high-density avalanche chambers (HIDAC) in a hexagonal arrangement. Each detector with a sensitive area of 50x28 cm/sup 2/ will consist of a stack of four pairs of multihole photon-to-electron converters with a multiwire proportional counter (MWPC) in between. An experimental investigation of detector properties as time and spatial resolutions as well as detector efficiency in dependence to converter structure, electric field strength and counting gas mixture preceded the final design of these detectors. Results of these studies are outlined. Furthermore, longitudinal tomograms taken with a stationary test camera are presented.

  1. High-density percutaneous chronic connector for neural prosthetics

    Science.gov (United States)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  2. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  3. Methods and systems for rapid prototyping of high density circuits

    Science.gov (United States)

    Palmer, Jeremy A.; Davis, Donald W.; Chavez, Bart D.; Gallegos, Phillip L.; Wicker, Ryan B.; Medina, Francisco R.

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  4. Thermolysis of High-Density Polyethylene to Petroleum Products

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-01-01

    Full Text Available Thermal degradation of plastic polymers is becoming an increasingly important method for the conversion of plastic materials into valuable chemicals and oil products. In this work, virgin high-density polyethylene (HDPE was chosen as a material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse virgin HDPE with an objective to optimize the liquid product yield at a temperature range of 400°C to 550°C. The chemical analysis of the HDPE pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The composition of the pyrolytic oil was analyzed using GC-MS, and it was found that the main constituents were n-Octadecane, n-Heptadecane, 1-Pentadecene, Octadecane, Pentadecane, and 1-Nonadecene. The physical properties of the obtained pyrolytic oil were close to those of mixture of petroleum products.

  5. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V; Liu, Jie

    2013-02-07

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.

  6. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  7. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    1991-01-01

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between a

  8. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between

  9. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    Science.gov (United States)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  10. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Loeschner, Udo

    2015-09-01

    In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm3/min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm3/min, respectively. On copper, the maximum throughputs are 6.1 mm3/min and 21.4 mm3/min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.

  11. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    Science.gov (United States)

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  12. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  13. Numerical methods for high-dimensional probability density function equations

    Science.gov (United States)

    Cho, H.; Venturi, D.; Karniadakis, G. E.

    2016-01-01

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  14. Numerical methods for high-dimensional probability density function equations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. [Department of Mathematics, University of Maryland College Park, College Park, MD 20742 (United States); Venturi, D. [Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Karniadakis, G.E., E-mail: gk@dam.brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2016-01-15

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  15. Probucol alleviates atherosclerosis and improves high density lipoprotein function

    Directory of Open Access Journals (Sweden)

    Zhong Jian-Kai

    2011-11-01

    Full Text Available Abstract Background Probucol is a unique hypolipidemic agent that decreases high density lipoprotein cholesterol (HDL-C. However, it is not definite that whether probucol hinders the progression of atherosclerosis by improving HDL function. Methods Eighteen New Zealand White rabbits were randomly divided into the control, atherosclerosis and probucol groups. Control group were fed a regular diet; the atherosclerosis group received a high fat diet, and the probucol group received the high fat diet plus probucol. Hepatocytes and peritoneal macrophages were isolated for [3H] labeled cholesterol efflux rates and expression of ABCA1 and SR-B1 at gene and protein levels; venous blood was collected for serum paraoxonase 1, myeloperoxidase activity and lipid analysis. Aorta were prepared for morphologic and immunohistochemical analysis after 12 weeks. Results Compared to the atherosclerosis group, the paraoxonase 1 activity, cholesterol efflux rates, expression of ABCA1 and SR-BI in hepatocytes and peritoneal macrophages, and the level of ABCA1 and SR-BI in aortic lesions were remarkably improved in the probucol group, But the serum HDL cholesterol concentration, myeloperoxidase activity, the IMT and the percentage plaque area of aorta were significantly decreased. Conclusion Probucol alleviated atherosclerosis by improving HDL function. The mechanisms include accelerating the process of reverse cholesterol transport, improving the anti-inflammatory and anti-oxidant functions.

  16. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    Science.gov (United States)

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  17. SELDI-TOF mass spectrometry of High-Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Rezaee Farhad

    2007-09-01

    Full Text Available Abstract Background High-Density Lipoprotein (HDL, one of the main plasma lipoproteins, serves as a docking station for proteins involved in inflammation, coagulation, and lipid metabolism. Methods To elucidate the protein composition of HDL, we employed SELDI-TOF mass spectrometry as a potential high-throughput proteomic candidate for protein profiling of HDL. HDL derived from normolipemic individuals was captured on PS20 protein-chips using covalently bound antibodies against apo A-I or A-II. Results After optimisation, on-chip capture of HDL particles directly from plasma or from pre-purified HDL resulted in comparable fingerprints confirming specific capture of HDL. Depending on the capture antibody some differences in the fingerprint were observed. The most detailed fingerprint was observed up to 50 kDa; approximately 95 peaks were detected in the 3–50 kDa molecular mass range. Between 50 and 160 kDa, 27 more peaks were detected. Conclusion Based on these results, SELDI-TOF MS may be a suitable high-throughput candidate for HDL protein profiling and marker search. This approach may be used to i investigate the underlying mechanisms that lead to increased atherothrombotic risk and ii to investigate the atherothrombotic state of an individual.

  18. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  19. Fuel rod behavior under normal operating conditions in Super Fast Reactor with high power density

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Haitao, E-mail: haitaoju@gmail.com [Science and Technology on Reactor System Design Technology Laboratory, Chengdu, Sichuan 610041 (China); Ishiwatari, Yuki [Department of Nuclear Engineering and Management, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656 (Japan); Oka, Yoshiaki [Joint Department of Nuclear Energy, Waseda University, Totsukamachi, Shinjuku, Tokyo 169-8050 (Japan)

    2015-08-15

    Highlights: • The improved core of Super Fast Reactor with high power density is analyzed. • We analyzed four types of the limiting fuel rods. • The influence of Pu enrichment and compressive stress to yield strength ratio are analyzed. • The improved fuel rod design of the new core is suggested. - Abstract: A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) which is presently researched in a Japanese project. A preliminary core has an average power density of 158.8 W/cc. However one of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8 W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. In order to ensure the fuel rod integrity of new core design with high power density, the fuel rod behaviors under normal operating condition are analyzed using fuel performance code FEMAXI-6. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are generated from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, individually with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak (MPP), Maximum Discharge Burnup (MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900 °C. (2) Maximum cladding stress in circumferential direction should

  20. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  1. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    Science.gov (United States)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  2. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  3. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Quimica; Gonzalez, J.; Ichazo, M. [Universidad Simon Bolivar, Dept. de Mecanica, Caracas (Venezuela); Chipara, M. [Research Institute for Electrotechnics, Bucharest (Romania)

    2001-04-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  4. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  5. Tree crown delineation from high resolution airborne LiDAR based on densities of high points

    NARCIS (Netherlands)

    Rahman, M.Z.A.; Gorte, B.G.H.

    2009-01-01

    Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies

  6. High-density myoelectric pattern recognition toward improved stroke rehabilitation.

    Science.gov (United States)

    Zhang, Xu; Zhou, Ping

    2012-06-01

    Myoelectric pattern-recognition techniques have been developed to infer user's intention of performing different functional movements. Thus electromyogram (EMG) can be used as control signals of assisted devices for people with disabilities. Pattern-recognition-based myoelectric control systems have rarely been designed for stroke survivors. Aiming at developing such a system for improved stroke rehabilitation, this study assessed detection of the affected limb's movement intention using high-density surface EMG recording and pattern-recognition techniques. Surface EMG signals comprised of 89 channels were recorded from 12 hemiparetic stroke subjects while they tried to perform 20 different arm, hand, and finger/thumb movements involving the affected limb. A series of pattern-recognition algorithms were implemented to identify the intended tasks of each stroke subject. High classification accuracies (96.1% ± 4.3%) were achieved, indicating that substantial motor control information can be extracted from paretic muscles of stroke survivors. Such information may potentially facilitate improved stroke rehabilitation.

  7. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules

    Science.gov (United States)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.

    2012-10-01

    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  8. Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdullah Al Saud Institute of Nano and Advanced Technologies, Riyadh (Saudi Arabia)], E-mail: Chaossf@aol.com

    2008-08-15

    The notions of the order of a symmetry group may be extended to that of an average, non-integer order. Building on this extension, it can be shown that the five classical exceptional Lie symmetry groups could be extended to a hierarchy, the total sum of which is four times {alpha}-bar{sub 0}=137+k{sub 0} of the electromagnetic field. Subsequently it can be shown that all known and conjectured physical fields may be derived by E-infinity transfinite scaling transformation. Consequently E{sub 8}E{sub 8} exceptional Lie symmetry groups manifold, the SL(2,7){sub c} holographic modular curve boundary {gamma}(7), Einstein-Kaluza gravity R{sup (n=4)} and R{sup (n=5)} as well as the electromagnetic field are all topological transformations of each other. It is largely a matter of mathematical taste to choose E{sub 8} or the electromagnetic field associated with {alpha}-bar{sub 0} as derived or as fundamental. However since E{sub 8} has been extensively studied by the founding father of group theory and has recently been mapped completely, it seems beneficial to discuss at least high energy physics starting from the largest of the exceptional groups.

  9. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling

    National Research Council Canada - National Science Library

    Riwanto, Meliana; Rohrer, Lucia; Roschitzki, Bernd; Besler, Christian; Mocharla, Pavani; Mueller, Maja; Perisa, Damir; Heinrich, Kathrin; Altwegg, Lukas; von Eckardstein, Arnold; Lüscher, Thomas F; Landmesser, Ulf

    2013-01-01

    ...). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein...

  10. Symmetry energy systematics and its high density behavior

    CERN Document Server

    Chen, Lie-Wen

    2015-01-01

    We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c...

  11. High-density lipoprotein proteome dynamics in human endotoxemia

    Directory of Open Access Journals (Sweden)

    Stroes Erik SG

    2011-06-01

    Full Text Available Abstract Background A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L and 10 men with high HDL cholesterol levels (1.9+/-0.4 mmol/L were challenged with endotoxin (LPS intravenously (1 ng/kg bodyweight. We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome. Results Plasma drawn at 7 time-points over a 24 hour time period after LPS challenge was used for direct capture of HDL using antibodies against apolipoprotein A-I followed by subsequent SELDI-TOF MS profiling. Upon LPS administration, profound changes in 21 markers (adjusted p-value Conclusions This study shows that the semi-quantitative differences in the HDL proteome as assessed by SELDI-TOF MS cannot explain why subjects with low HDL cholesterol are more susceptible to a challenge with LPS than those with high HDL cholesterol. Instead the results indicate that hierarchical clustering could be useful to predict HDL functionality in acute phase responses towards LPS.

  12. High density plasmas and new diagnostics: An overview (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Celona, L., E-mail: celona@lns.infn.it; Gammino, S.; Mascali, D. [Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy)

    2016-02-15

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  13. High density plasmas and new diagnostics: An overview (invited).

    Science.gov (United States)

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  14. Ultra-high Density SNParray in Neuroblastoma Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Inge M. Ambros

    2014-08-01

    Full Text Available Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e. amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses: so called segmental chromosomal aberrations, i.e. gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as chromothripsis are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism (SNP arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.

  15. Plasma behaviour at high beta and high density in the Madison Symmetric Torus RFP

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, M. [University of Wisconsin, Madison; Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. F. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Bonomo, F. [Consorzio RFX, Italy; Bower, D L [University of California, Los Angeles; Combs, Stephen Kirk [ORNL; Craig, D. [University of Wisconsin, Madison; Foust, Charles R [ORNL

    2009-01-01

    Pellet fuelling of improved confinement Madison Symmetric Torus (MST) plasmas has resulted in high density and high plasma beta. The density in improved confinement discharges has been increased fourfold, and a record plasma beta (beta(tot) = 26%) for the improved confinement reversed-field pinch (RFP) has been achieved. At higher beta, a new regime for instabilities is accessed in which local interchange and global tearing instabilities are calculated to be linearly unstable, but experimentally, no severe effect, e. g., a disruption, is observed. The tearing instability, normally driven by the current gradient, is driven by the pressure gradient in this case, and there are indications of increased energy transport ( as compared with low-density improved confinement). Pellet fuelling is also compared with enhanced edge fuelling of standard confinement RFP discharges for the purpose of searching for a density limit in MST. In standard-confinement discharges, pellet fuelling peaks the density profile where edge fuelling cannot, but transport appears unchanged. For a limited range of plasma current, MST discharges with edge fuelling are constrained to a maximum density corresponding to the Greenwald limit. This limit is surpassed in pellet-fuelled improved confinement discharges.

  16. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  17. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...

  18. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  19. Stability of discoidal high-density lipoprotein particles

    Science.gov (United States)

    Maleki, Mohsen; Fried, Eliot

    Motivated by experimental and numerical studies revealing that discoidal high-density lipoprotein (HDL) particles may adopt flat elliptical and nonplanar saddle-like configurations, it is hypothesized that these might represent stabilized configurations of initially unstable flat circular particles. A variational description is developed to explore the stability of a flat circular discoidal HDL particle. While the lipid bilayer is modeled as two-dimensional fluid film endowed with surface tension and bending elasticity, the apoA-I belt is modeled as one-dimensional inextensible twist-free chain endowed with bending elasticity. Stability is investigated using the second variation of the underlying energy functional. Various planar and nonplanar instability modes are predicted and corresponding nondimensional critical values of salient dimensionless parameters are obtained. The results predict that the first planar and nonplanar unstable modes occur due to in-plane elliptical and transverse saddle-like perturbations. Based on available data, detailed stability diagrams indicate the range of input parameters for which a flat circular discoidal HDL particle is linearly stable or unstable.

  20. High-density matter: current status and future challenges

    Science.gov (United States)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  1. Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Henry C. Obasi

    2013-01-01

    Full Text Available Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF filled high density polyethylene (HDPE have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.

  2. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.

    2015-01-01

    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  3. Effect of substrates on crystallization of high density polyethylene

    Institute of Scientific and Technical Information of China (English)

    范毓润; 林渊; 阮绵照

    2008-01-01

    The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate’s ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.

  4. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  5. Nuclear isomers as ultra-high-energy-density materials

    Science.gov (United States)

    Poppe, C. H.; Weiss, M. S.; Anderson, J. D.

    1992-09-01

    A major energy advance could result if the enormous potential of nuclear energy storage could be tapped without the penalty of radioactive by-products. Recent research has uncovered a new method for nuclear energy storage with high energy density and no residual radioactivity. Nuclear isomers are metastable states of atomic nuclei which release their energy in a prompt burst of electromagnetic radiation; in many cases the product remaining after decay of isomer is stable and no activity is produced by the electromagnetic decay. Two kinds of nuclear isomers are known: spin isomers and shape isomers. The former lacks a release mechanism. Theory has predicted the existence of shape isomers in the mass range around mercury and gold where decay by fission is prohibited. Experiments on the existence of fissionless shape isomers have resulted in evidence for 27 different shape isomers in isotopes of mercury, lead, and thallium. Three potential candidates for release mechanisms have been identified to date: neutron catalysis (Hf- 178), laser-electron-nuclear coupling (Th-229), and Stark-shift-induced mixing (speculative). Ways of producing nonfissioning shape isomers are discussed.

  6. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter

    2013-09-01

    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  7. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  8. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  9. Survival of charged rho condensation at high temperature and density

    CERN Document Server

    Liu, Hao; Huang, Mei

    2015-01-01

    The charged vector $\\rho$ mesons in the presence of external magnetic fields at finite temperature $T$ and chemical potential $\\mu$ have been investigated in the framework of the Nambu--Jona-Lasinio model. We compute the masses of charged $\\rho$ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the $\\rho$ meson contains the quark-loop contribution, i.e. the leading order contribution in $1/N_c$ expansion. The charged $\\rho$ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field $eB_c$, which means that the charged vector meson condensation, i.e. the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged $\\rho$ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that the charged $\\rho$ condensatio...

  10. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina

    2004-07-01

    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  11. High-density lipoprotein (HDL) metabolism and bone mass.

    Science.gov (United States)

    Papachristou, Nicholaos I; Blair, Harry C; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2017-05-01

    It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions. © 2017 Society for Endocrinology.

  12. Preface to Special Topic: High-Energy Density Laboratory Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, Siegfried H.; /SLAC

    2017-04-01

    In the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems. These facilities routinely produce states of matter in the high-energy density physics regime, i.e., pressures above a million atmospheres, 1011 J/m3, and employ a suite of temporally and spatially resolving imaging and scattering measurements that were originally developed to understand the behavior of inertial confinement fusion plasmas. These capabilities bring to the field of astrophysics critical experimental tests of simulations in relevant regimes that are far from the conditions that can otherwise be routinely produced on earth.5 These astrophysical motivated studies are now finding their way into the laboratory plasma community. Further, laboratory astrophysics helped to motivate the development of new precision experimental capabilities; the latest being the world-class Linac Coherent Light Source (LCLS) x-ray laser at the Matter in Extreme Conditions instrument at Stanford that is dedicated to fundamental research.

  13. Iatrogenic severe depression of high-density lipoprotein cholesterol.

    Science.gov (United States)

    Mymin, D; Dembinski, T; Friesen, M H

    2009-07-01

    The authors present 5 cases of paradoxical depression of high-density lipoprotein (HDL) cholesterol induced by fibrate drugs. In a 24-month review of all cases seen in one physician's practice at the Winnipeg Health Sciences Centre Lipid Clinic, 492 patients made a total of 1187 visits. Sixty-eight of them were given a fibrate drug (14%). Ten patients had HDL cholesterol levels that were less than 0.5 mmol/L (2%), and of these, 5 cases were due to exposure to fenofibrate (1%). These 5 cases comprised 7.4% of the 68 patients who were given any fibrate drug during that period. Mean levels were as follows: HDL cholesterol on fenofibrate 0.27, off fenofibrate 1.0 mmol/L and apo A1 on fenofibrate 0.41, off fenofibrate 1.17 g/L. A literature review revealed documented cases in 37 patients involving fibrates alone or in combination with other drugs known to cause decreased HDL cholesterol levels. In 13 patients, exposure was to fibrate therapy alone; in those exposed to combinations, the effect was clearly attributable to fibrates in 9; in 14, the nonfibrates (mostly rosiglitazone) were the attributable drugs; and in 1, it was impossible to tell. Thus, fibrate therapy should always be suspected as a cause of profoundly depressed HDL cholesterol.

  14. Improving Robotic Assembly of Planar High Energy Density Targets

    Science.gov (United States)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  15. A system verification platform for high-density epiretinal prostheses.

    Science.gov (United States)

    Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai

    2013-06-01

    Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.

  16. Liquid lithium for high power density fragmentation targets

    Science.gov (United States)

    Nolen, J. A.; Reed, C. B.; Hassanein, A.; Morrissey, D. J.; Ottarson, J. H.; Sherrill, B. M.

    2001-10-01

    Windowless liquid lithium targets for in-flight fragmentation or fission of high power heavy ion beams are being developed for the U.S. RIA project. With uranium beam power of 100 kW and a beam spot diameter of 1 mm the power density in the target is over 1 MW/cm3. Thermal analysis for this example indicates a very low peak temperature for the lithium when flowing at a linear velocity of 10 m/s. A vacuum test chamber is under construction at Argonne at an existing liquid lithium facility to demonstrate a 2 cm thick windowless target. As a first step towards using liquid lithium target technology at a nuclear physics fragmentation facility, a lower power target is being constructed for use at the NSCL. This target will use beryllium windows with flowing lithium. It is designed for beams between oxygen and calcium with beam power above 3 kW. The tapered beryllium windows are each 1 mm thick for the calcium beams and 7 mm thick for the oxygen beams. The lithium is 5 mm thick. This gives an overall target thickness ranging from about 1 g/cm2 to 3 g/cm2 which is adjusted by moving the target vertically. The designs of these targets and the status of the prototypes will be discussed.

  17. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  18. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  19. High density 3D printed microfluidic valves, pumps, and multiplexers.

    Science.gov (United States)

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-07

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  20. Experimental study of high density foods for the Space Operations Center

    Science.gov (United States)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  1. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  2. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  3. High Density Nano-Electrode Array for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  4. High-Density Plasma Reactors: Simulations for Design

    Science.gov (United States)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions

  5. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    Science.gov (United States)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  6. High current density stability of ohmic contacts to silicon carbide

    Science.gov (United States)

    Downey, Brian P.

    The materials properties of SiC, such as wide bandgap, high breakdown electric field, and good thermal conductivity, make it an appealing option for high temperature and high power applications. The replacement of Si devices with SiC components could lead to a reduction in device size, weight, complexity, and cooling requirements along with an increase in device efficiency. One area of concern under high temperature or high current operation is the stability of the ohmic contacts. Ohmic contact degradation can cause an increase in parasitic resistance, which can diminish device performance. While contact studies have primarily focused on the high temperature stability of ohmic contacts to SiC, different failure mechanisms may arise under high current density stressing due to the influence of electromigration. In addition, preferential degradation may occur at the anode or cathode due to the directionality of current flow, known as a polarity effect. The failure mechanisms of ohmic contacts to p-type SiC under high current density stressing are explored. Complementary materials characterization techniques were used to analyze contact degradation, particularly the use of cross-sections prepared by focused ion beam for imaging using field emission scanning electron microscopy and elemental analysis using Auger electron spectroscopy. Initially the degradation of commonly studied Ni and Al-based contacts was investigated under continuous DC current. The contact metallization included a bond pad consisting of a TiW diffusion barrier and thick Au overlayer. The Ni contacts were found to degrade due to the growth of voids within the ohmic contact layer, which were initially produced during the high temperature Ni/SiC ohmic contact anneal. The Al-based contacts degraded due to the movement of Al from the ohmic contact layer to the surface of the Au bond pad, and the movement of Au into the ohmic contact layer from the bond pad. The inequality of Al and Au fluxes generated

  7. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    Science.gov (United States)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  8. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  9. High-energy side-peak emission of exciton-polariton condensates in high density regime.

    Science.gov (United States)

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-05-19

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates-sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity-have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics.

  10. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    Directory of Open Access Journals (Sweden)

    Casali L.

    2014-01-01

    Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  11. Differential analysis for high density tiling microarray data

    Directory of Open Access Journals (Sweden)

    Kapranov Philipp

    2007-09-01

    Full Text Available Abstract Background High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program. Results We have proposed a novel approach, based on a piece-wise function – to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias. Conclusion The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value -13. The prototype R code has been made available as supplementary material [see Additional file 1]. Additional file 1 gsam_prototypercode.zip. File archive comprising of prototype R code for gSAM implementation including readme and examples. Click here for file

  12. Differential analysis for high density tiling microarray data.

    Science.gov (United States)

    Ghosh, Srinka; Hirsch, Heather A; Sekinger, Edward A; Kapranov, Philipp; Struhl, Kevin; Gingeras, Thomas R

    2007-09-24

    High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program. We have proposed a novel approach, based on a piece-wise function - to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias. The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value < 0.003; it is most significant at the 5' end of genes, at a p-value < 10-13. The prototype R code has been made available as supplementary material [see Additional file 1].

  13. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  14. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  15. High-density lipoprotein and atherosclerosis: Roles of lipid transporters

    Institute of Scientific and Technical Information of China (English)

    Yoshinari; Uehara; Keijiro; Saku

    2014-01-01

    Various previous studies have found a negative cor-relation between the risk of cardiovascular events and serum high-density lipoprotein(HDL) cholesterol levels. The reverse cholesterol transport, a pathway of choles-terol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette trans-porters(ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mi-metic peptide, Fukuoka University ApoA-I Mimetic Pep-tide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an an-tiatherosclerotic effect by enhancing the biological func-tions of HDL without changing circulating HDL choles-terol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.

  16. Self-sustained focusing of high-density streaming plasma

    Science.gov (United States)

    Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.

    2017-01-01

    We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.

  17. High density culture of white bass X striped bass fingerlings in raceways using power plant heated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.M.; Burton, G.L.; Schweinforth, R.L.

    1983-06-01

    White bass (Morone chrysops) X striped bass (M. saxatilis) hybrids weighing 1691/lb were initially stocked in five 24 ft/sup 3/ floating screen cages for 20 days. Hybrids averaging one inch in total length and 361 fish/lb were released in four 614 ft/sup 3/ concrete raceways. Two stocking densities, 2.6 and 5.1 fish/ft/sup 3/, were evaluated in the 94-day study using a flow rate of 300 gpm/raceway. Water temperatures averaged 79/sup 0/F and water quality was adequate throughout the production period. Fish were hand fed to satiation daily. Columnaris and Aeromonas hydrophila caused the most serious disease problems. Gas supersaturation was suspect in high mortality levels during cage culture of hybrid bass fry. Cannibalism may have been responsible for unaccountable losses prior to raceway stocking and at harvest. The study yielded 5773 hybrids weighing 658 lb. The high density treatment showed greater weight gain, average weight, average length and percent survival as well as improved food conversion. Results suggest that higher stocking densities and periodic grading may increase production and suppress cannibalism. 10 references, 3 figures, 3 tables.

  18. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  19. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  20. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.

    Science.gov (United States)

    Pietarila Graham, Jonathan; Holm, Darryl D; Mininni, Pablo D; Pouquet, Annick

    2007-11-01

    We compute solutions of the Lagrangian-averaged Navier-Stokes alpha - (LANS alpha ) model for significantly higher Reynolds numbers (up to Re approximately 8300 ) than have previously been accomplished. This allows sufficient separation of scales to observe a Navier-Stokes inertial range followed by a second inertial range specific to the LANS alpha model. Both fully helical and nonhelical flows are examined, up to Reynolds numbers of approximately 1300. Analysis of the third-order structure function scaling supports the predicted l3 scaling; it corresponds to a k-1 scaling of the energy spectrum for scales smaller than alpha. The energy spectrum itself shows a different scaling, which goes as k1. This latter spectrum is consistent with the absence of stretching in the subfilter scales due to the Taylor frozen-in hypothesis employed as a closure in the derivation of the LANS alpha model. These two scalings are conjectured to coexist in different spatial portions of the flow. The l3 [E(k) approximately k-1] scaling is subdominant to k1 in the energy spectrum, but the l3 scaling is responsible for the direct energy cascade, as no cascade can result from motions with no internal degrees of freedom. We demonstrate verification of the prediction for the size of the LANS alpha attractor resulting from this scaling. From this, we give a methodology either for arriving at grid-independent solutions for the LANS alpha model, or for obtaining a formulation of the large eddy simulation optimal in the context of the alpha models. The fully converged grid-independent LANS alpha model may not be the best approximation to a direct numerical simulation of the Navier-Stokes equations, since the minimum error is a balance between truncation errors and the approximation error due to using the LANS alpha instead of the primitive equations. Furthermore, the small-scale behavior of the LANS alpha model contributes to a reduction of flux at constant energy, leading to a shallower energy

  1. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  2. The viscosity and density of sour gas fluids at high temperatures and high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Giri, B.R.; Marriott, R.A.; Blais, P.; Clark, P.D. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-01-15

    This poster session discussed an experiment designed to measure the viscosity and density of sour gas fluids at high temperatures and pressures. An option for disposing acid gases while enhancing the production of oil and gas fields is the re-injection of gases rich in hydrogen sulphide/carbon dioxide (H{sub 2}S/CO{sub 2}) into reservoirs up to very high pressures, but issues with respect to corrosion, compression, pumping, and transport need addressing, and the reliable high-density/high-pressure data needed to arrive at an optimum process concept and the design of pumps, compressors, and transport lines had up to this point been lacking. The experimental set up involved the use of a Vibrating Tube Densimeter and a Cambridge Viscometer. Working with toxic gases at very high pressures and obtaining highly accurate data in a wide range of conditions were two of the challenges faced during the experiment. The experiment resulted in physical property measurement systems being recalibrated and a new daily calibration routine being adopted for accuracy. The densities and viscosities of pure CO{sub 2} and sulphur dioxide (SO{sub 2}) in a wide pressure and temperature range were determined. 1 tab., 9 figs.

  3. High Current, High Density Arc Plasma as a New Source for WiPAL

    Science.gov (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team

    2016-10-01

    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  4. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  5. Particle control in high power, high density long pulses on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Grosman, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G.T.; Kazarian, F.; Mazon, D.; Maget, P.; Mitteau, R.; Monier-Garbet, P.; Moreau, P.; Saint-Laurent, F.; Schunke, B.; Vallet, J.C

    2005-07-01

    The plasma density and impurity level (Z(eff) {approx} 2) are perfectly controlled all along the 6 minute long discharges, the main limitation coming from the LH (lower hybrid) power source. After 60 s, the particle injection rate and the particle exhaust rate are constant. Therefore the retention rate, defined as the difference between these 2 quantities, is also constant at about 3.10{sup 20} D/s. These discharges were performed at low density and with LHCD (lower hybrid current drive). A new scenario has been recently developed combining ICRH (ion cyclotron resonance heating) and LHCD up to a total power of 10 MW at higher density and limited in time to 60 s by the capability of the ICRH heating systems. The infrared imaging protection system reveals lots of hot spots on the plasma facing components. These localized heat loads are attributed mainly to the fast particles which are accelerated in the near field generated by the IC and LH launchers. The gas injection rate necessary to maintain the plasma density in the high power high density scenarios (LHCD + ICRH) is substantially increased (up to a factor 3). Particle balance analysis based on pressure measurements shows that the absolute in-vessel retention rate, computed after 30 s of plasma is roughly equivalent in both scenarios (3.10{sup 20} D/s), whatever the ICRH power (from 0 to 4 MW) and the line integrated plasma density (from 2.5 to 4.10{sup 19} m{sup -2}) are. This result could indicate that the retention mechanisms could be dominated by wall processes such as diffusion in carbon porosities rather than plasma processes such as co-deposition, dependent on edge conditions. (A.C.)

  6. Ultra-high cell-density silicon photomultipliers with high detection efficiency

    Science.gov (United States)

    Acerbi, Fabio; Gola, Alberto; Regazzoni, Veronica; Paternoster, Giovanni; Borghi, Giacomo; Piemonte, Claudio; Zorzi, Nicola

    2017-05-01

    Silicon photomultipliers (SiPMs) are arrays of many single-photon avalanche diodes (SPADs), all connected in parallel. Each SPAD is sensitive to single photons and the SiPM gives an output proportional to the number of detected photons. These sensors are becoming more and more popular in different applications, from high-energy physics to spectroscopy, and they have been significantly improved over last years, decreasing the noise, increasing the cell fill-factor (FF) and thus achieving very high photon-detection efficiency (PDE). In FBK (Trento, Italy), we developed new SiPM technologies with high-density (HD) and, more recently, ultra-high-density (UHD) of cells (i.e. density of SPADs). These technologies employ deep-trenches between cells, for electrical and optical isolation. As an extreme case the smallest-cell, SiPM, i.e. with 5μm cell pitch, has about 40000 SPADs per squared millimeter. Such small SPAD dimensions gives a significantly high dynamic range to the SiPM. These small-cells SiPM have a lower correlated noise (including lower afterpulsing probability) and a faster recharge time (in the order of few nanoseconds), and they also preserve a very good detection efficiency (despite the small SPAD dimension).

  7. High energy-density liquid rocket fuel performance

    Science.gov (United States)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  8. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  9. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  10. OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES

    Energy Technology Data Exchange (ETDEWEB)

    K.Krist; O. Spaldon-Stewart; R. Remick

    2004-03-01

    This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the

  11. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fillot L.-A.

    2015-02-01

    Full Text Available In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6 and High Density PolyEthylene (HDPE is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85% of ethanol (E85 in the biofuel, permeability of PA6 being 100 times lower than that of HDPE for low ethanol content fuels (E5, E0. The time-lags were also compared, and on the whole range of ethanol contents, HDPE permeation kinetics appears to be much faster than that of PA6, the time lag for a 1 mm thick specimens in presence of E10 being 50 days for PA6 and 0.5 days for HDPE. The compositions of the solvent fluxes were analyzed by FID gas chromatography, and it turned out that the solvent flux was mainly made up of ethanol (minimum 95% in the case of PA6, whereas in the case of HDPE, solvent flux was mainly made up of hydrocarbons. The implication of this difference in the solvent flux composition is discussed in the present article, and a side effect called the “fuel exhaustion process” is presented. The influence of the sample thickness was then studied, and for the different biofuels compositions, the pervaporation kinetics of polyamide 6 appeared to evolve with the square of the thickness, a long transitory regime being highlighted in the case of PA6. This result implies that the time needed to characterize the steady state permeability of thick PA6 parts such as fuel tanks can be very long (one year or more, this duration being far superior to the Euros 5 or Euro 6 standard emission measurements time scale. The influence of temperature on the permeability was finally assessed, and the activation energy that is the signature of the temperature

  12. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  13. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  14. High-density EMG E-textile systems for the control of active prostheses.

    Science.gov (United States)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing.

  15. A 100 J-level nanosecond DPSSL for high energy density experiments

    Science.gov (United States)

    Butcher, Thomas; Mason, Paul; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilat, Jan; Priebe, Gerd; Toncian, Toma; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John

    2017-05-01

    We present an overview of the cryo-amplifier concept and design utilized in the DiPOLE100 laser system built for use at the HiLASE Center, which has been successfully tested operating at an average power of 1kW. Following this we describe the alterations made to the design in the second generation system being constructed for high energy density (HED) experiments in the HED beamline at the European XFEL. These changes are predominantly geometric in nature, however also include improved mount design and improved control over the temporal shape of the output pulse. Finally, we comment on future plans for development of the DiPOLE laser amplifier architecture.

  16. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L; 10.1016/j.nimb.2008.05.033

    2008-01-01

    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  17. Stability Of Rubble Mound Breakwaters Using High Density Rock

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Beck, J. B.

    2000-01-01

    The present paper discusses the effect of mass density on stability of rubble mound breakwaters. A short literature review of existing knowledge is give to establish a background for the ongoing research. Furthermore, several model tests are described in which the stability of rubble mound breakw...

  18. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Lodder, J.C.; Haast, M.A.M.; Abelmann, L.; Hadjipanayis, G.C.

    2001-01-01

    The areal bit density of magnetic disk recording has increased since 1990 60% per year and even in the last years 100%. Extrapolation of these rates leads to recording parameters not likely to be achieved without changes in the present way of storing hard disk data. One of the possible solutions is

  19. Genome-wide copy number profiling using high-density SNP array in chickens.

    Science.gov (United States)

    Yi, G; Qu, L; Chen, S; Xu, G; Yang, N

    2015-04-01

    Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome-wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high-density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high-density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high-density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens. © 2015 Stichting International Foundation for Animal Genetics.

  20. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    Science.gov (United States)

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  1. Atlas-based high-density diffuse optical tomography for imaging the whole human cortex

    Science.gov (United States)

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-03-01

    Diffuse optical tomography (DOT) for brain imaging has the potential to be an alternative human brain mapping technique when MRI imaging is not applicable. It recovers tissue chromophore concentrations of brain tissue through measures of light transmission to monitor for example the resting-state brain dynamics. This imaging technique relies on simulation of the light propagation which can be generated based on a subject-specific model. There has been some study on using rigid atlas models as alternatives for model based DOT when subject-specific anatomical data is not available; but there is still a lack of detailed analysis between geometrical accuracy and internal light propagation in tissue for atlas-based DOT. This work is focused on High-Density DOT (HD-DOT) of the whole cortex based on atlas models from 11 different rigid registration algorithms across 24 subjects, and the results are evaluated in 19 areas of the human head. The correlation between geometrical surface error and internal light propagation errors is strong in most area but varies in different regions from R2 = 0.74 in the region around top of the head to R2 = 0.98 in the region around the temples. In the 11 registration methods, basic-4-landmark registration with 4.2mm average surface error and 50% average internal light propagation errors is shown to be the least accurate registration method whereas full-head landmark with non-iterative point to point with 1.7mm average surface error and 32% average internal light propagation error is shown to be the most accurate registration method for atlas-based DOT.

  2. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  3. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    Directory of Open Access Journals (Sweden)

    Shinji Yokoyama

    2015-04-01

    Full Text Available Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP, which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia.

  4. Guiding and collimating the fast electrons by using a low-density-core target with buried high density layers

    Science.gov (United States)

    Lv, Chong; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Xie, Bai-Song; Liu, Shi-Bing

    2017-02-01

    A low-density-core target with buried high density layers is proposed to improve the transport of fast electrons and involved problems are investigated by using two-dimensional particle-in-cell simulations. It is demonstrated that this target can collimate the fast electrons efficiently and lead to a better beam quality. The enhancement is attributed to the weakening of the two stream instability and the better collimation by the self-generated multilayer megagauss magnetic field as well as the baroclinic magnetic field. Comparing this to that without buried high density layers, the energy flux of fast electrons is increased by a factor of about 1.8 and has a narrower transverse distribution in space. Besides, the dependence of the efficiency on the target parameters is examined, and the optimal target parameters are also obtained. Such a target can be useful to many applications, such as fast ignition in inertial fusion.

  5. Cooling Concepts for High Power Density Magnetic Devices

    Science.gov (United States)

    Biela, Juergen; Kolar, Johann W.

    In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.

  6. A High-Density Genetic Map for Cucumber (Cucumis Sativus L. Based on Specific Length Amplified Fragment (SLAF Sequencing and QTL Analysis of Fruit Traits in Cucumber

    Directory of Open Access Journals (Sweden)

    Wenying eZhu

    2016-04-01

    Full Text Available High-density genetic linkage map plays an important role in genome assembly and QTL fine mapping. Since the coming of next-generation sequencing (NGS, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using specific length amplified fragment sequencing, using 153 F2 populations of S1000×S1002. The high-density genetic map composed 3,057 SLAFs, including 4,475 SNP markers on 7 chromosomes, and spanned 1061.19cM. The average genetic distance is 0.35cM. Based on this high-density genome map, QTL analysis was performed on two cucumber fruit traits, fruit length and fruit diameter. There are 15 QTLs for the two fruit traits were detected.

  7. High Volumetric Energy Density Hybrid Supercapacitors Based on Reduced Graphene Oxide Scrolls.

    Science.gov (United States)

    Rani, Janardhanan R; Thangavel, Ranjith; Oh, Se-I; Woo, Jeong Min; Chandra Das, Nayan; Kim, So-Yeon; Lee, Yun-Sung; Jang, Jae-Hyung

    2017-07-12

    The low volumetric energy density of reduced graphene oxide (rGO)-based electrodes limits its application in commercial electrochemical energy storage devices that require high-performance energy storage capacities in small volumes. The volumetric energy density of rGO-based electrode materials is very low due to their low packing density. A supercapacitor with enhanced packing density and high volumetric energy density is fabricated using doped rGO scrolls (GFNSs) as the electrode material. The restacking of rGO sheets is successfully controlled through synthesizing the doped scroll structures while increasing the packing density. The fabricated cell exhibits an ultrahigh volumetric energy density of 49.66 Wh/L with excellent cycling stability (>10 000 cycles). This unique design strategy for the electrode material has significant potential for the future supercapacitors with high volumetric energy densities.

  8. Publications of Proceedings for the RF 2005 7th Workshop on High Energy Density and High Power RF

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, Jr, N C

    2006-01-01

    The University of California, Davis hosted the High Energy Density and High Power RF 7th Workshop on High Energy Density and High Power RF in Kalamata, Greece, 13-17 June, 2005. The Proceedings cost was supported by these funds from the U.S. Department of Energy. The Proceedings was published through the American Institute of Physics.

  9. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  10. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  11. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  12. Mitochondrial DNA Marker EST00083 Is Not Associated with High vs. Average IQ in a German Sample.

    Science.gov (United States)

    Moises, Hans W.; Yang, Liu; Kohnke, Michael; Vetter, Peter; Neppert, Jurgen; Petrill, Stephen A.; Plomin, Robert

    1998-01-01

    Tested the association of a mitochondrial DNA marker (EST00083) with high IQ in a sample of 47 German adults with high IQ scores and 77 adults with IQs estimated at lower than 110. Results do not support the hypothesis that high IQ is associated with this marker. (SLD)

  13. Excluded volume effect of counterions and water dipoles near a highly charged surface due to a rotationally averaged Boltzmann factor for water dipoles.

    Science.gov (United States)

    Gongadze, Ekaterina; Iglič, Aleš

    2013-03-01

    Water ordering near a negatively charged electrode is one of the decisive factors determining the interactions of an electrode with the surrounding electrolyte solution or tissue. In this work, the generalized Langevin-Bikerman model (Gongadze-Iglič model) taking into account the cavity field and the excluded volume principle is used to calculate the space dependency of ions and water number densities in the vicinity of a highly charged surface. It is shown that for high enough surface charged densities the usual trend of increasing counterion number density towards the charged surface may be completely reversed, i.e. the drop in the counterions number density near the charged surface is predicted.

  14. Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment

    Science.gov (United States)

    Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.

    2016-01-01

    We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.

  15. Effect of discrete track medium at high areal density

    Science.gov (United States)

    Kaizu, Akimasa; Soeno, Yoshikazu; Tagami, Katsumichi

    The degradation of SNR caused by the higher uniaxial crystalline anisotropy field (Hk) of medium and small write fields of narrower write width is one of the problems for achieving higher areal density. The SNR dependence on Hk of a medium with different write fields of head using the discrete track medium (DTM) is investigated by using micromagnetics simulation. As a result, the curves of SNR as a function of Hk have peak values. In DTM, the peak values of SNR are almost constant at any Hk of the medium and different write fields. Higher SNR is realized even at low Hk and small write field in DTM.

  16. Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students

    Science.gov (United States)

    Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin

    2015-01-01

    A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…

  17. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    Science.gov (United States)

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  18. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    Science.gov (United States)

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  19. Towards High Density 3-D Memory in Diamond

    Science.gov (United States)

    Henshaw, Jacob; Dhomkar, Siddharth; Meriles, Carlos; Jayakumar, Harishankar

    The nitrogen-vacancy (NV) center in diamond is presently the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Of great utility is the ability to optically initialize the NV charge state, which has an immediate impact on the center's light emission properties. Here, we use two-color microscopy in NV-rich, type-1b diamond to demonstrate fluorescence-encoded long-term storage of classical information. As a proof of principle, we write, reset, and rewrite various patterns with 2-D binary bit density comparable to present DVD-ROM technology. The strong fluorescence signal originating from the diffraction-limited bit volume allows us to transition from binary to multi-valued encoding, which translates into a significant storage capacity boost. Finally, we show that our technique preserves information written on different planes of the diamond crystal and thus serves as a platform for three-dimensional storage. Substantial enhancement in the bit density could be achieved with the aid of super resolution microscopy techniques already employed to discriminate between NVs with sub-diffraction, nanometer accuracy, a regime where the storage capacity could exceed 1017 bytes/cm3 We acknowledge support from the National Science Foundation through Grant NSF-1314205.

  20. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.