WorldWideScience

Sample records for high atmospheric co2

  1. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  2. Forecasting global atmospheric CO2

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda

    2014-05-01

    Full Text Available A new global atmospheric carbon dioxide (CO2 real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF Integrated Forecasting System (IFS. One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 satellite retrievals, as they

  3. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    Science.gov (United States)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  4. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates.

  5. Development of a mobile and high-precision atmospheric CO2 monitoring station

    Science.gov (United States)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  6. Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2015-04-01

    The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However

  7. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  8. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  9. Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    CERN Document Server

    Segura, A; Kasting, J F; Crisp, D; Cohen, M

    2007-01-01

    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The ...

  10. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tylczak, Joseph [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carney, Casey [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dogan, Omer N. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  11. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    Science.gov (United States)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954

  12. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  13. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    Science.gov (United States)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; Rao, Preeti; Ahmadov, Ravan; Deng, Aijun; Díaz-Isaac, Liza I.; Duren, Riley M.; Fischer, Marc L.; Gerbig, Christoph; Gurney, Kevin R.; Huang, Jianhua; Jeong, Seongeun; Li, Zhijin; Miller, Charles E.; O'Keeffe, Darragh; Patarasuk, Risa; Sander, Stanley P.; Song, Yang; Wong, Kam W.; Yung, Yuk L.

    2016-07-01

    Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land-atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as ˜ 1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May-June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of individual measurement sites when a

  14. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  15. Effect of atmospheric CO 2 enrichment on rubisco content in herbaceous species from high and low altitude

    Science.gov (United States)

    Sage, Rowan F.; Schäppi, Bernd; Körner, Christian

    Atmospheric CO 2 enrichment reduces Rubisco content in many species grown in controlled environments; however, relatively few studies have examined CO 2 effects on Rubisco content of plants grown in their natural habitat. We examined the response of Rubisco content to atmospheric CO 2 enrichment (600-680 μmol mol -1 in place of ppm) in 5 herbaceous species growing in a low altitude grassland (550 m) near Basel, Switzerland, and 3 herbaceous species from Swiss alpine grassland at 2470 m. At low elevation, the dominant grass Bromus erectus and the subdominant dicot Sanquisorba minor exhibited 20% to 25% reduction of Rubisco content following high CO 2 exposure; no CO 2 effect was observed in the subdominants Carex flacca, Lotus corniculatus and Trifolium repens. At the Alpine site, the subdominant grass Poa alpina maintained 27% less Rubisco content when grown at high CO 2 while the co-dominant forb Leontodon helveticus had 19% less Rubisco in high CO 2. Rubisco content was unaffected in the tundra dominant Carex curvula. Because the degree of Rubisco modulation was similar between high and low elevation sites, it does not appear that differences in local partial pressure of CO 2 (altitude) or differences in stress in general induce different patterns of modulation of photosynthetic capacity in response to high CO 2. In addition, the degree of Rubisco reduction (<30%) was less than might be indicated by the low biomass response to CO 2 enrichment previously observed at these sites. Thus, plants in Swiss lowland and alpine grassland appear to maintain greater Rubisco concentration and photosynthetic capacity than whole plants can effectively exploit in terms of harvestable biomass.

  16. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    Science.gov (United States)

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2.

  17. Maintaining consistent traceability in high precision isotope measurements of CO2: verifying atmospheric trends of δ13C

    Directory of Open Access Journals (Sweden)

    Y.-S. Lee

    2012-06-01

    Full Text Available Maintaining consistent traceability of high precision measurements of CO2 isotopes is critical in being able to observe accurate atmospheric trends of δ13C (CO2. Although a number of laboratories/organizations around the world have been involved in baseline measurements of atmospheric CO2 isotopes for several decades, the reports on their traceability measures are rare. In this paper, a principle and an approach for the traceability maintenance of high precision isotope measurements (δ13C and δ18O in atmospheric CO2 is described. The uncertainties of the traceability have been estimated based on the history of annual calibrations over the last 10 yr. The overall uncertainties of CO2 isotope measurements for individual ambient samples carried out by our program at Environment Canada are estimated (excluding the uncertainty associated with the sampling. The values are 0.02‰ and 0.05‰ in δ13C and δ18O, respectively, close to the WMO targets for data compatibility. The annual rate of change in δ13C of the primary anchor used in our program (which is the laboratory standard linking ambient measurements back to the primary VPDB scale is close to zero (−0.0016 ± 0.0012‰ per year over the period of 10 yr (2001–2011. The average annual decreasing rate of δ13C in air CO2 measurements at Alert over the period from 1999 to 2010 has been confirmed and verified, which is −0.025 ± 0.003‰ per year. The total change of δ13C in the annual mean value during this period is ∼−0.27‰. The concept of "Big Delta" is introduced and its role in maintaining traceability of the isotope measurements is described and discussed extensively. Finally, the challenges and a strategy for maintaining traceability are also discussed and suggested.

  18. Photodissociation in the atmosphere of Mars - Impact of high resolution, temperature-dependent CO2 cross-section measurements

    Science.gov (United States)

    Anbar, A. D.; Allen, M.; Nair, H. A.

    1993-01-01

    We have investigated the impact of high resolution, temperature-dependent CO2 cross-section measurements, reported by Lewis and Carver (1983), on calculations of photodissociation rate coefficients in the Martian atmosphere. We find that the adoption of 50 A intervals for the purpose of computational efficiency results in errors in the calculated values for photodissociation of CO2, H2O, and O2 which are generally not above 10 percent, but as large as 20 percent in some instances. These are acceptably small errors, especially considering the uncertainties introduced by the large temperature dependence of the CO2 cross section. The inclusion of temperature-dependent CO2 cross sections is shown to lead to a decrease in the diurnally averaged rate of CO2 photodissociation as large as 33 percent at some altitudes, and increases of as much as 950 percent and 80 percent in the photodissociation rate coefficients of H2O and O2, respectively. The actual magnitude of the changes depends on the assumptions used to model the CO2 absorption spectrum at temperatures lower than the available measurements, and at wavelengths longward of 1970 A.

  19. Modeling atmospheric transport of CO2 at High Resolution to estimate the potentialities of spaceborne observation to monitor anthropogenic emissions

    Science.gov (United States)

    Ciais, P.; Chimot, J.; Klonecki, A.; Prunet, P.; Vinuessa, J.; Nussli, C.; Breon, F.

    2010-12-01

    There is a crucial and urgent need to quantify and monitor anthropogenic fossil fuel emissions of CO2. Spaceborne measurements, such as those from GOSAT or the forthcoming OCO-2, or other space missions in preparation, could provide the necessary information, in particular over regions with few in-situ measurements of atmospheric concentration are too scarce. Contrarily to biogenic flux, anthropogenic emissions are highly heterogeneous in space with typical values that vary by several orders of magnitudes. A proper analysis of the impact of anthropogenic emissions on the atmospheric concentration of CO2 therefore requires a high spatial resolution, typically of a few km. Simulations of the transport of fossil CO2 plumes were performed with a resolution of 1 km over the main industrialized regions of France, and using other models of lower resolution to account for the influence of distant sources advected into the area of interest. The results clearly show the plumes from intense yet localized sources, such as urban areas or power plants, and how their structures vary with the meteorology (wind speed and direction). They also show that the plume from distant sources, such as the large emission from Northern Europe, may sometime mask the local plume, even from large cities like Paris or Lyon. These atmospheric transport simulations are then sampled according to cloud cover, spaceborne instrument sampling and typical errors, to analyze the information content of the remote sensing data and how they can improve the current knowledge on anthropogenic emissions.

  20. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX)

    Science.gov (United States)

    Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Karion, Anna; Oda, Tomohiro; Patarasuk, Risa; Razlivanov, Igor; Sarmiento, Daniel; Shepson, Paul; Sweeney, Colm; Turnbull, Jocelyn; Wu, Kai

    2016-05-01

    Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

  1. Ni/MgO catalyst prepared using atmospheric high-frequency discharge plasma for CO2 reforming of methane

    Institute of Scientific and Technical Information of China (English)

    Pan Qin; Huiyuan Xu; Huali Long; Yi Ran; Shuyong Shang; Yongxiang Yin; Xiaoyan Dai

    2011-01-01

    A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma.The influences of conventional method,plasma method,and plasma plus calcination method on the catalytic activity were studied and the CO2 reforming of methane was chosen as the probe reaction.The catalysts were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM),X-ray photoelectron spectroscopy,and CO2 temperature-programmed surface reaction techniques.The results suggested that the nickel-based catalyst prepared by plasma plus calcination method possessed a smaller particle size and a higher dispersion of active component,better low-temperature activity and enhanced anti-coking ability.The conversion of CO2 and CH4 was 90.70% and 89.37%,respectively,and the reaction lasted for 36 h without obvious deactivation under 101.325 kPa and 750 ℃ with CO2/CH4 =1/1.

  2. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism

    Science.gov (United States)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-03-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  3. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils.

    Science.gov (United States)

    Kaufman, Alan J; Xiao, Shuhai

    2003-09-18

    Solar luminosity on the early Earth was significantly lower than today. Therefore, solar luminosity models suggest that, in the atmosphere of the early Earth, the concentration of greenhouse gases such as carbon dioxide and methane must have been much higher. However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion microprobe analyses of the carbon isotopes in individual organic-walled microfossils extracted from a Proterozoic ( approximately 1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope fractionation in these large, morphologically complex microfossils suggest elevated levels of carbon dioxide in the ancient atmosphere--between 10 and 200 times the present atmospheric level. Our results indicate that carbon dioxide was an important greenhouse gas during periods of lower solar luminosity, probably dominating over methane after the atmosphere and hydrosphere became pervasively oxygenated between 2 and 2.2 gigayears ago.

  4. The Abundance of Atmospheric CO2 in Ocean Exoplanets: A Novel CO2 Deposition Mechanism

    CERN Document Server

    Levi, Amit; Podolak, Morris

    2016-01-01

    We consider super-Earth sized planets which have a water mass fraction that is large enough to form an external mantle composed of high pressure water ice polymorphs and that lack a substantial H/He atmosphere. We consider such planets in their habitable zone so that their outermost condensed mantle is a global deep liquid ocean. For these ocean planets we investigate potential internal reservoirs of CO2; the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that in steady state the abundance of CO2 in the atmosphere has two possible states. When the wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is esta...

  5. Trapping atmospheric CO2 with gold.

    Science.gov (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-07

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  6. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate

    Science.gov (United States)

    Tan, Ning; Ramstein, Gilles; Dumas, Christophe; Contoux, Camille; Ladant, Jean-Baptiste; Sepulchre, Pierre; Zhang, Zhongshi; De Schepper, Stijn

    2017-08-01

    Prior to the Northern Hemisphere glaciation around ∼2.7 Ma, a large global glaciation corresponding to a 20 to 60 m sea-level drop occurred during Marine Isotope Stage (MIS) M2 (3.312-3.264 Ma), interrupted the period of global warmth and high CO2 concentration (350-450 ppmv) of the mid Piacenzian. Unlike the late Quaternary glaciations, the M2 glaciation only lasted 50 kyrs and occurred under uncertain CO2 concentration (220-390 ppmv). The mechanisms causing the onset and termination of the M2 glaciation remain enigmatic, but a recent geological hypothesis suggests that the re-opening and closing of the shallow Central American Seaway (CAS) might have played a key role. In this article, thanks to a series of climate simulations carried out using a fully coupled Atmosphere Ocean General Circulation Model (GCM) and a dynamic ice sheet model, we show that re-opening of the shallow CAS helps precondition the low-latitude oceanic circulation and affects the related northward energy transport, but cannot alone explain the onset of the M2 glaciation. The presence of a shallow open CAS, together with favourable orbital parameters, 220 ppmv of CO2 concentration, and the related vegetation and ice sheet feedback, led to a global ice sheet build-up producing a global sea-level drop in the lowest range of proxy-derived estimates. More importantly, our results show that the simulated closure of the CAS has a negligible impact on the NH ice sheet melt and cannot explain the MIS M2 termination.

  7. Estimation of background CO2 concentrations at the high alpine station Schneefernerhaus by atmospheric observations and inverse modelling

    Science.gov (United States)

    Giemsa, Esther; Jacobeit, Jucundus; Ries, Ludwig; Frank, Gabriele; Hachinger, Stephan; Meyer-Arnek, Julian

    2016-04-01

    In order to estimate the influence of Central European CO2 emissions, a new method to retrieve background concentrations based on statistics of radon-222 and backward trajectories is developed and applied to the CO2 observations at the alpine high-altitude research station Schneefernerhaus (2670 m a.s.l.). The reliable identification of baseline conditions is important for perceiving changes in time as well as in the sources and sinks of greenhouse gases and thereby assessing the efficiency of existing mitigation strategies. In the particular case of Central Europe, the analysis of background concentrations could add further insights on the question why background CO2 concentrations increased in the last few decades, despite a significant decrease in the reported emissions. Ongoing effort to define the baseline conditions has led to a variety of data selection techniques. In this diversity of data filtering concepts, a relatively recent data selection method effectively appropriates observations of radon-222 to reliably and unambiguously identify baseline air masses. Owing to its relatively constant emission rate from the ice-free land surface and its half-life of 3.8 days that is solely achieved through radioactive decay, the tropospheric background concentration of the inert radioactive gas is low and temporal variations caused by changes in atmospheric transport are precisely detectable. For defining the baseline air masses reaching the high alpine research station Schneefernerhaus, an objective analysis approach is applied to the two-hourly radon records. The CO2 values of days by the radon method associated with prevailing atmospheric background conditions result in the CO2 concentrations representing the least land influenced air masses. Additionally, three-dimensional back-trajectories were retrieved using the Lagrangian Particle Dispersion Model (LPDM) FLEXPART driven by analysis fields of the Global Forecast System (GFS) produced by the National Centers

  8. ‘Fuji’ apple (Malus domestica Borkh) volatile production during high pCO2 controlled atmosphere storage

    Science.gov (United States)

    ‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....

  9. Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments

    Science.gov (United States)

    Arneth, A.; Veenendaal, E. M.; Best, C.; Timmermans, W.; Kolle, O.; Montagnani, L.; Shibistova, O.

    2006-09-01

    We compare assimilation and respiration rates, and water use strategies in four divergent ecosystems located in cold-continental central Siberia and in semi-arid southern Africa. These seemingly unrelated systems have in common a harsh and highly seasonal environment with a very sharp transition between the dormant and the active season, with vegetation facing dry air and soil conditions for at least part of the year. Moreover, the northern high latitudes and the semi-arid tropics will likely experience changes in key environmental parameters (e.g., air temperature and precipitation) in the future; indeed, in some regions marked climate trends have already been observed over the last decade or so. The magnitude of instantaneous or daily assimilation and respiration rates, derived from one to two years of eddy covariance measurements in each of the four ecosystems, was not related to the growth environment. For instance, respiration rates were clearly highest in the two deciduous systems included in the analysis (a Mopane woodland in northern Botswana and a Downy birch forest in Siberia; >300 mmol m-2 d-1), while assimilation rates in the Mopane woodland were relatively similar to a Siberian Scots pine canopy for a large part of the active season (ca. 420 mmol m-2 d-1). Acknowledging the limited number of ecosystems compared here, these data nevertheless demonstrate that factors like vegetation type, canopy phenology or ecosystem age can override larger-scale climate differences in terms of their effects on carbon assimilation and respiration rates. By far the highest rates of assimilation were observed in Downy birch, an early successional species. These were achieved at a rather conservative water use, as indicated by relatively low levels of λ, the marginal water cost of plant carbon gain. Surprisingly, the Mopane woodland growing in the semi-arid environment had significantly higher values of λ. However, its water use strategy included a very plastic response

  10. Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments

    Directory of Open Access Journals (Sweden)

    O. Kolle

    2006-04-01

    Full Text Available We compare assimilation and respiration rates, and water use strategies in four divergent ecosystems located in cold-continental central Siberia and in semi-arid southern Africa. These seemingly unrelated systems have in common a harsh and highly seasonal environment with a very sharp transition between the dormant and the active season, and with vegetation facing dry air and soil conditions for at least part of the year. Moreover, the northern high latitudes and the semi-arid tropics will likely experience changes in key environmental parameters (e.g., air temperature and precipitation in the future; indeed, in some regions marked climate trends have already been observed over the last decade or so. The magnitude of instantaneous or daily assimilation and respiration rates, derived from one to two years of eddy covariance measurements in each of the four ecosystems, was not related to the growth environment. For instance, respiration rates were clearly highest in the two deciduous systems included in the analysis (a Mopane woodland in northern Botswana and a Downy birch forest in Siberia; >300 mmol m−2 d−1, while assimilation rates in the Mopane woodland were relatively similar to a Siberian Scots pine canopy for a large part of the active season (ca. 420 mmol m−2 d−1. Acknowledging the limited number of ecosystems compared here, these data nevertheless suggest that factors like vegetation type, canopy phenology or ecosystem age can override larger-scale climate differences in terms of their effects on carbon assimilation and respiration rates. By far the highest rates of assimilation were observed in Downy birch, an early successional species. These were achieved at a rather conservative water use, as indicated by relatively low levels of λ, the marginal water cost of plant carbon gain. Surprisingly, the Mopane woodland growing in the semi-arid environment had significantly higher values of λ. However, its water use strategy

  11. CO2气调储藏对大米食用品质调控效应的研究%Effects of Controlled Atmospheres with High CO2 Concentrations on Eating Quality of Rice

    Institute of Scientific and Technical Information of China (English)

    杨维巧; 雷桂明; 刘霞; 李喜宏

    2012-01-01

    This paper investigated the effects of high CO2 atmosphere control condition on the insoluble amylase content and the quality of cooked rice. The sample named W45 from Tianjin was storaged at 10℃ and 30℃ separately for 6 months in gas-controlled chambers, which could quantitatively regulate the content of oxygen and carbon dioxide. The results showed that, under the condition of 10 ℃ and 8% O2, high-concentration CO2 could inhibit the increasing of insoluble amylase of rice, the effect of CO2 concentration was 20% > 10% > 2%, and the insoluble amylase content of rice, which storaged at 20% CO2 atmosphere control condition, increased by 9.39% compared to the initial value, the control (uninflated treatment) increased by 15.01% compared to the initial value. Under the storage condition of 30 X and 8% O2, there was no remarkable influence when high CO2 atmosphere charging at storage on insoluble amylase content At 10 X and 30 ℃ temperature storage conditions, the high CO2 treatment could effectively improve the cooking quality of rice, inhibit the heat water absorption rate of rice, increase the soluble solids content of rice water, the higher CO2 concentration the more obvious effects, and under the storage condition of 20% CO2 and 10 ℃, the heat water absorption rate of rice decreased by 12.71% compared to control, the soluble solids content of rice water increased by 24.56% compared to control.%以W45号大米为试材,定量控制储藏环境中的O2和CO2浓度,研究10℃和30℃条件下,高浓度CO2储藏6个月对大米不溶性直链淀粉含量及蒸煮品质的影响.结果表明:在低温10℃、O2浓度8%条件下,高浓度CO2可有效抑制大米不溶性直链淀粉含量的增加,CO2浓度作用效果20%>10%>2%,其中20%CO2气调储藏大米的不溶性直链淀粉含量与初始值相比仅增加了9.39%,显著低于对照(不充气处理);在高温30℃、O2浓度8%条件下,高浓度CO2调控大米不溶性直链

  12. CO2 Impacts on the Martian Atmosphere

    Science.gov (United States)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  13. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI

    Science.gov (United States)

    Welp, Lisa R.; Patra, Prabir K.; Rödenbeck, Christian; Nemani, Rama; Bi, Jian; Piper, Stephen C.; Keeling, Ralph F.

    2016-07-01

    Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W-63° E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60° N, again excluding Europe, showed a trend of 8-11 Tg C yr-2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr-1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral

  14. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  15. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    Science.gov (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.

  16. Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2

    Science.gov (United States)

    Jana, Subhra; Das, Sankar; Ghosh, Chiranjit; Maity, Abhijit; Pradhan, Manik

    2015-01-01

    With the aim to capture and subsequent selective trapping of CO2, a nanocomposite has been developed through selective modification of the outer surface of the halloysite nanotubes (HNTs) with an organosilane to make the nanocomposite a novel solid-phase adsorbent to adsorb CO2 from the atmosphere at standard ambient temperature and pressure. The preferential adsorption of three major abundant isotopes of CO2 (12C16O2, 13C16O2, and 12C16O18O) from the ambient air by amine functionalized HNTs has been explored using an optical cavity-enhanced integrated cavity output spectroscopy. CO2 adsorption/desorption cycling measurements demonstrate that the adsorbent can be regenerated at relatively low temperature and thus, recycled repeatedly to capture atmospheric CO2. The amine grafted halloysite shows excellent stability even in oxidative environments and has high efficacy of CO2 capture, introducing a new route to the adsorption of isotope selective atmospheric CO2. PMID:25736700

  17. A 40-million-year history of atmospheric CO(2).

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the

  18. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types

  19. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system

    Science.gov (United States)

    Sutton, A. J.; Sabine, C. L.; Maenner-Jones, S.; Lawrence-Slavas, N.; Meinig, C.; Feely, R. A.; Mathis, J. T.; Musielewicz, S.; Bott, R.; McLain, P. D.; Fought, J.; Kozyr, A.

    2014-05-01

    In an intensifying effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time-series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2) systems, have dramatically improved our ability to characterize ocean climate, sea-air gas exchange, and biogeochemical processes. The MAPCO2 system provides high-resolution data that can measure interannual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on carbon dioxide (CO2) flux. Overall uncertainty of the MAPCO2 using in situ calibrations with certified gas standards and post-deployment standard operating procedures is autonomous operation. MAPCO2 measurements are consistent with ship-board seawater pCO2 measurements and GLOBALVIEW-CO2 boundary layer atmospheric values. Here we provide an open ocean MAPCO2 data set including over 100 000 individual air and seawater pCO2 measurements on 14 surface buoys from 2004 through 2011 and a description of the methods and data quality control involved. The climate quality data provided by the MAPCO2 has allowed for the establishment of open ocean observatories to track surface ocean pCO2 changes around the globe. Data are available at doi:10.3334/CDIAC/OTG.TSM_NDP092 and cdiac.ornl.gov/oceans/Moorings/ndp092.

  20. Maintaining consistent traceability in high-precision isotope measurements of CO2: a way to verify atmospheric trends of δ13C and δ18O

    Directory of Open Access Journals (Sweden)

    L. Huang

    2013-07-01

    Full Text Available Maintaining consistent traceability of high-precision measurements of CO2 isotopes is critical in order to obtain accurate atmospheric trends of δ13C and δ18O (in CO2. Although a number of laboratories/organizations around the world have been conducting baseline measurements of atmospheric CO2 isotopes for several decades, reports on the traceability and maintenance are rare. In this paper, a principle and an approach for maintaining consistent traceability in high-precision isotope measurements (δ13C and δ18O of atmospheric CO2 are described. The concept of Big Delta is introduced and its role in maintaining traceability of the isotope measurements is described and discussed extensively. The uncertainties of the traceability have been estimated based on annual calibration records over the last 10 yr. The overall uncertainties of CO2 isotope measurements for individual ambient samples analyzed by the program at Environment Canada have been estimated (excluding these associated with the sampling. The values are 0.02 and 0.05‰ in δ13C and δ18O, respectively, which are close to the World Meteorological Organization (WMO targets for data compatibility. The annual rates of change in δ13C and δ18O of the primary anchor (which links the flask measurements back to the VPDB-CO2 scale are close to zero (−0.0016 ± 0.0012‰, and −0.006 ± 0.003‰ per year, respectively over a period of 10 yr (2001–2011. The average annual changes of δ13C and δ18O in air CO2 at Alert GAW station over the period from 1999 to 2010 have been evaluated and confirmed; they are −0.025 ± 0.003‰ and 0.000 ± 0.010‰, respectively. The results are consistent with a continuous contribution of fossil fuel CO2 to the atmosphere, having a trend toward more negative in δ13C, whereas the lack of change in δ18O likely reflects the influence from the global hydrologic cycle. The total change of δ13C and δ18O during this period is ~0.27‰ and ~0.00

  1. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system

    Directory of Open Access Journals (Sweden)

    A. J. Sutton

    2014-05-01

    Full Text Available In an intensifying effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time-series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2 systems, have dramatically improved our ability to characterize ocean climate, sea–air gas exchange, and biogeochemical processes. The MAPCO2 system provides high-resolution data that can measure interannual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on carbon dioxide (CO2 flux. Overall uncertainty of the MAPCO2 using in situ calibrations with certified gas standards and post-deployment standard operating procedures is 2 (pCO2 and pCO2. The MAPCO2 maintains this level of uncertainty for over 400 days of autonomous operation. MAPCO2 measurements are consistent with ship-board seawater pCO2 measurements and GLOBALVIEW-CO2 boundary layer atmospheric values. Here we provide an open ocean MAPCO2 data set including over 100 000 individual air and seawater pCO2 measurements on 14 surface buoys from 2004 through 2011 and a description of the methods and data quality control involved. The climate quality data provided by the MAPCO2 has allowed for the establishment of open ocean observatories to track surface ocean pCO2 changes around the globe. Data are available at doi:10.3334/CDIAC/OTG.TSM_NDP092 and cdiac.ornl.gov/oceans/Moorings/ndp092.

  2. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  3. Global distributions of CO2 volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra

    Science.gov (United States)

    Aythami Jurado-Navarro, Á.; López-Puertas, Manuel; Funke, Bernd; García-Comas, Maya; Gardini, Angela; González-Galindo, Francisco; Stiller, Gabriele P.; von Clarmann, Thomas; Grabowski, Udo; Linden, Andrea

    2016-12-01

    Global distributions of the CO2 vmr (volume mixing ratio) in the mesosphere and lower thermosphere (from 70 up to ˜ 140 km) have been derived from high-resolution limb emission daytime MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) spectra in the 4.3 µm region. This is the first time that the CO2 vmr has been retrieved in the 120-140 km range. The data set spans from January 2005 to March 2012. The retrieval of CO2 has been performed jointly with the elevation pointing of the line of sight (LOS) by using a non-local thermodynamic equilibrium (non-LTE) retrieval scheme. The non-LTE model incorporates the new vibrational-vibrational and vibrational-translational collisional rates recently derived from the MIPAS spectra by [Jurado-Navarro et al.(2015)]. It also takes advantage of simultaneous MIPAS measurements of other atmospheric parameters (retrieved in previous steps), such as the kinetic temperature (derived up to ˜ 100 km from the CO2 15 µm region of MIPAS spectra and from 100 up to 170 km from the NO 5.3 µm emission of the same MIPAS spectra) and the O3 measurements (up to ˜ 100 km). The latter is very important for calculations of the non-LTE populations because it strongly constrains the O(3P) and O(1D) concentrations below ˜ 100 km. The estimated precision of the retrieved CO2 vmr profiles varies with altitude ranging from ˜ 1 % below 90 km to 5 % around 120 km and larger than 10 % above 130 km. There are some latitudinal and seasonal variations of the precision, which are mainly driven by the solar illumination conditions. The retrieved CO2 profiles have a vertical resolution of about 5-7 km below 120 km and between 10 and 20 km at 120-140 km. We have shown that the inclusion of the LOS as joint fit parameter improves the retrieval of CO2, allowing for a clear discrimination between the information on CO2 concentration and the LOS and also leading to significantly smaller systematic errors. The retrieved CO2 has an improved

  4. Where does CO2 in Antarctica cool the atmosphere ?

    Science.gov (United States)

    Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas

    2016-04-01

    In a recent study we have shown that for the high altitude plateau in Antarctica CO2 causes a surplus in infrared emission to space compared to what is emitted from the surface. This corresponds to a negative greenhouse effect, and is due to the fact that for this region the surface is typically colder than the atmosphere above, opposite to the rest of the world. As a consequence, for this region an increase in CO2 leads to an increase in the energy loss to space, leading to an increase in the negative greenhouse effect. We now studied in more detail the radiative effect of CO2 and compared the results with available measurements from Antarctica. H. Schmithüsen, J. Notholt, G. Köngig-Langlo, T, Jung. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, in press, 2015. doi: 10.1002/2015GL066749.

  5. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  6. Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS)

    Science.gov (United States)

    Kooijmans, Linda M. J.; Uitslag, Nelly A. M.; Zahniser, Mark S.; Nelson, David D.; Montzka, Stephen A.; Chen, Huilin

    2016-11-01

    Carbonyl sulfide (COS) has been suggested as a useful tracer for gross primary production as it is taken up by plants in a similar way as CO2. To explore and verify the application of this novel tracer, it is highly desired to develop the ability to perform continuous and high-precision in situ atmospheric measurements of COS and CO2. In this study we have tested a quantum cascade laser spectrometer (QCLS) for its suitability to obtain accurate and high-precision measurements of COS and CO2. The instrument is capable of simultaneously measuring COS, CO2, CO and H2O after including a weak CO absorption line in the extended wavelength range. An optimal background and calibration strategy was developed based on laboratory tests to ensure accurate field measurements. We have derived water vapor correction factors based on a set of laboratory experiments and found that for COS the interference associated with a water absorption line can dominate over the effect of dilution. This interference can be solved mathematically by fitting the COS spectral line separately from the H2O spectral line. Furthermore, we improved the temperature stability of the QCLS by isolating it in an enclosed box and actively cooling its electronics with the same thermoelectric chiller used to cool the laser. The QCLS was deployed at the Lutjewad atmospheric monitoring station (60 m; 6°21' E, 53°24' N; 1 m a.s.l.) in the Netherlands from July 2014 to April 2015. The QCLS measurements of independent working standards while deployed in the field showed a mean difference with the assigned cylinder value within 3.3 ppt COS, 0.05 ppm for CO2 and 1.7 ppb for CO over a period of 35 days. The different contributions to uncertainty in measurements of COS, CO2 and CO were summarized and the overall uncertainty was determined to be 7.5 ppt for COS, 0.23 ppm for CO2 and 3.3 ppb for CO for 1-minute data. A comparison of in situ QCLS measurements with those from concurrently filled flasks that were

  7. Water Loss from Terrestrial Planets with CO2-rich Atmospheres

    Science.gov (United States)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ~270 W m-2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many "Earth-like" exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  8. The carbon isotope composition of atmospheric CO 2 in Paris

    Science.gov (United States)

    Widory, David; Javoy, Marc

    2003-10-01

    One characteristic of air pollution in the urban environment is high CO 2 concentrations resulting from human activities. Determining the relative contributions of the different CO 2 sources can be addressed simply and elegantly by combining isotope and concentration measurements. Using this approach on atmospheric CO 2 samples collected in Paris, its suburbs and the open country provides fairly accurate conclusions. Our results show that air pollution within the first few metres above ground results basically from binary mixtures among which road traffic is the main contributor and, in particular, vehicles using unleaded gasoline (˜90% of the total). Heating sources, which account for 50% of the CO 2 input below the atmospheric inversion level, and vehicles using diesel contribute very little. Human respiration has a recognisable signature at street level under certain circumstances. The combined isotope and concentration analysis provides a sensitive tracer of local variations, even detecting the occasional prevalence of human respiration and the onset of actions in which natural gas is burnt. It also detects surprising inlets of 'clean air' (CO 2-wise) in the very centre of the city.

  9. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions

    National Research Council Canada - National Science Library

    Liza I Díaz-Isaac; Riley M Duren; Marc L Fischer; Kevin R Gurney; Charles E Miller; Stanley P Sander; Kam W Wong; Yuk L Yung

    2016-01-01

      Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes...

  10. Agroecosystem productivity in a warmer and CO2 enriched atmosphere

    Science.gov (United States)

    Bernacchi, Carl; Köhler, Iris; Ort, Donald; Long, Steven; Clemente, Thomas

    2017-04-01

    A number of in-field manipulative experiments have been conducted that address the response of key ecosystem services of major agronomic species to rising CO2. Global warming, however, is inextricably linked to rising greenhouse gases in general, of which CO2 is the most dominant. Therefore, agroecosystem functioning in future conditions requires an understanding of plant responses to both rising CO2 and increased temperatures. Few in-field manipulative experiments have been conducted that supplement both heating and CO2 above background concentrations. Here, the results of six years of experimentation using a coupled Free Air CO2 Enrichment (FACE) technology with variable output infrared heating arrays are reported. The manipulative experiment increased temperatures (+ 3.5˚ C) and CO2 (+ 200 μmol mol-1) above background levels for on two major agronomic crop species grown throughout the world, Zea mays (maize) and Glycine max (soybean). The first phase of this research addresses the response of plant physiological parameters to growth in elevated CO2 and warmer temperatures for maize and soybean grown in an open-air manipulative experiment. The results show that any increase in ecosystem productivity associated with rising CO2 is either similar or is offset by growth at higher temperatures, inconsistent with the perceived benefits of higher CO2 plus warmer temperatures on agroecosystem productivity. The second phase of this research addresses the opportunity to genetically modify soybean to allow for improved productivity under high CO2 and warmer temperatures by increasing a key photosynthetic carbon reduction cycle enzyme, SPBase. The results from this research demonstrates that manipulation of the photosynthetic pathway can lead to higher productivity in high CO2 and temperature relative to the wild-type control soybean. Overall, this research advances the understanding of the physiological responses of two major crops, and the impact on ecosystem services

  11. The BErkeley Atmospheric CO2 Observation Network: initial evaluation

    Science.gov (United States)

    Shusterman, Alexis A.; Teige, Virginia E.; Turner, Alexander J.; Newman, Catherine; Kim, Jinsol; Cohen, Ronald C.

    2016-10-01

    With the majority of the world population residing in urban areas, attempts to monitor and mitigate greenhouse gas emissions must necessarily center on cities. However, existing carbon dioxide observation networks are ill-equipped to resolve the specific intra-city emission phenomena targeted by regulation. Here we describe the design and implementation of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), a distributed CO2 monitoring instrument that utilizes low-cost technology to achieve unprecedented spatial density throughout and around the city of Oakland, California. We characterize the network in terms of four performance parameters - cost, reliability, precision, and systematic uncertainty - and find the BEACO2N approach to be sufficiently cost-effective and reliable while nonetheless providing high-quality atmospheric observations. First results from the initial installation successfully capture hourly, daily, and seasonal CO2 signals relevant to urban environments on spatial scales that cannot be accurately represented by atmospheric transport models alone, demonstrating the utility of high-resolution surface networks in urban greenhouse gas monitoring efforts.

  12. Testing a high resolution CO2 and CO emission inventory against atmospheric observations in Salt Lake City, Utah for policy applications

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.

    2016-12-01

    We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to

  13. Trend, seasonal and diurnal variations of atmospheric CO2 in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The concentration of atmospheric CO2 in Beijing increased rapidly at a mean growth rate of 3.7%@a?1 from 1993 to 1995. After displaying a peak of (409.7±25.9) ?mol@mol?1 in 1995, it decreased slowly. Both the almost stable anthropogenic CO2 source and increasing biotic CO2 sink contribute to the drop of CO2 concentration from 1995 to 2000. The seasonal variation of CO2 concentration exhibits a clear cycle with a maximum in winter, averaging (426.8±20.6) ?mol@mol?1, and a minimum in summer, averaging (369.1±6.1) ?mol@mol?1. The seasonal variation of CO2 concentration is mainly controlled by phenology. The mean diurnal variation of atmospheric CO2 concentration for a year in Beijing is highly clear: daily maximum CO2 concentration usually occurs at night, but daily minimum CO2 concentration does in the daytime, with a mean diurnal difference more than 34.7 ?mol@mol?1. It has been revealed that the interannual variations of atmospheric CO2 concentration in winter and autumn regulated the interannual trend of atmospheric CO2, whereas the interannual variation of CO2 concentration in summer affected the general tendency of atmospheric CO2 in a less degree.

  14. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; Nehrir, Amin; Obland, Michael; Plant, James; Yang, Melissa

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  15. Detecting Proxima b’s Atmosphere with JWST Targeting CO2 at 15 μm Using a High-pass Spectral Filtering Technique

    Science.gov (United States)

    Snellen, I. A. G.; Désert, J.-M.; Waters, L. B. F. M.; Robinson, T.; Meadows, V.; van Dishoeck, E. F.; Brandl, B. R.; Henning, T.; Bouwman, J.; Lahuis, F.; Min, M.; Lovis, C.; Dominik, C.; Van Eylen, V.; Sing, D.; Anglada-Escudé, G.; Birkby, J. L.; Brogi, M.

    2017-08-01

    Exoplanet Proxima b will be an important laboratory for the search for extraterrestrial life for the decades ahead. Here, we discuss the prospects of detecting carbon dioxide at 15 μm using a spectral filtering technique with the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST). At superior conjunction, the planet is expected to show a contrast of up to 100 ppm with respect to the star. At a spectral resolving power of R = 1790-2640, about 100 spectral CO2 features are visible within the 13.2-15.8 μm (3B) band, which can be combined to boost the planet atmospheric signal by a factor of 3-4, depending on the atmospheric temperature structure and CO2 abundance. If atmospheric conditions are favorable (assuming an Earth-like atmosphere), with this new application to the cross-correlation technique, carbon dioxide can be detected within a few days of JWST observations. However, this can only be achieved if both the instrumental spectral response and the stellar spectrum can be determined to a relative precision of ≤1 × 10-4 between adjacent spectral channels. Absolute flux calibration is not required, and the method is insensitive to the strong broadband variability of the host star. Precise calibration of the spectral features of the host star may only be attainable by obtaining deep observations of the system during inferior conjunction that serve as a reference. The high-pass filter spectroscopic technique with the MIRI MRS can be tested on warm Jupiters, Neptunes, and super-Earths with significantly higher planet/star contrast ratios than the Proxima system.

  16. Prolonged elevated atmospheric CO(2)does not affect decomposition of plant material

    NARCIS (Netherlands)

    Graaff, de M.A.; Six, J.; Blum, H.; Kessel, van C.

    2006-01-01

    Prolonged elevated atmospheric CO2 might alter decomposition. In a 90-day incubation study, we determined the long-term (9 years) impact of elevated CO2 on N mineralization of Lolium perenne and Trifolium repens plant material grown at ambient and elevated CO2 and low- and high-N-15 fertilizer

  17. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  18. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the Netherlan

  19. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  20. A role for atmospheric CO2 in preindustrial climate forcing

    NARCIS (Netherlands)

    Hoof, T.B. van; Wagner-Cremer, F.; Kürschner, W.M.; Visscher, H.

    2008-01-01

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO2 concentration. CO2 trends based on leaf remains of Quercus robur (English oak) from the

  1. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  2. Long-term elevated atmospheric CO2 enhances forest productivity

    Science.gov (United States)

    Loecke, T. D.; Groffman, P. M.; Treseder, K. K.; LaDeau, S.

    2011-12-01

    Global atmospheric CO2 concentrations are increasing at historically unprecedented but ecologically gradual rates. The implications of this perturbation for carbon sequestration and feedback on global climate change are difficult to predict due in part to its gradual and largely uniform nature. We used long-term (>40 years) spatial gradients in atmospheric CO2 concentration, produced by spatially heterogeneous fossil fuel combustion along a rural to urban transect, to test the hypotheses that 1) rural to urban CO2 spatial gradients are useful analogs for gradual climate change and 2) higher atmospheric CO2 concentration promotes tree growth and C sequestration. Fossil fuel derived CO2 imparts a distinctive 14C isotopic signature on atmospheric CO2; as this CO2 is fixed into annual tree rings, a proxy for fossil fuel derived CO2 is preserved. Ten four-year tree ring segments were analyzed for α-cellulose 14C content by AMS from trees within 10 closed canopy forested sites in the Baltimore Maryland metropolitan area. Tree growth parameters were assessed by measuring the annual ring width change of 224 trees across the 10 sites. A hierarchical Bayesian model was constructed to determine the influence of CO2 concentration and other site and environmental factors on tree growth. Our proxy for historical CO2 concentrations indicates a detectable but diminishing spatial CO2 gradient across the rural to urban transect that ranged from a 5.6% gradient during the 1970s to a 1.4% gradient in recent years (2000-2008). This observation is consistent with urban deindustrialization and concurrent expansion of suburban development. As an analog for future atmospheric conditions, this spatial gradient is equivalent to a temporal gradient of ca. 15, 7.2, 9.8, 2.6 years of atmospheric CO2 rise during the past four decades. The CO2 spatial gradient had an overall positive effect on tree size adjusted ring width growth. Modeled air surface temperature differences among sites indicate

  3. Upconversion-based lidar measurements of atmospheric CO2

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Fix, Andreas; Wirth, Martin

    2016-01-01

    For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm, and dete......For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm...

  4. On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals

    Directory of Open Access Journals (Sweden)

    F. Chevallier

    2015-04-01

    Full Text Available The extending archive of the Greenhouse Gases Observing SATellite (GOSAT measurements (now covering about six years allows increasingly robust statistics to be computed, that document the performance of the corresponding retrievals of the column-average dry air-mole fraction of CO2 (XCO2. Here, we compare a model simulation constrained by surface air-sample measurements with one of the GOSAT retrieval products (NASA's ACOS. The retrieval-minus-model differences result from various error sources, both in the retrievals and in the simulation: we discuss the plausibility of the origin of the major patterns. We find systematic retrieval errors over the dark surfaces of high-latitude lands and over African savannahs. More importantly, we also find a systematic over-fit of the GOSAT radiances by the retrievals over land for the high-gain detector mode, which is the usual observation mode. The over-fit is partially compensated by the retrieval bias-correction. These issues are likely common to other retrieval products and may explain some of the surprising and inconsistent CO2 atmospheric inversion results obtained with the existing GOSAT retrieval products. We suggest that reducing the observation weight in the retrieval schemes (for instance so that retrieval increments to the retrieval prior values are halved for the studied retrieval product would significantly improve the retrieval quality and reduce the need for (or at least reduce the complexity of ad-hoc retrieval bias correction. More generally, we demonstrate that atmospheric inversions cannot be rigorously optimal when assimilating XCO2 retrievals, even with averaging kernels.

  5. Implications of "peak oil" for atmospheric CO2 and climate

    CERN Document Server

    Kharecha, P A

    2007-01-01

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  6. Upconversion-based lidar measurements of atmospheric CO2

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Fix, Andreas; Wirth, Martin

    2016-01-01

    For the first time an upconversion based detection scheme is demonstrated for lidar measurements of atmospheric CO2-concentrations, with a hard target at a range of 3 km and atmospheric backscatter from a range of similar to 450 m. The pulsed signals at 1572 nm are upconverted to 635 nm...

  7. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

    Science.gov (United States)

    Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika; Friedlingstein, Pierre

    2016-10-01

    Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.

  8. Climate impacts on rising atmospheric CO2 from long-term time-series of CO2 and O2

    Science.gov (United States)

    Keeling, R. F.; Rafelski, L. E.; Piper, S. C.

    2009-04-01

    The long-term time series of atmospheric CO2 and O2 concentrations from the Scripps Institution of oceanography now span 51 and 19 years, respectively. These time series will be presented together with the ice-core CO2 records and discussed in terms of the processes controlling the atmospheric CO2 rise, particularly the sensitivity of the natural sinks for CO2 in the land and ocean to climate changes. The CO2 record provides constraints on the sensitivity of the land sinks to climate. The CO2 rise can be expressed as an anomaly relative to the trend expected from fossil-fuel burning, land use emissions, and uptake by the land biosphere and oceans, with the latter two processes depicted by simple reservoir models (land sink driven by CO2 fertilization). Despite uncertainties, the anomaly computed this way shows an evident link with global land temperature, with both the anomaly and temperature trend showing breaks in slope around 1940 and 1980. Climate effects on the land biosphere may thus explain two otherwise puzzling features in the CO2 record: the plateau in growth in the 1940s and the persistent high growth after 1980. The implied effect of warming on CO2 suggested by this decadal variability is too small to be a significant climate feedback, however. Additional constraints on the climate sensitivity of ocean sinks can be obtained by combining the CO2 and O2 records. The ocean CO2 sink that would have been obtained in the absence of climate change is quite well constrained based on ocean observations of chlorofluorocarbons. This sink can be compared to the sink computed from the global O2 budget, assuming the oceans have not been a long-term source or sink for O2. The comparison reveals a significant discrepancy, which suggests that climate changes are impacting some combination of the long-term O2 and CO2 fluxes. The climate effect is qualitatively consistent with ocean models, which predict that warming will reduce oceanic uptake of CO2 and induce oceanic

  9. Vertical and horizontal soil CO2 transport and its exchanges with the atmosphere

    Science.gov (United States)

    Sánchez-Cañete, Enrique P.; Serrano-Ortíz, Penélope; Kowalski, Andrew S.; Curiel Yuste, Jorge; Domingo, Francisco; Oyonarte, Cecilio

    2015-04-01

    The CO2 efflux from soils to the atmosphere constitutes one of the major fluxes of the terrestrial carbon cycle and is a key determinant for sources and sinks of CO2 in land-atmosphere exchanges. Because of their large global magnitude, even small changes in soil CO2 effluxes directly affect the atmospheric CO2 content. Despite much research, models of soil CO2 efflux rates are highly uncertain, with the positive or negative feedbacks between underground carbon pools and fluxes and their temperature sensitivities in future climate scenarios largely unknown. Now it is necessary to change the point of view regarding CO2 exchange studies from an inappropriately conceived static system in which all respired CO2 is directly emitted by molecular processes to the atmosphere, to a dynamic system with gas transport by three different processes: convection, advection and molecular diffusion. Here we study the effects of wind-induced advection on the soil CO2 molar fraction during two years in a shrubland plateau situated in the Southeast of Spain. A borehole and two subterranean profiles (vertical and horizontal) were installed to study CO2 transport in the soil. Exchanges with the atmosphere were measured by an eddy covariance tower. In the vertical profile, two CO2 sensors (GMP-343, Vaisala) were installed at 0.15m and 1.5m along with soil temperature and humidity probes. The horizontal profile was designed to measure horizontal movements in the soil CO2 molar fraction due to down-gradient CO2 from the plant, where the majority CO2 is produced, towards bare soil. Three CO2 sensors (GMM-222, Vaisala) were installed, the first below plant (under-plant), the second in bare soil separated 25 cm from the first sensor (near-plant) and the third in bare soil at 25 cm from the second sensor (bare soil). The results show how the wind induces the movement of subterranean air masses both horizontally and vertically, affecting atmospheric CO2 exchanges. The eddy covariance tower

  10. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    Science.gov (United States)

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  11. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background.

    Science.gov (United States)

    Levin, Ingeborg; Hammer, Samuel; Kromer, Bernd; Meinhardt, Frank

    2008-03-01

    Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.

  12. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  13. Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2

    OpenAIRE

    Subhra Jana; Sankar Das; Chiranjit Ghosh; Abhijit Maity; Manik Pradhan

    2015-01-01

    With the aim to capture and subsequent selective trapping of CO2, a nanocomposite has been developed through selective modification of the outer surface of the halloysite nanotubes (HNTs) with an organosilane to make the nanocomposite a novel solid-phase adsorbent to adsorb CO2 from the atmosphere at standard ambient temperature and pressure. The preferential adsorption of three major abundant isotopes of CO2 (12C16O2, 13C16O2, and 12C16O18O) from the ambient air by amine functionalized HNTs ...

  14. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. CO2 ice structure and density under Martian atmospheric conditions

    Science.gov (United States)

    Mangan, T. P.; Salzmann, C. G.; Plane, J. M. C.; Murray, B. J.

    2017-09-01

    Clouds composed of CO2 ice form throughout the Martian atmosphere. In the mesosphere, CO2 ice clouds are thought to form via heterogeneous ice nucleation on nanoparticles of meteoric origin at temperatures often below 100 K. Lower altitude CO2 ice clouds in the wintertime polar regions form up to around 145 K and lead to the build-up of the polar ice caps. However, the crystal structure and related fundamental properties of CO2 ice under Martian conditions are poorly characterised. Here we present X-ray diffraction (XRD) measurements of CO2 ice, grown via deposition from the vapour phase under temperature and pressure conditions analogous to the Martian mesosphere. A crystalline cubic structure was determined, consistent with the low-pressure polymorph (CO2-I, space group Pa-3 (No. 205)). CO2 deposited at temperatures of 80-130 K and pressures of 0.01-1 mbar was consistent with dry ice and previous literature measurements, thus removing the possibility of a more complicated phase diagram for CO2 in this region. At 80 K, a lattice parameter of 5.578 ± 0.002 Å, cell volume of 173.554 ± 0.19 Å3 and density of 1.684 ± 0.002 g cm-3 was determined. Using these measurements, we determined the thermal expansion of CO2 across 80-130 K that allowed for a fit of CO2 ice density measurements across a larger temperature range (80-195 K) when combined with literature data (CO2 density = 1.72391 - 2.53 × 10-4T - 2.87 × 10-6 T2). Temperature-dependent CO2 density values are used to estimate sedimentation velocities and heterogeneous ice nucleation rates, showing an increase in nucleation rate of up to a factor of 1000 when compared to commonly used literature values. This temperature-dependent equation of state is therefore suggested for use in future studies of Martian mesospheric CO2 clouds. Finally, we discuss the possible shapes of crystals of CO2 ice in the Martian atmosphere and show that a range of shapes including cubes and octahedra as well as a combination of the

  16. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  17. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  18. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    Science.gov (United States)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  19. Effects of Controlled Atmospheres with High-O2 or High-CO2 Concentrations on Postharvest Physiology and Storability of "Napoleon" Sweet Cherry%高O2或高CO2浓度气调贮藏对"那翁"甜樱桃采后生理和贮藏性的影响

    Institute of Scientific and Technical Information of China (English)

    姜爱丽; 田世平; 徐勇

    2002-01-01

    Sweet cherries ( Prunus avium L. cv. Napoleon) were stored in controlled atmospheres (CA) of high O2 (70% O2+0% CO2) or high CO2 (5% O2+10% CO2), in modified atmosphere package (MAP, (13%-18%) O2+(2%-4%) CO2) and in air (control) at 1 ℃ to investigate the effects of different O2 and CO2 concentrations on physiological properties, quality and storability of the fruits during storage. The results indicated that compared with other treatments, CA with high O2 concentration decreased fruit decay and ethanol content, but increased the accumulation of malondialdehyde (MDA) and stimulated browning. CA with high CO2 concentration inhibited polyphenol oxidase (PPO) activity, reduced MDA content, maintained vitamin C content and firmness, decreased fruit decay and browning. Soluble solids contents (SSC) were not significantly affected by different atmosphere treatments. "Napoleon" fruits stored in 5% O2+10% CO2 for as long as 80 d were of good quality, but only 40, 20 and 30 d stored in MAP, 70% O2+ 0% CO2 and air, respectively.%研究了甜樱桃品种"那翁" ( Prunus avium L. cv. Napoleon)在1 ℃的高O2 浓度气调(CA-I: 70% O2+0% CO2)、高CO2 浓度气调 (CA-II: 5% O2+10% CO2)、自发气调 (modified atmosphere package, MAP) 和普通冷藏条件下果实生理、品质、耐藏性的变化.结果表明:与其他处理相比,高O2 浓度的气调可以抑制果实腐烂、减少果肉中乙醇含量,但果实的丙二醛(MDA)含量迅速上升、褐变严重.高CO2浓度的气调能有效抑制MDA含量上升的速率和多酚氧化酶(PPO)活性,保持果实硬度和维生素C含量,减少果实腐烂和褐变,延长贮藏寿命.不同处理对果实可溶性固形物含量的影响不大."那翁" 甜樱桃在5% O2+10% CO2气调中贮藏80 d能保持果实固有的风味品质.在MAP下, 70% O2+0% CO2和普通冷藏中的适宜贮藏期分别为40 d、20 d和30 d.

  20. Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha.

    Science.gov (United States)

    Bai, Yun-Jun; Chen, Li-Qun; Ranhotra, Parminder S; Wang, Qing; Wang, Yu-Fei; Li, Cheng-Sen

    2015-02-01

    The Earth has undergone a significant climate switch from greenhouse to icehouse during the Plio-Pleistocene transition (PPT) around 2.7-2.4 million years ago (Ma), marked by the intensification of the Northern Hemisphere glaciation (NHG) ~2.7 Ma. Evidence based on oceanic CO2 [(CO2)aq], supposed to be in close equilibrium with the atmospheric CO2 [(CO2)atm], suggests that the CO2 decline might drive such climate cooling. However, the rarity of direct evidence from [CO2]atm during the interval prevents determination of the atmospheric CO2 level and further assessment on the impact of its fluctuation. Here, we reconstruct the [CO2]atm level during 2.77-2.52 Ma based on a new developed proxy of stomatal index on Typha orientalis leaves from Shanxi, North China, and depict the first [CO2]atm curve over the past 5 Ma by using stomata-based [CO2]atm data. Comparisons of the terrestrial-based [CO2]atm and the existed marine-based [CO2]aq curves show a similar general trend but with different intensity of fluctuations. Our data reveal that the high peak of [CO2]atm occurred at 2.77-2.52 Ma with a lower [CO2]aq background. The subsequent sharp fall in [CO2]atm level might be responsible for the intensification of the NHG based on their general temporal synchronism. These findings shed a significant light for our understanding toward the [CO2]atm changes and its ecological impact since 5 Ma. © 2014 John Wiley & Sons Ltd.

  1. Climate change and CO2 removal from the atmosphere

    NARCIS (Netherlands)

    Schuiling, R.D.

    2014-01-01

    Several methods have been proposed in recent years to counteract climate change and ocean acidification by removing CO2 from the atmosphere (Carbon Dioxide Removal). The most versatile and widely applicable of these methods is enhanced weathering of olivine, which is capable of removing billions of

  2. ROOT-GROWTH AND FUNCTIONING UNDER ATMOSPHERIC CO2 ENRICHMENT

    NARCIS (Netherlands)

    STULEN, [No Value; DENHERTOG, J

    1993-01-01

    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  3. Thermal decomposition of dolomite under CO2-air atmosphere

    Science.gov (United States)

    Subagjo, Wulandari, Winny; Adinata, Pratitis Mega; Fajrin, Anita

    2017-01-01

    This paper reports a study on thermal decomposition of dolomite under CO2-air. Calcination was carried out non-isothermally by using thermogravimetry analysis-differential scanning calorimetry (TGA-DSC) with a heating rate of 10°C/minute in an air atmosphere as well as 10 vol% CO2 and 90 vol% air atmosphere from 25 to 950°C. In addition, a thermodynamic modeling was also carried out to simulate dolomite calcination in different level of CO2-air atmosphere by using FactSage® 7.0. The the main constituents of typical dolomite from Gresik, East Java include MgCO3 (magnesite), CaCO3 (calcite), Ca(OH)2, CaO, MgO, and less than 1% of metal impurities. Based on the kinetics analysis from TGA results, it is found that non-isothermal dolomite calcination in 10 vol% CO2 atmosphere is occurred in a two-stage reaction; the first stage is the decomposition of magnesite at 650-740 °C with activation energy of 161.23 kJ/mol, and the second stage is the decomposition of calcite at 775-820 °C with activation energy of 162.46 kJ/mol. The magnesite decomposition is found to follow nucleation reaction mechanism of Avrami Eroveyef (A3), while calcite decomposition follows second order chemical reaction equation. Thermodynamic modeling supports these kinetic analyses. The results of this research give insight to the kinetics of dolomite decomposition in CO2-air atmosphere.

  4. Implications of ``peak oil'' for atmospheric CO2 and climate

    Science.gov (United States)

    Kharecha, Pushker A.; Hansen, James E.

    2008-09-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.

  5. Algal constraints on the Cenozoic history of atmospheric CO2?

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2007-01-01

    Full Text Available An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO2. To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing an upper constraint on pCO2 over the Cenozoic based on the living geological record. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of first emergence of each morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  6. Atmospheric CO2 enrichment facilitates cation release from soil.

    Science.gov (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S

    2010-03-01

    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  7. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  8. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-04-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques is not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems and is mostly caused by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to monthly or submonthly climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63±0.49 and 1.94±0.41 Pg C/yr, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62±0.47, and 0.67±0.34 Pg C/yr to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89±0.18 Pg C/yr on average with a strong flux density found in the south-east of the continent.

  9. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    Directory of Open Access Journals (Sweden)

    G. Brett Runion

    2012-01-01

    Full Text Available The southeastern landscape is composed of agricultural and forest systems that can store carbon (C in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2 on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated CO2 on soil CO2 efflux in a young longleaf pine system using a continuous monitoring system. A significant increase (26.5% in soil CO2 efflux across 90 days was observed under elevated CO2; this occurred for all weekly and daily averages except for two days when soil temperature was the lowest. Soil CO2 efflux was positively correlated with soil temperature with a trend towards increased efflux response to temperature under elevated CO2. Efflux was negatively correlated with soil moisture and was best represented using a quadratic relationship. Soil CO2 efflux was not correlated with root biomass. Our data indicate that, while elevated CO2 will increase feedback of CO2 to the atmosphere via soil efflux, terrestrial ecosystems will remain potential sinks for atmospheric CO2 due to greater biomass production and increased soil C sequestration.

  10. Tropical epiphytes in a CO 2-rich atmosphere

    Science.gov (United States)

    Monteiro, José Alberto Fernandez; Zotz, Gerhard; Körner, Christian

    2009-01-01

    We tested the effect on epiphyte growth of a doubling of pre-industrial CO 2 concentration (280 vs. 560 ppm) combined with two light (three fold) and two nutrition (ten fold) treatments under close to natural humid conditions in daylight growth cabinets over 6 months. Across co-treatments and six species, elevated CO 2 increased relative growth rates by only 6% ( p = 0.03). Although the three C3 species, on average, grew 60% faster than the three CAM species, the two groups did not significantly differ in their CO 2 response. The two Orchidaceae, Bulbophyllum (CAM) and Oncidium (C3) showed no CO 2 response, and three out of four Bromeliaceae showed a positive one: Aechmea (CAM, +32% p = 0.08), Catopsis (C3, +11% p = 0.01) and Vriesea (C3, +4% p = 0.02). In contrast, the representative of the species-rich genus Tillandsia (CAM), which grew very well under experimental conditions, showed no stimulation. On average, high light increased growth by 21% and high nutrients by 10%. Interactions between CO 2, light and nutrient treatments (low vs. high) were inconsistent across species. CO 2 responsive taxa such as Catopsis, could accelerate tropical forest dynamics and increase branch breakage, but overall, the responses to doubling CO 2 of these epiphytes was relatively small and the responses were taxa specific.

  11. Climate Sensitivity, Sea Level, and Atmospheric CO2

    CERN Document Server

    Hansen, James; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 {\\pm} 1 {\\deg}C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that...

  12. Implications of 'Peak Oil' for Atmospheric CO2 and Climate

    Science.gov (United States)

    Kharecha, P. A.; Hansen, J. E.

    2008-12-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration -- and recent trends are toward lower estimates -- we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired facilities without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 below 450 ppm. It is also plausible that CO2 can be returned below 350 ppm by 2100 or sooner, if more aggressive mitigation measures are enacted, most notably a phase-out of global coal emissions by circa 2030 and large- scale reforestation, primarily in the tropics but also in temperate regions.

  13. Water loss from terrestrial planets with CO2-rich atmospheres

    CERN Document Server

    Wordsworth, Robin

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on atmospheric composition (CO2 and N2 levels), planetary mass, and external parameters (stellar spectrum, orbital distance and impacts). From coupled 1D climate and escape modeling, we show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1 to 1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but XUV/UV luminosity decreases, this places strong limits on moist...

  14. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  15. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  16. Near-pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth

    OpenAIRE

    Listowski, Constantino; Määttänen, Anni; Riipinen, Ilona; Montmessin, Franck; Lefèvre, Franck

    2013-01-01

    International audience; A new approach is presented to model the condensational growth of carbon dioxide (CO2) ice crystals on Mars. These condensates form in very particular conditions. First, ~95% of the atmosphere is composed of CO2 so that near-pure vapor condensation takes place. Second, the atmosphere is rarefied, having dramatic consequences on the crystal growth. Indeed, the subsequently reduced efficiency of heat transport helps maintain a high temperature difference between the crys...

  17. Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen

    2014-11-01

    As one of the main greenhouse gases in the atmosphere, CO2has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up.By choosing the infrared absorption line of CO2at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.

  18. River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China.

    Science.gov (United States)

    Zhang, Tao; Li, Jianhong; Pu, Junbing; Martin, Jonathan B; Khadka, Mitra B; Wu, Feihong; Li, Li; Jiang, Feng; Huang, Siyu; Yuan, Daoxian

    2017-12-31

    CO2 fluxes across water-air interfaces of river systems play important roles in regulating the regional and global carbon cycle. However, great uncertainty remains as to the contribution of these inland water bodies to the global carbon budget. Part of the uncertainty stems from limited understanding of the CO2 fluxes at diurnal and seasonal frequencies caused by aquatic metabolism. Here, we measured surface water characteristics (temperature, pH, and DO, DIC, Ca(2+) concentrations) and CO2 fluxes across the air-water interface at two transects of Guijiang River, southwest China to assess the seasonal and diurnal dynamics of fluvial carbon cycling and its potential role in regional and global carbon budgets. The two transects had differing bedrock; DM transect is underlain by carbonate and detrital rock and PY is underlain by pure carbonate. Our results show that the river water both degasses CO2 to and absorbs CO2 from the atmosphere in both summer and winter, but the degassing and absorption varied between the two transects. Further, CO2 fluxes evolve through diurnal cycles. At DM, the river evaded CO2 from early morning through noon and absorbed CO2 from afternoon through early morning. At PY in summer, the CO2 evasion decreased during the daytime and increased at night while in winter at night, CO2 uptake increased in the morning and decreased in the afternoon but remained relatively stable at night. Although the river is a net source of carbon to the atmosphere (~15mMm(-2)day(-1)), the evasion rate is the smallest of all reported world's inland water bodies reflecting sequestration of atmospheric carbon through the carbonate dissolution and high primary productivity. These results emphasize the need of seasonal and diurnal monitoring of CO2 fluxes across water-air interface, particularly in highly productive rivers, to reduce uncertainty in current estimates of global riverine CO2 emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2009-10-01

    Full Text Available Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (pCO2 in combination with orbital forcing. A complication is the large uncertainty in the magnitude and timing of the reconstructed pCO2 variability and additionally the low temporal resolution of the available pCO2 records in the Middle Miocene. We used an ice sheet-climate model of reduced complexity to assess variations in Antarctic ice sheet volume induced by pCO2 and insolation forcing in the Middle Miocene. The ice-sheet sensitivity to atmospheric CO2 was tested for several scenarios with constant pCO2 forcing or a regular decrease in pCO2. This showed that small, ephemeral ice sheets existed under relatively high atmospheric CO2 conditions (between 640–900 ppm, whereas more stable, large ice sheets occurred when pCO2 was less than ~600 ppm. The main result of this study is that the pCO2-level must have declined just before or during the period of oxygen-isotope increase, thereby crossing a pCO2 glaciation threshold of around 615 ppm. After the decline, the exact timing of the Antarctic ice-sheet expansion depends also on the relative minimum in summer insolation at approximately 13.89 million years ago. Although the mechanisms described appear to be robust, the exact values of the pCO2 thresholds are likely to be model-dependent.

  20. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities

    Science.gov (United States)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.

    2016-12-01

    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  1. Use of high-scale traffic modeling to estimate road vehicle emissions of CO2 and impact on the atmospheric concentration in São Paulo, Brazil.

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P.; Andrade, M. D. F.

    2015-12-01

    Adequate estimations of motor vehicle CO2 emission inventories at high spatial and temporal urban scales are needed to establish transport policy measures aim to reduce climate change impacts from global cities. The Metropolitan Region of São Paulo (MRSP) is impacted by the emission of 7 million vehicles (97% light-duty gasoline vehicles LDVs and 3% heavy-duty diesel vehicles HDVs) and several environmental programs were implemented to reduce the emissions. Inventories match site measurements and remote sensing and help to assess the real impact of road vehicle emissions on city's air quality. In this paper we presented a high-resolution vehicle-based inventory of motor CO2 emissions mapped at a scale of 100 m and 1 hour. We used origin and destination (O/D) transport area zone trips from the mobility survey of the São Paulo Transport Metropolitan Company (Metro), a road network of the region and traffic datasets from the São Paulo Transport Engineering Company (CET). The inventory was done individually for LDVs and HDVs for the years 2008 and 2013 and was complemented with air quality datasets from the State Environmental Company (CETESB), together with census data from the Brazilian Institute of Geography and Statistics (IBGE). Our inventory showed partial disagreement with the São Paulo State's GHG inventory, caused by the different approach used - bottom vs. top down - and characteristic spatial and temporal biases of the population inputs used (different emission factors). Higher concentrations became apparent near the road-network at the spatial scale used. The total emissions were estimated in 20,781 million tons per year of CO2eq (83.7% by LDVs and 16.3% HDVs). Temporal profiles - diurnal, weekly and monthly - in vehicle emission distributions were calculated using CET's traffic counts and surrogates of congestion. These profiles were compared with average road-site measurements of CO2 for the year 2013. Measurements showed two peaks associated to the

  2. Intermediate time scale response of atmospheric CO2 following prescribed fire in a longleaf pine forest

    Science.gov (United States)

    Viner, B.; Parker, M.; Maze, G.; Varnedoe, P.; Leclerc, M.; Starr, G.; Aubrey, D.; Zhang, G.; Duarte, H.

    2016-10-01

    Fire plays an essential role in maintaining the structure and function of longleaf pine ecosystems. While the effects of fire on carbon cycle have been measured in previous studies for short periods during a burn and for multiyear periods following the burn, information on how carbon cycle is influenced by such changes over the span of a few weeks to months has yet to be quantified. We have analyzed high-frequency measurements of CO2 concentration and flux, as well as associated micrometeorological variables, at three levels of the tall Aiken AmeriFlux tower during and after a prescribed burn. Measurements of the CO2 concentration and vertical fluxes were examined as well as calculated net ecosystem exchange (NEE) for periods prior to and after the burn. Large spikes in both CO2 concentration and CO2 flux during the fire and increases in atmospheric CO2 concentration and reduced CO2 flux were observed for several weeks following the burn, particularly below the forest canopy. Both CO2 measurements and NEE were found to return to their preburn states within 60-90 days following the burn when no statistical significance was found between preburn and postburn NEE. This study examines the micrometeorological conditions during a low-intensity prescribed burn and its short-term effects on local CO2 dynamics in a forested environment by identifying observable impacts on local measurements of atmospheric CO2 concentration and fluxes.

  3. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan.

    Science.gov (United States)

    Osada, Noriyuki; Onoda, Yusuke; Hikosaka, Kouki

    2010-09-01

    Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V (cmax)) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V (cmax) (J (max)/V (cmax)) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.

  4. Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston

    2011-01-01

    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.

  5. 大气CO_2变化与气候%Variations of Atmospheric CO2 Concentration and Global Climate

    Institute of Scientific and Technical Information of China (English)

    刘植; 刘秀铭; 李平原; 吕镔; 陈家胜; 陈渠; 郭雪莲

    2012-01-01

    在地质历史时期,地球的气候不断在变化,全球大气CO2浓度也在变化,二者之间是否存在一种响应—反馈作用,目前存在争议较大.本研究从地质时间尺度、千年以来和现代气候变化3个角度进行介绍,认为全球气候变化是多重时间尺度变化规律的叠加,从长时间尺度来看,全球平均温度和大气CO2水平均表现出整体降低的趋势.地质历史时期存在多次大气CO2浓度升高的时期,有时甚至可达现在大气CO2水平的十几倍.气候变化与大气CO2的关系非常复杂,高CO2时期并不全部对应于高温时期.千年以来的气候变化在全球各大洲均有温暖时期的出现,并且很多地方的重建结果表明中世纪暖期的全球平均温度要比现代的全球平均温度还高.但这一区间的温度变化和大气CO2水平在1850年之前没有明显的相关性.近百年的气候观测资料表明全球平均温度上升了0.74℃,但对于这种上升的理解目前还存在较大争议.是否确实是由于人类活动(主要是工业革命以来)导致了全球CO2水平增高,进而导致全球变暖,需要更多的证据来验证.%In geological history, the earth's climate changed regularly and constantly and the concen- tration of atmospheric CO2 ~dso changed over time, so scientists argue whether there were response- feedback effects between them. In this paper, global climate change is assumed to be a multiple time- scale change, various time scales including long time orbital-scale, thousand year time-scale and nearly hundred years are introduced and analyzed. For long time-scale, both average global tempera- ture and atmospheric CO2 level present a reduction trend. Many times during geological history, at- mospheric CO2 level rose, sometimes to as high as ten times of the present level. It is found that the high C02 level period was not always corresponding to the high temperature period. For thousand year time-scale, it is

  6. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production.

    Science.gov (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima

    2016-07-01

    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  7. The declining uptake rate of atmospheric CO2 by land and ocean sinks

    Directory of Open Access Journals (Sweden)

    M. R. Raupach

    2014-07-01

    Full Text Available Through 1959–2012, an airborne fraction (AF of 0.44 of total anthropogenic CO2 emissions remained in the atmosphere, with the rest being taken up by land and ocean CO2 sinks. Understanding of this uptake is critical because it greatly alleviates the emissions reductions required for climate mitigation, and also reduces the risks and damages that adaptation has to embrace. An observable quantity that reflects sink properties more directly than the AF is the CO2 sink rate (kS, the combined land–ocean CO2 sink flux per unit excess atmospheric CO2 above preindustrial levels. Here we show from observations that kS declined over 1959–2012 by a factor of about 1 / 3, implying that CO2 sinks increased more slowly than excess CO2. Using a carbon–climate model, we attribute the decline in kS to four mechanisms: slower-than-exponential CO2 emissions growth (~ 35% of the trend, volcanic eruptions (~ 25%, sink responses to climate change (~ 20%, and nonlinear responses to increasing CO2, mainly oceanic (~ 20%. The first of these mechanisms is associated purely with the trajectory of extrinsic forcing, and the last two with intrinsic, feedback responses of sink processes to changes in climate and atmospheric CO2. Our results suggest that the effects of these intrinsic, nonlinear responses are already detectable in the global carbon cycle. Although continuing future decreases in kS will occur under all plausible CO2 emission scenarios, the rate of decline varies between scenarios in non-intuitive ways because extrinsic and intrinsic mechanisms respond in opposite ways to changes in emissions: extrinsic mechanisms cause kS to decline more strongly with increasing mitigation, while intrinsic mechanisms cause kS to decline more strongly under high-emission, low-mitigation scenarios as the carbon–climate system is perturbed further from a near-linear regime.

  8. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Science.gov (United States)

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  9. Observations of Atmospheric Δ(14)CO2 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-11-15

    Six months to more than one year of atmospheric Δ(14)CO2 were measured in 2014-2015 at one global background site in Waliguan (WLG) and four regional background sites at Shangdianzi (SDZ), Lin'an (LAN), Longfengshan (LFS) and Luhuitou (LHT), China. The objectives of the study are to document the Δ(14)CO2 levels at each site and to trace the variations in fossil fuel CO2 (CO2ff) inputs at regional background sites. Δ(14)CO2 at WLG varied from 7.1 ± 2.9‰ to 32.0 ± 3.2‰ (average 17.1 ± 6.8‰) in 2015, with high values generally in autumn/summer and low values in winter/spring. During the same period, Δ(14)CO2 values at the regional background sites were found to be significantly (p 0.05) seasonal differences in CO2ff concentrations for the regional sites. Regional sources contributed in part to the CO2ff inputs at LAN and SDZ, while local sources dominated the trend observed at LHT. These data provide a preliminary understanding of atmospheric Δ(14)CO2 and CO2ff inputs for a range of Chinese background sites.

  10. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  11. Changes in calcification of coccoliths under stable atmospheric CO2

    DEFF Research Database (Denmark)

    Berger, C.; Meier, K. J. S.; Kinkel, H.

    2014-01-01

    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural...... North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected...

  12. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D [Oak Ridge National Laboratory (ORNL); Mills, R [Oak Ridge National Laboratory (ORNL); Gregg, J [University of Maryland; Blasing, T J [ORNL; Hoffman, F [Oak Ridge National Laboratory (ORNL); Andres, Robert Joseph [ORNL; Devries, M [Oak Ridge National Laboratory (ORNL); Zhu, Z [NASA Goddard Space Flight Center; Kawa, S [NASA Goddard Space Flight Center

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  13. Spatially Distributed Fossil Fuel CO2 Emissions in Two U.S. Cities Using Activity Data: Applicability for Global Cities and High-resolution Atmospheric Inversion Modeling

    Science.gov (United States)

    Rao, P.; Lauvaux, T.; Oda, T.; Tang, J.; Gurney, K. R.; Eldering, A.; Miller, C. E.; Duren, R. M.

    2015-12-01

    Urban fossil fuel CO2 (FFCO2) emissions play a significant role in the global C cycle and climate change. To better understand and monitor urban FFCO2 emissions, we need timely estimates at fine spatial resolution. However, currently available global estimates have coarse resolution of 10km or more except for some US cities which have finer FFCO2 estimates at ~250m (Hestia Project; Gurney et al. 2012). We construct an urban sectoral emission model for the U.S. based on multiple cities and spatially disaggregate each sector to arrive at finely resolved emissions data products. We then calibrate our results with other datasets to confirm whether this approach can be applicable in any global urban domain. We acquire 2012 annual emissions estimates from EPA's national emissions inventory for the Los Angeles megacity and Indianapolis and apply our U.S. urban sectoral emission model to derive sectoral estimates. We then spatially distribute these sectoral emissions based on activity and other proxy data. We combine remote sensing and open source data such as national land cover data, population density, impervious surface, and road maps to develop intensity metrics of energy use within each sector. These intensity metrics are then used to spatially allocate emissions within each sector. We incorporate global powerplant emissions data to complete our emissions datasets. We validate our urban FFCO2 emissions datasets, both at sectoral and city scales, against Hestia results for two cities and, in case of Indianapolis, compare to results from inverse modeling of atmospheric CO2 concentrations. This study will guide the next phase of research by developing the methodology to determine the spatial variation of FFCO2 emissions in select cities around the world.

  14. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  15. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Directory of Open Access Journals (Sweden)

    Lucas C R Silva

    Full Text Available BACKGROUND: The synergetic effects of recent rising atmospheric CO(2 and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. METHODOLOGY/PRINCIPAL FINDINGS: Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. CONCLUSIONS: Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  16. Recent widespread tree growth decline despite increasing atmospheric CO2.

    Science.gov (United States)

    Silva, Lucas C R; Anand, Madhur; Leithead, Mark D

    2010-07-21

    The synergetic effects of recent rising atmospheric CO(2) and temperature are expected to favor tree growth in boreal and temperate forests. However, recent dendrochronological studies have shown site-specific unprecedented growth enhancements or declines. The question of whether either of these trends is caused by changes in the atmosphere remains unanswered because dendrochronology alone has not been able to clarify the physiological basis of such trends. Here we combined standard dendrochronological methods with carbon isotopic analysis to investigate whether atmospheric changes enhanced water use efficiency (WUE) and growth of two deciduous and two coniferous tree species along a 9 degrees latitudinal gradient across temperate and boreal forests in Ontario, Canada. Our results show that although trees have had around 53% increases in WUE over the past century, growth decline (measured as a decrease in basal area increment--BAI) has been the prevalent response in recent decades irrespective of species identity and latitude. Since the 1950s, tree BAI was predominantly negatively correlated with warmer climates and/or positively correlated with precipitation, suggesting warming induced water stress. However, where growth declines were not explained by climate, WUE and BAI were linearly and positively correlated, showing that declines are not always attributable to warming induced stress and additional stressors may exist. Our results show an unexpected widespread tree growth decline in temperate and boreal forests due to warming induced stress but are also suggestive of additional stressors. Rising atmospheric CO2 levels during the past century resulted in consistent increases in water use efficiency, but this did not prevent growth decline. These findings challenge current predictions of increasing terrestrial carbon stocks under climate change scenarios.

  17. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    Science.gov (United States)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  18. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    Science.gov (United States)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  19. Communication: evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions.

    Science.gov (United States)

    Asfin, Ruslan E; Buldyreva, Jeanna V; Sinyakova, Tatyana N; Oparin, Daniil V; Filippov, Nikolai N

    2015-02-07

    Non-intrusive spectroscopic probing of weakly bound van der Waals complexes forming in gaseous carbon dioxide is generally performed at low pressures, for instance in supersonic jets, where the low temperature favors dimers, or in few-atmosphere samples, where the signature of dimers varying as the squared gas density is entangled with the dominating collision-induced absorption. We report experimental and theoretical results on CO2 dimers at very high pressures approaching the liquid phase. We observe that the shape of the CO2-dimer bands undergoes a distinctive line-mixing transformation, which reveals an unexpected stability of the dimers despite the collisions with the surrounding particles and negates the common belief that CO2 dimers are short-lived complexes. Our results furnish a deeper insight allowing a better modeling of CO2-rich atmospheres and provide also a new spectroscopic tool for studying the robustness of molecular clusters.

  20. Armazenamento da maçã cv. golden delicious em atmosfera controlada com altas concentrações de CO2 e ultra-baixas de O2 Controlled atmosphere storage of golden delicious apples with high CO2 and ulo concentrations

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    1998-06-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de avaliar os efeitos de altas concentrações de CO2, e ultra-baixas de O2, sobre as qualidades fisico-químicas, distúrbios fisiológicos e podridões durante o armazenamento em atmosfera controlada (AC de maçãs da cv. 'Golden Delicious'. Os frutos foram armazenados nas temperaturas de -0,5°C e +0,5°C e umidade relativa do ar de 97%. As condições de AC foram 1.0% de O2, e 6.0% de CO2; 1,5% de O2, e 6,0% de CO2; 1,0% de O2, e 4,0% de CO2, 2.0% de O2, e 4.0% de CO2; 3,0% de O2, e 4,0% de CO2, Os parâmetros avaliados foram: firmeza da polpa, sólidos solúveis totais, acidez titulável, escaldadura, degenerescência interna e podridões. As avaliações foram realizadas em dois momentos: na abertura das câmaras (8,5 meses de armazenamento e após 14 dias (7 dias em armazenamento refrigerado e 7 dias em temperatura ambiente a 23°C. Em concentrações ultra-baixa de O2, (1% combinado com 4% de CO2, a maçã 'Golden Delicious' apresentou uma melhor manutenção das qualidades fisico-químicas após longo período de armazenamento sem apresentar sintomas de fermentação. Concentrações de 6% de CO2, com baixas de O2 na temperatura de +0,5°C, não causou danos aos frutos, porém na temperatura de -0,5"C houve degenerescência interna e escaldadura superficial, sendo a temperatura de +0,5°C mais indicada para a cv. Golden Delicious'.The experiment was conducted with the aim to evaluate the effects of the high CO2, and ultra-low O2, (ULO concentrations on the fruit quality and incidence of physiological disorders and rots during controlled atmosphere (CA storage of 'Golden Delicious'. Fruits were stored at-0.5°C and +0.5°C, with 97% relative humidity. The CA conditions were: 1.0% of O2, and 6.0% of CO2,.1.5% of O2, and 6.0% of CO2; 1.0% of O2, and 4.0% of CO2,; 2.0% of O2, and 4.0% of CO2,; 3.0% of O2, and 4.0% of CO2,. After 8.5 months of storage and 14 days after chamber opening (seven days of

  1. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    Energy Technology Data Exchange (ETDEWEB)

    Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  2. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    Directory of Open Access Journals (Sweden)

    K. W. Bowman

    2010-12-01

    Full Text Available The use of global three-dimensional (3-D models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01 CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (~0.19 Pg C yr−1, 3-D spatially-distributed emissions from aviation (~0.16 Pg C yr−1, and 3-D chemical production of CO2 (~1.05 Pg C yr−1. Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May–June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (~3%, while the inclusion of CO2 chemical production (and the surface correction is shown to decrease the latitudinal gradient by about 0.40 ppm (~10% with a complex

  3. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2007-10-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  4. The Dependence of Plant δ13C on Atmospheric pCO2

    Science.gov (United States)

    Jahren, H.; Schubert, B.

    2011-12-01

    Numerous studies on multicellular plants have reported increasing carbon isotope fractionation in leaf tissue with increasing concentrations of atmospheric carbon dioxide (pCO2), but the magnitude of the effect is highly variable (i.e., 0.62 to 2.7 % per 100 ppm CO2). The majority of these experiments tested only small differences in CO2 levels (Raphanus sativus plants grown under controlled light, water, and temperature conditions, and varying the pCO2 concentrations across a trajectory of 17 different pCO2 levels ranging from 370 to 4200 ppm. From this large dataset, we show that the carbon isotope discrimination [Δδ13C = (δ13CCO2 - δ13Cplant) / (1000 + δ13Cplant)] is indeed a function of pCO2, however, the relationship is hyperbolic, rather than linear, as is typically assumed. Across the small changes in pCO2 previously studied the response appears linear, however, our expanded dataset clearly shows that increases in Δδ13C level off at high pCO2, which is consistent with the ultimate control over fractionation being the activity of Rubisco as the concentration of pCO2 inside the leaf approaches the pCO2 level outside the leaf. The hyperbolic relationship we have quantified using published and new data is extremely robust (R2 = 0.90, n = 26, P < 0.0001), and evident in n-alkanes as well as bulk tissue, suggesting the potential for application to fossil plant materials in order to reconstruct pCO2 across critical intervals.

  5. Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2.

    Science.gov (United States)

    Mohan, Jacqueline E; Ziska, Lewis H; Schlesinger, William H; Thomas, Richard B; Sicher, Richard C; George, Kate; Clark, James S

    2006-06-13

    Contact with poison ivy (Toxicodendron radicans) is one of the most widely reported ailments at poison centers in the United States, and this plant has been introduced throughout the world, where it occurs with other allergenic members of the cashew family (Anacardiaceae). Approximately 80% of humans develop dermatitis upon exposure to the carbon-based active compound, urushiol. It is not known how poison ivy might respond to increasing concentrations of atmospheric carbon dioxide (CO(2)), but previous work done in controlled growth chambers shows that other vines exhibit large growth enhancement from elevated CO(2). Rising CO(2) is potentially responsible for the increased vine abundance that is inhibiting forest regeneration and increasing tree mortality around the world. In this 6-year study at the Duke University Free-Air CO(2) Enrichment experiment, we show that elevated atmospheric CO(2) in an intact forest ecosystem increases photosynthesis, water use efficiency, growth, and population biomass of poison ivy. The CO(2) growth stimulation exceeds that of most other woody species. Furthermore, high-CO(2) plants produce a more allergenic form of urushiol. Our results indicate that Toxicodendron taxa will become more abundant and more "toxic" in the future, potentially affecting global forest dynamics and human health.

  6. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  7. Enhanced biological carbon consumption in a high CO2 ocean.

    Science.gov (United States)

    Riebesell, U; Schulz, K G; Bellerby, R G J; Botros, M; Fritsche, P; Meyerhöfer, M; Neill, C; Nondal, G; Oschlies, A; Wohlers, J; Zöllner, E

    2007-11-22

    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.

  8. Marine biological controls on atmospheric CO2 and climate

    Science.gov (United States)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  9. Role of Southern Ocean stratification in glacial atmospheric CO2 reduction

    Science.gov (United States)

    Kobayashi, H.; Oka, A.

    2014-12-01

    Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger

  10. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  11. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    Science.gov (United States)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  12. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    Science.gov (United States)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  13. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; Martin-Torres, F. J.; Zorzano, M.

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  14. Atmospheric Variability of CO2 impact on space observation Requirements

    Science.gov (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  15. Changes in calcification of coccoliths under stable atmospheric CO2

    Science.gov (United States)

    Berger, C.; Meier, K. J. S.; Kinkel, H.; Baumann, K.-H.

    2014-02-01

    The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north-south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial-interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not

  16. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970

  17. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  18. Rapid coupling of Antarctic temperature and atmospheric CO2 during deglaciation

    Directory of Open Access Journals (Sweden)

    T. D. van Ommen

    2012-02-01

    Full Text Available Antarctic ice cores provide clear evidence of a close coupling between variations in Antarctic temperature and the atmospheric concentration of CO2 during the glacial/interglacial cycles of the past 800 thousand years. Precise information on the relative timing of the temperature and CO2 changes can assist in refining our understanding of the physical processes involved in this coupling. Here, we focus on the last deglaciation, 19 000 to 11 000 years before present, during which CO2 concentrations increased by ~80 parts per million by volume and Antarctic temperature increased by ~10 °C. Utilising a recently developed proxy for regional Antarctic temperature, derived from five near-coastal ice cores, and two ice core CO2 records with high dating precision, we show that the increase in CO2 lagged the increase in regional Antarctic temperature by only 0–400 years. This new value for the lag, consistent for both CO2 records, implies a faster feedback between temperature and CO2 than the centennial to millennial-scale lags suggested by previous studies.

  19. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    Science.gov (United States)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  20. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae.

    Science.gov (United States)

    Wu, HongYan; Zou, DingHui; Gao, KunShan

    2008-12-01

    Marine photosynthesis drives the oceanic biological CO(2) pump to absorb CO(2) from the atmosphere, which sinks more than one third of the industry-originated CO(2) into the ocean. The increasing atmospheric CO(2) and subsequent rise of pCO(2) in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO(3) (-) concentration, affect photosynthetic CO(2) fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO(2)-concentrating mechanisms (CCMs) to utilize the large HCO(3) (-) pool in seawater, enriched CO(2) up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO(2) in seawater, increased CO(2) levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO(2) levels, less light energy is required to drive CCM). Altered physiological performances under high-CO(2) conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO(2) oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO(2) and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO(2) and low-pH ocean.

  1. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae

    Institute of Scientific and Technical Information of China (English)

    WU HongYan; ZOU DingHui; GAO KunShan

    2008-01-01

    Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmospheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3- concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to utilize the large HCO3- pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO2 and low-pH ocean.

  2. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro-and macro-algae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmos-pheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3- concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to util-ize the large HCO3- pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photo-synthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physi-ology of marine primary producers performs in a high-CO2 and low-pH ocean.

  3. Atmospheric CO2 variations on millennial-scale during MIS 6

    Science.gov (United States)

    Shin, Jinhwa; Grilli, Roberto; Chappellaz, Jérôme; Teste, Grégory; Nehrbass-Ahles, Christoph; Schmidely, Loïc; Schmitt, Jochen; Stocker, Thomas; Fischer, Hubertus

    2017-04-01

    Understanding natural carbon cycle / climate feedbacks on various time scales is highly important for predicting future climate changes. Paleoclimate records of Antarctic temperatures, relative sea level and foraminiferal isotope and pollen records in sediment cores from the Portuguese margin have shown climate variations on millennial time scale over the Marine Isotope Stage 6 (MIS 6; from approximately 135 to 190 kyr BP). These proxy data suggested iceberg calving in the North Atlantic result in cooling in the Northern hemisphere and warming in Antarctica by changes in the Atlantic Meridional Overturning Circulation, which is explained by a bipolar see-saw trend in the ocean (Margari et al., 2010). Atmospheric CO2 reconstruction from Antarctic ice cores can provide key information on how atmospheric CO2 concentrations are linked to millennial-scale climate changes. However, existing CO2 records cannot be used to address this relationship because of the lack of suitable temporal resolution. In this work, we will present a new CO2 record with an improved time resolution, obtained from the Dome C ice core (75˚ 06'S, 123˚ 24'E) spanning the MIS 6 period, using dry extraction methods. We will examine millennial-scale features in atmospheric CO2, and their possible links with other proxies covering MIS 6. Margari, V., Skinner, L. C., Tzedakis, P. C., Ganopolski, A., Vautravers, M., and Shackleton, N. J.: The nature of millennial scale climate variability during the past two glacial periods, Nat.Geosci., 3, 127-131, 2010.

  4. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  5. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation

    NARCIS (Netherlands)

    Brilman, Derk Willem Frederik; Garcia Alba, Laura; Veneman, Rens

    2013-01-01

    In this work, we propose, demonstrate and evaluate the concept of atmospheric CO2 capture for enhanced algae cultivation (and horticulture), as alternative to the application of flue gas derived CO2. A supported amine sorbent was prepared and able to capture CO2 at atmospheric conditions and

  6. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation

    NARCIS (Netherlands)

    Brilman, D.W.F.; Garcia, Alba L.; Veneman, R.

    2013-01-01

    In this work, we propose, demonstrate and evaluate the concept of atmospheric CO2 capture for enhanced algae cultivation (and horticulture), as alternative to the application of flue gas derived CO2. A supported amine sorbent was prepared and able to capture CO2 at atmospheric conditions and releasi

  7. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    Science.gov (United States)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  8. Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars

    CERN Document Server

    Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

    2015-01-01

    We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

  9. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    variability in the observations, although reasons for persistent discrepancies in northern hemisphere vegetation uptake are examined. At this time, we do not find any serious shortcomings in the model transport representation, but this is still the subject of close scrutiny. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in CO2 fluxes and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.

  10. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929

  11. Assumption Centred Modelling of Ecosystem Responses to CO2 at Six US Atmospheric CO2 Enrichment Experiments.

    Science.gov (United States)

    Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Luus, K. A.; Ryan, E.; Xia, J.; Norby, R. J.

    2015-12-01

    Plant photosynthetic rates increase and stomatal apertures decrease in response to elevated atmospheric CO[2] (eCO2), increasing both plant carbon (C) availability and water use efficiency. These physiological responses to eCO2 are well characterised and understood, however the ecological effects of these responses as they cascade through a suite of plant and ecosystem processes are complex and subject to multiple interactions and feedbacks. Therefore the response of the terrestrial carbon sink to increasing atmospheric CO[2] remains the largest uncertainty in global C cycle modelling to date, and is a huge contributor to uncertainty in climate change projections. Phase 2 of the FACE Model-Data Synthesis (FACE-MDS) project synthesises ecosystem observations from five long-term Free-Air CO[2] Enrichment (FACE) experiments and one open top chamber (OTC) experiment to evaluate the assumptions of a suite of terrestrial ecosystem models. The experiments are: The evergreen needleleaf Duke Forest FACE (NC), the deciduous broadleaf Oak Ridge FACE (TN), the prairie heating and FACE (WY), and the Nevada desert FACE, and the evergreen scrub oak OTC (FL). An assumption centered approach is being used to analyse: the interaction between eCO2 and water limitation on plant productivity; the interaction between eCO2 and temperature on plant productivity; whether increased rates of soil decomposition observed in many eCO2 experiments can account for model deficiencies in N uptake shown during Phase 1 of the FACE-MDS; and tracing carbon through the ecosystem to identify the exact cause of changes in ecosystem C storage.

  12. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    Science.gov (United States)

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  13. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I - Amino acids

    Science.gov (United States)

    Schlesinger, G.; Miller, S. L.

    1983-01-01

    The prebiotic synthesis of amino acids, HCN, H2CO, and NH3 using a spark discharge on various simulated primitive earth atmospheres at 25 C is investigated. Various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2 were utilized in different experiments. The yields of amino acids (1.2-4.7 percent based on the carbon) are found to be approximately independent of the H2/CH4 ratio and the presence of NH3, and a wide variety of amino acids are obtained. Glycine is found to be almost the only amino acid produced from CO and CO2 model atmospheres, with the maximum yield being about the same for the three carbon sources at high H2/carbon ratios,whereas CH4 is superior at low H2/carbon ratios. In addition, it is found that the directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles, and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. It is determined that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0.

  14. Target atmospheric CO2: Where should humanity aim?

    OpenAIRE

    Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R; Masson-Delmotte, V.; M. Pagani; Raymo, M.; Royer, D. L.; J. C. Zachos

    2008-01-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, b...

  15. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    OpenAIRE

    Bian, H.; Kawa, S. R.; M. Chin; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2011-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et...

  16. Novel applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere?

    Directory of Open Access Journals (Sweden)

    J. W. C. White

    2011-05-01

    Full Text Available Conventionally, measurements of carbon isotopes in atmospheric CO2 (δ13CO2 have been used to partition fluxes between terrestrial and ocean carbon pools. However, novel analytical approaches combined with an increase in the spatial extent and frequency of δ13CO2 measurements allow us to conduct a global analysis of δ13CO2 variability to infer the isotopic composition of source CO2 to the atmosphere (δs. This global analysis yields coherent seasonal patterns of isotopic enrichment. Our results indicate that seasonal values of δs are more highly correlated with vapor pressure deficit (r=0.404 than relative humidity (r=0.149. We then evaluate two widely used stomatal conductance models and determine that Leuning Model, which is primarily driven by vapor pressure deficit is more effective globally at predicting δs (RMSE = 1.7 ‰ than the Ball-Berry model, which is driven by relative humidity (RMSE = 2.8 ‰. Thus stomatal conductance on a global scale may be more sensitive to changes in vapor pressure deficit than relative humidity. This approach highlights a new application of using δ13CO2 measurements to test global models.

  17. Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis

    Institute of Scientific and Technical Information of China (English)

    Ning ZENG

    2003-01-01

    Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to bethe missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, theadvancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer pe-riods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over twoglacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced byreconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacialmaximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with theremainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrastto previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial,continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The inputof light isotope enriched terrestrial carbon causes atmospheric 513C to drop by about 0.3% at deglaciation,followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowthon land. Together with other ocean based mechanisms such as change in ocean temperature, the glacialburial hypothesis may offer a full explanation of the observed 80 100-ppmv atmospheric CO2 change.

  18. Clumped isotopes in near-surface atmospheric CO2 over land, coast and ocean in Taiwan and its vicinity

    Science.gov (United States)

    Hussain Laskar, Amzad; Liang, Mao-Chang

    2016-09-01

    Molecules containing two rare isotopes (e.g., 13C18O16O in CO2), called clumped isotopes, in atmospheric CO2 are powerful tools to provide an alternative way to independently constrain the sources of CO2 in the atmosphere because of their unique physical and chemical properties. We presented clumped isotope data (Δ47) in near-surface atmospheric CO2 from urban, suburban, ocean, coast, high mountain ( ˜ 3.2 km a.s.l.) and forest in Taiwan and its vicinity. The primary goal of the study was to use the unique Δ47 signature in atmospheric CO2 to show the extents of its deviations from thermodynamic equilibrium due to different processes such as photosynthesis, respiration and local anthropogenic emissions, which the commonly used tracers such as δ13C and δ18O cannot provide. We also explored the potential of Δ47 to identify/quantify the contribution of CO2 from various sources. Atmospheric CO2 over ocean was found to be in thermodynamic equilibrium with the surrounding surface sea water. Respired CO2 was also in close thermodynamic equilibrium at ambient air temperature. In contrast, photosynthetic activity result in significant deviation in Δ47 values from that expected thermodynamically. The disequilibrium could be a consequence of kinetic effects associated with the diffusion of CO2 in and out of the leaf stomata. We observed that δ18O and Δ47 do not vary similarly when photosynthesis was involved unlike simple water-CO2 exchange. Additionally we obtained Δ47 values of car exhaust CO2 that were significantly lower than the atmospheric CO2 but higher than that expected at the combustion temperature. In urban and suburban regions, the Δ47 values were found to be lower than the thermodynamic equilibrium values at the ambient temperature, suggesting contributions from local combustion emission.

  19. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  20. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    Science.gov (United States)

    Zhang, Han; Cao, Long

    2016-02-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  1. Atmospheric CO2 and soil extracellular enzyme activity: A meta-analysis and CO2 gradient experiment

    Science.gov (United States)

    Rising atmospheric CO2 concentrations may alter carbon and nutrient cycling and microbial processes in terrestrial ecosystems. One of the primary ways that microbes interact with soil organic matter is through the production of extracellular enzymes, which break down large, complex organic molecules...

  2. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    CERN Document Server

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  3. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    DEFF Research Database (Denmark)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.;

    2011-01-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from t...

  4. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    Directory of Open Access Journals (Sweden)

    P. Peylin

    2013-03-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2009. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.3 Pg Cy−1 (±0.6 standard deviation nearly equally spread between land and ocean, a significant although more variable source over the tropics (1.6 ± 1.0 Pg Cy−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.6 Pg Cy−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.05 versus 0.34 Pg Cy−1 for the 1996–2007 period, with much higher consistency amoung the inversions for the land. While the tropical land explains most of the IAV (stdev ∼ 0.69 Pg Cy−1, the northern and southern land also contribute (stdev ∼ 0.39 Pg Cy−1. Most inversions tend to indicate an increase of the northern land carbon uptake through the 2000s (around 0.11 Pg Cy−1, shared by North America and North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale, but

  5. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions

    Directory of Open Access Journals (Sweden)

    P. Peylin

    2013-10-01

    Full Text Available Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean carbon uptake in the north (−3.4 Pg C yr−1 (±0.5 Pg C yr−1 standard deviation, with slightly more uptake over land than over ocean, a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr−1 and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr−1 corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr−1 for the 1996–2007 period, with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr−1, the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr−1. Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr−1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over

  6. Target atmospheric CO2: Where should humanity aim?

    CERN Document Server

    Hansen, J; Kharecha, P; Beerling, D; Masson-Delmotte, V; Pagani, M; Raymo, M; Royer, D L; Zachos, J C

    2008-01-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 425 +/- 75 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practice...

  7. Atmospheric radon, CO2 and CH4 dynamics in an Australian coal seam gas field

    Science.gov (United States)

    Tait, D. R.; Santos, I. R.; Maher, D. T.

    2013-12-01

    Atmospheric radon (222Rn), carbon dioxide (CO2), and methane concentrations (CH4) as well as carbon stable isotope ratios (δ13C) were used to gain insight into atmospheric chemistry within an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). A˜3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 2 km to 4 km radius of the sampling sites (n = 5 stations; p gas field related to point sources (well heads, pipelines, etc.) and diffse soil sources due to changes in the soil structural and hydrological characteristics. A rapid qualitative assessment of CH4 and CO2 concentration, and carbon isotopes using a mobile cavity ring-down spectrometer system showed a widespread enrichment of both CH4 and CO2 within the production gas field. Concentrations of CH4 and CO2 were as high as 6.89 ppm and 541 ppm respectively compared average concentrations of 1.78 ppm (CH4) and 388 ppm (CO2) outside the gas field. The δ13C values showed distinct differences between areas inside and outside the production field with the δ13C value of the CH4 source within the field matching that of the methane in the CSG.

  8. CO2-helium and CO2-neon mixtures at high pressures.

    Science.gov (United States)

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F

    2013-01-28

    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  9. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump

    Directory of Open Access Journals (Sweden)

    J. C. McWilliams

    2008-03-01

    Full Text Available Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.

  10. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.

    Science.gov (United States)

    Madhana Sekhar, Kalva; Rachapudi, Venkata Sreeharsha; Mudalkar, Shalini; Reddy, Attipalli Ramachandra

    2014-08-01

    Current study was undertaken to elucidate the responses of short rotation coppice (SRC) mulberry under elevated CO2 atmosphere (550μmolmol(-1)). Throughout the experimental period, elevated CO2 grown mulberry plants showed significant increase in light saturated photosynthetic rates (A') by increasing intercellular CO2 concentrations (Ci) despite reduced stomatal conductance (gs). Reduced gs was linked to decrease in transpiration (E) resulting in improved water use efficiency (WUE). There was a significant increase in carboxylation efficiency (CE) of Rubisco, apparent quantum efficiency (AQE), light and CO2 saturated photosynthetic rates (AMAX), photosynthetic nitrogen use efficiency (PNUE), chlorophyll a fluorescence characteristics (FV/FM and PIABS), starch and other carbohydrates in high CO2 grown plants which clearly demonstrate no photosynthetic acclimation in turn resulted marked increase in above and below ground biomass. Our results strongly suggest that short rotation forestry (<1year) with mulberry plantations should be effective to mitigate raising CO2 levels as well as for the production of renewable bio-energy.

  11. CO2 Leakage Identification in Geosequestration Based on Real Time Correlation Analysis Between Atmospheric O2 and CO2

    Institute of Scientific and Technical Information of China (English)

    马登龙; 邓建强; 张早校

    2014-01-01

    The paper describes a method for monitoring CO2 leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux (ALF), is presented to monitor abnormal CO2 leakage, which can be calculated by atmospheric CO2 and O2 data. The computation shows that all ALF values are close to zero-line without the leakage. With a step change or linear perturbation of concentration to the initial CO2 concen-tration data with no leakage, ALF will deviate from background line. Perturbation tests prove that ALF method is sensitive to linear perturbation but insensitive to step change of concentration. An improved method is proposed based on real time analysis of surplus CO2 concentration in least square regression process, called apparent leakage flux from surplus analysis (ALFs), which is sensitive to both step perturbation and linear perturbations of concen-tration. ALF is capable of detecting concentration increase when the leakage occurs while ALFs is useful in all pe-riods of leakage. Both ALF and ALFs are potential approaches to monitor CO2 leakage in geosequestration project.

  12. CO2 background concentra-tion in the atmosphere over the Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the long-term monitoring data on CO2 concentration, variation trend and characteristics of CO2 background concentration in the atmosphere over the Chinese mainland are analyzed. Results show that the increasing trend of CO2 background concentration in the atmosphere over the Chinese mainland has appeared during the period of 1991-2000. The average annual CO2 growth increment is 1.59 μL/L, and the average annual CO2 growth rate is 0.44%. Distinct seasonal variations of CO2 background concentration are observed, and the averaged amplitude of CO2 seasonal variations is 10.35 μL/L. Regional variation characteristics of CO2 background concentration in the atmosphere and possible impact of human activities on these variations over the Chinese mainland are discussed as well.

  13. Carbon sequestration and atmospheric CO2 removal: climate consequence and long-term commitment

    Science.gov (United States)

    Cao, L.; Caldeira, K.

    2010-12-01

    A variety of methods have been proposed to remove anthropogenic CO2 from the atmosphere and thus mitigate climate change, such as biospheric carbon sequestration, carbon sequestration through enhanced ocean and land weathering, and direct carbon capture from ambient air. Although these proposed methods differ substantially in their physical, chemical, and biological implementations, the ultimate outcome of all schemes is to remove anthropogenic CO2 from the atmosphere. However, the climate effect of atmospheric CO2 removal has not been studied. Here we use an Earth system model to investigate the response of the coupled climate-carbon system to an idealized removal of anthropogenic CO2 from the atmosphere. We use idealized scenarios in our analysis to facilitate exploration of the basic response of the coupled climate-carbon cycle system to proposed methods of removing anthropogenic CO2. In our extreme and idealized simulations, anthropogenic CO2 emissions are halted and all anthropogenic CO2 is removed from the atmosphere at year 2050 under the IPCC A2 CO2 emission scenario. In our simulations a one-time removal of all anthropogenic CO2 in the atmosphere reduces surface air temperature by 0.8°C within a few years, but 1°C surface warming above pre-industrial levels lasts for several centuries. In other words, a one-time removal of 100% excess CO2 from the atmosphere offsets less than 50% of the warming experienced at the time of removal. To maintain atmospheric CO2 and temperature at low levels, not only does anthropogenic CO2 in the atmosphere need to be removed, but anthropogenic CO2 stored in the ocean and land needs to be removed as well when it outgasses to the atmosphere. Our study indicts that the amount of CO2 that would need to be removed from the atmosphere, either by biological means or other means, could be much greater than the desired reduction in atmospheric CO2 concentrations, and may exceed the total burden of excess atmospheric CO2 at the time

  14. Comparison of CO2 fluxes estimated using atmospheric and oceanic inversions, and role of fluxes and their interannual variability in simulating atmospheric CO2 concentrations

    Science.gov (United States)

    Patra, P. K.; Mikaloff Fletcher, S. E.; Ishijima, K.; Maksyutov, S.; Nakazawa, T.

    2006-07-01

    We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.

  15. CO2 flux estimation errors associated with moist atmospheric processes

    Directory of Open Access Journals (Sweden)

    S. Pawson

    2012-04-01

    Full Text Available Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between moist transport, satellite CO2 retrievals, and source/sink inversion has not yet been established. Here we examine the effect of moist processes on (1 synoptic CO2 transport by Version-4 and Version-5 NASA Goddard Earth Observing System Data Assimilation System (NASA-DAS meteorological analyses, and (2 source/sink inversion. We find that synoptic transport processes, such as fronts and dry/moist conveyors, feed off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to continental scale source/sink estimation errors of up to 0.25 PgC yr−1 in northern mid-latitudes. Second, moist processes are represented differently in GEOS-4 and GEOS-5, leading to differences in vertical CO2 gradients, moist poleward and dry equatorward CO2 transport, and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified, causing source/sink estimation errors of up to 0.55 PgC yr−1 in northern mid-latitudes. These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  16. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    Science.gov (United States)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  17. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2015-10-01

    Full Text Available Selective catalytic reduction of NOx with NH3 (NH3-SCR has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process under concentrated CO2 atmosphere conditions are important for future SCR deployment in oxy-fuel combustion processes. In this work, Mn- and Ce-based catalysts using activated carbon as support were used to investigate the effect of CO2 on NO conversion. A N2 atmosphere was used for comparison. Different process conditions such as temperature, SO2 concentration, H2O content in the feed gas and space velocity were studied. Under Mn-Ce/AC conditions, the results suggested that Mn metal could reduce the inhibition effect of CO2 on the NO conversion, while Ce metal increased the inhibition effect of CO2. High space velocity also resulted in a reduction of CO2 inhibition on the NO conversion, although the overall performance of SCR was greatly reduced at high space velocity. Future investigations to design novel Mn-based catalysts are suggested to enhance the SCR performance under concentrated CO2 atmosphere conditions.

  18. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO2.

    Science.gov (United States)

    Sun, Qi; Jin, Yingyin; Aguila, Briana; Meng, Xiangju; Ma, Shengqian; Xiao, Feng-Shou

    2017-03-22

    Direct use of atmospheric CO2 as a C1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO2 uptake capacity of the PIPs facilitates the enrichment of CO2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO2 .

  19. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  20. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  1. Climate Sensitivity, Sea Level, and Atmospheric CO2

    OpenAIRE

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{\\deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, bu...

  2. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    Science.gov (United States)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  3. Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO(2).

    Science.gov (United States)

    Hartwig, U A; Wittmann, P; Braun, R; Hartwig-Räz, B; Jansa, J; Mozafar, A; Lüscher, A; Leuchtmann, A; Frossard, E; Nösberger, J

    2002-05-01

    Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).

  4. Attitude toward the biological investigation for decreasing atmospheric CO2. Taiki CO2 wo sakugensuru seibutsuteki kenkyu taido

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Explanation is made of the bioprocess which aims at treating the atmospheric CO2. As a result of investigation by the Electric Power Research Institute (EPRI), it was judged that the direct CO2 removal from the flue gas of power station is costwise disadvantageous and that the biological method by CO2 fixation is economical. The following are projects supported by the EPRI: The seaweed fossilization of CO2 is a medium depth sea mechanism of having seaweeds absorb carbon and making it remain residually in the deepsea even after the plants die. Study is being made of oceanic seaweed cultivation field development, non-calcareous seaweed cultivation and spore collection. The cost is advantageously low. The cultivation of seaweeds and halophilous plants utilizes their photosynthesis to collect CO2. There are examples of studying the possibility of cultivating those plants through comparison with the land trees. The growth ratio of halophilous plants is being also studied together with the possibility that the carbon remains as a residue. The whiting is a phenomenon in which biodecomposed subsea matter becomes CaCO3. Covered with CaCO3, the ssaweeds are deposited. Investigation is being made on the seaweed morphology and condition for the occurrence of whiting. 1 ref., 2 figs., 1 tab.

  5. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    Science.gov (United States)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  6. Atmospheric CO2 Amplification of Orbitally Forced Changes in the Hydrological Cycle in the Early Mesozoic

    Science.gov (United States)

    Olsen, P. E.; Schaller, M. F.; Kent, D. V.

    2015-12-01

    Models of increasing atmospheric CO2 predict an intensification of the hydrological cycle coupled with warming, possibly amplifying effects of orbitally-forced fluctuations. While there is some Pleistocene evidence of this, CO2 concentrations were much lower than projected for the future. For the potentially more relevant Early Mesozoic, with CO2 >1000 ppm, we observe that both the soil carbonate and stomatal proxies for CO2 strongly and positively correlate with climatic-precession variance in correlative continental and marine strata of both eastern North America and Europe with temporal correlation robustly supported by magneto-, astro-, and U-Pb zircon geochronology. Eastern North American lacustrine and paleosol strata are generally characterized by >3000 ppm CO2 over most of the Norian (228-207 Ma) dropping to ~1000-3000 ppm during the succeeding latest Norian to late Rhaetian (207 to 201.6 Ma) correlative with a dramatic drop in the amplitude of the response to orbital forcing. This is followed by an extraordinary doubling to nearly tripling of CO2 (~2000-5000 ppm) in the latest Rhaetian to Early Jurassic (201.6 to 200.6 Ma) and a concurrent profound increase in the amplitude of the apparent climatic-precession variance during the eruption of the massive Central Atlantic Magmatic Province. Decreasing CO2 (~1000-2000 ppm) afterward is tracked by decreasing amplitude in the orbitally-paced cyclicity. Likewise, in the UK, high amplitude cyclicity in the lacustrine to paralic Twyning Md. Fm. gives way upward into the paralic Blue Anchor and marine Rhaetian Westbury fms in which lithological cyclicity is muted. Again, the amplitude of the orbitially-paced lithological cyclicity dramatically increases into the paralic to marine late Rhaetian Lilstock Fm. and marine latest Rhaetian to Early Jurassic Blue Lias. Parallel and correlative transitions are seen in at least western Germany. The agreement between the continental eastern US and paralic to marine European

  7. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  8. Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    M. P. Barkley

    2006-01-01

    Full Text Available Satellite measurements of atmospheric CO2 concentrations are a rapidly evolving area of scientific research which can help reduce the uncertainties in the global carbon cycle fluxes and provide insight into surface sources and sinks. One of the emerging CO2 measurement techniques is a relatively new retrieval algorithm called Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS that has been developed by Buchwitz et al. (2000. This algorithm is designed to measure the total columns of CO2 (and other greenhouse gases through the application to spectral measurements in the near infrared (NIR, made by the SCIAMACHY instrument on-board ENVISAT. The algorithm itself is based on fitting the logarithm of a model reference spectrum and its derivatives to the logarithm of the ratio of a measured nadir radiance and solar irradiance spectrum. In this work, a detailed error assessment of this technique has been conducted and it has been found necessary to include suitable a priori information within the retrieval in order to minimize the errors on the retrieved CO2 columns. Hence, a more flexible implementation of the retrieval technique, called Full Spectral Initiation (FSI WFM-DOAS, has been developed which generates a reference spectrum for each individual SCIAMACHY observation using the estimated properties of the atmosphere and surface at the time of the measurement. Initial retrievals over Siberia during the summer of 2003 show that the measured CO2 columns are not biased from the input a priori data and that whilst the monthly averaged CO2 distributions contain a high degree of variability, they also contain interesting spatial features.

  9. 2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory

    2015-04-01

    We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes

  10. Experimental and modeling study of NO emission under high CO2 concentration

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental and numerical study of the NOx formation and reduction process in a designed coal combustion furnace under both traditional air atmosphere and O2/CO2 atmosphere was conducted, in an attempt to explore the chemistry mechanism of the experimentally observed NOx suppression under high CO2 concentration atmospheres. A simplified ‘chemically oriented’ approach, computational fluid dynamics (CFD)-chemical kinetics modeling method, was validated and used to model the experimental process. The high CO2 concentration’s chemical effect on NO reduction has been studied, and the differences in NOx reaction behaviors between O2/CO2 atmosphere and air atmosphere were analyzed by detailed chemical kinetic model. On the basis of investigations through elementary chemical reactions, it can be concluded that high CO2 concentration plays an important role on NOx conversion process during oxy-fuel combustion. Moreover, the dominant reaction steps and the most important reactions for NO conversion under different atmospheres were discussed. Under O2/CO2 atmosphere, the main active sequence for NO reaction includes: NO→N→N2, and the main active path for NO reaction under air atmosphere is through N2→N→NO.

  11. Oceanic iron fertilization:one of strategies for sequestration atmospheric CO2

    Institute of Scientific and Technical Information of China (English)

    宋金明

    2003-01-01

    Carbon cycle is connected with the most important environmental issue of Global Change.As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recentyears, iron seems to give us a good news that oceanic iron fertilization could stimulate biological produc-tivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified thatadding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton productionand export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce globalwarming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by modelprediction and in situ experiment, I.e. The atmospheric CO2 uptake and inorganic carbon drawdown inupper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strate-gies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, es-pecially in situ ocean iron experiments in order that the future research is more efficient.

  12. Measurement of Lower-Atmospheric CO2 Concentration Distribution Using a Compact 1.6 μm DIAL

    Science.gov (United States)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. The differential absorption lidar (DIAL) is expected to measure atmospheric CO2 profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a compact 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This 1.6 μm DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and a 25 cm telescope. CO2 concentration profiles were obtained up to 2.5 km altitude.

  13. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    Science.gov (United States)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  14. A new ice core proxy of continental weathering and its feedback with atmospheric CO2

    Science.gov (United States)

    Schmitt, J.; Seth, B.; Köhler, P.; Willenbring, J. K.; Fischer, H.

    2012-04-01

    is responsible for an exceptionally long atmospheric lifetime which is expected to range between 50 kyr and 400 kyr. We developed a vacuum melt-extraction system for ice core samples coupled to a mass spectrometry detector to precisely measure the trace amounts of CF4 found in past atmosphere. During the last 800 kyr, the atmospheric CF4 concentrations varied in a narrow band between 31 ppt and 35 ppt, i.e. only 10-15 % variability, providing a first estimate of the long-term weathering rate fluctuations. On closer inspection, our CF4 record, however, shows a pronounced shift toward higher CF4 levels after 430 kyr (the Mid-Brunhes Event). With the beginning of Marine Isotope stage 11, we find a steep rise in CF4 that probably relates to intense weathering during the first interglacial, where CO2 reached 280 ppm and sea level may have been even higher than today. Further, our record shows that CF4 concentrations, and thus weathering, increases during interglacials and falls during the coldest, glacial phases. This dataset lends support to a strong positive coupling of continental weathering rates during warmer climate conditions at high CO2 levels.

  15. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    Science.gov (United States)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  16. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    Science.gov (United States)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  17. Dynamics of Soil Organic Carbon Under Uncertain Climate Change and Elevated Atmospheric CO2

    Institute of Scientific and Technical Information of China (English)

    LIN Zhong-Bing; ZHANG Ren-Duo

    2012-01-01

    Climate change and elevated atmospheric CO2 should affect the dynamics of soil organic carbon (SOC).SOC dynamics under uncertain patterns of climate warming and elevated atmospheric CO2 as well as with different soil erosion extents at Nelson Farm during 1998-2100 were simulated using stochastic modelling.Results based on numerous simulations showed that SOC decreased with elevated atmospheric temperature but increased with atmospheric CO2 concentration.Therefore,there was a counteract effect on SOC dynamics between climate warming and elevated CO2.For different soil erosion extents,warming 1 ℃ and elevated atmospheric CO2 resulted in SOC increase at least 15%,while warming 5 ℃ and elevated CO2 resulted in SOC decrease more than 29%.SOCpredictions with uncertainty assessment were conducted for different scenarios of soil erosion,climate change,and elevated CO2.Statistically,SOC decreased linearly with the probability.SOC also decreased with time and the degree of soil erosion.For example,in 2100 with a probability of 50%,SOC was 1617,1 167,and 892 g m-2,respectively,for no,minimum,and maximum soil erosion.Under climate warming 5 ℃ and elevated CO2,the soil carbon pools became a carbon source to the atmosphere (P > 95%).The results suggested that stochastic modelling could be a useful tool to predict future SOC dynamics under uncertain climate change and elevated CO2.

  18. Atmospheric CO2 and CH4 Measurement Network on Towers in Siberia

    Science.gov (United States)

    Shimoyama, K.; Machida, T.; Shinohara, A.; Maksyutov, S.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.; Fedoseev, N.; Belan, B.; Belan, H.; Inoue, G.

    2006-12-01

    In order to estimate CO2 and CH4 fluxes at regional to sub-continental scale by an inverse model, a network of tall towers for atmospheric CO2 and CH4 measurements has been established over a region of thousand square kilometers in west Siberia. In-situ continuous measurements have been conducted at 6 stations: Berezorechka (56.17N, 84.33E) since 2002, Parabel (58.25N, 82.40E) and Igrim (63.20N, 64.48E) since 2004, Demyanskoe (59.78N, 70.87E) and Noyabrsk (63.43N, 76.76E) since 2005, and Yakutsk (62.83N, 129.35E) in east Siberia since 2005. Over next two years, installations of 4 more stations are planned. This study provides some results of observation from this network. Seasonal cycles of CO2 showed quite similar trends in growing season (May to September) among the west Siberian sites. The remarkable decrease of CO2 concentration occurred in early May and the seasonal minimum was observed between July and August. On the other hand, the short-term (from several days to week) variations in CO2 concentrations were quite different among the sites, particularly during the growing season. Rather large variation of more than 25 ppm within a week was observed during winter. The changes in CO2 concentrations at the nearby sites were almost identical. Monthly mean values of CO2 during the growing season were relatively higher at the northern sites than at southern sites. These observational results evidentially reflected the regional characteristics of CO2 flux variation, transportation, and mixing process. Daily cycles of CH4 in summer showed nocturnal increase and diurnal decrease which was due to emission of CH4 from wetland accumulated over night, and diurnal convective mixing. Relatively high concentrations of CH4 were observed in winter and summer. Because there is one of the world's vastest wetland in western Siberia, the peak of CH4 in summer implies the significant role of CH4 emissions from the west Siberian wetland to the atmosphere. On the other hand, an

  19. Lidar Measurements of Atmospheric CO2 From Regional to Global Scales

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Ismail, Syed; Kooi, Susan; Fan, Tai-Fang

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate and the knowledge on its distributions and variations influences predictions of the Earth's future climate. Large uncertainties in the predictions persist due to limited observations. This study uses the airborne Intensity-Modulated Continuous-Wave (IMCW) lidar developed at NASA Langley Research Center to measure regional atmospheric CO2 spatio-temporal variations. Further lidar development and demonstration will provide the capability of global atmospheric CO2 estimations from space, which will significantly advances our knowledge on atmospheric CO2 and reduce the uncertainties in the predictions of future climate. In this presentation, atmospheric CO2 column measurements from airborne flight campaigns and lidar system simulations for space missions will be discussed. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved. Data analysis also shows that airborne lidar CO2 column measurements over these surfaces agree well with in-situ measurements. Even when thin cirrus clouds present, consistent CO2 column measurements between clear and thin cirrus cloudy skies are obtained. Airborne flight campaigns have demonstrated that precise atmospheric column CO2 values can be measured from current IM-CW lidar systems, which will lead to use this airborne technique in monitoring CO2 sinks and sources in regional and continental scales as proposed by the NASA Atmospheric Carbon and Transport â€" America project. Furthermore, analyses of space CO2 measurements shows that applying the current IM-CW lidar technology and approach to space, the CO2 science goals of space missions will be achieved, and uncertainties in CO2 distributions and variations will be reduced.

  20. Dynamics of global atmospheric CO2 concentration from 1850 to 2010: a linear approximation

    Science.gov (United States)

    Wang, W.; Nemani, R.

    2014-09-01

    The increase in anthropogenic CO2 emissions largely followed an exponential path between 1850 and 2010, and the corresponding increases in atmospheric CO2 concentration were almost constantly proportional to the emissions by the so-called "airborne fraction". These observations suggest that the dynamics of atmospheric CO2 concentration through this time period may be properly approximated as a linear system. We demonstrate this hypothesis by deriving a linear box-model to describe carbon exchanges between the atmosphere and the surface reservoirs under the influence of disturbances such as anthropogenic CO2 emissions and global temperature changes. We show that the box model accurately simulates the observed atmospheric CO2 concentrations and growth rates across interannual to multi-decadal time scales. The model also allows us to analytically examine the dynamics of such changes/variations, linking its characteristic disturbance-response functions to bio-geophysically meaningful parameters. In particular, our results suggest that the elevated atmospheric CO2 concentrations have significantly promoted the gross carbon uptake by the terrestrial biosphere. However, such "fertilization" effects are partially offset by enhanced carbon release from surface reservoirs promoted by warmer temperatures. The result of these interactions appears to be a decline in net efficiency in sequestering atmospheric CO2 by ∼30% since 1960s. We believe that the linear modeling framework outlined in this paper provides a convenient tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  1. Characteristics of variations of climate change and atmospheric CO2 concentration at different time scales over the past 500 Ma

    Science.gov (United States)

    LIU, Z.; Huang, S. S. X. E. C.; Tang, X.

    2015-12-01

    It is generally believed that current global warming is due to the persistent rise of atmospheric greenhouse gas CO2. The consensus is based mostly on the observational data of past decades and the polar ice core records. To understand the relationship between climate change and atmospheric CO2, their behaviors over a longer interval at different time scales need to be appreciated. Here, we collect and analyze past 500 Ma records of atmospheric CO2 and temperature in six time periods, namely Phanerozoic, Cenozoic, middle Pleistocene, last deglaciation, past millennium, and recent decades. According to the carriers and time spans, we divide these records into three categories: 1.The millionaire and longer records from model calculation and paleosols/paleobotany proxies. Although the trends of both variables are generally consistent on this time scale, it is difficult to establish a clear causal relationship because of great uncertainties and low resolutions of both sets of data. 2.The orbital scale mainly from the polar ice core. High precise CO2 and temperature reconstructions allow for an examination of the possible role of atmospheric CO2 in the glacial-interglacial transformation. 3.The records at centennial and shorter time scales over the past millennium from ice, snow, and instrumental data. The past millennium records are most abundant and accurate, especially CO2 has been measured directly in recent decades. However, due to the difficulties in distinguishing the effect of CO2 from other factors, there are great uncertainties in the interpretation of climate change versus CO2. Overall, we come to the following conclusions:1.Paleoclimatic reconstructions show that both temperature and atmospheric CO2 have generally decreased over the past 500 Ma. However, there are no consistent sequential orders in the changes between these two variables. 2.The Earth's atmospheric CO2 has a drastic oscillation history. There were many high CO2 periods when the values were

  2. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    Science.gov (United States)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  3. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    Science.gov (United States)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  4. Potential maternal effects of elevated atmospheric CO2 on development and disease severity in a Mediterranean legume

    Directory of Open Access Journals (Sweden)

    José M. Grünzweig

    2011-07-01

    Full Text Available Global change can greatly affect plant populations both directly by influencing growing conditions and indirectly by maternal effects on development of offspring. More information is needed on transgenerational effects of global change on plants and on their interactions with pathogens. The current study assessed potential maternal effects of atmospheric CO2 enrichment on performance and disease susceptibility of first-generation offspring of the Mediterranean legume Onobrychis crista-galli. Mother plants were grown at three CO2 concentrations, and the study focused on their offspring that were raised under common ambient climate and CO2. In addition, progeny were exposed to natural infection by the fungal pathogen powdery mildew. In one out of three years, offspring of high-CO2 treatments (440 and 600 ppm had lower shoot biomass and reproductive output than offspring of low-CO2 treatment (280 ppm. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 offspring. However, some of the findings on maternal effects changed when the population was divided into two functionally diverging plant types distinguishable by flower color (pink, Type P; white Type W. Disease severity in a heavy-infection year was higher in high-CO2 than in low-CO2 progeny in the more disease-resistant (Type P, but not in the more susceptible plant type (Type W. In a low-infection year, maternal CO2 treatments did not differ in disease severity. Mother plants of Type P exposed to low CO2 produced larger seeds than all other combinations of CO2 and plant type, which might contribute to higher offspring performance. This study showed that elevated CO2 potentially exerts environmental maternal effects on performance of progeny and, notably, also on their susceptibility to natural infection by a pathogen. Maternal effects of global change might differently affect functionally divergent plant types, which could impact population fitness and alter plant

  5. Responses of plant rhizosphere to atmospheric CO2 enrichment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Plant root growth is generally stimulated under elevated CO2. This will bring more carbon to the below-ground through root death and exudate. This potential increase in below-ground carbon sink may lead to changes in long-term soil sequestration and relationship between host plants and symbions. On the other hand, changes in litter components due to the changes in plant chemical composition may also affect soil processes, such as litter decomposition, soil organic matter sequestration and hetero-nutritional bacteria activities. These issues are discussed.

  6. In-situ measurement of atmospheric CO2 at the four WMO/GAW stations in China

    Directory of Open Access Journals (Sweden)

    S. X Fang

    2013-10-01

    Full Text Available Atmospheric carbon dioxide (CO2 mole fractions were continuously measured from January 2009 to December 2011 at 4 atmospheric observatories in China ((Lin'an, LAN, (Longfengshan, LFS, (Shangdianzi, SDZ, and (Waliguan, WLG using Cavity Ring Down Spectroscopy instruments. All sites are regional (LAN, LFS, SDZ or global (WLG measurement stations of the World Meteorological Organization/Global Atmosphere Watch program (WMO/GAW. LAN is located near the megacity of Shanghai, in China's most economically developed region. LFS is in a forest and rice production area, close to the city of Harbin in the northern east of China. SDZ is located 150 km north east of Beijing. WLG, hosting the longest record of measured CO2 mole fractions in China, is a high altitude site in northwest China recording background CO2 values. The CO2 growth rates are 2.2 ± 0.2 ppm yr−1 for LAN, 2.3 ± 0.2 ppm yr−1 for LFS, 2.0 ± 0.2 ppm yr−1 for SDZ, and 1.2 ± 0.1 ppm yr−1 (1σ for WLG, during the period of 2009 to 2011. The growth rate at WLG may be underestimated due to the data gaps during the observation period. The highest annual mean CO2 mole fraction of 404.1 ± 4.1 ppm was observed at LAN in 2011. A comprehensive analysis of CO2 variations, their diurnal and seasonal cycles as well as the analysis of the influence of different wind regimes on the CO2 mole fractions allows a thorough characterization of the sampling sites and of the key processes driving the CO2 mole fractions. These data form a basis to improve our understanding of atmospheric CO2 variations in China and the underlying fluxes, using atmospheric inversion models.

  7. Impact of atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    Science.gov (United States)

    Agüera, Eloísa; Ruano, David; Cabello, Purificación; de la Haba, Purificación

    2006-07-01

    Expression and activity of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) were analysed in relation to the rate of CO(2) assimilation in cucumber (Cucumis sativus L.) leaves. Intact plants were exposed to different atmospheric CO(2) concentrations (100, 400 and 1200microLL(-1)) for 14 days. A correlation between the in vivo rates of net CO(2) assimilation and the atmospheric CO(2) concentrations was observed. Transpiration rate and stomatal conductance remained unaffected by CO(2) levels. The exposure of the cucumber plants to rising CO(2) concentrations led to a concomitant increase in the contents of starch and soluble sugars, and a decrease in the nitrate content in leaves. At very low CO(2), NR and GS expression decreased, in spite of high nitrate contents, whereas at normal and elevated CO(2) expression and activity were high although the nitrate content was very low. Thus, in cucumber, NR and GS expression appear to be dominated by sugar levels, rather than by nitrate contents.

  8. What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?

    Science.gov (United States)

    Wu, Lin; Broquet, Grégoire; Ciais, Philippe; Bellassen, Valentin; Vogel, Felix; Chevallier, Frédéric; Xueref-Remy, Irène; Wang, Yilong

    2016-06-01

    promising for MRV applications in the Paris metropolitan area. With 70 stations, the uncertainties in the inverted emissions are reduced significantly over those obtained using 10 stations: by 32 % for commercial and residential buildings, by 33 % for road transport, by 18 % for the production of energy by power plants, and by 31 % for total emissions. These results indicate that such a high number of stations would be likely required for the monitoring of sectoral emissions in Paris using this observation-model framework. They demonstrate some high potential that atmospheric inversions can contribute to the monitoring and/or the verification of city CO2 emissions (baseline) and CO2 emission reductions (commitments) and the advantage that could be brought by the current developments of lower-cost medium precision (LCMP) sensors.

  9. Characterizing Uncertainties in Atmospheric Inversions of Fossil Fuel CO2 Emissions in California

    Science.gov (United States)

    Brophy, K. J.; Graven, H. D.; Manning, A.; Arnold, T.; Fischer, M. L.; Jeong, S.; Cui, X.; Parazoo, N.

    2016-12-01

    In 2006 California passed a law requiring greenhouse gas emissions be reduced to 1990 levels by 2020, equivalent to a 20% reduction over 2006-2020. Assessing compliance with greenhouse gas mitigation policies requires accurate determination of emissions, particularly for CO2 emitted by fossil fuel combustion (ffCO2). We found differences in inventory-based ffCO2 flux estimates for California total emissions of 11% (standard deviation relative to the mean), and even larger differences on some smaller sub-state levels. Top-down studies may be useful for validating ffCO2 flux estimates, but top-down studies of CO2 typically focus on biospheric CO2 fluxes and they are not yet well-developed for ffCO2. Implementing top-down studies of ffCO2 requires observations of a fossil fuel combustion tracer such as 14C to distinguish ffCO2 from biospheric CO2. However, even if a large number of 14C observations are available, multiple other sources of uncertainty will contribute to the uncertainty in posterior ffCO2 flux estimates. With a Bayesian inverse modelling approach, we use simulated atmospheric observations of ffCO2 at a network of 11 tower sites across California in an observing system simulation experiment to investigate uncertainties. We use four different prior ffCO2 flux estimates, two different atmospheric transport models, different types of spatial aggregation, and different assumptions for observational and model transport uncertainties to investigate contributions to posterior ffCO2 emission uncertainties. We show how various sources of uncertainty compare and which uncertainties are likely to limit top-down estimation of ffCO2 fluxes in California.

  10. [Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae].

    Science.gov (United States)

    Chen, Jing; Chen, Xin; Tang, Jianjun

    2004-12-01

    The changes of microbial communities in rhizosphere and the formation of mycorrhizae play an important role in affecting the dynamics of plant communities and terrestrial ecosystems. This paper summarized and discussed the effects of elevated atmospheric CO2 on them. Under elevated atmospheric CO2, the carbohydrates accumulated in root systems increased, and the rhizospheric environment and its microbial communities as well as the formation of mycorrhizae changed. It is suggested that the researches in the future should be focused on the effects of rhizosphere microbes and arbuscular mycorrhizae on regulating the carbon dynamics of plant communities and terrestrial ecosystems under elevated atmospheric CO2.

  11. H2O and CO2 exchange between a sphagnum mire ecosystem and the atmosphere

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Novenko, Elena

    2013-04-01

    The modern climatic conditions are strongly influenced by both internal variability of climatic system, and various external natural and anthropogenic factors (IPCC 2007). Significant increase of concentration of greenhouse gases in the atmosphere and especially the growth of atmospheric CO2 due to human activity are considered as the main factors that are responsible for modern global warming and climate changes. A significant part of anthropogenic CO2 is absorbed from the atmosphere by land biota and especially by vegetation cover. However, it is still not completely clear what is the role of different land ecosystems and especially forests and mires in global cycles of H2O and CO2 and what is a sensitivity of these ecosystems to climate changes. Within the framework of this study the spatial and temporal variability of H2O and CO2 fluxes between a mire ecosystem and the atmosphere was described using results of the field measurements and modeling approach. For the study a mire ecosystem located in Tula region in European part of Russia was selected. The selected mire has karst origin, depth of peat float is 2.5-3.0 m (depth of depression is more than 10 meter), area is about 1 ha. The mire vegetation is characterized by sedge and sphagnum mosses cover. The mire is surrounded by broad-leaved forest of about 20 meter high. To describe the temporal and spatial patterns of H2O and CO2 fluxes within selected mire the chamber method was applied. The measurement were carried out along transect from mire edge to center from June to September of 2012. For measurements the transparent ventilated chambers combined with portable infrared CO2/H2O analyzer LI-840 (Li-Cor, USA) was used. To estimate the gross primary production and respiration of different type of vegetation within the mire the measurements were conducted both under actual light conditions and artificial shading. Results of the experimental studies showed that the maximal CO2 fluxes was observed in central

  12. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    OpenAIRE

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geo...

  13. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  14. Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake

    Directory of Open Access Journals (Sweden)

    A. Oschlies

    2009-08-01

    Full Text Available The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006. For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not

  15. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  16. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  17. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    Science.gov (United States)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  18. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  19. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  20. Changes in coccolith calcification under stable atmospheric CO2

    Directory of Open Access Journals (Sweden)

    C. Bauke

    2013-06-01

    Full Text Available Coccolith calcification is known to respond to ocean acidification in culture experiments as well as in present and past oceans. Previous studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system but pay little attention to the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and carbonate ion concentration we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene with its predominantly stable carbonate system provides the conditions for such a comprehensive analysis. For a realistic analysis on changes in major components of Holocene coccolithophores, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a North–South transect in the North Atlantic were analysed. During the Holocene mean weight (and therefore calcification of Noelaerhabdaceae (E. huxleyi and Gephyrocapsa coccoliths decreases at the Azores (Geofar KF 16 from around 7 to 5.5 pg, but increases at the Rockall Plateau (ODP Site 980 from around 6 to 8 pg and at the Vøring Plateau (MD08-3192 from 7 to 10.5 pg. This amplitude of average weight variability is within the range of glacial/interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are partly due to variations in the coccolithophore assemblage, but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith

  1. Changes in coccolith calcification under stable atmospheric CO2

    Science.gov (United States)

    Bauke, C.; Meier, K. J. S.; Kinkel, H.; Baumann, K.-H.

    2013-06-01

    Coccolith calcification is known to respond to ocean acidification in culture experiments as well as in present and past oceans. Previous studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system but pay little attention to the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and carbonate ion concentration we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene with its predominantly stable carbonate system provides the conditions for such a comprehensive analysis. For a realistic analysis on changes in major components of Holocene coccolithophores, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a North-South transect in the North Atlantic were analysed. During the Holocene mean weight (and therefore calcification) of Noelaerhabdaceae (E. huxleyi and Gephyrocapsa) coccoliths decreases at the Azores (Geofar KF 16) from around 7 to 5.5 pg, but increases at the Rockall Plateau (ODP Site 980) from around 6 to 8 pg and at the Vøring Plateau (MD08-3192) from 7 to 10.5 pg. This amplitude of average weight variability is within the range of glacial/interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are partly due to variations in the coccolithophore assemblage, but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs

  2. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    Science.gov (United States)

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  3. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  4. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    Science.gov (United States)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  5. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    Science.gov (United States)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  6. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.

    Science.gov (United States)

    Cherubini, Francesco; Guest, Geoffrey; Strømman, Anders H

    2013-11-15

    Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).

  7. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  8. Acetylene fuel from atmospheric CO2 on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  9. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    concentration in the recovered straw samples. After five months of decomposition, hyphal biomass was significantly lower in straw from plants grown at elevated CO2 (-30% and -13% in the fallow and wheat field, respectively). Bacterial biomass was not significantly affected by the CO2 induced changes...... in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower...

  10. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf, Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based daytime leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elevated, but not at ambient CO2. Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  11. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf,Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    X.Z.WANG; P.S.CURTIS; 等

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston,Michigan,USA,to study the effects of soil fertility and CO2 on leaf,sdtem and root dark respiration (Rd) of Populus tremuloides.Overall,area-based daytime leaf Rd(Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil,but not in low-fertility soil.Mass-based leaf Rd(Rdm) was overall greater for high-than for low-fertility soil grown trees at elevated,but not at ambient CO2 .Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2,nor was stem Rda ,which ranged from 1.0 to 1.4μmol m-2s-1 in the spring and 3.5 to 4.5μmol m-2s-1 in the summer.Root Rda was significantly higher in high-than in low-fertiliy soil,but was unaffected by CO2.Since biomass production of P.tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged,we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2.Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  12. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  13. Fixing atmospheric CO2 by environment adaptive sorbent and renewable energy

    Science.gov (United States)

    Wang, T.; Liu, J.; Ge, K.; Fang, M.

    2014-12-01

    Fixing atmospheric CO2, followed by geologic storage in remote areas is considered an environmentally secure approach to climate mitigation. A moisture swing sorbent was investigated in the laboratory for CO2 capture at a remote area with humid and windy conditions. The energy requirement of moisture swing absorption could be greatly reduced compared to that of traditional high-temperature thermal swing, by assuming that the sorbent can be naturally dried and regenerated at ambient conditions. However, for currently developed moisture swing materials, the CO2 capacity would drop significantly at high relative humidity. The CO2 capture amount can be reduced by the poor thermodynamics and kinetics at high relative humidity or low temperature. Similar challenges also exist for thermal or vacuum swing sorbents. Developing sorbent materials which adapt to specific environments, such as high humidity or low temperature, can ensure sufficient capture capacity on the one hand, and realize better economics on the other hand (Figure 1) .An environment adaptive sorbent should have the abilities of tunable capacity and fast kinetics at extreme conditions, such as high humidity or low temperature. In this presentation, the possibility of tuning CO2 absorption capacity of a polymerized ionic liquid material is discussed. The energy requirement evaluation shows that tuning the CO2 binding energy of sorbent, rather than increasing the temperature or reducing the humidity of air, could be much more economic. By determining whether the absorption process is controlled by physical diffusion controlled or chemical reaction, an effective approach to fast kinetics at extreme conditions is proposed. A shrinking core model for mass transfer kinetics is modified to cope with the relatively poor kinetics of air capture. For the studied sample which has a heterogeneous structure, the kinetic analysis indicates a preference of sorbent particle size optimization, rather than support layer

  14. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  15. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    Science.gov (United States)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  16. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  17. A test of sensitivity to convective transport in a global atmospheric CO2 simulation

    Science.gov (United States)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-11-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  18. Assessment of model estimates of land–atmosphere CO2 exchange across Northern Eurasia

    Directory of Open Access Journals (Sweden)

    M. A. Rawlins

    2015-02-01

    productivity and soil respiration as being needed for reducing uncertainty in land–atmosphere CO2 exchange. These advances require collection of new field data on vegetation and soil dynamics, the development of benchmarking datasets from measurements and remote sensing observations, and investments in future model development and intercomparison studies. Resulting improvements in parameterizations and processes driving productivity and soil respiration rates will increase confidence in model estimates of net CO2 exchange, component carbon fluxes, and underlying drivers of change across the northern high latitudes.

  19. Measurements of atmospheric transmittance of CO2 laser radiation

    Science.gov (United States)

    Aref'ev, V. N.

    1991-02-01

    The field measurement of transmission of 12C1602, 12C1802 and 2 13C160 laser at 62 wavelenghts in the 9.2-11.2.~m spectral range are presented. The measurements were made on a O.2-2.0 km horizontal path using a tunable CO laser. The results were compared with the compu- 2 ted molecular absorptions. Mather a good agreement has been found. Under sufficient visibility (disregarding aerozol attenuation ) atmospheric water vapour is the main extinction component within 10-13 tm and in the range of 8-10 im other small constituents are important.

  20. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications - Part I. Validation

    OpenAIRE

    Wareing, CJ; Fairweather, M.; Falle, SAEG; Woolley, RM

    2015-01-01

    Carbon dioxide (CO2) capture and storage presents a short-term option for significantly reducing the amount of CO2 released into the atmosphere and mitigating the effects of climate change. To this end, National Grid initiated the COOLTRANS research programme to consider the pipeline transportation of high pressure dense phase CO2, including the development and application of a mathematical model for predicting the sonic near-field dispersion of pure CO2 following the venting or failure of su...

  1. Biases in atmospheric CO2 estimates from correlated meteorology modeling errors

    Science.gov (United States)

    Miller, S. M.; Hayek, M. N.; Andrews, A. E.; Fung, I.; Liu, J.

    2015-03-01

    Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.5-7 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 2-22%. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is

  2. Atmospheric CO2 Consumption in Uplifting Mountain Ranges: New Insight From the New Zealand Southern Alps

    Science.gov (United States)

    Jacobson, A. D.; Blum, J. D.; Chamberlain, C. P.

    2004-12-01

    CO2 consumption, because mechanical erosion effectively maintains low ratios of silicate to carbonate weathering. The highest ratios of silicate to carbonate weathering occur in the eastern Southern Alps, where landscape stabilization leads to the depletion of carbonate from developing soil profiles. Data for major world rivers (including Himalayan rivers) yield a consistent interpretation. We find that landscapes subject to either intense mechanical erosion or cool temperatures experience the lowest ratios of silicate to carbonate weathering. By comparison, landscapes experiencing modest mechanical erosion and warm temperatures have the highest ratios of silicate to carbonate weathering. The strong similarity between river chemistry in the Southern Alps and the Himalaya Mountains suggests that these results are generally applicable to understanding the relationship between uplift and chemical weathering. We therefore conclude that mountain building increases atmospheric CO2 consumption rates by only a factor of ~2, which is much smaller than previous estimates. Because the area of uplifting mountain ranges is small relative to the total area of the continents, we suggest that stable landscapes with overall lower chemical weathering rates but high ratios of silicate to carbonate weathering may exert a more significant influence on long-term atmospheric CO2 levels.

  3. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    Science.gov (United States)

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.

  4. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales

    Science.gov (United States)

    Lauderdale, Jonathan M.; Williams, Richard G.; Munday, David R.; Marshall, David P.

    2017-03-01

    The Southern Ocean plays a pivotal role in climate change by exchanging heat and carbon, and provides the primary window for the global deep ocean to communicate with the atmosphere. There has been a widespread focus on explaining atmospheric CO2 changes in terms of changes in wind forcing in the Southern Ocean. Here, we develop a dynamically-motivated metric, the residual upwelling, that measures the primary effect of Southern Ocean dynamics on atmospheric CO2 on centennial to millennial timescales by determining the communication with the deep ocean. The metric encapsulates the combined, net effect of winds and air-sea buoyancy forcing on both the upper and lower overturning cells, which have been invoked as explaining atmospheric CO2 changes for the present day and glacial-interglacial changes. The skill of the metric is assessed by employing suites of idealized ocean model experiments, including parameterized and explicitly simulated eddies, with online biogeochemistry and integrated for 10,000 years to equilibrium. Increased residual upwelling drives elevated atmospheric CO2 at a rate of typically 1-1.5 parts per million/106 m3 s-1 by enhancing the communication between the atmosphere and deep ocean. This metric can be used to interpret the long-term effect of Southern Ocean dynamics on the natural carbon cycle and atmospheric CO2, alongside other metrics, such as involving the proportion of preformed nutrients and the extent of sea ice cover.

  5. Atmospheric CO2 mole fraction affects stand-scale carbon use efficiency of sunflower by stimulating respiration in light.

    Science.gov (United States)

    Gong, Xiao Ying; Schäufele, Rudi; Lehmeier, Christoph Andreas; Tcherkez, Guillaume; Schnyder, Hans

    2017-03-01

    Plant carbon-use-efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2 . Sunflower stands were grown at low (200 μmol mol(-1) ) or high CO2 (1000 μmol mol(-1) ) in controlled environment mesocosms. CUE of stands was measured by dynamic stand-scale (13) C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2 ) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand-scale respiratory metabolism at high CO2 . Two main processes contributed to the reduction of CUE at high CO2 : a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions.

  6. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia.

    Science.gov (United States)

    Schlesinger, G; Miller, S L

    1983-01-01

    The electric discharge synthesis of HCN, H2CO, NH3 and urea has been investigated using various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2. HCN and H2CO were each synthesized in yields as high as 10% from CH4 as a carbon source. Similar yields were obtained from CO when H2/CO greater than 1.0 and from CO2 when H2/CO2 greater than 2.0. At H2/CO2 less than 1.0 the yields fall off drastically. Good yields of NH3 (0.7 to 5%) and fair yields of urea (0.02 to 0.63%) based on nitrogen were also obtained. The directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. These results show that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0. Methane containing atmospheres give comparable quantities of HCN and H2CO, and are superior in the synthesis of amino acids.

  7. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus; Haywood, Alan; Pickering, Steven

    2016-04-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicates. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found in analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, a better understanding of the nature of mPWP Arctic sea ice would be highly beneficial in understanding proxy derived estimates of high latitude surface temperature change, and the ability of climate models to reproduce this. In GCM simulations, the mPWP is typically represented with fixed orbital forcing, usually identical to modern, and atmospheric CO2 concentrations of ˜ 400 ppm. However, orbital forcing varied over the ˜ 240,000 years of the mPWP, and it is likely that atmospheric CO2 varied as well. A previous study has suggested that the parameterisation of sea ice albedo in the HadCM3 GCM may not reflect the sea ice albedo for a warmer climate, where seasonal sea ice constitutes a greater proportion of the Arctic sea ice cover. These three factors, in isolation and combined, can greatly influence the simulation of Arctic sea ice cover and the degree of high latitude surface temperature warming. This paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by

  8. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2

    Science.gov (United States)

    Leakey, Andrew D. B.; Lau, Jennifer A.

    2012-01-01

    Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying

  9. Airborne Lidar for Simultaneous Measurement of Column CO2 and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Antill, Charles W.; Remus, Ruben; Yu, Jirong

    2016-01-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption feathers for the gas at this particular wavelength. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers. This paper will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar. The development of this active optical remote sensing IPDA instrument is targeted for measuring both CO2 and water vapor (H2O) in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver telescope, detection system and data acquisition. Future plans for the IPDA lidar system for ground integration, testing and flight validation will also be presented.

  10. State of the Carbon Cycle - Consequences of Rising Atmospheric CO2

    Science.gov (United States)

    Moore, D. J.; Cooley, S. R.; Alin, S. R.; Brown, M. E.; Butman, D. E.; French, N. H. F.; Johnson, Z. I.; Keppel-Aleks, G.; Lohrenz, S. E.; Ocko, I.; Shadwick, E. H.; Sutton, A. J.; Potter, C. S.; Yu, R. M. S.

    2016-12-01

    The rise of atmospheric CO2, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO2 has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO2 causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO2 may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO2. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO2 contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO2 depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO2 and reduce

  11. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    Science.gov (United States)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  12. Effects of Elevated Atmospheric CO(2) on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem.

    Science.gov (United States)

    Nguyen, L M; Buttner, M P; Cruz, P; Smith, S D; Robleto, E A

    2011-10-01

    The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants.

  13. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application

    Science.gov (United States)

    Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao

    2017-10-01

    A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.

  14. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2

    Science.gov (United States)

    Watson, Andrew J.; Vallis, Geoffrey K.; Nikurashin, Maxim

    2015-11-01

    Atmospheric CO2 concentrations over glacial-interglacial cycles closely correspond to Antarctic temperature patterns. These are distinct from temperature variations in the mid to northern latitudes, so this suggests that the Southern Ocean is pivotal in controlling natural CO2 concentrations. Here we assess the sensitivity of atmospheric CO2 concentrations to glacial-interglacial changes in the ocean's meridional overturning circulation using a circulation model for upwelling and eddy transport in the Southern Ocean coupled with a simple biogeochemical description. Under glacial conditions, a broader region of surface buoyancy loss results in upwelling farther to the north, relative to interglacials. The northern location of upwelling results in reduced CO2 outgassing and stronger carbon sequestration in the deep ocean: we calculate that the shift to this glacial-style circulation can draw down 30 to 60 ppm of atmospheric CO2. We therefore suggest that the direct effect of temperatures on Southern Ocean buoyancy forcing, and hence the residual overturning circulation, explains much of the strong correlation between Antarctic temperature variations and atmospheric CO2 concentrations over glacial-interglacial cycles.

  15. A possible new role for atmospheric 13CO2 in global models

    NARCIS (Netherlands)

    Miller, J. B.; Ballantyne, A.; Berry, J. A.; Peters, W.; Still, C.; Tans, P.; White, J.

    2008-01-01

    The promise of utilizing large-scale atmospheric δ13CO2 measurements to understand terrestrial processes has not been fully realized. Here, we will present recent progress in the use of measurements and simulations of atmospheric δ13C to better understand the signals of the biosphere contained

  16. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    NARCIS (Netherlands)

    van der Meer, D.G.; Zeebe, R.; van Hinsbergen, D.J.J.; Sluijs, A.; Spakman, W.; Torsvik, T.H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean rid

  17. A possible new role for atmospheric 13CO2 in global models

    NARCIS (Netherlands)

    Miller, J. B.; Ballantyne, A.; Berry, J. A.; Peters, W.; Still, C.; Tans, P.; White, J.

    2008-01-01

    The promise of utilizing large-scale atmospheric δ13CO2 measurements to understand terrestrial processes has not been fully realized. Here, we will present recent progress in the use of measurements and simulations of atmospheric δ13C to better understand the signals of the biosphere contained withi

  18. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino

    NARCIS (Netherlands)

    Welp, Lisa R.; Keeling, Ralph F.; Meijer, Harro A. J.; Bollenbacher, Alane F.; Piper, Stephen C.; Yoshimura, Kei; Francey, Roger J.; Allison, Colin E.; Wahlen, Martin

    2011-01-01

    The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16 variabilit

  19. EXPLOSIVE ABSORPTION EFFECT OF POWER CO2 LASER BEAM IN ATMOSPHERE

    OpenAIRE

    Zakharov, V.; Shmelev, V.; Nesterenko, A.

    1991-01-01

    The interaction of a wide beam of intense 10.6 µm and 9.4 µm laser radiation with atmospheric CO2 is studied. The threshold spectroscopic effect of explosive absorption have been obtained. In this effect the absorption coefficient of the atmosphere increases sharply owing to strong self-heating ([MATH] 700-1000 K) of the beam channel.

  20. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of

  1. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  2. Root damage by insects reverses the effects of elevated atmospheric CO2 on Eucalypt seedlings.

    Directory of Open Access Journals (Sweden)

    Scott N Johnson

    Full Text Available Predicted increases in atmospheric carbon dioxide (CO2 are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2, with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2. Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models.

  3. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13.

    Science.gov (United States)

    Hudson, Matthew R; Queen, Wendy L; Mason, Jarad A; Fickel, Dustin W; Lobo, Raul F; Brown, Craig M

    2012-02-01

    Low-pressure adsorption of carbon dioxide and nitrogen was studied in both acidic and copper-exchanged forms of SSZ-13, a zeolite containing an 8-ring window. Under ideal conditions for industrial separations of CO(2) from N(2), the ideal adsorbed solution theory selectivity is >70 in each compound. For low gas coverage, the isosteric heat of adsorption for CO(2) was found to be 33.1 and 34.0 kJ/mol for Cu- and H-SSZ-13, respectively. From in situ neutron powder diffraction measurements, we ascribe the CO(2) over N(2) selectivity to differences in binding sites for the two gases, where the primary CO(2) binding site is located in the center of the 8-membered-ring pore window. This CO(2) binding mode, which has important implications for use of zeolites in separations, has not been observed before and is rationalized and discussed relative to the high selectivity for CO(2) over N(2) in SSZ-13 and other zeolites containing 8-ring windows.

  4. Sorbents for CO2 capture from high carbon fly ashes.

    Science.gov (United States)

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  5. Atmospheric CO2 and climate on millennial time scales during the last glacial period.

    Science.gov (United States)

    Ahn, Jinho; Brook, Edward J

    2008-10-03

    Reconstructions of ancient atmospheric carbon dioxide (CO2) variations help us better understand how the global carbon cycle and climate are linked. We compared CO2 variations on millennial time scales between 20,000 and 90,000 years ago with an Antarctic temperature proxy and records of abrupt climate change in the Northern Hemisphere. CO2 concentration and Antarctic temperature were positively correlated over millennial-scale climate cycles, implying a strong connection to Southern Ocean processes. Evidence from marine sediment proxies indicates that CO2 concentration rose most rapidly when North Atlantic Deep Water shoaled and stratification in the Southern Ocean was reduced. These increases in CO2 concentration occurred during stadial (cold) periods in the Northern Hemisphere, several thousand years before abrupt warming events in Greenland.

  6. Effects of Atmospheric Dynamics on CO2 Seepage at Mammoth Mountain, California USA

    Directory of Open Access Journals (Sweden)

    Egemen Ogretim

    2013-12-01

    Full Text Available In the past few decades, atmospheric effects on the variation of seepage from soil have been studied in disciplines such as volcanology, environmental protection, safety and health hazard avoidance. Recently, monitoring of potential leakage from the geologic sequestration of carbon has been added to this list. Throughout these diverse fields, barometric pumping and presence of steady winds are the two most commonly investigated atmospheric factors. These two factors have the effect of pumping gas into and out of the unsaturated zone, and sweeping the gas in the porous medium. This study focuses on two new factors related to atmosphere in order to explain the CO2 seepage anomalies observed at the Horseshoe Lake tree kill near Mammoth Mountain, CA, where the temporal variation of seepage due to a storm event could not be explained by the two commonly studied effects. First, the interaction of the lower atmospheric dynamics and the ground topography is considered for its effect on the seepage variation over an area that is linked through high-porosity, high-permeability soils and/or fracture networks. Second, the regional pressure fronts that impose significant pressure oscillation over an area are studied. The comparison of the computer simulation results with the experimental measurements suggests that the seepage anomaly observed at the Horseshoe Lake Tree Kill could be due to the unsteady effects caused by regional pressure fronts.

  7. Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model

    Science.gov (United States)

    Washington, Warren M.; Meehl, Gerald A.

    1989-06-01

    A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30° 50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models

  8. Developing a passive trap for diffusive atmospheric 14CO2 sampling

    Science.gov (United States)

    Walker, Jennifer C.; Xu, Xiaomei; Fahrni, Simon M.; Lupascu, Massimo; Czimczik, Claudia I.

    2015-10-01

    14C-CO2 measurement is an unique tool to quantify source-based emissions of CO2 for both the urban and natural environments. Acquiring a sample that temporally integrates the atmospheric 14C-CO2 signature that allows for precise 14C analysis is often necessary, but can require complex sampling devices, which can be difficult to deploy and maintain, especially for multiple locations. Here we describe our progress in developing a diffusive atmospheric CO2 molecular sieve trap, which requires no power to operate. We present results from various cleaning procedures, and rigorously tested for blank and memory effects. Traps were tested in the environment along-side conventional sampling flasks for accuracy. Results show that blank and memory effects can be minimized with thorough cleaning and by avoiding overheating, and that diffusively collected air samples agree well with traditionally canister-sampled air.

  9. Advances on the Responses of Root Dynamics to Increased Atmospheric CO2 and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Plant roots dynamics responses to elevated atmospheric CO2 concentration, increased temperature and changed precipitation can be a key link between plant growth and long-term changes in soil organic matter and ecosystem carbon balance. This paper reviews some experiments and hypotheses developed in this area, which mainly include plant fine roots growth, root turnover, root respiration and other root dynamics responses to elevated CO2 and global climate change. Some recent new methods of studying root systems were also discussed and summarized. It holds herein that the assemblage of information about root turnover patterns, root respiration and other dynamic responses to elevated atmospheric CO2 and global climatic change can help to better understand and explore some new research areas. In this paper, some research challenges in the plant root responses to the elevated CO2 and other environmental factors during global climate change were also demonstrated.

  10. Atmospheric propagation of two CO2 laser pulses

    Science.gov (United States)

    Autric, M.; Caressa, J.-P.; Dufresne, D.; Bournot, Ph.

    1984-01-01

    At the intensity and fluence levels reached in an experimental investigation of high-energy laser beam propagation, air breakdown occurs through the interaction of the intense radiation with aerosol particles naturally suspended in the path of the beam. The air plasma created is found to expand rapidly and have a detrimental effect on energy propagation. It is determined that the energy transmitted through the breakdown plasma as a function of the incident average energy density is less than 15 percent for fluences greater than 300 J/sq cm, and that incident energy transmission may be increased through the generation of a precursor pulse as a function of double pulse separation times ranging from a few microsec to 0.1 sec. Maximum effects have been obtained at pulse separation intervals of 100-200 microsec, and these are ascribed to the vaporization of aerosol particles by the first pulse.

  11. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  12. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy-1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy-1, equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm-2ṡy-1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  13. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  14. Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment

    Science.gov (United States)

    Shitashima, K.; Sakamoto, A.; Maea, Y.

    2013-12-01

    CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.

  15. Effect of elevated atmospheric CO2 on carbon allocation patterns in Eriphorum vaginatum

    Science.gov (United States)

    Strom, L.

    2013-12-01

    Greenhouse gases of particular importance to the human induced greenhouse effect are, e.g., CO2 and CH4. Natural and agricultural wetlands together contribute with over 40 % of the annual atmospheric emissions of CH4 and are, therefore, considered to be the largest single contributor of this gas to the troposphere. There is a growing concern that increasing atmospheric concentrations of CO2 will stimulate CH4 production and emission from wetland ecosystems, resulting in feedback mechanisms that in future will increase the radiative forcing of these ecosystems. The aim of this study was to elucidate the effect of elevated atmospheric CO2 on fluxes of CO2 and CH4, biomass allocation patterns and amount of labile substrates (i.e. low molecular weight organic acids, OAs) for CH4 production in the root vicinity of Eriophorum vaginatum. Eriophorum cores and plants were collected at Fäjemyr, a temperate ombrotrophic bog situated in the south of Sweden. These were cultivated under controlled environmental conditions in an atmosphere of 390 or 800 ppm of CO2 (n=5 per treatment). After a one month development period gas fluxes were measured twice per week over one month using a Fourier Transform Infrared spectrometer (Gasmet Dx-4030) and OAs using a liquid chromatography-ionspray tandem mass spectrometry system (Dionex ICS-2500 and Applied Biosystems 2000 Q-Trap triple quadrupole MS). The results clearly show that elevated CO2 significantly affects all measured parts of the carbon cycle. Greenhouse gas fluxes were significantly (repeated measures test) higher under elevated CO2 conditions, NEE p leaves, roots and concentration of OAs around the roots of plants, p = 0.045, p = 0 = 0.045 and p = 0.045 respectively (Kruskal wallis 1-way anova). The study shows higher CH4 emissions under elevated CO2 and that this may be due to a priming effect, due to input of fresh labile-C via living roots and possibly higher biomass. However the concern that elevated atmospheric

  16. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    Science.gov (United States)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  17. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Science.gov (United States)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  18. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Science.gov (United States)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2013-10-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  19. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    Directory of Open Access Journals (Sweden)

    J. Quirk

    2013-10-01

    Full Text Available Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM and ectomycorrhizal (EM fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  20. Atmospheric pCO2 control on speleothem stable carbon isotope compositions

    Science.gov (United States)

    Breecker, Daniel O.

    2017-01-01

    The stable carbon isotope compositions of C3 plants are controlled by the carbon isotope composition of atmospheric CO2 (δ13Ca) and by the stomatal response to water stress. These relationships permit the reconstruction of ancient environments and assessment of the water use efficiency of forests. It is currently debated whether the δ13C values of C3 plants are also controlled by atmospheric pCO2. Here I show that globally-averaged speleothem δ13C values closely track atmospheric pCO2 over the past 90 kyr. After accounting for other possible effects, this coupling is best explained by a C3 plant δ13C sensitivity of - 1.6 ± 0.3 ‰ / 100 ppmV CO2 during the Quaternary. This is consistent with 20th century European forest tree ring δ13C records, providing confidence in the result and suggesting that the modest pCO2-driven increase in water use efficiency determined for those ecosystems and simulated by land surface models accurately approximates the global average response. The δ13C signal from C3 plants is transferred to speleothems relatively rapidly. Thus, the effect of atmospheric pCO2 should be subtracted from new and existing speleothem δ13C records so that residual δ13C shifts can be interpreted in light of the other factors known to control spleleothem δ13C values. Furthermore, global average speleothem δ13C shifts may be used to develop a continuous radiometric chronology for Pleistocene atmospheric pCO2 fluctuations and, by correlation, ice core climate records.

  1. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    Science.gov (United States)

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  2. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    Science.gov (United States)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  3. VARIABILITY OF ATMOSPHERIC CO2 OVER INDIA AND SURROUNDING OCEANS AND CONTROL BY SURFACE FLUXES

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2012-08-01

    Full Text Available In the present study, seasonal and inter-annual variability of atmospheric CO2 concentration over India and surrounding oceans during 2002–2010 derived from Atmospheric InfrarRed Sounder observation and their relation with the natural flux exchanges over terrestrial Indian and surrounding oceans were analyzed. The natural fluxes over the terrestrial Indian in the form of net primary productivity (NPP were simulated based on a terrestrial biosphere model governed by time varying climate parameters (solar radiation, air temperature, precipitation etc and satellite greenness index together with the land use land cover and soil attribute maps. The flux exchanges over the oceans around India (Tropical Indian Ocean: TIO were calculated based on a empirical model of CO2 gas dissolution in the oceanic water governed by time varying upper ocean parameters such as gradient of partial pressure of CO2 between ocean and atmosphere, winds, sea surface temperature and salinity. Comparison between the variability of atmospheric CO2 anomaly with the anomaly of surface fluxes over India and surrounding oceans suggests that biosphere uptake over India and oceanic uptake over the south Indian Ocean could play positive role on the control of seasonal variability of atmospheric carbon dioxide growth rate. On inter-annual scale, flux exchanges over the tropical north Indian Ocean could play positive role on the control of atmospheric carbon dioxide growth rate.

  4. Oxygen isotope fractionation during spin-forbidden photolysis of CO2: Relevance to the atmosphere of Mars

    Science.gov (United States)

    Lyons, J. R.; Stark, G.; Pack, A.; de Oliveira, N.; Nahon, L.

    2015-12-01

    The oxygen isotope composition of the Martian atmosphere is of interest for comparison with recent MSL SAM results, and to understand the origin of oxygen isotope anomalies (i.e., mass-independent fractionation or MIF) in secondary minerals in SNC meteorites. Our focus here is on spin-forbidden photolysis of CO2, CO2 + hv (>167 nm) → CO(X1S) + O(3P). The spin-forbidden photolysis of CO2 is unusual in the Martian atmosphere because of its high reaction rate from the upper atmosphere (80 km) all the way to the ground. This range of altitudes spans 4 orders of magnitude in atmospheric pressure, and occurs because of the gradual decrease in the CO2 cross sections from 167 to ~200 nm. Previous laboratory photolysis experiments on CO2 in the spin-allowed and spin-forbidden regions have yielded a remarkably large MIF signature (17O excess ~ 100 permil) in O2 product for photolysis at 185 nm. Recent theoretical cross sections for CO2 isotopologues argue for a much smaller MIF signature from spin-forbidden photolysis. Here, we report the results of photolysis experiments on CO2 at the Soleil synchrotron DESIRS beamline. High purity, natural isotope abundance CO2 was placed in a 20 cm photocell with MgF2 windows. Experiments were performed at 3 wavelengths (7% FWHM): 160 nm (spin-allowed), and at 175 nm and 185 nm (spin-forbidden). After VUV exposure, aliquots of the photolyzed CO2 were sent to the Department of Isotope Geology at the University of Goettingen for O isotope analysis. The isotope results show that the spin-allowed photolysis yields normal, mass-dependent fractionation in agreement with earlier work. Photolysis at 175 nm, which is mostly spin-forbidden, yields a small positive (or zero) MIF signature. Photolysis at 185 nm, which is entirely spin-forbidden, yields O2 with a negative MIF signature (D17O ~ -8 to -10 permil). The results at 185 nm disagree in magnitude and sign with the very large positive MIF signature previously reported, and provides support

  5. Potential Maternal Effects of Elevated Atmospheric CO(2) on Development and Disease Severity in a Mediterranean Legume.

    Science.gov (United States)

    Grünzweig, José M

    2011-01-01

    Global change can greatly affect plant populations both directly by influencing growing conditions and indirectly by maternal effects on development of offspring. More information is needed on transgenerational effects of global change on plants and their interactions with pathogens. The current study assessed potential maternal effects of atmospheric CO(2) enrichment on performance and disease susceptibility of first-generation offspring of the Mediterranean legume Onobrychis crista-galli. Mother plants were grown at three CO(2) concentrations, and the study focused on their offspring that were raised under common ambient climate and CO(2). In addition, progeny were exposed to natural infection by the fungal pathogen powdery mildew. In one out of 3 years, offspring of high-CO(2) treatments (440 and 600 ppm) had lower shoot biomass and reproductive output than offspring of low-CO(2) treatment (280 ppm). Disease severity in a heavy-infection year was higher in high-CO(2) than in low-CO(2) offspring. However, some of the findings on maternal effects changed when the population was divided into two functionally diverging plant types distinguishable by flower color (pink, Type P; white, Type W). Disease severity in a heavy-infection year was higher in high-CO(2) than in low-CO(2) progeny in the more disease-resistant (Type P), but not in the more susceptible plant type (Type W). In a low-infection year, maternal CO(2) treatments did not differ in disease severity. Mother plants of Type P exposed to low CO(2) produced larger seeds than all other combinations of CO(2) and plant type, which might contribute to higher offspring performance. This study showed that elevated CO(2) potentially exerts environmental maternal effects on performance of progeny and, notably, also on their susceptibility to natural infection by a pathogen. Maternal effects of global change might differently affect functionally divergent plant types, which could impact population fitness and

  6. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-02-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0degree of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. It is evident, from this analysis, that SCIAMACHY therefore has the potential to

  7. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI WFM-DOAS

    Directory of Open Access Journals (Sweden)

    N. Vinnichenko

    2007-07-01

    Full Text Available Satellite observations of atmospheric CO2 offer the potential to identify regional carbon surface sources and sinks and to investigate carbon cycle processes. The extent to which satellite measurements are useful however, depends on the near surface sensitivity of the chosen sensor. In this paper, the capability of the SCIAMACHY instrument on board ENVISAT, to observe lower tropospheric and surface CO2 variability is examined. To achieve this, atmospheric CO2 retrieved from SCIAMACHY near infrared (NIR spectral measurements, using the Full Spectral Initiation (FSI WFM-DOAS algorithm, is compared to in-situ aircraft observations over Siberia and additionally to tower and surface CO2 data over Mongolia, Europe and North America. Preliminary validation of daily averaged SCIAMACHY/FSI CO2 against ground based Fourier Transform Spectrometer (FTS column measurements made at Park Falls, reveal a negative bias of about −2.0% for collocated measurements within ±1.0° of the site. However, at this spatial threshold SCIAMACHY can only capture the variability of the FTS observations at monthly timescales. To observe day to day variability of the FTS observations, the collocation limits must be increased. Furthermore, comparisons to in-situ CO2 observations demonstrate that SCIAMACHY is capable of observing a seasonal signal that is representative of lower tropospheric variability on (at least monthly timescales. Out of seventeen time series comparisons, eleven have correlation coefficients of 0.7 or more, and have similar seasonal cycle amplitudes. Additional evidence of the near surface sensitivity of SCIAMACHY, is provided through the significant correlation of FSI derived CO2 with MODIS vegetation indices at over twenty selected locations in the United States. The SCIAMACHY/MODIS comparison reveals that at many of the sites, the amount of CO2 variability is coincident with the amount of vegetation activity. The presented analysis suggests that

  8. [On the analysis of CO2-exchange in bryophyllum : II. Inhibition of starch loss during the night in an atmosphere free from CO2].

    Science.gov (United States)

    Kluge, M

    1969-06-01

    Starch consumption during the dark period in detached phyllodia of Bryophyllum tubiflorum is inhibited, when the phyllodia are held in an atmosphere free from carbon dioxide during the night. This is true also in other succulent plants with Crassulacean acid metabolism=CAM (examined were Bryophyllum calycinum and Sedum morganianum). This effect seems to indicate that the role of starch in CAM is production of CO2 acceptors rather than production of carbon dioxide by respiration. If the CO2 acceptors are not used, starch consumption comes to an end.This hypothesis could also explain results of experiments in which phyllodia were held at different temperatures during the dark period, and net CO2 fixation, starch loss and malate gain were determined. At 10° CO2 uptake was at a maximum (the necessary supply of CO2 acceptors must have therefore been at a maximum, too). Under these conditions there was the greatest amount of starch consumption. At 23° C, CO2 uptake was clearly lowered, and this was also true for starch consumption. At 35° C net CO2 uptake was balanced by net CO2, output (no CO2 acceptors were needed in CO2 dark fixation). At this temperature no starch loss could be measured.

  9. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems

    Institute of Scientific and Technical Information of China (English)

    FU; Shenglei; Howard; Ferris

    2006-01-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63±0.20 in the early growth stage to 1.47±0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45±0.30 to 5.43±0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting.The shoot-to-root ratios were not significantly different between two CO2 levels.

  10. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems.

    Science.gov (United States)

    F U, Shenglei; Ferris, Howard

    2006-12-01

    Two plant species, Medicago truncatula (legume) and Avena sativa (non-legume), were grown in low- or high-N soils under two CO2 concentrations to test the hypothesis whether C allocation within plant-soil system is interactively or additively controlled by soil N and atmospheric CO2 is dependent upon plant species. The results showed the interaction between plant species and soil N had a significant impact on microbial activity and plant growth. The interaction between CO2 and soil N had a significant impact on soil soluble C and soil microbial biomass C under Madicago but not under Avena. Although both CO2 and soil N affected plant growth significantly, there was no interaction between CO2 and soil N on plant growth. In other words, the effects of CO2 and soil N on plant growth were additive. We considered that the interaction between N2 fixation trait of legume plant and elevated CO2 might have obscured the interaction between soil N and elevated CO2 on the growth of legume plant. In low-N soil, the shoot-to-root ratio of Avena dropped from 2.63 +/- 0.20 in the early growth stage to 1.47 +/- 0.03 in the late growth stage, indicating that Avena plant allocated more energy to roots to optimize nutrient uptake (i.e. N) when soil N was limiting. In high-N soil, the shoot-to-root ratio of Medicago increased significantly over time (from 2.45 +/- 0.30 to 5.43 +/- 0.10), suggesting that Medicago plants allocated more energy to shoots to optimize photosynthesis when N was not limiting. The shoot-to-root ratios were not significantly different between two CO2 levels.

  11. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  12. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    Science.gov (United States)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  13. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  14. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  15. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    Science.gov (United States)

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  16. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER

    Directory of Open Access Journals (Sweden)

    Michael Allen Lindon

    2014-09-01

    Full Text Available Dissociation of CO2 is investigated in an atmospheric pressure dielectric barrier discharge (DBD with a simple, zero dimensional (0-D chemical model and through experiment. The model predicts that the primary CO2 dissociation pathway within a DBD is electron impact dissociation and electron-vibrational excitation. The relaxation kinetics following dissociation are dominated by atomic oxygen chemistry. The experiments included investigating the energy efficiencies and dissociation rates of CO2 within a planar DBD, while the gas flow rate, voltage, gas composition, driving frequency, catalyst, and pulse modes were varied. Some of the VADER results include a maximum CO2 dissociation energy efficiency of 2.5 +/- 0.5%, a maximum CO$_2$ dissociation rate of 4 +/- 0.4*10^-6 mol CO2/s (5 +/- 0.5% percent dissociation, discovering that a resonant driving frequency of ~30 kHz, dependent on both applied voltage and breakdown voltage, is best for efficient CO2 dissociation and that TiO2, a photocatalyst, improved dissociation efficiencies by an average of 18% at driving frequencies above 5 kHz.

  17. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    DEFF Research Database (Denmark)

    Vestergard, Mette; Reinsch, Sabine; Bengtson, Per;

    2016-01-01

    accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated...... CO2 exposure. Further, we hypothesized that long-term warming would enhance SOC priming rates, whereas drought would decrease the priming response.We incubated soil from a long-term, full-factorial climate change field experiment, with the factors elevated atmospheric CO2 concentration, warming...... priming of SOC, and the priming response was higher in soil exposed to long-term elevated CO2 treatment. Drought tended to decrease the priming response, whereas long-term warming did not affect the level of priming significantly.We were also able to assess whether SOC-derived primed C in elevated CO2...

  18. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur.

  19. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    Science.gov (United States)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  20. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    Science.gov (United States)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  1. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    Science.gov (United States)

    Agustí-Panareda, Anna; Massart, Sébastien; Chevallier, Frédéric; Balsamo, Gianpaolo; Boussetta, Souhail; Dutra, Emanuel; Beljaars, Anton

    2016-08-01

    Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS), and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, (3) simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  2. Pressure-induced alteration in effects of high CO2 on marine bacteria

    Science.gov (United States)

    Yamada, N.; Tsukasaki, A.; Tsurushima, N.; Suzumura, M.

    2013-12-01

    Carbon capture and storage (CCS) is a key mitigation technology to reduce the release of carbon dioxide (CO2) into the atmosphere. Current CCS research is dominated by improvements of the efficiency of the capturing, transport or storage of CO2. Also, it is important to estimate potential impacts on marine environments related to potential CO2 leakage. It has been demonstrated that seawater acidification effects on marine community structure and food chains. Bacteria are the basis of marine microbial food web and responsible for a significant part of marine biogeochemical cycles in both water column and bottom sediments. We used a high pressure incubation system which is composed of an HPLC pump and stainless-steel pressure vessels. The system could maintain stably the pressure up to 30 MPa. Using the system, we investigated the effects of high CO2 concentration on a deep-sea bacterium, Pseudoalteromonas sp., isolated from the western North Pacific Ocean. The isolate was incubated in acidified seawaters at various CO2 concentrations under simulated pressure conditions between 0.1 MPa and 30 MPa. We determined bacterial growth rate and live/dead cell viability. It was found that both CO2 concentration and pressure influenced substantially the growth rate of the isolate. In order to assess potential effects of leaked CO2 on microbial assemblages in marine environments, it was suggested that hydraulic pressure is one essential variable to be considered.

  3. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds

    Science.gov (United States)

    Castro, Joana M.; Amorim, M. Clara P.; Oliveira, Ana P.; Gonçalves, Emanuel J.; Munday, Philip L.; Simpson, Stephen D.

    2017-01-01

    Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival. PMID:28125690

  4. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15.

    Science.gov (United States)

    Stuckert, Nicholas R; Yang, Ralph T

    2011-12-01

    CO(2) capture from the atmosphere and concentration by cyclic adsorption-desorption processes are studied for the first time. New high microporosity materials, zeolite types Li-LSX and K-LSX, are compared to zeolite NaX and amine-grafted SBA-15 with low amine content. Breakthrough performance showed low silica type X (LSX) to have the most promise for application in dry conditions and capable of high space velocities of at least 63,000 h(-1), with minimal spreading of the CO(2) breakthrough curve. Amine-grafted silica was the only adsorbent able to operate in wet conditions, but at a lower space velocity of 1500 h(-1), due to slower uptake rates. The results illustrate that the uptake rate is as important as the equilibrium adsorbed amount in determining the cyclic process performance. Li-LSX was found to have double the capacity of zeolite NaX at atmospheric conditions, also higher than all other reported zeolites. It is further demonstrated that by using a combined temperature and vacuum swing cycle, the CO(2) concentration in the desorption product is >90% for all adsorbents in pellet form. This is the first report of such high CO(2) product concentrations from a single cycle, using atmospheric air.

  5. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.

  6. Atmospheric Fossil Fuel CO2 Traced by Δ(14)C in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong; Wang, Gehui

    2016-06-07

    One year of atmospheric Δ(14)CO2 were observed in 2014 in the inland city of Beijing and coastal city of Xiamen, China, to trace temporal CO2ff variations and to determine the factors influencing them. The average CO2ff concentrations at the sampling sites in Beijing and Xiamen were 39.7 ± 36.1 ppm and 13.6 ± 12.3 ppm, respectively. These contributed 75.2 ± 14.6% and 59.1 ± 26.8% to their respective annual ΔCO2 offsets over background CO2 concentrations. Significantly (p < 0.05) high CO2ff values were observed in winter in Beijing. We did not find any significant differences in CO2ff values between weekdays and weekends. Diurnal CO2ff variations were plainly evident, with high values between midnight and 4:00, and during morning and afternoon rush hours. The sampling site in the inland city of Beijing displayed much higher CO2ff inputs and overall temporal variations than the site in the coastal city of Xiamen. The variations of CO2ff at both sites were controlled by a combination of emission sources, topography, and atmospheric dispersion. In particular, diurnal observations at the urban site in Beijing showed that CO2ff was easily accumulated under the southeast wind conditions.

  7. Glacial atmospheric CO2 decline in association with decrease of marine sedimentary phosphorus

    Institute of Scientific and Technical Information of China (English)

    WENG; Huanxin; ZHANG; Xingmao; WU; Nengyou; WANG; Ying; CHEN; Lihong; ZHONG; Hexian; QIN; Yachao

    2006-01-01

    The environmental and biogeochemical information extracted from the sediments collected from the northern shelf of the South China Sea shows that terrigenous inputs of phosphorus into the sea remained relatively constant, and the variation of phosphorus contents at different depths was caused by climatic and environmental changes. The findings also suggest that the vertical variation of phosphorus content was opposite to those of calcium carbonate and cadmium, and the functional correlation between CO2 and PO43? in seawater was given by calculating the chemical equilibrium, indicating that the accumulation of marine sedimentary phosphorus may have something to do with the variation of atmospheric CO2. The decreased phosphorus accumulation as well as the correspondingly-increased calcium carbonate content might be one of key factors causing glacial atmospheric CO2 decline.

  8. Effect of CO2 on Atmospheric Corrosion of UNS G10190 Steel under Thin Electrolyte Film

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO2 has been studied in the lab using an atmospheric corrosion monitor(ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.

  9. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Science.gov (United States)

    Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H

    2013-01-01

    Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  10. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  11. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    Science.gov (United States)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  12. Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe

    Directory of Open Access Journals (Sweden)

    I. T. Baker

    2008-12-01

    Full Text Available Synoptic variations of atmospheric CO2 produced by interactions between weather and surface fluxes are investigated mechanistically and quantitatively in midlatitude and tropical regions using continuous in-situ CO2 observations in North America, South America and Europe and forward chemical transport model simulations with the Parameterized Chemistry Transport Model. Frontal CO2 climatologies show consistently strong, characteristic frontal CO2 signals throughout the midlatitudes of North America and Europe. Transitions between synoptically identifiable CO2 air masses or transient spikes along the frontal boundary typically characterize these signals. One case study of a summer cold front shows CO2 gradients organizing with deformational flow along weather fronts, producing strong and spatially coherent variations. In order to differentiate physical and biological controls on synoptic variations in midlatitudes and a site in Amazonia, a boundary layer budget equation is constructed to break down boundary layer CO2 tendencies into components driven by advection, moist convection, and surface fluxes. This analysis suggests that, in midlatitudes, advection is dominant throughout the year and responsible for 60–70% of day-to-day variations on average, with moist convection contributing less than 5%. At a site in Amazonia, vertical mixing, in particular coupling between convective transport and surface CO2 flux, is most important, with advection responsible for 26% of variations, moist convection 32% and surface flux 42%. Transport model sensitivity experiments agree with budget analysis. These results imply the existence of a recharge-discharge mechanism in Amazonia important for controlling synoptic variations of boundary layer CO2, and that forward and inverse simulations should take care to represent moist convective transport. Due to the scarcity of tropical observations at the time of this study, results in Amazonia are not generalized for

  13. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Science.gov (United States)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...

  14. Future atmospheric CO2 concentration and environmental consequences for the feed market: a consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    With the rising atmospheric carbon dioxide concentration [CO2], crops will assimilate more carbon. This will increase yields in terms of carbohydrates but dilute the content of protein and minerals in crops. This consequential life cycle assessment study modelled the environmental consequences...

  15. Future Atmospheric CO2 Concentration and Environmental Consequences for the Feed Market: a Consequential LCA

    DEFF Research Database (Denmark)

    Saxe, Henrik; Hamelin, Lorie; Hinrichsen, Torben

    2014-01-01

    With the rising atmospheric carbon dioxide concentration [CO2], crops will assimilate more carbon. This will increase yields in terms of carbohydrates but dilute the content of protein and minerals in crops. This consequential life cycle assessment study modelled the environmental consequences...

  16. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial

  17. On the repetitive operation of a self-switched transversely excited atmosphere CO2 laser

    Indian Academy of Sciences (India)

    Pallavi Raote; Gautam Patil; J Padma Nilaya; D J Biswas

    2010-11-01

    The repetition rate capability of self-switched transversely excited atmosphere (TEA) CO2 laser was studied for different gas flow configurations. For an optimized gas flow configuration, repetitive operation was achieved at a much smaller gas replenishment factor between two successive pulses when compared with repetitive systems energized by conventional pulsers.

  18. N2O influence on isotopic measurements of atmospheric CO2

    NARCIS (Netherlands)

    Sirignano, C; Neubert, REM; Meijer, HAJ

    2004-01-01

    In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the is

  19. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake

    Science.gov (United States)

    Stackhouse, Brandon T.; Vishnivetskaya, Tatiana A.; Layton, Alice; Chauhan, Archana; Pfiffner, Susan; Mykytczuk, Nadia C.; Sanders, Rebecca; Whyte, Lyle G.; Hedin, Lars; Saad, Nabil; Myneni, Satish; Onstott, Tullis C.

    2015-09-01

    Previous studies investigating organic-rich tundra have reported that increasing biodegradation of Arctic tundra soil organic carbon (SOC) under warming climate regimes will cause increasing CO2 and CH4 emissions. Organic-poor, mineral cryosols, which comprise 87% of Arctic tundra, are not as well characterized. This study examined biogeochemical processes of 1 m long intact mineral cryosol cores (1-6% SOC) collected in the Canadian high Arctic. Vertical profiles of gaseous and aqueous chemistry and microbial composition were related to surface CO2 and CH4 fluxes during a simulated spring/summer thaw under light versus dark and in situ versus water saturated treatments. CO2 fluxes attained 0.8 ± 0.4 mmol CO2 m-2 h-1 for in situ treatments, of which 85 ± 11% was produced by aerobic SOC oxidation, consistent with field observations and metagenomic analyses indicating aerobic heterotrophs were the dominant phylotypes. The Q10 values of CO2 emissions ranged from 2 to 4 over the course of thawing. CH4 degassing occurred during initial thaw; however, all cores were CH4 sinks at atmospheric concentration CH4. Atmospheric CH4 uptake rates ranged from -126 ± 77 to -207 ± 7 nmol CH4 m-2 h-1 with CH4 consumed between 0 and 35 cm depth. Metagenomic and gas chemistry analyses revealed that high-affinity Type II methanotrophic sequence abundance and activity were highest between 0 and 35 cm depth. Microbial sulfate reduction dominated the anaerobic processes, outcompeting methanogenesis for H2 and acetate. Fluxes, microbial community composition, and biogeochemical rates indicate that mineral cryosols of Axel Heiberg Island act as net CO2 sources and atmospheric CH4 sinks during summertime thaw under both in situ and water saturated states.

  20. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2008-03-01

    Full Text Available One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply. With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

  1. Role of Carbonic Anhydrase as an Activator in Carbonate Rock Dissolution and Its Implication for Atmospheric CO2 Sink

    Institute of Scientific and Technical Information of China (English)

    刘再华

    2001-01-01

    The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.``

  2. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    Y. Matsumi

    2010-04-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the region of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  3. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    Directory of Open Access Journals (Sweden)

    I. Morino

    2010-08-01

    Full Text Available Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565–1585 and 1674–1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570–1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  4. Observation of vertcal CO2 concentration profiles in the lower-atmosphere using a compact direct detection 1.6 μm DIAL

    Science.gov (United States)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2015-12-01

    Knowledge of present carbon sources and sinks including their spatial profile and their variation in time is one of the essential informations for predicting future CO2 atmospheric concentration levels. Moewover, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, the CO2 concentration measurement techniques with high spatial and temporal resolution are required in the lower atmosphere. A differential absorption lidar (DIAL) is expected to measure atmospheric CO2 concentration profiles in the atmospheric boundary layer from a ground platform. We have succeeded to develop a compact direct detection 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and the 25 cm telescope. We have succeeded in observing the daytime temporal change of vertical CO2 concentration profiles for the range from 0.25 to 2.5 km with integration time of 30 minutes and range resolution of 300 m. This compact direct detection CO2 DIAL is usefull for the estimation of CO2 flux. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  5. Developing Model Constraints on Northern Extra-Tropical Carbon Cycling Based on measurements of the Abundance and Isotopic Composition of Atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Ralph [UCSD-SIO

    2014-12-12

    The objective of this project was to perform CO2 data syntheses and modeling activities to address two central questions: 1) how much has the seasonal cycle in atmospheric CO2 at northern high latitudes changed since the 1960s, and 2) how well do prognostic biospheric models represent these changes. This project also supported the continuation of the Scripps time series of CO2 isotopes and concentration at ten baseline stations distributed globally.

  6. CO2 as an Oxidant for High Temperature Reactions

    Directory of Open Access Journals (Sweden)

    Sibudjing eKawi

    2015-03-01

    Full Text Available This paper presents a review on the developments in catalyst technology for the reactions utilizing CO2 for high temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene and finally CO2 reforming of hydrocarbon feedstock (i.e. methane and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However some reactions, such as CO2 reforming of ethanol and glycerol which have not reached industrial scale are also reviewed owing to their great potential in terms of sustainability which are essential as energy for the future. This review further illustrates the building-up of knowledge which shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts which can be adapted for the multiple CO2-related reactions.

  7. Atmospheric CO2 concentration impacts on maize yield performance under dry conditions: do crop model simulate it right ?

    Science.gov (United States)

    Durand, Jean-Louis; Delusca, Kénel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Jochaim Weigel, Hans; Ruane, Alex C.; Rosenzweig, Cynthia; Jones, Jim; Ahuja, Laj; Anapalli, Saseendran; Basso, Bruno; Baron, Christian; Bertuzzi, Patrick; Biernath, Christian; Deryng, Delphine; Ewert, Frank; Gaiser, Thomas; Gayler, Sebastian; Heinlein, Florian; Kersebaum, Kurt Christian; Kim, Soo-Hyung; Müller, Christoph; Nendel, Claas; Olioso, Albert; Priesack, Eckhart; Ramirez-Villegas, Julian; Ripoche, Dominique; Rötter, Reimund; Seidel, Sabine; Srivastava, Amit; Tao, Fulu; Timlin, Dennis; Twine, Tracy; Wang, Enli; Webber, Heidi; Zhao, Shigan

    2017-04-01

    In most regions of the world, maize yields are at risk of be reduced due to rising temperatures and reduced water availability. Rising temperature tends to reduce the length of the growth cycle and the amount of intercepted solar energy. Water deficits reduce the leaf area expansion, photosynthesis and sometimes, with an even more pronounced impact, severely reduce the efficiency of kernel set. In maize, the major consequence of atmospheric CO2 concentration ([CO2]) is the stomatal closure-induced reduction of leaf transpiration rate, which tends to mitigate those negative impacts. Indeed FACE studies report significant positive responses to CO2 of maize yields (and other C4 crops) under dry conditions only. Given the projections by climatologists (typically doubling of [CO2] by the end of this century) projected impacts must take that climate variable into account. However, several studies show a large incertitude in estimating the impact of increasing [CO2] on maize remains using the main crop models. The aim of this work was to compare the simulations of different models using input data from a FACE experiment conducted in Braunschweig during 2 years under limiting and non-limiting water conditions. Twenty modelling groups using different maize models were given the same instructions and input data. Following calibration of cultivar parameters under non-limiting water conditions and under ambient [CO2] treatments of both years, simulations were undertaken for the other treatments: High [ CO2 ] (550 ppm) 2007 and 2008 in both irrigation regimes, and DRY AMBIENT 2007 and 2008. Only under severe water deficits did models simulate an increase in yield for CO2 enrichment, which was associated with higher harvest index and, for those models which simulated it, higher grain number. However, the CO2 enhancement under water deficit simulated by the 20 models was 20 % at most and 10 % on average only, i.e. twice less than observed in that experiment. As in the experiment

  8. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    Science.gov (United States)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  9. Why CO2 cools the middle atmosphere - a consolidating model perspective

    Science.gov (United States)

    Goessling, Helge F.; Bathiany, Sebastian

    2016-08-01

    Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.

  10. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    Science.gov (United States)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  11. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    Science.gov (United States)

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  12. Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM

    Directory of Open Access Journals (Sweden)

    U. Karstens

    2012-03-01

    Full Text Available One of the dominant uncertainties in inverse estimates of regional CO2 surface-atmosphere fluxes is related to model errors in vertical transport within the planetary boundary layer (PBL. In this study we present the results from a synthetic experiment using the atmospheric model WRF-VPRM to realistically simulate transport of CO2 for large parts of the European continent at 10 km spatial resolution. To elucidate the impact of vertical mixing error on modeled CO2 mixing ratios we simulated a month during the growing season (August 2006 with different commonly used parameterizations of the PBL (Mellor-Yamada-Janjić (MYJ and Yonsei-University (YSU scheme. To isolate the effect of transport errors we prescribed the same CO2 surface fluxes for both simulations. Differences in simulated CO2 mixing ratios (model bias were on the order of 3 ppm during daytime with larger values at night. We present a simple method to reduce this bias by 70–80% when the true height of the mixed layer is known.

  13. Δ(14)CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    Science.gov (United States)

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ((14)C) has been widely used for quantification of fossil fuel CO2 (CO2ff) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the (14)C signature of fossil fuels and other sources. In past studies, the (14)C content of CO2 derived from plants has been equated with the (14)C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO2 we determine Δ(14)Cres values, and from the bulk organic matter we determine Δ(14)Cbom values. A significant difference between Δ(14)Cres and Δ(14)Cbom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ(14)Cres values are in agreement with mean atmospheric Δ(14)CO2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ(14)C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO2ff, an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ(14)C in plants to quantify atmospheric CO2ff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Increasing atmospheric humidity and CO2 concentration alleviate forest hydraulic failure risk

    Science.gov (United States)

    Liu, Y.; Parolari, A.; Kumar, M.; Porporato, A. M.; Katul, G. G.

    2016-12-01

    Climate-induced forest mortality is being observed throughout the globe and has the potential to alter ecosystem services provided by forests. Recent studies suggest that forest mortality is expected to be exacerbated under climate change due to intensified water and heat stress. While few dispute the claim that the compound effect of reduced soil water and increased heat stress increases the probability of forest mortality, impacts of other aspects of climate change have not been explored. Specifically, the impacts of concurrent changes in atmospheric humidity and atmospheric CO2 concentration, which may influence stomatal kinetics in ways that allow plants to operate despite reduced plant hydraulic capacity, remain unaddressed. Here, the risk of hydraulic failure (HFR), one of the key factors contributing to forest mortality is investigated by setting up a dynamic soil-plant-atmospheric model. The coupled and isolated responses of HFR to changes in precipitation amount and seasonality, air temperature, atmospheric humidity, and atmospheric CO2 concentration are analyzed. By incorporating CMIP5 climate projections, the synthetic future responses of HFR for 13 forest biomes across the globe are examined. The results indicate that while HFR is predicted to increase under shifting precipitation patterns and elevated air temperature, the increasing risks may be partly compensated by increases in atmospheric humidity and CO2 concentration. The alleviating effects are likely to be more significant for broadleaf forests than those for needleleaf forests. Our findings suggest that contributions of atmospheric humidity and CO2 concentration on HFR, independently of other effects such as seed production, germination, spread, disease outbreak, and resource competition at the community level, may lead to lower risks of forest mortality than previously thought.

  15. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    Science.gov (United States)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  16. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    Science.gov (United States)

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, Anthony; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  17. Impacts of Elevated Atmospheric CO2 and O3 on Paper Birch (Betula papyrifera: Reproductive Fitness

    Directory of Open Access Journals (Sweden)

    Joseph N. T. Darbah

    2007-01-01

    Full Text Available Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination, while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%. Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.

  18. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    Science.gov (United States)

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  19. Modeling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2001-01-01

    As part of the Danish NEAREX project a three-dimensional Eulerian hemispheric air pollution model is used to study the transport and concentrations of atmospheric CO2 in the North East Atlantic region. The model domain covers the major part of the Northern Hemisphere and currently the model...... source types. Here the model setup and the used parameterizations will be described. The model is validated by comparing the results with atmospheric measurements from four monitoring stations in or close to the northern part of the North Atlantic. Some preliminary model results will be shown and shortly...... includes simple parameterizations of the main sinks and sources for atmospheric CO2. One of the objectives of the project is to study and maybe quantify the relative importance of the various sinks and source types and areas for this region. In order to do so the model has been run with differentiated...

  20. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA......, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks...... in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly...

  1. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing

    Science.gov (United States)

    Hasenclever, Jörg; Knorr, Gregor; Rüpke, Lars H.; Köhler, Peter; Morgan, Jason; Garofalo, Kristin; Barker, Stephen; Lohmann, Gerrit; Hall, Ian R.

    2017-07-01

    Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ~85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ~5,000-15,000 years.

  2. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.

  3. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

    Science.gov (United States)

    Naik, Vaishali; Delire, Christine; Wuebbles, Donald J.

    2004-03-01

    Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global climate and atmospheric carbon dioxide (CO2) concentration during the period 1971-1990. We integrate surface emission algorithms within the framework of a dynamic global ecosystem model, the Integrated Biospheric Simulator (IBIS), to simulate biogenic fluxes of isoprenoids as a component of the climate-vegetation dynamics. IBIS predicts global land surface isoprene emissions of 454 Tg C and monoterpenes of 72 Tg C annually and captures the spatial and temporal patterns well. The combined fluctuations in climate and atmospheric CO2 during 1971-1990 caused significant interannual and seasonal variability in global biogenic isoprenoid fluxes that was somewhat related to the El Niño-Southern Oscillation. Furthermore, an increasing trend in the simulated emissions was seen during this period that is attributed partly to the warming trend and partly to CO2 fertilization effect. The isolated effect of increasing CO2 during this period was to steadily increase emissions as a result of increases in foliar biomass. These fluctuations in biogenic emissions could have significant impacts on regional and global atmospheric chemistry and the global carbon budget.

  4. Infrared radiation and inversion population of CO2 laser levels in Venusian and Martian atmospheres

    Science.gov (United States)

    Gordiyets, B. F.; Panchenko, V. Y.

    1983-01-01

    Formation mechanisms of nonequilibrium 10 micron CO2 molecule radiation and the possible existence of a natural laser effect in the upper atmospheres of Venus and Mars are theoretically studied. An analysis is made of the excitation process of CO2 molecule vibrational-band levels (with natural isotropic content) induced by direct solar radiation in bands 10.6, 9.4, 4.3, 2.7 and 2.0 microns. The model of partial vibrational-band temperatures was used in the case. The problem of IR radiation transfer in vibrational-rotational bands was solved in the radiation escape approximation.

  5. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion

    Science.gov (United States)

    Staufer, Johannes; Broquet, Grégoire; Bréon, François-Marie; Puygrenier, Vincent; Chevallier, Frédéric; Xueref-Rémy, Irène; Dieudonné, Elsa; Lopez, Morgan; Schmidt, Martina; Ramonet, Michel; Perrussel, Olivier; Lac, Christine; Wu, Lin; Ciais, Philippe

    2016-11-01

    inventory. Several tests of the inversion's sensitivity to prior emission estimates, to the assumed spatial distribution of the emissions, and to the atmospheric transport modelling demonstrate the robustness of the measurement constraint on inverted fossil fuel CO2 emissions. The results, however, show significant sensitivity to the description of the emissions' spatial distribution in the inversion system, demonstrating the need to rely on high-resolution local inventories such as that from AIRPARIF. Although the inversion constrains emissions through the assimilation of CO2 gradients, the results are hampered by the improperly modelled influence of remote CO2 fluxes when air masses originate from urbanised and industrialised areas north-east of Paris. The drastic data selection used in this study limits the ability to continuously monitor Paris fossil fuel CO2 emissions: the inversion results for specific months such as September or November 2010 are poorly constrained by too few CO2 measurements. The high sensitivity of the inverted emissions to the prior emissions' diurnal variations highlights the limitations induced by assimilating data only during the afternoon. Furthermore, even though the inversion improves the seasonal variation and the annual budget of the city's emissions, the assimilation of data during a limited number of suitable days does not necessarily yield robust estimates for individual months. These limitations could be overcome through a refinement of the data processing for a wider data selection, and through the expansion of the observation network.

  6. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  7. High-Precision Instrumentation for CO2 Isotope Ratio Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Knowing atmospheric 13CO2/12CO2 ratios precisely is important to understanding biogenic and anthroprogenic sources and sinks for carbon. Currently available field...

  8. Subtarget Effect on Laser Plasma Generated by Transversely Excited Atmospheric CO2 Laser at Atmospheric Gas Pressure

    Science.gov (United States)

    Kagawa, Kiichiro; Lie, Tjung Jie; Hedwig, Rinda; Abdulmajid, Syahrun Nur; Suliyanti, Maria Margaretha; Kurniawan, Hendrik

    2000-05-01

    An experimental study has been carried out on the dynamical process taking place in the laser plasma generated by Transversely Excited Atmospheric CO2 laser (100 mJ, 50 ns) irradiation of a soft sample at surrounding helium pressure of 1 atm. It is shown that the presence of a copper subtarget behind the soft sample is crucial in raising the gushing speed of the atoms to the level adequate for the generation of shock wave laser plasma even at atmospheric pressure. It is also found that the time profiles of spatially integrated emission intensity of the target’s atoms and gas atoms exhibit a characteristic dynamical process that consists of successive excitation and cooling stages even at such a high pressure, which is typical of shock wave laser plasma. It is therefore suggested that the generation of the laser plasma at atmospheric pressure is more likely due to the shock wave mechanism than to the widely known breakdown mechanism. Initial spectrochemical analysis of water from the blow off of a boiler system was also carried out, showing a detection limit of as low as 5 ppm for calcium.

  9. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    Science.gov (United States)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    interannual variations generally respond adequately, but discrepancies in the tropics suggest the need for a refinement of the soil moisture dependence of the respiration flux in CASA. Examples and inferences for interpretation of satellite data will be discussed. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in the terrestrial CO2 sink and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.

  10. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  11. TIMS 1.6 micron Measurement of Atmospheric CO2 and CH4

    Science.gov (United States)

    Rairden, R. L.; Kumer, J. B.; Roche, A. E.; Palmer, A.

    2013-12-01

    The Tropospheric Infrared Mapping Spectrometers (TIMS) were originally developed with support from the NASA ESTO Instrument Incubator program (IIP). These were designed to operate in the spectral regions of the CO overtone and fundamental bands at about 2.33 and 4.67 microns, respectively. In the IIP it was shown these could provide measurements of CO vertical structure, with area coverage rate and spatial resolution that would satisfy GEO-CAPE requirements as laid out in the NRC Decadal Survey report. Since completion of the IIP there has been further internally supported development discussed by Kumer et al, Aerospace Conference, 2013 IEEE. In this presentation we describe a demonstration of TIMS capability in a third wavelength region with two orders operating from approximately 1602 to 1616 nm, and from 1646 to 1660 nm. We will discuss and illustrate the reversible conversion of the 2.33 TIMS for operation at 1600 - 1660 nm; the high quality of the spectral mages and excellent agreement with models; and automated calibration algorithms. The figures show a wavelength calibrated spectral image and excellent agreement of the data and model on a spectrum extracted from the image. Fig 1. Wavelength-calibrated image of sunlight through atmosphere, with methane lines. Yellow box outlines the rows averaged for profile. Fig 2. Calibrated spectral profile, data fit to modeled atmosphere H2O, CO2, and CH4.

  12. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    Science.gov (United States)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2015-02-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement

  13. High temporal resolution tracing of xylem CO2 transport in oak trees

    Science.gov (United States)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  14. Experimental study of CO2 dissolution a convection phenomenon at high pressure

    Science.gov (United States)

    Ben Salem, Imen; Chevalier, Sylvie; Faisal, Titly Farhana; Abderrahmane, Hamid; Sassi, Mohamed

    2016-05-01

    The density driven convection phenomenon has a significant role in enhancing the CO2 geological storage capacity. Deep saline aquifers are targeted for large scale geological sequestration. Once the CO2 is injected in saline aquifer, the supercritical CO2 rises up, forms a thin layer of free phase CO2, and the dissolution and molecular diffusion of the dissolved CO2 in brine begins. The CO2 saturated brine is denser than the original brine leading to gravitational convection of CO2 saturated brine. Convection accelerates the dissolution process and thus improves the safety and the efficiency of the sequestration. Laboratory experiments have been previously performed with experimental set-ups allowing the visualization of the phenomenon (1) eventually combined to the measurements of the dissolved CO2 mass transfer (2) as a function of the permeability of the medium. The visualization of the process was possible as Hele-Shaw cells at atmospheric pressure were used. Pressurized cylindrical vessel containing porous media allows measuring mass transfer of CO2 using the pressure decay concept (3) but visualization of the convection/dissolution was not possible for these setups. In this work, we performed experiments in a pressurized transparent cell similar to a Hele-Shaw cell but with bigger aperture. Permeability was varied by changing the size of the glass beads filling the cell. Bromocrysol green was used as a dye to track the pH change due to the presence of dissolved CO2 (1). The phenomenon is captured by a high resolution camera. We studied the effect of the pressure and of the permeability on the fingering pattern, the onset and the timescale of the phenomenon and the quantitative mass transfer of dissolved CO2. Experiments were validated on numerical simulations performed using STOMP (Subsurface Transport Over Multiple Phases) developed by the PNNL (Pacific Northwest National Laboratory) Hydrology group of the Department of Energy, USA. (1) Kneafsey, T

  15. Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes.

    Science.gov (United States)

    Iqbal, Nousheen; Wang, Xianfeng; Ahmed Babar, Aijaz; Yu, Jianyong; Ding, Bin

    2016-08-15

    Controllable synthesis of carbon nanofibers (CNFs) with hierarchical porosity and high flexibility are extremely desirable for CO2 adsorption and energy storage applications. Herein, we report a nickel cobaltite/carbon nanotubes doped CNFs (NiCo2O4/CNTs CNFs) mesoporous membrane that shows well-developed flexibility, tailored pore structure, hydrophobic character, and high stability. Ascribed to these unique features, NiCo2O4/CNTs CNFs membrane shows high CO2 capture of 1.54mmol/g at 25°C and 1.0bar, and electrochemical measurements for supercapacitors exhibit good performance with specific capacitances of 220F/g (in 1M KOH) at a current density of 1A/g. The successful synthesis of such hybrid membrane provides new insight into development of various multifunctional applications.

  16. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    CERN Document Server

    Mavrodiev, S Cht; Vachev, B

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  17. Temporally-resolved Study of Atmosphere-lake Net CO2 Exchange at Lochaber Lake, Nova Scotia, Canada

    Science.gov (United States)

    Spafford, L. A.; Risk, D. A.

    2016-12-01

    Lakes are carbon gateways with immense processing capacity, acting as either sinks or sources for CO2. As climate change exacerbates weather extremes, carbon stored within permafrost and soils is liberated to water systems, altering aquatic carbon budgets and light availability for photosynthesis. The functional response of lakes to climate change is uncertain, and continuous data of lake respiration and its drivers are lacking. This study used high-frequency measurements of CO2 exchange during a growing season by a novel technique to quantify the net flux of carbon at a small deep oligotrophic lake in eastern Nova Scotia, Canada, and to examine the influence of environmental forcings. We installed 3 floating Forced Diffusion dynamic membrane chambers on the lake, coupled to a valving multiplexer and a single Vaisala GMP 343 CO2 analyzer. This low-power system sampled lake-atmosphere CO2 exchange at several points from shore every hour for over 100 days in the growing season. At the same frequency we also collected automated measurements of wind velocity, photosynthetically active radiation (PAR), dissolved CO2, air and water temperature. Manual measurement campaigns measured chlorophyll `a', DOC, surface methane (CH4), and CO2 flux by manual static floating chamber to confirm the automated measurements. The lake was a net source for carbon, on average emitting 0.038 µmol CO2/m2/s or 4.967 g CO2/s over the entire lake, but we did observe significant temporal variation across diel cycles, and along with changing weather. Approximately 48 hours after every rain event, we observed an increase in littoral CO2 release by the lake. Wind speed, air temperature, and distance from shore were also drivers of variation, as the littoral zone tended to release less CO2 during the course of our study. This work shows the variable influence of environmental drivers of lake carbon flux, as well as the utility of low-power automated chambers for observing aquatic net CO2 exchange.

  18. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers.

    Science.gov (United States)

    Saleh, Muhammad; Lee, Han Myoung; Kemp, K Christian; Kim, Kwang S

    2014-05-28

    The largest obstacles for landfill/flue gas separation using microporous materials are small adsorption values and low selectivity ratios. This study demonstrates that these adsorption and selectivity challenges can be overcome by utilizing a series of hyper-cross-linked heterocyclic polymer networks. These microporous organic polymers (MOPs) were synthesized in a single step by inexpensive Friedel-Crafts-catalyzed reactions using dimethoxymethane as an external linker. The amorphous networks show moderate Brunauer-Emmett-Teller surface areas up to 1022 m(2) g(-1), a narrow pore size distribution in the range from 6 to 8 Å, and high physicochemical stability. Owing to the presence of the heteroatomic pore surfaces in the networks, they exhibit maximum storage capacities for CO2 of 11.4 wt % at 273 K and 1 atm. Additionally, remarkable selectivity ratios for CO2 adsorption over N2 (100) and CH4 (15) at 273 K were obtained. More importantly, as compared with any other porous materials, much higher selectivity for CO2/N2 (80) and CO2/CH4 (15) was observed at 298 K, showing that these selectivity ratios remain high at elevated temperature. The very high CO2/N2 selectivity values are ascribed to the binding affinity of abundantly available electron-rich basic heteroatoms, high CO2 isoteric heats of adsorption (49-38 kJ mol(-1)), and the predominantly microporous nature of the MOPs. Binding energies calculated using the high level of ab initio theory showed that the selectivity is indeed attributed to the heteroatom-CO2 interactions. By employing an easy and economical synthesis procedure these MOPs with high thermochemical stability are believed to be a promising candidate for selective CO2 capture.

  19. Long-term continuous atmospheric CO2 measurements at Baring Head, New Zealand

    Directory of Open Access Journals (Sweden)

    S. E. Nichol

    2012-12-01

    Full Text Available We present descriptions of the in situ instrumentation, calibration procedures, intercomparison efforts, and data filtering methods used in a 39-yr record of continuous atmospheric carbon dioxide (CO2 observations made at Baring Head, New Zealand. Located on the southern coast of the North Island, Baring Head is exposed to extended periods of strong air flow from the south with minimal terrestrial influence resulting in low CO2 variability. The site is therefore well suited for sampling air masses that are representative of the Southern Ocean region. Instrumental precision is better than 0.015 ppm (1-σ on 1-Hz values. Comparisons to over 600 co-located flask samples, as well as laboratory based flask and cylinder comparison exercises, suggest that over recent decades compatibility with respect to the Scripps Institution of Oceanography (SIO and World Meteorological Organisation (WMO CO2 scales has been 0.3 ppm or better.

  20. Effects of atmospheric CO(2) on longleaf pine: productivity and allocation as influenced by nitrogen and water.

    Science.gov (United States)

    Prior, S A; Runion, G B; Mitchell, R J; Rogers, H H; Amthor, J S

    1997-06-01

    Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.

  1. Analysis of influence of atmosphere extinction to Raman lidar monitoring CO2 concentration profile

    Institute of Scientific and Technical Information of China (English)

    Zhao Pei-Tao; Zhang Yin-Chao; Wang Lian; Zhao Yue-Feng; Su Jia; Fang Xin; Cao Kai-Fa; Xie Jun; Du Xiao-Yong

    2007-01-01

    Lidar (Light detection and ranging) system monitoring of the atmosphere is a novel and powerful technique tool. The Raman lidar is well established today as a leading research tool in the study of numerous important areas in the atmospheric sciences. In this paper, the principle of Raman lidar technique measurement CO2 concentration profile is presented and the errors caused by molecular and aerosol extinction for CO2 concentration profile measurement with Raman lidar are also presented. The standard atmosphere extinction profile and 'real-time' Hefei area extinction profile are used to conduct correction and the corresponding results are yielded. Simulation results with standard atmosphere mode correction indicate that the errors caused by molecule and aerosol extinction should be counted for the reason that they could reach about 8 ppm and 5 ppm respectively. The relative error caused by Hefei area extinction correction could reach about 6%. The errors caused by the two components extinction influence could produce significant changes for CO2 concentration profile and need to be counted in data processing which could improve the measurement accuracies.

  2. New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    Science.gov (United States)

    Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.

    2012-01-01

    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.

  3. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport

    Directory of Open Access Journals (Sweden)

    M. Heimann

    2003-05-01

    Full Text Available Based on about 20 years of NOAA/CMDL's atmospheric CO2 concentration data and a global atmospheric tracer transport model, we estimate interannual variations and spatial patterns of surface CO2 fluxes in the period 01/1982–12/2000, by using a time-dependent Bayesian inversion technique. To increase the reliability of the estimated temporal features, particular care is exerted towards the selection of data records that are homogeneous in time. Fluxes are estimated on a grid-scale resolution (~8° latitude×10° longitude, constrained by a-priori spatial correlations, and then integrated over different sets of regions. The transport model is driven by interannually varying re-analysed meteorological fields. We make consistent use of unsmoothed measurements. In agreement with previous studies, land fluxes are estimated to be the main driver of interannual variations in the global CO2 fluxes, with the pace predominantly being set by the El Niño/La Niña contrast. An exception is a 2–3 year period of increased sink of atmospheric carbon after Mt. Pinatubo's volcanic eruption in 1991. The largest differences in fluxes between El Niño and La Niña are found in the tropical land regions, the main share being due to the Amazon basin. The flux variations for the Post-Pinatubo period, the 1997/1998 El Niño, and the 1999 La Niña events are exploited to investigate relations between CO2 fluxes and climate forcing. A rough comparison points to anomalies in precipitation as a prominent climate factor for short-term variability of tropical land fluxes, both through their role on NPP and through promoting fire in case of droughts. Some large flux anomalies seem to be directly related to large biomass burning events recorded by satellite observation. Global ocean carbon uptake shows a trend similar to the one expected if ocean uptake scales proportional to the anthropogenic atmospheric perturbation. In contrast to temporal variations, the longterm spatial

  4. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    Directory of Open Access Journals (Sweden)

    F. M. Bréon

    2014-04-01

    Full Text Available Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.

  5. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  6. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    Science.gov (United States)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  7. Atmospheric CO2 enrichment and drought stress modify root exudation of barley.

    Science.gov (United States)

    Calvo, Olga C; Franzaring, Jürgen; Schmid, Iris; Müller, Matthias; Brohon, Nolwenn; Fangmeier, Andreas

    2017-03-01

    Rising CO2 concentrations associated with drought stress is likely to influence not only aboveground growth, but also belowground plant processes. Little is known about root exudation being influenced by elements of climate change. Therefore, this study wanted to clarify whether barley root exudation responds to drought and CO2 enrichment and whether this reaction differs between an old and a recently released malting barley cultivar. Barley plants were grown in pots filled with sand in controlled climate chambers at ambient (380 ppm) or elevated (550 ppm) atmospheric [CO2 ] and a normal or reduced water supply. Root exudation patterns were examined at the stem elongation growth stage and when the inflorescences emerged. At both dates, root exudates were analyzed for different compounds such as total free amino acids, proline, potassium, and some phytohormones. Elevated [CO2 ] decreased the concentrations in root exudates of some compounds such as total free amino acids, proline, and abscisic acid. Moreover, reduced water supply increased proline, potassium, electric conductivity, and hormone concentrations. In general, the modern cultivar showed higher concentrations of proline and abscisic acid than the old one, but the cultivars responded differentially under elevated CO2 . Plant developmental stage had also an impact on the root exudation patterns of barley. Generally, we observed significant effects of CO2 enrichment, watering levels, and, to a lesser extent, cultivar on root exudation. However, we did not find any mitigation of the adverse effects of drought by elevated CO2 . Understanding the multitude of relationships within the rhizosphere is an important aspect that has to be taken into consideration in the context of crop performance and carbon balance under conditions of climate change.

  8. Ocean-atmosphere exchange of organic carbon and CO2 surrounding the Antarctic Peninsula

    Science.gov (United States)

    Ruiz-Halpern, S.; Calleja, M. Ll.; Dachs, J.; Del Vento, S.; Pastor, M.; Palmer, M.; Agustí, S.; Duarte, C. M.

    2014-05-01

    Exchangeable organic carbon (OC) dynamics and CO2 fluxes in the Antarctic Peninsula during austral summer were highly variable, but the region appeared to be a net sink for OC and nearly in balance for CO2. Surface exchangeable dissolved organic carbon (EDOC) measurements had a 43 ± 3 (standard error, hereafter SE) μmol C L-1 overall mean and represented around 66% of surface non-purgeable dissolved organic carbon (DOC) in Antarctic waters, while the mean concentration of the gaseous fraction of organic carbon (GOC H-1) was 46 ± 3 SE μmol C L-1. There was a tendency towards low fugacity of dissolved CO2 (fCO2-w) in waters with high chlorophyll a (Chl a) content and high fCO2-w in areas with high krill densities. However, such relationships were not found for EDOC. The depth profiles of EDOC were also quite variable and occasionally followed Chl a profiles. The diel cycles of EDOC showed two distinct peaks, in the middle of the day and the middle of the short austral dark period, concurrent with solar radiation maxima and krill night migration patterns. However, no evident diel pattern for GOC H-1 or CO2 was observed. The pool of exchangeable OC is an important and active compartment of the carbon budget surrounding the Antarctic Peninsula and adds to previous studies highlighting its importance in the redistribution of carbon in marine environments.

  9. Atmospheric CO2 concentration effects on rice water use and biomass production.

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  10. Atmospheric CO2 concentration effects on rice water use and biomass production

    Science.gov (United States)

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C.; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  11. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate

    Science.gov (United States)

    Yang, Xiaojuan; Thornton, Peter E.; Ricciuto, Daniel M.; Hoffman, Forrest M.

    2016-07-01

    The effects of phosphorus (P) availability on carbon (C) cycling in the Amazon region are investigated using CLM-CNP. We demonstrate that the coupling of P dynamics reduces the simulated historical terrestrial C sink due to increasing atmospheric CO2 concentrations ([CO2]) by about 26%. Our exploratory simulations show that the response of tropical forest C cycling to increasing [CO2] depends on how elevated CO2 affects phosphatase enzyme production. The effects of warming are more complex, depending on the interactions between humidity, C, and nutrient dynamics. While a simulation with low humidity generally shows the reduction of net primary productivity (NPP), a second simulation with higher humidity suggests overall increases in NPP due to the dominant effects of reduced water stress and more nutrient availability. Our simulations point to the need for (1) new observations on how elevated [CO2] affects phosphatase enzyme production and (2) more tropical leaf-scale measurements under different temperature/humidity conditions with different soil P availability.

  12. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.

    Science.gov (United States)

    Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A

    2011-04-01

    The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.

  13. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    Science.gov (United States)

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  14. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  15. Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand

    Science.gov (United States)

    Steinkamp, Kay; Mikaloff Fletcher, Sara E.; Brailsford, Gordon; Smale, Dan; Moore, Stuart; Keller, Elizabeth D.; Baisden, W. Troy; Mukai, Hitoshi; Stephens, Britton B.

    2017-01-01

    A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.

  16. Changes in Atlantic Thermohaline Circulation under Different Atmospheric CO2 Scenarios in a Climate Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The changes in the thermohaline circulation (THC) because of the increased CO2 in the atmosphere play an important role in future climate regimes.In this article, a new climate model developed at the Max-Planck Institute for Meteorology is used to study the variation in THC strength, the changes of North Atlantic deep-water (NADW) formation, and the regional responses of the THC in the North Atlantic to increasing atmospheric CO2.From 2000 to 2100, under increased CO2 scenarios (B1, A1B, and A2), the strength of THC decreases by 4 Sv (106 m3/s), 5.1 Sv, and 5.2 Sv, respectively, equivalent to a reduction of 20%, 25%, and 25.1% of the present THC strength.The analyses show that the oceanic deep convective activity significantly strengthens in the Greenland-Iceland-Norway(GIN) Seas owing to saltier (denser) upper oceans, whereas weakens in the Labrador Sea and in the south of the Denmark Strait region (SDSR) because of surface warming and freshening due to global warming.The saltiness of the GIN Seas is mainly caused by the increase of the saline North Atlantic inflow through the Faro-Bank (FB) Channel.Under the scenario A1B, the deep-water formation rate in the North Atlantic decreases from 16.2 Sv to 12.9 Sv with increasing CO2.

  17. Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions

    Directory of Open Access Journals (Sweden)

    Douglas L. Godbold

    2015-04-01

    Full Text Available Anthropogenic activities during the last century have increased levels of atmospheric CO2. Forest net primary productivity increases in response to elevated CO2, altering the quantity and quality of carbon supplied to the rhizosphere. Ectomycorrhizal fungi form obligate symbiotic associations with the fine roots of trees that mediate improved scavenging for nutrients in exchange for a carbohydrate supply. Understanding how the community structure of ectomycorrhizal fungi is altered by climate change is important to further our understanding of ecosystem function. Betula pendula and Fagus sylvatica were grown in an elevated CO2 atmosphere delivered using free air carbon dioxide enrichment (FACE under field conditions in the U.K., and Picea abies was grown under elevated CO2 in glass domes in the Czech Republic. We used morphotyping and sequencing of the internal transcribed spacer region of the fungal ribosomal operon to study ectomycorrhizal community structure. Under FACE, un-colonised roots tips increased in abundance for Fagus sylvatica, and during 2006, sporocarp biomass of Peziza badia significantly increased. In domes, ectomycorrhizal community composition shifted from short-distance and smooth medium-distance to contact exploration types. Supply and competition for carbon belowground can influence ectomycorrhizal community structure with the potential to alter ecosystem function.

  18. Carbon allocation changes: an adaptive response to variations in atmospheric CO2

    Science.gov (United States)

    Harrison, Sandy; Li, Guangqi; Prentice, Iain Colin

    2016-04-01

    Given the ubiquity of nutrient constraints on primary production, an optimal carbon allocation strategy is expected to increase total below-ground allocation (fine root production and turnover, allocation to mycorrhizae and carbon exudation to the rhizophere) as atmospheric CO2 concentration increases. Conversely, below-ground allocation should be reduced when atmospheric CO2 concentrations were low, as occurred during glacial times. Using a coupled generic primary production and tree-growth model, we quantify the changes in carbon allocation that are required to explain the apparent homoeostasis of tree radial growth during recent decades and between glacial and interglacial conditions. These results suggest a resolution of the apparent paradox of continuing terrestrial CO2 uptake (a consequence of CO2 fertilization) and the widespread lack of observed enhancement of stem growth in trees. Adaptive shifts in carbon allocation are thus a key feature that should to be accounted for in models to predict tree growth and future timber harvests, as well as in large-scale ecosystem and carbon cycle models.

  19. Atmospheric inversion for cost effective quantification of city CO2 emissions

    Science.gov (United States)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual uncertainty that is two times larger than the target of 5 %. By extending the network from 10 to 70 stations, the inversion can meet this requirement. As for major sectoral CO2 emissions, the uncertainties in the inverted emissions using 70 stations are reduced significantly over that obtained using 10 stations by 32 % for commercial and residential buildings, by 33 % for

  20. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  1. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    Science.gov (United States)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  2. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    Science.gov (United States)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  3. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    Science.gov (United States)

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  4. Elevated CO2 Atmosphere Minimizes the Effect of Drought on the Cerrado Species Chrysolaena obovata.

    Science.gov (United States)

    Oliveira, Vanessa F; Silva, Emerson A; Carvalho, Maria A M

    2016-01-01

    Chrysolaena obovata stores inulin in the rhizophores, associated with drought tolerance. While crop plants are widely studied concerning the interactive effects of high [CO2] and drought, few studies reported these effects in native species. Here, we evaluated the combined effects of these factors on water status and fructan metabolism in C. obovata, a native Cerrado species. Two lots of plants were kept at 380 and 760 ppm CO2 in open-top chambers. In each, [CO2] plants were divided into four groups and cultivated under different water availability: irrigation with 100 (control), 75 (low), 50 (medium), and 25% (severe drought) of the water evapotranspirated in the last 48 h. In each, water treatment plants were collected at 0, 9, 18, and 27 days. On day 27, all plants were re-watered to field capacity and, after 5 days, a new sampling was made. Water restriction caused a decrease in plant moisture, photosynthesis, and in enzymes of fructan metabolism. These changes were generally more pronounced in 25% plants under ambient [CO2]. In the later, increases in the proportion of hexoses and consequent modification of the fructan chain sizes were more marked than under high [CO2]. The results indicate that under elevated [CO2], the negative effects of water restriction on physiological processes were minimized, including the maintenance of rhizophore water potential, increase in water use efficiency, maintenance of photosynthesis and fructan reserves for a longer period, conditions that shall favor the conservation of this species in the predicted climate change scenarios.

  5. The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Science.gov (United States)

    F. Deng; J.M. Chen; Y. Pan; W. Peters; R. Birdsey; K. McCullough; J. Xiao

    2013-01-01

    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2...

  6. The role of North Atlantic Ocean circulation and biological sequestration on atmospheric CO2 uptake during the last deglaciation (CL Division Outstanding ECS Award Lecture)

    Science.gov (United States)

    Muschitiello, Francesco; D'Andrea, William J.; Dokken, Trond M.; Schmittner, Andreas

    2017-04-01

    Understanding the impact of ocean circulation on the global atmospheric CO2 budget is of paramount importance for anticipating the consequences of projected future changes in Atlantic Meridional Overturning Circulation (AMOC). In particular, the efficiency of the oceanic biological pump can impact atmospheric CO2 through changes in vertical carbon export mediated by variations in the nutrient inventory of the North Atlantic basin. However, the causal relationship between North Atlantic Ocean circulation, biological carbon sequestration, and atmospheric CO2 is poorly understood. Here we present new high-resolution planktic-benthic 14C data and biomarker records from an exceptionally well-dated marine core from the Nordic Seas spanning the last deglaciation ( 15,000-10,000 years BP). The records document for the first time large and rapid atmospheric CO2 drawdowns and increase in plankton stocks during major North Atlantic cooling events. Using transient climate simulations from a fully coupled climate-biosphere model, we show that minor perturbations of the North Atlantic biological pump resulting from surface freshening and AMOC weakening can have a major impact on the global atmospheric CO2 budget. Furthermore, our data help clarifying the timing and magnitude of the deglacial CO2 signal recorded in Antarctic ice cores. We conclude that the global CO2 budget is more sensitive to perturbations in North Atlantic circulation than previously thought, which has significance in the future debate of the AMOC response to anthropogenic warming.

  7. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    Directory of Open Access Journals (Sweden)

    M. Saito

    2014-08-01

    Full Text Available This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO2 concentrations, above-ground biomass (AGB, and net primary productivity (NPP in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model.

  8. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2 : an experiment with plant populations from naturally high CO2 areas

    NARCIS (Netherlands)

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may bene

  9. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  10. Proposing a mechanistic understanding of changes in atmospheric CO2 during the last 740 000 years

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2006-02-01

    Full Text Available Atmospheric carbon dioxide (CO2 measured in Antarctic ice cores shows a natural variability of 80 to 100 ppmv during the last four glacial cycles and variations of approximately 60 ppmv in the two cycles between 410 and 650 kyr BP. We here use dust and the isotopic temperature proxy deuterium (δD from the EPICA Dome C Antarctic ice core covering the last 740 kyr together with other paleo-climatic records to force the ocean/atmosphere/biosphere box model of the global carbon cycle BICYCLE in a forward mode over this time in order to reconstruct the natural variability of pCO2. Our simulation results covered by our proposed scenario are based on process understanding gained previously for carbon cycle variations during Termination I. These results match the pCO2 measured in the Vostok ice core well (r2=0.80 and we predict prior to Termination V significantly smaller amplitudes in pCO2 variations mainly based on a reduced interglacial ocean circulation and reduced interglacial Southern Ocean sea surface temperature. These predictions for the pre-Vostok period match the new pCO2 data from the EPICA Dome C ice core for the time period 410 to 650 kyr BP equally well (r2=0.79. This is the first forward modelling approach which covers all major processes acting on the global carbon cycle on glacial/interglacial time scales. The contributions of different processes (terrestrial carbon storage, sea ice, sea level, ocean temperature, ocean circulation, CaCO3 chemistry, marine biota are analysed.

  11. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    Science.gov (United States)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  12. Contemporary evolution of an invasive grass in response to elevated atmospheric CO(2) at a Mojave Desert FACE site.

    Science.gov (United States)

    Grossman, Judah D; Rice, Kevin J

    2014-06-01

    Elevated atmospheric CO2 has been shown to rapidly alter plant physiology and ecosystem productivity, but contemporary evolutionary responses to increased CO2 have yet to be demonstrated in the field. At a Mojave Desert FACE (free-air CO2 enrichment) facility, we tested whether an annual grass weed (Bromus madritensis ssp. rubens) has evolved in response to elevated atmospheric CO2 . Within 7 years, field populations exposed to elevated CO2 evolved lower rates of leaf stomatal conductance; a physiological adaptation known to conserve water in other desert or water-limited ecosystems. Evolution of lower conductance was accompanied by reduced plasticity in upregulating conductance when CO2 was more limiting; this reduction in conductance plasticity suggests that genetic assimilation ma