WorldWideScience

Sample records for high ash contents

  1. Bench-scale synthesis of zeolite A from subbituminous coal ashes with high crystalline silica content

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, M.; Jullaphan, O.; Tang, C. [Kasetsart University, Bangkok (Thailand). Dept. of Chemical Engineering

    2011-01-15

    In this present work, fly ash and bottom ash with high crystalline silica content were obtained from the coal-fired boilers within the paper industries in Thailand. These coal ashes were used as the basic raw materials for synthetic zeolite production. The crystal type and crystallinity, specific surface area and pore size, and textural properties of zeolite products were characterized by using X-ray diffraction spectroscopy (XRD), N{sub 2} sorption analysis, and Scanning Electron Microscopy (SEM), respectively. It was found that sodalite octahydrate was selectively formed via the direct conventional (one-step) synthesis, whereas through a two-step, sodium silicate preparation and consecutive zeolite A synthesis process, 94 and 72 wt.% zeolite A products could be produced from the fly ash and bottom ash, respectively. The cation-exchange capacity (CEC) of fly ash and bottom ash-derived zeolite A products were closely similar to that of the commercial grade zeolite A.

  2. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters

    Energy Technology Data Exchange (ETDEWEB)

    A. Guerrero; S. Goni; I. Campillo; A. Moragues [Instituto de Ciencias de la Construccion ' Eduardo Torroja' (CSIC), Madrid (Spain)

    2004-06-01

    The optimization of parameters of synthesis of belite cement clinker from Spanish coal fly ash of high Ca content is presented in this paper. The investigations were prompted by a need to reduce the CO{sub 2} emissions produced by the cement industry. Belite Ca{sub 2}SiO{sub 4} synthesis produces less CO{sub 2} than alite, the main component of Portland cement clinker. The synthesis process is based on the hydrothermal-calcination-route of the fly ash without extra additions. The hydrothermal treatment was carried out in demineralized water and a 1 M NaOH solution for 4 h at the temperatures of 100, 150, and 200{sup o} C. The precursors obtained during the hydrothermal treatment were heated at temperatures of 700, 800, 900, and 1000{sup o}C. The changes of fly ash composition after the different treatments were characterized by X-ray diffraction (XRD), FT infrared (FTIR) spectroscopy, surface area (BET-N{sub 2}), and thermal analyses. From the results obtained it was concluded that the optimum temperature of the hydrothermal treatment was 200{sup o}C, and the optimum temperature for obtaining the belite cement clinker was 800{sup o}C. 12 refs., 11 figs., 2 tabs.

  3. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  4. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content.

    Science.gov (United States)

    Huang, Chen; Wu, Xinxing; Huang, Yang; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2016-11-01

    The effect of prewashing process prior to the liquid hot water (LHW) pretreatment of high free ash content waste wheat straw (WWS) was investigated. It was found that prewashing process decreased the ash content of WWS greatly, from 29.48% to 9.82%. This contributed to the lower pH value of prehydrolyzate and higher xylan removal in the following LHW pretreatment. More importantly, the prewashing process effectively increased the cellulose enzymatic hydrolysis efficiency of pretreated WWS, from 53.04% to 84.15%. The acid buffering capacity (ABC) and cation exchange capacity (CEC) of raw and prewashed WWS were examined. The majority of free ash removal from WWS by prewashing resulted in the decrease of the ABC of the WWS from 211.74 to 61.81mmol/pH-kg, and potentially enhancing the efficiency of the follow-up LHW pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ash agglomeration during fluidized bed gasification of high sulphur content lignites

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, V.; Marinov, S.P.; Lazarov, L.; Stefanova, M. (SRTI Energydesign, Sofia (Bulgaria))

    1992-09-01

    Intensive ash agglomeration has hampered the fluidized bed gasification of lignites from the Elhovo deposit (Bulgaria) containing 5.9 wt% sulphur in the dry state. Samples of slag and agglomerates from the pilot plant have been examined by means of chemical, X-ray analysis, IR spectroscopy and scanning electron microscopy. Pyrrhotite (FeS) and wustite (FeO) have been established in the agglomerates, where junctions between ash particles have been found to consist of magnetite, spinel and garnet grains. The chemical reactions leading to garnet formation have been studied. Centres of sintering and centres of melting during the ash agglomeration process have been distinguished. The pyrite product, an eutectic of FeS and FeO melting at 924[degree]C, is assumed to be responsible for the cessation of lignite gasification with steam and air under pressure at a bed temperature of 930[degree]. 11 refs., 3 figs., 6 tabs.

  6. Analysis of Content of Selected Critical Elements in Fly Ash

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-03-01

    Full Text Available Pursuant to the new mineral policy of the European Union, searching for new sources of raw materials is required. Coal fly ash has long been considered as a potential source of a number of critical elements. Therefore, it is important to monitor the contents of the critical elements in fly ash from coal combustion. The paper presents the results of examinations of the contents of selected elements, i.e. beryllium, cobalt, chromium and germanium in fly ash from Polish power plants. The results of the conducted investigations indicate that the examined ash samples from bituminous coal combustion cannot be treated as a potential source of the analysed critical elements. The content of these elements in ash, though slightly higher than their average content in the sedimentary rocks, is, however, not high enough to make their recovery technologically and economically justified at this moment.

  7. The evaluation of geopolymer properties prepared by alkali activation of black coal ashes with high content of loss on ignition

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2010-11-01

    Full Text Available The utilization of fly ashes in Slovakia is lower than in other countries and dumping of fly ashes prevails. The dumping changeschemical and phase composition of fly ashes and so it decreases possibilities for their utilization. Fly ashes are mainly used in buildingindustry, where the content of loss on ignition (LOI is limited due to standards. Black coal fly ashes produced in Slovakia have a highcontent of loss on ignition – more than 20 % - so they straight utilization in building industry is not possible. The current possibility fortheir utilization is in geopolymer synthesis. Products with 28-day compression strength of 35.7 MPa and 180-day compression strengthof 55.0 MPa were obtained by alkali activation of fly ashes with 23.25 % LOI with 8 wt% Na2O and their next hardening in temperatureof 80 °C during 6 hours. Products have a great frost-resistance and aggressive environments resistance (NaCl a H2SO4 solutions.

  8. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  9. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  10. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  11. Measurement of temperature conditions in grate zone of a 1 MW wood-pellets boiler fired with high ash content wood-pellets

    OpenAIRE

    Skotland, Christer Heen

    2009-01-01

    The combustion of biomass could in some cases lead to ash problems induced by high temperatures such as ash sintering, agglomeration and melting. The degrees of these problems depend on the fuel feedstock and are highly dependent on the amount of potassium, sodium and chlorine in the biomass. Straw, grass, bark, branches and wood residues are typical examples of biomass fuels that are connected to the mentioned ash problems.Addition of additives in the problematic fuels is a possible measure ...

  12. Preparation of activated carbon with low ash content and high specific surface area from coal in the presence of KOH

    Institute of Scientific and Technical Information of China (English)

    XIE Qiang(解强); CHEN Qing-ru(陈清如); GONG Guo-zhuo(宫国卓); ZHANG Xiang-lan(张香兰); XU De-ping(许德平)

    2003-01-01

    An activated carbon with ash content less than 10% and specific surface area more than 1 600 m2/g was prepared from coal and the effect of K-containing compounds in preparation of coal-based activated carbon was investigated in detail in this paper. KOH was used in co-carbonization with coal, changes in graphitic crystallites in chars derived from carbonization of coal with and without KOH were analyzed by X-ray diffraction (XRD) technique, activation rates of chars with different contents of K-containing compounds were deduced, and resulting activated carbons were characterized by nitrogen adsorption isotherms at 77 K and iodine numbers. The results showed that the addition of KOH to the coal before carbonization can realize the intensive removal of inorganic matters from chars under mild conditions, especially the efficient removal of dispersive quartz, an extremely difficult separated mineral component in other processes else. Apart from this, KOH demonstrates a favorable effect in control over coal carbonization with the goal to form nongraphitizable isotropic carbon precursor, which is a necessary prerequisite for the formation and development of micro pores. However, the K-containing compounds such as K2CO3 and K2O remaining in chars after carbonization catalyze the reaction between carbon and steam in activation, which leads to the formation of macro pores. In the end an innovative method, in which KOH is added to coal before carbonization and K-containing compounds are removed by acid washing after carbonization, was proposed for the synthesis of quality coal-based activated carbon.

  13. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  14. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  15. Measures to reduce carbon content of fly ash in CFB boilers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.; Liu, D.C.; Zhang, S.H.; Chen, H.P. [HuaZhong Univ. of Science and Technology, National Laboratory of Coal Combustion (China); Huang, Y.P.; Liu, C.M. [Da Ye Power Plant, Hu-Bei (China); Winter, F. [Vienna Technical Univ., Vienna (Austria)

    2002-07-01

    There is a significant need to develop clean coal combustion technology in China, given that the major energy source is coal, accounting for 75 per cent of primary energy. Circulating fluidized bed (CFB) combustion offers high combustion intensity with low pollutant emissions. It also has good combustion stability and excellent fuel flexibility. However, the high carbon content of the fly ash and the low boiler heat efficiency are two problems that must be addressed, particularly for middle and small sized CFB boilers. This study examined several reasons for high carbon content of fly ash in CFB boilers, including the distribution of particle size, the heating value of the coal and the fractional return of cold material to the combustion chamber. Operating conditions of the fly ash circulating combustion system were also examined. Proven effective measures to reduce carbon content were then suggested. 4 refs., 2 tabs., 2 figs.

  16. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  17. LONG-TIME EFFECT OF HARD COAL ASH ON THE CONTENT OF SOME ELEMENTS IN SOIL

    Directory of Open Access Journals (Sweden)

    Mirosław Wyszkowski

    2014-01-01

    Full Text Available The aim of the study was to determine the long-time effect of meliorating doses of hard coal ash (0, 100, 200, 400, 600 and 800 t · ha-1 on the content of some elements in soil with the application of different organic substances: manure, straw and bark. Nineteen years after the application of ash there was still an increase in the total content of all elements in soil. Its magnitude depended on soil horizon and it was highest in the humus horizon. The increase in the content of nutrients was, in general, proportional to the applied doses of ash. In the surface layer of soil, the increase was particularly high for sodium and subsequently for calcium, magnesium, sulphur, potassium and phosphorus, arranged in the order of decreasing values. The content of elements in deeper soil layers was significantly lower than in the 0-25 cm zone. A gradual reduction in the content, together with the increase in depth, was recorded only for magnesium and sulphur. The lowest concentration of phosphorus and calcium was detected in the 51-75 cm layer, while in the case of potassium it was in the 26-50 cm zone. The substances introduced into the soil in order to reduce the impact of ash generated by hard coal combustion did not exert any significant impact on the content of elements 19 years following their application.

  18. Physical cleaning of high carbon fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Killmeyer, Richard P. [National Energy Technology Laboratory, US Department of Energy, P.O. Box 10940, Cochran Mills Roads, 15236 Pittsburgh, PA (United States); Maroto-Valer, M. Mercedes; Andresen, John M. [The Energy Institute, The Pennsylvania State University, 405 Academic Activities Building, 16802-2308 University Park, PA (United States); Ciocco, Michael V.; Zandhuis, Paul H. [Parson Project Services Inc, National Energy Technology Laboratory, P.O. Box 618, 15129 Library, Pittsburgh, PA (United States)

    2002-04-20

    An industrial fly ash sample was cleaned by three different processes, which were triboelectrostatic separation, ultrasonic column agglomeration, and column flotation. The unburned carbon concentrates were collected at purities ranging up to 62% at recoveries of 62%. In addition, optical microscopy studies were conducted on the final carbon concentrates to determine the carbon forms (inertinite, isotropic coke and anisotropic coke) collected from these various physical-cleaning processes. The effects of the various cleaning processes on the production of different carbon forms from high carbon fly ashes will be discussed.

  19. Sorbents for CO2 capture from high carbon fly ashes.

    Science.gov (United States)

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  20. 大掺量粉煤灰混凝土导温系数试验研究%Experimental Research on the Thermal Diffusivity of High Content Fly-ash Concrete

    Institute of Scientific and Technical Information of China (English)

    孙阳; 娄宗科; 朱为勇

    2014-01-01

    In order to study the thermal conductivity of high volume of fly ash concrete ,the changing rule of the thermal conductivity of concrete is quantitatively investigated by the orthogonal test .Such testing variables as the fly ash content ,water-cement ratio , sand ratio ,water reducing agent dosage and aggregate concrete of dry and wet condition are considered in this test .The results indi-cate that sand ratio ,the content of fly ash and water reducing agent are the significant factors .The significance of these factors is as follows :sand ratio ,fly ash ,water reducing agent dosage ,aggregate concrete of dry and wet condition ,water-cement ratio .Based on the optimal combination of the maximum and minimum of thermal conductivity ,a reference is provided for the estimated thermal dif-fusivity by the regression equation regression analysis .%为研究大掺量粉煤灰混凝土的导温系数,本文利用正交试验测定在粉煤灰掺量、水胶比、砂率、减水剂掺量以及骨料干湿状态5个因素影响下混凝土导温系数的变化规律。结果表明:各因素均为混凝土导温系数的显著性影响因素,其中砂率、粉煤灰和减水剂掺量为极显著影响因素,各因素的影响顺序为:砂率>粉煤灰掺量>减水剂掺量>>骨料干湿状态>水胶比,并得到导温系数取得最大和最小时的最优配合比,最后应用回归分析得到回归方程,为大掺量粉煤灰混凝土导温系数的预估提供参考。

  1. On the Correlation between Air Content and Air Bubble Parameters Frost Resistance Performance of High Fly Ash Content Concrete%关于大掺量粉煤灰混凝土含气量、气泡参数表征抗冻能力相关性的探讨

    Institute of Scientific and Technical Information of China (English)

    艾红梅; 戴碧琳; 郭建华; 杨晨光

    2015-01-01

    鉴于冻融作用对大掺量粉煤灰混凝土( High Fly ash Content Concrete,HFCC)造成的破坏较为严重,对国内外的研究情况进行了分析,总结了现阶段大掺量粉煤灰混凝土抗冻性能的研究进展。主要对混凝土拌合物含气量和硬化混凝土气泡参数表征HFCC抗冻性的科学性和可行性进行了分析,并且对二者的相关性进行探讨。%Given the freeze-thaw effect on high fly ash content concrete ( HFCC ) is relatively serious,the paper analyzes the domestic and foreign research and summarizes the present research progress of antifreeze performance of concrete with high volume of fly ash. This paper mainly analyzes the science and feasibility of concrete mixture air content and hardened concrete bubble parameters HFCC frost resistance and explores the correlation between the two.

  2. Radiological and material characterization of high volume fly ash concrete.

    Science.gov (United States)

    Ignjatović, I; Sas, Z; Dragaš, J; Somlai, J; Kovács, T

    2017-03-01

    The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content ((226)Ra, (232)Th and (40)K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27-0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A high temperature granulation process for ecological ash recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Thomas

    1999-07-01

    This thesis is a summary of three papers dealing with new technologies for facilitating ecological biomass ash recirculation back to forest and farm lands. The present outtake of biomass for paper and energy production may be incompatible with a sustainable forestry. The cycle of nutrients contained in the biomass extracted must be closed by ash recirculation in an environmental compatible way. This implies stabilization of the loose ashes/rest-products to a product with low heavy metal contents, controlled leaching properties and a high spreadability. In the present work, two different techniques were evaluated for the possibilities to separate heavy metals from the nutrient elements by utilizing high process temperatures to vaporize the unwanted metals from the condensed bulk materials. The results indicated that direct in-situ separation in fluidized bed combustion systems is possible, but requires too high process temperatures to be practically attractive. On the other hand, the new proposed high temperature treatment method for granulated raw materials was found to significantly separate As, Cd and Pb, with separation efficiencies exceeding 90 % at optimal operating conditions. In addition, the results indicated that the treatment method could be used to significantly delay and control the leaching characteristics, as well as the content of products of incomplete combustion of the produced granules.

  4. Influence of fly ash and desert Sand content on the compressive strength of high strength concrete%掺粉煤灰、沙漠砂高强混凝土抗压强度研究

    Institute of Scientific and Technical Information of China (English)

    陈云龙; 马菊荣; 刘海峰; 宋建夏

    2014-01-01

    The orthogonal experiment was designed to analyze the influence of water-binder ratio,fly ash content,sand ratio and desert sand replacement ratio on the compressive strength of high strength concrete at the different age.The optimum mix ratio of desert sand high-strength concrete was also given out.Experimental result showed that it is practical to use the desert sand from Mu Us desert sand to mix high strength concrete,the optimum mix ratio of which was that water-binder ratio,fly ash dosage,sand ratio and desert sand replace-ment ratio were 0.24,10%,30% and 30%,respectively.%通过正交试验,分析了水胶比、粉煤灰掺量、砂率、沙漠砂取代率对不同龄期高强混凝土抗压强度影响,并给出了配制高强混凝土的最优配合比。研究结果表明:用沙漠砂替代中砂配制高强混凝土是可行的;综合考虑各阶段的抗压强度,高强混凝土的最优配合比为水胶比0.24、粉煤灰掺量10%、砂率30%、沙漠砂取代率30%。

  5. Effects of elevated temperatures on the mechanical properties of high fly ash content concrete%高温作用对大掺量粉煤灰混凝土力学性能影响

    Institute of Scientific and Technical Information of China (English)

    贾福萍; 崔艳莉; 孙宜兵; 程勇

    2011-01-01

    In this paper, the effects of elevated temperatures on the mechanical properties of high fly ash content concrete (HFCC) are presented. The specimens were prepared with three different replacements of cement by fly ash 30%,40% and 50% and were tested after exposure to elevated temperature 250, 450, 550 and 650°C respectively, compared with plain Portland concrete. The results showed that as the elevated temperature increases, the residual compressive strength and the residual tensile strength both apparently decrease and the deterioration of tensile strength was much quicker than the deterioration in compressive strength. The results also showed the influence of fly ash replacement on the degraded ratio of strength is complicated. After an exposure to the elevated temperatures, the degraded ratio of compressive strength is less than plain ordinary Portland concrete (PC) and one of tensile strength, except 30% fly ash replacement, remains the same. Based on the experiments, the alternating simulation formula for determining the relationship between residual strength ratio, elevated temperature and fly ash, the replacement is developed by using regression of results, which provide the theoretical basis for the evaluation and repair of HFCC after elevated temperature.%研究了高温作用对大掺量粉煤灰混凝土(HFCC)立方体力学性能的影响,探讨了不同加热温度、不同粉煤灰掺量与HFCC残余强度的关系.将粉煤灰掺量30%、40%和50%的混凝土立方体试块加热至250,450,550和650℃进行强度测试,并与素混凝土(不掺粉煤灰)试块进行对比.研究结果表明,随着温度升高,HFCC残余抗压、劈裂抗拉强度均出现明显退化,劈裂抗拉强度退化尤为明显;随着粉煤灰的掺入,粉煤灰掺量对强度退化率的影响具有复杂性:高温后HFCC抗压强度退化率均低于普通混凝土强度退化率;劈裂抗拉强度退化率除粉煤灰掺量30%外均低于普通混凝土退化

  6. classical optimization of bagasse ash content in cement- stabilized ...

    African Journals Online (AJOL)

    user

    Optimzation and the use of bagasse ash gave a cost benefit of 9.24% with a better mix. The classical .... more complex in that the minerals present in the soil and the bagasse ash .... unit coefficients, required to make up the left-hand side to the ...

  7. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  8. Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics.

    Science.gov (United States)

    Chen, Wan-Ting; Ma, Junchao; Zhang, Yuanhui; Gai, Chao; Qian, Wanyi

    2014-10-01

    Previous study showed high ash content in wastewater algae (WA) has a negative effect on bio-crude oil formation in hydrothermal liquefaction (HTL). This study explored the effect of different pretreatments on ash reduction and the thermal decomposition of WA. Single-stage (e.g. centrifugation) and two-stage pretreatments (e.g. centrifugation followed by ultrasonication, C+U) were used. The apparent activation energy of the thermal decomposition (E(a)) of pretreated algae was determined. HTL was conducted to study how different pretreatments may impact on bio-crude oil formation. Compared to untreated samples, the ash content of algae with centrifugation was reduced from 28.6% to 18.6%. With C+U pretreatments, E(a) was decreased from 50.2 kJ/mol to 35.9 kJ/mol and the bio-crude oil yield was increased from 30% to 55%. These results demonstrate that pretreatments of C+U can improve the thermal decomposition behavior of WA and enhance the bio-crude oil conversion efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    Science.gov (United States)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  10. Effect of ash content on protein quality of meat and bone meal.

    Science.gov (United States)

    Shirley, R B; Parsons, C M

    2001-05-01

    The effect of ash concentration on amino acid (AA) composition, true AA digestibility, and protein efficiency ratio (PER; weight gain per unit of protein intake) of meat and bone meal (MBM) was evaluated. Commercially rendered MBM samples containing 16 to 44% ash were obtained from two sources. Additional samples of MBM varying in ash from 9 to 63% were obtained by chloroform floatation or lab screening of a beef crax sample. Protein quality of selected MBM samples was assessed by determining true AA digestibility using the precision-fed cecectomized rooster assay and by a PER chick growth assay wherein chicks were fed 10% CP diets containing a MBM as the only source of dietary protein from 8 to 18 d of age. Increases in Ala, Pro, Gly, and Arg as a percentage of CP were observed in all MBM samples as ash percentage increased, with Pro and Gly accounting for most of the increase. In contrast, the levels (% of CP) of all essential AA, other than Arg, decreased as ash level increased. For example, Lys concentrations per unit of CP decreased from 5.7 to 4.0% as ash increased from 9 to 63%. There was little or no effect of ash content on AA digestibility of MBM varying in ash from 9 to 44%. The PER of MBM markedly decreased from 3.34 to 0.72 as ash increased from 16 to 44%, and most of the effects of ash on PER were not due to differences in dietary Ca and P levels. The results indicate that the reduction in protein quality of MBM as ash content increases is almost entirely due to a decrease in analyzed essential AA per unit of CP, not a decrease in digestibility of AA.

  11. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis.

    Science.gov (United States)

    Yao, Shunchun; Lu, Jidong; Dong, Meirong; Chen, Kai; Li, Junyan; Li, Jun

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) analysis has been applied for the quantitative analysis of the ash content of coal in this paper. The multivariate analysis method was employed to extract coal ash content information from LIBS spectra rather than from the concentrations of the main ash-forming elements. In order to construct a rigorous partial least squares regression model and reduce the calculation time, different spectral range data were used to construct partial least squares regression models, and then the performances of these models were compared in terms of the correlation coefficients of calibration and validation and the root mean square errors of calibration and cross-validation. Afterwards, the prediction accuracy, reproducibility, and the limit of detection of the partial least squares regression model were validated with independent laser-induced breakdown spectroscopy measurements of four unknown samples. The results show that a good agreement is observed between the ash content provided by thermo-gravimetric analyzer and the LIBS measurements coupled to the PLS regression model for the unknown samples. The feasibility of extracting coal ash content from LIBS spectra is approved. It is also confirmed that this technique has good potential for quantitative analysis of the ash content of coal.

  12. Amenability to dry processing of high ash thermal coal using a pneumatic table

    Institute of Scientific and Technical Information of China (English)

    Dey Shobhana; Gangadhar B.; Gopalkrishna S.J.

    2015-01-01

    High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2%ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa-tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The perfor-mance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher con-centrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58%combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.

  13. Reduction of Ash Content in Raw Coal Using Acids and Alkali

    Directory of Open Access Journals (Sweden)

    K. H. Shivaprasad

    2010-01-01

    Full Text Available Ash, an inorganic matter present in coal is amenable for dissolution using suitable reagents. Thus the dissolution of ash and its subsequent removal reduces the release of many toxic elements into the environment by coal based industries. Removal of ash also enhances the calorific value. In the present investigation an attempt has been made to reduce the ash content of raw coal obtained from nearest thermal power by using hydrochloric acid, sulfuric acid and sodium hydroxide. A series of leaching experiments were conducted on coal of different size fractions by varying the parameters like concentration, temperature and time of leaching. The results indicate that it is possible to remove nearly 75% of ash from coal sample by leaching.

  14. Properties of High-Volume Fly Ash Concrete Reinforced with Natural Fibres

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2012-12-01

    Full Text Available Properties of high-volume fly ash concrete incorporating san fibres are presented in this paper. For this investigation, initially, three concrete mixtures were made with 35%, 45%, and 55% of Class F fly as partial replacement of cement. After this, three percentages (0.25, 0.50, and 0.75% of san fibres (25 mm length were added in each of the fly ash concrete mixtures. San is a natural bast fibre, and is also known as Sunn Hemp (Botanical name: Crotalaria Juncea. It is grown in Indian Sub-Continent, Brazil, Eastern and Southern Africa, and also in some parts of U.S.A. Tests were performed for compressive strength, splitting tensile strength, flexural strength, and impact strength at the ages of 28, 91 and 365 days. Tests were also performed for fresh concrete properties. 28 days test results indicated that san fibres reduced the compressive strength of high-volume fly ash concrete by 2 to 13%, increased splitting tensile strength by 6 to 26%, flexural strength by 5 to 14%, and enhanced impact strength tremendously (by 100 to 300% depending upon the fly ash content and fibre percentage. Later age (91 and 365 days results showed continuous increase in strength properties of high-volume fly ash concrete. This was probably be possible due to the pozzolanic action of fly ash, leading to more densification of the concrete matrix, and development of more effective bond between fibres and fly ash concrete matrix.

  15. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  16. Behaviour of peat ash in high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.

    1986-01-01

    The ash-forming constituents are in peat as minerals and bound in the organic framework. The kind of binding is dependent on peat type, plant species composition, acidity of the peatland, etc. Studies carried out with brown coal have indicated that the forms of ash occurrence in the fuel have an influence on the slagging ehaviour of ash in the process. The behaviour is also dependent on the reactor type and conditions in the reactor, for example, on the composition of gas atmosphere, on temperature, and gas flows. For example, the reducing conditions affect especially the occurrence of iron in different oxidation degrees in gasification, and this affects further the melting behaviour of ash. In brown coal gasification, as much as a third of the iron content was found to be reduced to metallic iron in the fluid-bed gasifier. To forecast the slagging behaviour of ash, the melting temperatures of ash are measured. Fouling or partial melting of ash cannot always be monitored with standard measuring methods, as these phenomena may start already at temperatures 200 deg C lower than the lowest melting temperature. THey can be studied for example with thermochemical methods.

  17. Activated blended cement containing high volume coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Shi, C.J.; Qian, J.S. [CJS Technology Inc., Burlington, ON (Canada)

    2001-10-01

    This study investigated the strength and equilibrium water extraction of blended cement containing high volume coal fly ash and activator CaCl{sub 2}. The addition of CaCl{sub 2} increased the strength of cement very significantly. Equilibrium water extraction indicated that the addition of CaCl{sub 2} decreased the pH of the pore solution, but accelerated the pozzolanic reactions between coal fly ash and lime, which became more obvious when the volume of fly ash in the cement was increased from 50-70%. Results from both strength and water extraction testing could conclude that CaCl{sub 2} is a good activator for the activation of pozzolanic reactivity of fly ash and for the improvement of early properties of fly ash cement and concrete.

  18. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  19. The desulfurization behavior of mineral matter in ash during coal combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tian-hua; Li, Run-dong; Li, Yan-ji; Zhou, Jun-huz; Cen, Ke-fa [Shenyang Institute of Aeronautical Engineering, Shenyang (China)

    2007-02-15

    In allusion to the desulfurization characteristic of coal ash, the desulfurization of the ash and CaO, Al{sub 2}O{sub 3} added to Changguang coal with different proportions at high temperature was studied. Sulphoaluminate as the main desulfurization product was analyzed by X-ray diffraction and SEM visualization. Experimental results indicate that higher proportion of ash added can improve the desulfurization efficiency. The sulphoaluminate content in residue increases with increasing the addition of ash. The desulfurization efficiency of the additive CaO and Al{sub 2}O{sub 3} is up to 24% at 1300{sup o}C, at the same time the sulphoaluminate is detected in the residue. 6 refs., 10 figs., 2 tabs.

  20. Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2014-01-01

    Full Text Available Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2 adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.

  1. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  2. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-08-01

    Full Text Available Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  3. Effects of Wood Ash Biomass Application on Growth Indices and Chlorophyll Content of Maize and Lima bean Intercrop

    Directory of Open Access Journals (Sweden)

    Rasheedat Ajala

    2017-07-01

    Full Text Available Wood ash generated from wood industries have enormous potential which can be utilized due to its properties which influences soil chemistry and fertility status of tropical acidic soils. Field experiments were conducted on an acidic sandy loam alfisol to investigate the effects of wood ash on the growth indices and chlorophyll content of maize and lima beans intercrop during the late and early seasons of 2014 and 2015 at Akure in the rainforest zone of southwestern Nigeria. The treatments were 100% sole maize with ash, 100% sole maize without ash, 75% maize + 25% lima beans with ash, 75% + 25% lima beans without ash, 50% maize + 50% lima beans with ash, 50% maize + 50% lima beans without ash, 25% maize + 75% lima beans with ash and 25% maize + 75% lima beans without ash. Wood ash was applied at 2.4kg/plot. Wood ash increased chlorophyll content in all amended treatments except in amended 25:75% maize-lima beans intercrop and 25:75% maize –lima beans intercrop without ash, however 75:25% maize-lima beans amended with wood ash significantly (P≥0.05 recorded the highest chlorophyll content. Growth parameters such as plant height, number of leaves, leaf area, leaf area index, leaf length, stem diameter, number of flowers, number of pods, weight of plant and total biomass of amended maize-lima beans intercrop were significantly (P≥0.05 increased by wood ash application. Based on experimental findings, 25:75% maize-lima beans intercrop and 75%:25% maize-lima beans intercrop amended with wood ash was concluded to be more recommendable in the study area.

  4. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents

    Directory of Open Access Journals (Sweden)

    Patchara Onprom

    2015-01-01

    Full Text Available This research focuses on evaluating the feasibility of utilizing bottom ash from coal burning power plants as a fine aggregate in cellular concrete with various foam contents. Flows of all mixtures were controlled within 45 ± 5% and used foam content at 30%, 40%, 50%, 60%, and 70% by volume of mixture. Bottom ash from Mae Moh power plant in Thailand was used to replace river sand at the rates of 0%, 25%, 50%, 75%, and 100% by volume of sand. Compressive strength, water absorption, and density of cellular concretes were determined at the ages of 7, 14, and 28 days. Nonlinear regression technique was developed to construct the mathematical models for predicting the compressive strength, water absorption, and density of cellular concrete. The results revealed that the density of cellular concrete decreased while the water absorption increased with an increase in replacement level of bottom ash. From the experimental results, it can be concluded that bottom ash can be used as fine aggregate in the cellular concrete. In addition, the nonlinear regression models give very high degree of accuracy (R2>0.99.

  5. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Pierre-Luc Lizotte

    2015-05-01

    Full Text Available Corn stover is an abundant agricultural residue that could be used on the farm for heating and crop drying. Ash content and calorific energy of corn grain and six stover components were measured from standing plants during the grain maturing period, between mid-September and mid-November. Ash of stover in standing corn averaged 4.8% in a cool crop heat unit zone (2300–2500 crop heat units (CHU and 7.3% in a warmer zone (2900–3100 CHU. The corn cob had the lowest ash content (average of 2.2% while leaves had the highest content (from 7.7% to 12.6%. In the fall, ash content of mowed and raked stover varied between 5.5% and 11.7%. In the following spring, ash content of stover mowed, raked and baled in May averaged 3.6%. The cob and stalk located below the first ear contained the highest calorific energy with 17.72 MJ·kg−1. Leaves and grain had the lowest energy with an average of 16.99 MJ·kg−1. The stover heat of combustion was estimated at 17.47 MJ·kg−1 in the cool zone and 17.26 MJ·kg−1 in the warm zone. Based on presented results, a partial “cob and husk” harvest system would collect less energy per unit area than total stover harvest (44 vs. 156 GJ·ha−1 and less biomass (2.51 vs. 9.13 t·dry matter (DM·ha−1 but the fuel quality would be considerably higher with a low ash-to-energy ratio (1.45 vs. 4.27 g·MJ−1.

  6. Upgrading of coal ashes and desulphurisation residues to provide high value products

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, F.D.; Repetto, F.; Calabro, B.; Heijnen, W.M.M.; Larbi, J.A. [Mitsui Babcock Energy Limited, Renfrew (United Kingdom)

    1999-07-01

    Mitsui Babcock Energy Limited, Technology Centre have co-ordinated a collaborative project whose aim has been to investigate the possibility of preparing ettringite-based products and calcium sulphoaluminate cements from coal ashes and sulphoaluminate cements from coal ashes and desulphurisation residues. The results show that ettringite based plasters prepared using fly ash and gypsum exhibited poor mechanical strengths and unacceptable drying shrinkage. The ettringate produced was unstable. Laboratory synthesis of CSA binders using blends of gypsum or spray dry desulphurisation residue (calcium sulphite), calcium carbonate and fly ashes (including those with high unburned carbon contents)is possible at temperatures in the range 1200 - 1250{degree}C. Mortars prepared using the best CSA binder and tested according to ENV 197-1 (1996) yielded compressive strengths of 4, 6 and 12 MPa at 2, 7 and 28 days respectively. CSA-based binders have the potential for use as blended cements with OPC or as replacements for OPC in special ateas of application. If the feed mixture composition and process parameters are optimised, it is likely that significant improvements in properties can be made. Comparison of costs indicated that the CAS binder production process was the most cost effective method for disposal of waste coal ashes and desulphurisation residues. profits were more than 100 percent higher than for thermal upgrading of high carbon ashes, which could provide attractive income streams for electricity generators. A commercialisation strategy for CSA cements has been developed. 2 figs.; 10 tabs.

  7. The method of soft sensor modeling for fly ash carbon content based on ARMA deviation prediction

    Science.gov (United States)

    Yang, Xiu; Yang, Wei

    2017-03-01

    The carbon content of fly ash is an important parameter in the process of boiler combustion. Aiming at the existing problems of fly ash detection, the soft measurement model was established based on PSO-SVM, and the method of deviation correction based on ARMA model was put forward on this basis, the soft sensing model was calibrated by the values which were obtained by off-line analysis at intervals. The 600 MW supercritical sliding pressure boiler was taken for research objects, the auxiliary variables were selected and the data which collected by DCS were simulated. The result shows that the prediction model for the carbon content of fly ash based on PSO-SVM is good in effect of fitting, and introducing the correction module is helpful to improve the prediction accuracy.

  8. Effect of size of fly ash particle on enhancement of mullite content and glass formation

    Indian Academy of Sciences (India)

    Parveen Sultana; Sukhen Das; Biswajoy Bagchi; Alakananda Bhattacharya; Ruma Basu; Papiya Nandy

    2011-12-01

    Quartz is widely replaced by fly ash in traditional porcelain composite. Increased strength and stability of the fly ash-mixed composite depends on the quantity and crystallinity of the mullite phase in the fly ash. Our aim in this investigation is to increase the formation of mullite in nanocrystalline form and study the effect of temperature. Quantitative estimation of mullite and residual quartz content were done by Xray diffraction (XRD) and nanostructure and crystallization were studied using differential thermal analysis (DTA), field effect scanning electron microscopy (FESEM), XRD and Fourier transform infrared (FTIR) spectroscopy. The results show that fly ash sieved through 250 holes/cm2 mesh contain more mullite initially and growth of mullite as well as glass formation was faster in this sample compared to coarse fly ash. The maximum mullite in these samples was formed at 1600°C. Transformation of quartz and cristobalite phases into glassy phase was also faster for smaller particle sizes of fly ash.

  9. Particle dispersion at road building using fly ash - model review, investigation of influence of humidity content for dust emission and fly ash particle characterisation; Partikelspriding vid byggnation av vaeg med aska - modelloeversikt, undersoekning av fuktighetsgradens betydelse foer damning och karaktaerisering av partiklar fraan flygaska

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Mats; Wik, Ola; Frogner-Kockum, Paul

    2009-03-15

    Ashes from incineration may have very good properties, such as building materials in roads. This use assumes that the ashes do not have serious environmental and health effects. Since ash might generate large amounts of dust in handling the issue on the extent of dusting and dust properties has proved to be important to assess the risks of environmental impacts during use. Inhalable particles in the ambient air are a problem that has attracted much attention and is regarded as one of the most serious health related air pollutants. The present project has aimed to: describe appropriate models for calculating the emission and dispersion of dust in the air during the construction of ash containing roads, evaluate a new method to examine the importance of moisture for dusting from fly ash and investigate the properties of fly ash, making it possible to identify ash in samples of airborne particles. The target audience is ash manufacturers, contractors and consultants with a need for knowledge of ash dusting. Project modules have included: a literature review to identify appropriate modelling tools to describe the emission and dispersion of dust from road building with ash a method study in which a piece of equipment called Duster, have been evaluated for assessing the significance of the ash humidity to dusting, and an electron microscope study where morphology and composition of some ashes, cement and Merit have been studied to find ways to identify ash particles in dust samples. The results show that there is a lack of overall model tools that can describe the emissions from all the management operations of ashes at road building and that existing models sometimes lack key variables. Also, because of high silt content of ashes, some models are deemed inferior compared to when used for ordinary mineral material. Furthermore, attempts with the Duster shows that the method works, but with limited precision, and that dusting from the ash samples was reduced significantly

  10. Results of radiometric ash-content measurements at the Dudar coal mine, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csoti, T. (Veszpremi Szenbanyak Dudari Banyauezeme, Dudar (Hungary))

    1983-12-01

    The regression analysis of the results of calorimetric and radiometric ash-content measurements of 1239 coal samples have shown that the calorific values which cannot be measured easily with traditional means can be approximated reasonably from the more easily measured radiometric data. The introduction of the radiometric measurements can be recommended for coal deposits. 6 refs.

  11. Effect of Fly Ash on the Electrical Conductivity of Concretes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The fly ash occasionally has high content of iron oxide and carbon that are good electrical conducting components. This paper investigates the effect of the fly ash used as mineral admixtures on the electrical conductivity of concretes. The electrical properties of concretes using 3 kinds of fly ash with different iron oxide contents have been studied. Experimental results show that at the same fly ash dosage the resistivity of concrete using fly ash with high content of iron oxide is slightly lower than that with low content of iron oxide. However, the concrete resistivity after 14d increases as fly ash dosage increases regardless of iron oxide content in fly ash.

  12. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  13. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    Science.gov (United States)

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    %, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry.

  14. Fluidized bed combustion of high ash Singareni coal

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K.; Biswas, R.R.; Mukherjee, S.K.; Talapatra, P.C.; Roy, R.U.; Rao, S.K.; Sen, M.M.

    1986-04-01

    Fluid bed combustion is comparatively a new technology for efficient combustion of high ash coals, which constitute the bulk of Indian coal resources. A 2-tonne equivalent steam per hour fluid bed combustion boiler was installed at the CPRI for experimentation with Indian coals and this paper discusses the salient features of tests conducted in the unit with minus 6 mm high ash Singareni coal of Andhra Pradesh. Data on combustion, heat transfer and heat utilization characteristics of the boiler under varying operating conditions show that high ash Singareni coal slacks can be burnt efficiently with high thermal efficiency, combustion efficiency and heat transfer rates from bed to surface in direct contact in a fluid bed combustion boiler. 3 refs., 5 figs., 4 tabs.

  15. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.

    Science.gov (United States)

    Fontseré Obis, Marta; Germain, Patrick; Troesch, Olivier; Spillemaecker, Michel; Benbelkacem, Hassen

    2017-02-01

    In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H2S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H2S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH4, CO2, O2, H2S and H2O in raw and treated biogas. The H2S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24gwater/m(3). The biogas water content was found to greatly affect bottom ash efficiency regarding H2S removal. With humid inlet biogas the H2S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH2S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H2S retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Size fraction characterization of highly-calcareous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Itskos, Grigorios; Koukouzas, Nikolaos [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 357-359 Mesogeion Avenue, GR-152 31, Halandri, Athens (Greece); Itskos, Socrates [Department of Chemical Technology and the Environment, Steam Electric Station of Amynteon-Filotas, Public Power Corporation of Greece, GR-532 00, Amynteon (Greece)

    2010-11-15

    The chemical and mineralogical composition of lignite fly ash (FA) varies as a function of the prevalent conditions in both the processes of power production and lignite mining. The differentiation of the qualitative and quantitative composition of the highly-calcareous lignite fly ash, as a function of its particle size distribution, is verified in this paper. According to the results of the conducted research, a fine-grained fraction of considerable amount presents properties that obstruct the sustainable exploitation of calcareous lignite fly ash in cement industry applications. On the other hand, the same grain fraction (because of its hydraulic properties) can be utilized in other sort of applications, based on different criteria, i.e. in road constructions. The coarse-grained fraction (which reflects a low proportion to the total fly ash output) presents the same undesired characteristics as well. Rather, the intermediate grain fraction (75-150 {mu}m) presents the highly desirable properties when fly ash is utilized as a pozzolanic additive. In addition, the mechanism of the formation of the intermediate grain fraction strongly prevents the factors that cause the variation of fly ash-quality. It is therefore the optimum part of the whole amount of lignite FA, to be utilized as additive in cement manufacturing. The outcomes of this paper will hopefully contribute towards the crucial goal of the expansion of the utilization of calcareous lignite fly ash by proposing a more effective way of using this material, basically by taking advantage of its fundamental chemical and mineralogical properties. (author)

  18. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    Science.gov (United States)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  19. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: Potential applications in agriculture and forestry?

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, Giuseppe, E-mail: bonanno.giuseppe@unict.it [Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125, Catania (Italy); Cirelli, Giuseppe Luigi; Toscano, Attilio [Department of Agri-Food and Environmental Systems Management, University of Catania, Via Santa Sofia 100, 95123, Catania (Italy); Giudice, Rosa Lo; Pavone, Pietro [Department of Biological, Geological and Environmental Sciences, University of Catania, Via Longo 19, 95125, Catania (Italy)

    2013-05-01

    One of the greatest current challenges is to find cost-effective and eco-friendly solutions to the ever increasing needs of modern society. Some plant species are suitable for a multitude of biotechnological applications such as bioenergy production and phytoremediation. A sustainable practice is to use energy crops to clean up polluted lands or to treat wastewater in constructed wetlands without claiming further arable land for biofuel production. However, the disposal of combustion by-products may add significant costs to the whole process, especially when it deals with toxic waste. This study aimed to investigate the possibility of recycling ash from energy biomass as a fertilizer for agriculture and forestry. In particular, the concentrations of Cd, Cr, Cu, Mn, Pb and Zn were analyzed in the plant tissues and corresponding ash of the grasses Phragmites australis and Arundo donax, collected in an urban stream affected by domestic sewage. Results showed that the metal concentration in ash is 1.5–3 times as high as the values in plant tissues. However, metal enriched ash showed much lower element concentrations than the legal limits for ash reutilization in agriculture and forestry. This study found that biomass ash from constructed wetlands may be considered as a potential fertilizer rather than hazardous waste. Energy from biomass can be a really sustainable and clean option not only through the reduction of greenhouse gas emissions, but also through ash recycling for beneficial purposes, thus minimizing the negative impacts of disposal. - Highlights: • Metal content in ash reflects the element concentrations in Phragmites australis and Arundo donax. • Metal enriched ash of both species may be recycled as fertilizers in agriculture and forestry. • Constructed wetlands may produce a large amount of plant ash-based fertilizers from P. australis and A. donax.

  20. Effect of ash content on the combustion process of simulated MSW in the fixed bed.

    Science.gov (United States)

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2016-02-01

    This paper experimentally and numerically investigates the effects of ash content on the combustion process of simulated Municipal Solid Waste (MSW). A fixed-bed experimental reactor was utilized to reveal the combustion characteristics. Temperature distributions, ignition front velocity, and the characteristics of gas species' release were measured and simulated during the combustion process. In the present work, the two-dimensional unsteady mathematical heterogeneous model was developed to simulate the combustion process in the bed, including the process rate model as well as NOx production model. The simulation results in the bed are accordant with the experimental results. The results show that as ash content increases, the lower burning rate of fuel results in char particles leaving the grate without being fully burned, causing a loss of combustible material in the MSW in a fixed bed and therefore reducing the combustion efficiency and increasing the burning time of the MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Iftekhair Ibnul Bashar

    2014-01-01

    Full Text Available The effect of molarity of alkali activator, manufactured sand (M-sand, and quarry dust (QD on the compressive strength of palm oil fuel ash (POFA and fly ash (FA based geopolymer mortar was investigated and reported. The variable investigated includes the quantities of replacement levels of M-sand, QD, and conventional mining sand (N-sand in two concentrated alkaline solutions; the contents of alkaline solution, water, POFA/FA ratio, and curing condition remained constant. The results show that an average of 76% of the 28-day compressive strength was found at the age of 3 days. The rate of strength development from 3 to 7 days was found between 12 and 16% and it was found much less beyond this period. The addition of 100% M-sand and QD shows insignificant strength reduction compared to mixtures with 100% N-sand. The particle angularity and texture of fine aggregates played a significant role in the strength development due to the filling and packing ability. The rough texture and surface of QD enables stronger bond between the paste and the fine aggregate. The concentration of alkaline solution increased the reaction rate and thus enhanced the development of early age strength. The use of M-sand and QD in the development of geopolymer concrete is recommended as the strength variation between these waste materials and conventional sand is not high.

  2. [Caloric value and ash content of dominant plants in plantation communities in Heshan of Guangdong, China].

    Science.gov (United States)

    Zeng, Xiao-ping; Cai, Xi-an; Zhao, Ping; Rao, Xing-quan

    2009-03-01

    Different parts of twenty dominant plant species in five plantation communities on the subtropical hilly lands in Heshan of Gunagdong as well as the litters from three of the five plantation communities were sampled, and their gross caloric value (GCV) and ash content were measured by using a PARR-1281 oxygen bomb calorimeter and a muffle furnace. Based on the measurements, the ash-free caloric value (AFCV) of the samples was calculated, and the characteristics of caloric value and ash content of the samples, according to plant part, individual, and plant growth form, were analyzed. The results showed that the GCV and AFCV of leaf, branch, stem wood, stem bark, and root were in the range of 10.7-22.17 kJ x g(-1) and 13.89-23.04 kJ x g(-1), respectively. The GCV and AFCV of leaf were significantly higher than those of other parts (P shrub layer (19.46 kJ x g(-1) > herb layer (18.77 kJ x g(-1)), with indigenous coniferous tree (19.86 kJ x g(-1)) > indigenous broad-leaved tree (19.55 kJ x g(-1)) > exotic eucalyptus (19.18 kJ x g(-1)), while the mean ash content was just the opposite. In Acacia mangium, coniferous, and Schima plantation communities, the GCV and AFCV of litters were higher than those of various plant parts (P mangium and coniferous plantations had higher mean GCV and AFCV than the litters and fresh leaves of tree layer, while the fresh leaves of tree layer in Schima plantation showed higher mean GCV and AFCV.

  3. 机场道面除冰液作用下大掺量粉煤灰混凝土的抗冻性%Freeze-thaw Durability of High Volume Fly Ash Content Concrete Exposed to Airfield Pavement Deicer

    Institute of Scientific and Technical Information of China (English)

    麻海燕; 吴雅玲; 余红发; 白康; 袁银峰

    2014-01-01

    The freeze-thaw durability of high volume fly ash content concrete (HFCC)specimens were tested by fast freezing-thawing experiments.In the experiments,HFCC specimens exposed to different solutions which were composed of airfield pavement deicer,NaCl solution,aircraft deicer (AD),commercial deicer and water.The airfield pavement deicer mainly contained calcium magnesium acetate (CMA)and was changed at mass fractions of 3.5%,12.5% and 25%.The mass fractions of NaCl solution,aircraft deicer and commercial deicer were 3 .5%,3 .5% and 25%,respectively.Through the experiments,the change rules of the mass loss rate per unit area and the relative dynamic elastic modulus of HFCC were obtained.The results show that freeze-thaw damage of HFCC exposed to 3 .5% NaCl solution is closely attributed to surface deterioration.When HFCC specimens exposed to 3 .5% AD or 3 .5% CMA solution,it will be damaged by internal freeze-thaw damage.Compared with water,freeze-thaw damage effect of HFCC is delayed by 3 .5% CMA solution.Freeze-thaw durability of concrete exposed to CMA solutions is closely related to the solution mass fractions,the higher the CMA mass fraction is,the smaller the freeze-thaw damage effects are.When the CMA mass fraction is greater than 12.5%, the mass loss rate and the relative dynamic elastic modulus losses are small after 600 times fast freeze-thaw cycle.HFCC has a poor freeze-thaw durability when exposed to 25% commercial deicer and has a good freeze-thaw durability when exposed to 25% airfield pavement deicer. Therefore,HFCC can be completely applied to the cement concrete airfield runway which is deiced by high mass fractions of CMA.%通过大掺量粉煤灰混凝土(HFCC)试件在质量分数为3.5%,12.5%,25%机场道面除冰液(CMA溶液)、质量分数为3.5%的NaCl溶液、质量分数为3.5%的飞机除冰液(AD溶液)、质量分数为25%的商品飞机除冰液与水中快速冻融试验

  4. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  5. INVESTIGATION OF FLY ASH HEAVY METALS CONTENT AND PHYSICO CHEMICAL PROPERTIES FROM THERMAL POWER PLANT, REPUBLIC OF MACEDONIA

    Directory of Open Access Journals (Sweden)

    TENA SIJAKOVA-IVANOVA

    2011-12-01

    Full Text Available The main intention of this research was to determinate the contents of heavy metals and physico chemical properties of coal fly ash and to find out if it is possible to reuse it in embankments, soil stabilization, flow able fill, asphalt, geopolymers and so on.The chemical properties included in this study were: pH, Electrical conductivity, Organic carbon, and Cation exchange capacity. A physical property such as specific gravity was determined.Four samples of coal fly ash were analysed for the presence of As, Cr, Mn, Pb, Zn, Cu, Ni and Co. We made comparison between concentration of heavy metals in coal fly ash in Macedonia and concentration of these metals in coal fly ash from Spain, Greece, India, Philippines and the UK, given in literatures. The concentrationof As in the fly ash from thermal power plant MEC - Bitola in Macedonia is lower than the contents of this element in the fly ash in thermal power plants from the Philippines and the UK. The contents of other heavy metals is in the range same as theirs. Cation exchange capacity (CEC and ammonium exchange capacity (AEC values for fly ash from investigation thermal power plant are in the range of 0.19-0.28 meq/ g for CECs and 0.17-0.33 meq/g for AECs. Ec 0.13-0.15mmhos/cm, Organic carbon 3.17-3.85 and specific gravity 2.04-2.37g/cm3. Every year in Macedonia 900 000 – 1 100 000 t of coal fly ash are produced. Only 10% of coal fly ash is used in cement products which are far below the global utilization rate (25%. We hope that the results of this study will be the basis for further research aimed at increasing the percentage of utilization of coal ash.

  6. The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis.

    Science.gov (United States)

    Jeguirim, Mejdi; Kraiem, Nesrine; Lajili, Marzouk; Guizani, Chamseddine; Zorpas, Antonis; Leva, Yann; Michelin, Laure; Josien, Ludovic; Limousy, Lionel

    2017-03-21

    This paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust. The physico-chemical properties of the produced pellets were analysed using different analytical techniques, and a particular attention was paid to their mineral contents. Combustion tests were performed in 12-kW domestic boiler. The particle matter (PM) emission was characterised through the particle number and mass quantification for different particle size. The bottom ash composition and size distribution were also characterised. Molar balance and chemometric analyses were performed to identify the correlation between the mineral contents and PM and bottom ash characteristics. The performed analyses indicate that K, Na, S and Cl are released partially or completely during combustion tests. In contrast, Ca, Mg, Si, P, Al, Fe and Mn are retained in the bottom ash. The chemometric analyses indicate that, in addition to the operating conditions and the pellet ash contents, K and Si concentrations have a significant effect on the PM emissions as well as on the agglomeration of bottom ash.

  7. Activation of fly ashes by the high temperature and high alkalinity in ASR tests

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High temperature and high alkalinity are typical testing conditions to accelerate the appraisal process of the suppressing effect of fly ashes on alkali silica reaction(ASR),but the reaction mechanism of fly ashes would be quite different under such conditions compared to the normal condition of temperature and alkalinity.To make a reasonable analysis of the suppressing effect of fly ashes,13 types of fly ashes were tested in this paper by both the accelerated mortar bar test method and the 60°C accelerated concrete prism test method.The results showed that the effect of fly ashes would be magnified under the condition of high temperature and high alkalinity.The XRD analysis showed that all the phases of fly ash could react with the hot alkaline solution except for mullite and a small amount of quartz.Fly ash could be significantly activated by the 80°C 1 mol/L NaOH solution,and form mainly C-S-H phase and P type zeolite,but its effect on inhibiting ASR was exaggerated then.According to the mortar strength test and the ASR suppressing test results,C-S-H phase contributed to mortar strength,but its amount did not decide the ASR suppressing effect of fly ash.

  8. Mechanically activated fly ash as a high performance binder for civil engineering

    Science.gov (United States)

    Rieger, D.; Kullová, L.; Čekalová, M.; Novotný, P.; Pola, M.

    2017-01-01

    This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes.

  9. CHANGES IN THE CONTENTS OF SELECTED HEAVY METALS IN TEST PLANTS FERTILISED WITH SEWAGE SLUDGE AND HARD COAL ASH

    Directory of Open Access Journals (Sweden)

    Agnieszka Godlewska

    2017-03-01

    Full Text Available The study aimed at determining changes in the contents of selected metals in the biomass of test plants due to fertilisation with fresh and composted sewage sludge, hard coal ash, and sludge-ash mixture, as well as liming at a background of mineral nutrition. The experimental design was a completely randomised arrangement with three replicates. The following factors were examined: fertilisation with organic and mineral materials (fresh sewage sludge; composted sewage sludge; hard coal ash; calcium carbonate and mineral fertilisation (no fertilisation; NPK fertilisation. An application of sewage sludge, hard coal ash, and sludge-ash mixture significantly increased maize content of barium. Addition of hard coal ash into sewage sludge contributed to an increase in lead content determined in cocksfoot biomass harvested from the first and second cut, and barium in maize biomass. Soil liming significantly affected barium content the biomass of plants harvested from the first and second cut, as well as in maize biomass. NPK nutrition significantly increased barium concentrations in the biomass of test plants and maize.

  10. Effect of Carbon Ash Content on the Thermal and Combustion Properties of Waste Wood Particle / Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Chen Kuo-Wei

    2016-01-01

    Full Text Available This study effect of carbon ash content on the thermal stability and combustion behavior of waste wood particle / recycled polypropylene composites was investigated using TGA, DTG, LOI and cone calorimeter. The TGA shows that, as carbon ash content increases, the thermal stability of composites increases, while the residual weight significantly increases, with the residual weight rate of waste wood particle / recycled polypropylene composites increases from 13.97% to 41.02% at 800 ℃ According to cone calorimeter results, in the 50 kW/M2 thermal flow, when carbon ash adding to 70%, peak heat release rate and total heat release quantity, decreases by 68% and 52%, respectively. The LOI of waste wood particle / recycled polypropylene composites improves by about 34%, Conforming UL-94 flammability standard, V-0 rating. The residual weight rate increases by 202.8%, which the significant role of carbon ash in flame retardant.

  11. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  12. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Rubæk, Gitte Holton; Sørensen, Peter

    2016-01-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd......) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP...... ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash...

  13. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R.; Normen, E.; Hellen, G. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)] [and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  14. Synthesis of Mullite from High-alumina Fly Ash: a Case from the Jungar Power Plant in Inner Mongolia, Northern China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiangfeng; SHAO Longyi; LU Jing

    2008-01-01

    In this paper, an experimental study was conducted in order to test the feasibility of sintering mullite directly from the high-alumina fly ash, without adding any extra material. The results show that the mullite contents in most sintered samples are over 70%. The samples sintered from the beneficiated fly ash have a higher content of mullite than those from the as-received fly ash under the same synthetic conditions. To obtain an equal amount of mullite, a higher sintering temperature is needed for the beneficiated fly ash than for the as-received fly ash. Considering the physical properties of sintered mullite, the favorable sintering temperature is 1400 ℃ for the as-received fly ash and 1500 ℃ for the beneficiated fly ash. A higher sintering temperature and a shorter holding time are profitable to sintering mullite. The orthogonal test confirmed that the dominant factor affecting mullite synthesis is sintering temperature, and that the most profitable matching conditions are 200 MPa-1500 ℃-3 h for the as-received fly ash and 200 MPa-1500 ℃-4 h for the beneficiated fly ash.

  15. Development and freeze-thaw durability of high flyash-content concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, J.

    1987-01-01

    Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ash to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.

  16. 冻融和氯盐侵蚀耦合作用下的大掺量粉煤灰混凝土耐久性探讨%Durability of High Fly Ash Content Concrete under the Coupling Effect of Freeze-Thaw and Chlorine Salt Erosion

    Institute of Scientific and Technical Information of China (English)

    艾红梅; 郭建华; 杨晨光; 戴碧琳

    2015-01-01

    The north sea environment is very bad,which damages the concrete seriously,so the current research of concrete durability mainly focuses on the chloride ion penetration,sulphate erosion,freeze - thaw action and so on. Among them,the damage to concrete from chlorine salt erosion and freeze -thaw is particularly serious,so frost resistance and salt stress resistance design of marine engineering is particularly important. Considering the dominant factor of concrete degradation and cost,high fly ash content concrete( HFCC ) is becoming more and more attractive because of its economic and environmental profits. The author mainly discusses the durability of HFCC under the coupling effect of freeze-thaw and chlorine salt.%鉴于北方海洋环境十分恶劣,对混凝土的破坏严重,目前对于海工混凝土耐久性问题的研究主要集中在氯离子渗透、硫酸盐侵蚀、冻融作用等方面。其中,氯盐侵蚀和冻融作用对混凝土造成的破坏尤为严重,所以对海工混凝土进行抗冻、抗盐害的设计尤为重要。出于混凝土劣化的主导因素和经济性的考虑,在海工结构中,大掺量粉煤灰混凝土( High Fly Ash Content Concrete,简称HFCC)以其经济效益和环境效益被人们愈来愈重视。主要对氯盐和冻融耦合作用下的大掺量粉煤灰混凝土的耐久性进行了探讨。

  17. Sewage sludge ash (SSA in high performance concrete: characterization and application

    Directory of Open Access Journals (Sweden)

    C. M. A. Fontes

    Full Text Available ABSTRACT Sewage sludge originated from the process of treatment of wastewater has become an environmental issue for three main reasons: contains pathogens, heavy metals and organic compounds that are harmful to the environmental and human health; high volumes are daily generated; and shortage of landfill sites for proper disposal. This research deals with the viability study of sewage sludge utilization, after calcination process, as mineral admixture in the production of concrete. High-performance concretes were produced with replacement content of 5% and 10% by weight of Portland cement with sewage sludge ash (SSA. The influence of this ash was analyzed through physical and mechanical tests. Analysis showed that the mixtures containing SSA have lower values of compressive strength than the reference. The results of absorptivity, porosity and accelerated penetration of chloride ions, presents that mixtures containing ash showed reductions compared to the reference. This indicates that SSA provided refinement of the pore structure, which was confirmed by mercury intrusion porosimetry test.

  18. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... importantly, by reaction with Al and Si in the fly ash. About 70-80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium...

  19. Effects of particle size, ash content, and processing pressure on the bioavailability of phosphorus in meat and bone meal for swine.

    Science.gov (United States)

    Traylor, S L; Cromwell, G L; Lindemann, M D

    2005-11-01

    Meat and bone meal (MBM), when supplemented with tryptophan, is an excellent protein source for pigs. It is also a rich source of Ca and P, but some research has suggested that the bioavailability of P is variable. Three experiments were conducted to determine whether particle size, ash content, or processing pressure of MBM influences the bioavailability of P. Each experiment involved six replications of six treatments with individually penned pigs initially averaging 13 to 17 kg of BW. A low-P basal diet was fed with or without 0.1 or 0.2% added P (as-fed basis) from monosodium phosphate (MSP) or with three types of MBM added at levels that supplied 0.2% P (as-fed basis). The Ca level was 0.70%, and the lysine level was 0.95% in all diets. Pigs were allowed to consume their diets (meal form) on an ad libitum basis. At the end of the study, pigs were killed, and femurs and third and fourth metacarpals and metatarsals were removed for determination of breaking strength and ash content. Bone traits were regressed on added P intake for each P source, and slope-ratio procedures were used to estimate the bioavailability of P in MBM relative to that in MSP. In Exp. 1, a blended source of MBM ground to three particle sizes (amount that passed through 6-, 8-, or 12-mesh screens) was evaluated. In Exp. 2, low-ash MBM of porcine origin, high-ash MBM of bovine origin, and a 1:1 blend of the two sources were assessed. In Exp. 3, normally processed MBM was subjected to an additional 2.1 and 4.2 kg/cm2 of pressure for 20 min to determine whether excessive heat treatment would influence the bioavailability of P. Fineness of grind of MBM or processing pressure did not influence the relative bioavailability of P in this study; however, ash content of MBM affected P bioavailability. The relative availability of P in low-ash MBM of porcine origin (with composition typical of meat meal) was approximately 15 percentage units less than that in high-ash MBM of bovine origin. Overall

  20. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoxi, E-mail: Xiaoxi.Li@agro.au.dk; Rubæk, Gitte H.; Sørensen, Peter

    2016-07-01

    For biomass combustion to become a sustainable energy production system, it is crucial to minimise landfill of biomass ashes, to recycle the nutrients and to minimise the undesirable impact of hazardous substances in the ash. In order to test the plant availability of phosphorus (P) and cadmium (Cd) in four biomass ashes, we conducted two pot experiments on a P-depleted soil and one mini-plot field experiment on a soil with adequate P status. Test plants were spring barley and Italian ryegrass. Ash applications were compared to triple superphosphate (TSP) and a control without P application. Both TSP and ash significantly increased crop yields and P uptake on the P-depleted soil. In contrast, on the adequate-P soil, the barley yield showed little response to soil amendment, even at 300–500 kg P ha{sup −1} application, although the barley took up more P at higher applications. The apparent P use efficiency of the additive was 20% in ryegrass - much higher than that of barley for which P use efficiencies varied on the two soils. Generally, crop Cd concentrations were little affected by the increasing and high applications of ash, except for relatively high Cd concentrations in barley after applying 25 Mg ha{sup −1} straw ash. Contrarily, even modest increases in the TSP application markedly increased Cd uptake in plants. This might be explained by the low Cd solubility in the ash or by the reduced Cd availability due to the liming effect of ash. High concentrations of resin-extractable P (available P) in the ash-amended soil after harvest indicate that the ash may also contribute to P availability for the following crops. In conclusion, the biomass ashes in this study had P availability similar to the TSP fertiliser and did not contaminate the crop with Cd during the first year. - Highlights: • Effects of four biomass ashes vs. a P fertiliser (TSP) on two crops were studied. • Ashes increased crop yields with P availability similar to TSP on P-depleted soil

  1. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    Science.gov (United States)

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash.

  2. Impact Properties of Engineered Cementitious Composites with High Volume Fly Ash Using SHPB Test

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhitao; YANG Yingzi; YAO Yan

    2012-01-01

    The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content.The basic properties including deformation,energy absorption capacity,strain-stress relationship and failure patterns were discussed.The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete,but the critical compressive strength was lower than that of R-PC and concrete.The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs.With the increase of fly ash content in ECCs,the static and dynamic compressive strength lowered and the dynamic increase factor enhanced,Therefore,to meet different engineering needs,the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.

  3. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...

  4. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  5. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2003-05-20

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  6. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  7. 温度对大掺量粉煤灰水泥水化C-S-H聚合度的影响%Effect of Temperature on Aggregate States of Hydration Products C-S-H Gel of Cement with High Content of Fly Ash

    Institute of Scientific and Technical Information of China (English)

    于文金; 罗永传; 弓子成; 丁庆军

    2011-01-01

    Effect of curing temperature and temperature variation on silicon-oxy tetrahedron aggregate states of hydra-tion products C-S-H gel of cement with high content of fly ash materials by high-resolution solid "Si NMR,XRD and FT-IR testing techniques. The results show that silicon-oxy tetrahedron aggregate states C-S-H gel and contents of alumi-num-oxy tetrahedron increased and then stabilized with the increase of curing temperature. Curing at normal temperature was good for increasing silicon-oxy tetrahedron aggregate states of CSH gels and contents of aluminum-oxy tetrahedron at the periods from 7 d to 28 d.%采用固体29Si核磁共振、FTIR、XRD测试方法研究了养护温度、温度变化对大掺量粉煤灰水泥基材料水化C-S-H凝胶硅氧四面体聚合程度的影响规律.结果表明:粉煤灰掺量为50%时,C-S-H凝胶硅氧四面体的聚合程度和C-S-H凝胶中铝氧四面体的比例随着养护温度的升高而呈现先增加后稳定的趋势.在7d至28 d龄期阶段,常温养护更加有利于C-S-H凝胶硅氧四面体聚合程度的增加,也更有利于Al原子取代Si原子.

  8. Physicochemical characterization of Spanish fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; Plana, F.

    1999-12-01

    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Cou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential.

  9. Physiochemical characterization of Spanish fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez Soler, A.; Plana, F.

    1999-12-01

    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Dou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential. (author)

  10. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial

    Energy Technology Data Exchange (ETDEWEB)

    Lopareva-Pohu, Alena [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Pourrut, Bertrand; Waterlot, Christophe [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Garcon, Guillaume [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Bidar, Geraldine; Pruvot, Christelle [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Shirali, Pirouz [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, Avenue Maurice Schumann, 59140 Dunkerque (France); Douay, Francis, E-mail: f.douay@isa-lille.fr [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France)

    2011-01-01

    Sustainable management of large surface areas contaminated with trace elements is a real challenge, since currently applied remediation techniques are too expensive for these areas. Aided phytostabilisation appears to be a cost efficient technique to reduce metal mobility in contaminated soils and contaminated particle spread. In this context, this study aimed at evaluating the long-term efficiency of aided phytostabilisation on former agricultural soils highly contaminated with trace elements. The influence of afforestation and fly ash amendments to reduce metal mobility was investigated. Before being planted with a tree mix, the study site was divided into three plots: a reference plot with no amendment, the second amended with silico-aluminous fly ash and the third with sulfo-calcic fly ash. After eight years, some soil physico-chemical parameters, including cadmium (Cd), lead (Pb) and zinc (Zn) extractability were modified. In particular, pH decreased on the whole site while organic carbon content increased. The alteration of these parameters influencing trace element mobility is explained by afforestation. Over time, concentrations of CaCl{sub 2}-extractable metals increased and were correlated with the soil pH decrease. In the amended soils, extractable Cd, Pb and Zn concentrations were lower than in the reference soil. The results indicated that the two fly ashes buffered natural soil acidification due to vegetation development and limited trace element mobility and thus could limit their bioavailability. For long-term phytostabilisation, special attention should be focused on the soil pH, metal mobility and phytoavailability analysis. - Research Highlights: {yields} Afforestation leads to soil pH decrease and organic carbon content increase. {yields} Fly ashes buffered natural soil acidification. {yields} Fly ashes limited metal mobility.

  11. Analysis on the reason of high ash in white granulated sugar%关于白砂糖电导灰分偏高的原因分析

    Institute of Scientific and Technical Information of China (English)

    谢彩锋; 莫柳珍; 马英群; 王淑培; 徐勇士

    2011-01-01

    Main components of ash in white granulated sugar was determined in this paper, and then the variation laws of these given ash components were analyzed by lab experiments and industrial production during sulfitation process to find the main reasons of causing high ash content in white granulated sugar, which could provide theory for sugar mills in decreasing ash content of white granulated sugar.%分析灰分超标白砂糖灰分成份,并通过试验室模拟试验与分析主要灰分成份在澄清过程变化,探讨白砂糖灰分超标的主要原因,为糖厂降低白砂糖灰分提供理论依据.

  12. Performance of High-Strength Concrete Using Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Dr. M. Swaroopa Rani

    2015-04-01

    Full Text Available The advancement in material technology has led to development of concrete with higher strengths. Presence of high cementitious materials contents in high strength concrete mixes increases heat of hydration that causes higher shrinkage and leading it to potential of cracking. However, use of supplementary cementitious materials leads to control in heat of hydration which further avoids higher shrinkage. Materials such as fly ash, silica fume, metakaolin and ground granulated blast furnace slag are largely been used as supplementary cementitious materials in High strength concrete mixes. In the present study use of palm oil fuel ash (POFA as partial cement replacement in high strength concrete mixes is evaluated with an experimental study. High strength concrete mix of M60 grade is taken as a reference and the compressive strength, split tensile strength and flexural strength where performed for 7, 28 and 56 days and analyzed it with results for partial replacement mixes of POFA 5%, 10%, 15%, 20% & 25%. It has been observed that concrete with 15% replacement of POFA gave the highest strength.

  13. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Directory of Open Access Journals (Sweden)

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  14. Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas

    Institute of Scientific and Technical Information of China (English)

    Lucie Barto(n)ová; Bohumír (C)ech; Lucie Ruppenthalová; Vendula Majvelderová; Dagmar Juchelková; Zdeněk Klika

    2012-01-01

    The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S,CI,Br,As,Se,Cu,Ni,Zn,Ga,Ge,Rb,and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone.The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements.Except of S (with significant association with CaO) and Rb and Pb (with major affinity to Al2O3) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959),Cl (0.957),Cu (0.916),Se (0.898),Ni (0.866),As (0.861),Zn (0.742),Ge (0.717),and Ga (0.588) content.The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.

  15. Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas.

    Science.gov (United States)

    Bartonová, Lucie; Cech, Bohumír; Ruppenthalová, Lucie; Majvelderová, Vendula; Juchelková, Dagmar; Klika, Zdenek

    2012-01-01

    The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone. The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements. Except of S (with significant association with CaO) and Rb and Pb (with major affinity to Al2O3) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959), Cl (0.957), Cu (0.916), Se (0.898), Ni (0.866), As (0.861), Zn (0.742), Ge (0.717), and Ga (0.588) content. The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.

  16. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  17. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  18. The Effects of High Alkaline Fly Ash on Strength Behaviour of a Cohesive Soil

    Directory of Open Access Journals (Sweden)

    A. Binal

    2016-01-01

    Full Text Available Contemporarily, there are 16 coal-burning thermal power plants currently operating in Turkey. This number is expected to rise to 46 in the future. Annually, about 15 million tons of fly ash are removed from the existing thermal power plants in Turkey, but a small proportion of it, 2%, is recyclable. Turkey’s plants are fired by lignite, producing Class C fly ash containing a high percentage of lime. Sulfate and alkali levels are also higher in Class C fly ashes. Therefore, fly ash is, commonly, unsuitable as an additive in cement or concrete in Turkey. In this study, highly alkaline fly ash obtained from the Yeniköy thermal power plants is combined with soil samples in different proportions (5%, 10%, 15%, 20%, and 25% and changes in the geomechanical properties of Ankara clay were investigated. The effect of curing time on the physicomechanical properties of the fly ash mixed soil samples was also analyzed. The soil classification of Ankara clay changed from CH to MH due to fly ash additives. Free swelling index values showed a decrease of 92.6%. Direct shear tests on the cohesion value of Ankara clay have shown increases by multiples of 15.85 and 3.01 in internal friction angle values. The California bearing ratio has seen a more drastic increase in value (68.7 times for 25% fly ash mix.

  19. Developing high-performance concrete incorporating highly-reactive rice husk ash

    Directory of Open Access Journals (Sweden)

    Andrés Salas

    2012-10-01

    Full Text Available The aim of this study is to present results of an investigation about the developing of a highperformance concrete (HPC using a highly reactive pozzolan made from chemically treated rice husk ash (ChRHA prepared by a chemical-thermal attack to the rice husk. This particular rice husk ash (RHA consists of 99% of silica, highly amorphous, white in color and of greater pozzolanic activity than the silica fume and another rice husk ash prepared with only by a thermal treatment. The results of the physical, chemical and mineralogical characteristics of ChRHA are analyzed. In this study, the compressive strength, flexural strength, water absorption, resistance to carbonation, total charge-passed derived from rapid chloride permeability test (RCPT and modulus of elasticity of hardened concrete were determined in the laboratory. Test results indicate that it is possible to produce HPC with the incorporation the chemically treated RHA. The incorporation of the chemically treated rice husk ash into the concrete enhances the compressive strengthand the durability properties being comparable to the properties of high performance concretes with silica fume (SF made with the same replacement levels.

  20. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  1. Durability Study on High Calcium Fly Ash Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Ganesan Lavanya

    2015-01-01

    Full Text Available This study presents an investigation into the durability of geopolymer concrete prepared using high calcium fly ash along with alkaline activators when exposed to 2% solution of sulfuric acid and 5% magnesium sulphate for up to 45 days. The durability was also assessed by measuring water absorption and sorptivity. Ordinary Portland cement concrete was also prepared as control concrete. The grades chosen for the investigation were M20, M40, and M60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The molarity of sodium hydroxide was fixed as 12. The test specimens were 150×150×150 mm cubes, 100×200 mm cylinders, and 100×50 mm discs cured at ambient temperature. Surface deterioration, density, and strength over a period of 14, 28, and 45 days were observed. The results of geopolymer and ordinary Portland cement concrete were compared and discussed. After 45 days of exposure to the magnesium sulfate solution, the reduction in strength was up to 12% for geopolymer concrete and up to 25% for ordinary Portland cement concrete. After the same period of exposure to the sulphuric acid solution, the compressive strength decrease was up to 20% for geopolymer concrete and up to 28% for ordinary Portland cement concrete.

  2. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  3. THE HIGH VOLUME REUSE OF HYBRID BIOMASS ASH AS A PRIMARY BINDER IN CEMENTLESS MORTAR BLOCK

    Directory of Open Access Journals (Sweden)

    Cheah Chee Ban

    2014-01-01

    Full Text Available High Calcium Wood Ash (HCWA and Pulverised Fuel Ash (PFA are by-products from the wood biomass and coal energy production which are produced in large quantity with combined annual production of 500 million tonnes. This poses a serious problem for disposal of the waste material especially at places where land is scarce. The prescribed study was aimed to examine the mineralogical phases and their respective amount present in the industrial wastes which governs the hydration mechanism towards self-sustained solidification of the ashes when used in combination. Besides, the influence of various forming pressure and hydrothermal treatment temperature on mechanical strength performance of HCWA-PFA cementless mortar blocks was also examined. In the study, the mechanical strength of the HCWA-PFA cementless mortar block produced using various forming pressure and hydrothermal treatment temperature was assessed in terms of compressive strength and dynamic modulus. The results of the study are indicative that HCWA is rich in calcium oxide and potassium oxide content. This enables the hybridization of HCWA with the amorphous silica and alumina rich PFA to form a solid geopolymer binder matrix for fabrication of cementless mortar block. Throughout the study, dimensionally and mechanically stable HCWA-PFA geopolymer mortar blocks were successfully produced by press forming and hydrothermal treatment method. Based on statistical analysis, the hydrothermal treatment temperature has a statistically insignificant effect on the mechanical strength of the HCWA-PFA cementless mortar blocks. The dominant factor which governs the mechanical strength of the HCWA-PFA cementless mortar blocks was found to be the hydraulic forming pressure. Moreover, it was found that hybridized HCWA-PFA can be recycled as the sole binder for fabrication of cementless concrete block which is a useful construction material.

  4. The Ash Content of the Main Muscle Groups and Edible Offal Collected From Hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Gabriela Tărnăuceanu Frunză

    2016-03-01

    Full Text Available Abstract. The availability of hares (Lepus europaeus Pallas, unlike that of domestic rabbits, is restricted by hunting seasons. Rabbit meat, according to research from Spain, is a rich source of K, P, Fe and Mg, but poor in Na, being recommended for people with hypertension. The largest quantity of macro minerals studied in rabbit meat was determined for K and P, and the most abundant micro minerals were Zn, Fe, Cu and Mn. In hare meat, ash content is not sufficiently studied. The current low level of knowledge motivated the present study. The aim of this study was to establish the ash content for major muscle groups and edible offal of hares. The biological material used was collected from 49 hares with an average weight of 5.6 kg, at the age of reproductive maturity (adults: 11-12 months. Different muscle groups (the muscles Cervicalis, Intercostalis, Longissimus Dorsi, Psoas major, Triceps Brachi, Biceps femoris, Semimembranosus and the main edible offal (heart, liver, kidney were sampled. The ash was determined by calcination (in Supertherm C311 oven calcination at 5500C. The results obtained were interpreted statistically (arithmetic mean (X, standard deviation (s, variance (s2 and coefficient of variation (V% and the statistical significance of differences was tested using the ANOVA Single Factor algorithm (p>0.05; p<0.01; p<0.001. Ash content for the main muscle groups analysed varied from the lowest average values of 1.095% for the Intercostalis muscles, to the highest average values of 1.256%, for Triceps brachii muscles.

  5. Experience of coal mine operation in the Ukraine in the field of reducing ash content of run-of-mine coal in the tenth five year plan. Opyt raboty shakht minugleproma USSR po snizheniyu zol'nosti dobyvaemykh uglei v desyutoi pyutiletke

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.I.; Krivchenko, A.A.; Kuznetsov, N.V.

    1981-01-01

    In the period from 1975 to 1979 ash content of coal extracted from Ukrainian coal mines increased from 21.2 to 21.9% or by 0.7%, and ash content of run-of-mine coal from 29.1% to 31.7% or by 2.6%. Causes of increasing ash content in coal are analyzed. Investigations carried out in the Ukraine indicate that increasing proportion of coal mined by narrow web coal cutters causes an average increase in ash content in coal of 0.1%. Introducing powered supports causes ash content increase in coal by about 3.3% in comparison to coal mined at faces with hydraulic props. Influence of introducing high capacity heading machines as well as using various types of coal haulage is also analyzed. The results are given in 5 tables. The following measures aimed at reducing ash content in coal are discussed: use of KD-80, KSD, M-88 and M-103 powered supports, K-103, MK-67 and BKT face systems, KSU support systems for face ends, mobile bunker used for selective belt conveyor haulage of rock and coal from development workings, using AZUK, ZAZ, and VSKZ measuring instruments for continuous determination of ash content in coal, selective coal mining, roof bolting combined with chemical methods of reinforcing roofs of coal seams by means of resin injections, leaving a 0.05 to 0.1 m thick protective coal bench in the roof.

  6. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete

    Directory of Open Access Journals (Sweden)

    Wei-Jie Fan

    2015-09-01

    Full Text Available High-calcium fly ash (FH is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.

  7. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete.

    Science.gov (United States)

    Fan, Wei-Jie; Wang, Xiao-Yong; Park, Ki-Bong

    2015-09-07

    High-calcium fly ash (FH) is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.

  8. Estimation of the ash and sulphur contents of coal using kriging method; Kriging yontemi ile komur kul ve kukurt iceriklerinin tahmini

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, E.; Saydam, S.; Kose, H.

    1996-12-31

    Prediction of ash and sulphur content of coal used in coal fired power plants is important for the precautions to be taken to prevent environmental pollution. In this study, the ash and sulphur content of coal from the Collolar Coal Area were estimated using the Kriging method at different block dimensions. The effect of block dimensions on the estimations was determined. 6 refs., 5 figs., 4 tabs.

  9. Geotechnical engineering properties of incinerator ash mixes.

    Science.gov (United States)

    Muhunthan, B; Taha, R; Said, J

    2004-08-01

    The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.

  10. Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Tamaki, Yukihiro; Mazza, Giuseppe

    2011-06-22

    Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate (total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r², RPD, and R/SEP criteria. The xylan model showed good and acceptable predictive performance. However, the ash model was evaluated as providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of total glycans, glucan, xylan, and extractives in triticale and wheat straw samples.

  11. Combustion of stoker ash in a CFBC

    Energy Technology Data Exchange (ETDEWEB)

    Jia, L.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2002-07-01

    The ash generated from petroleum coke fired stokers at Georgia Pacific in Wisconsin has an elevated carbon content and a higher fuel value. This paper presents results of a study in which the stoker ash was test fired at the CANMET Energy Technology Centre in a bench scale circulating fluidized bed combustor (CFBC). The objective was to determine if firing the stoker ash in its 'as received' state (with a 40 per cent moisture content) is a viable fuel option for Georgia Pacific's FBC boiler to save fuel costs, or if it should be co-fired with petroleum coke. Mixtures of the stoker ash and petroleum coke were also test fired. Results indicate that the stoker ash alone cannot sustain combustion. However, good ignition and even bed temperature is possible with premixed coke and 10 per cent less moisture content. Emissions of sulphur dioxides, nitrogen oxides carbon monoxide were the same as for firing petroleum coke alone. In addition, the co-firing of stoker ash and petroleum coke did not negatively affect the tendency to foul, compared to firing coke alone. The amount of ash generated from the FBC boiler was high due to the high ash content. An economic evaluation showed that firing a 20/80 coke/stoker ash mixture can save approximately 22 per cent of the limestone usage compared to coke firing alone, if the Ca/S molar ratio remain the same. 8 refs., 2 tabs., 1 fig.

  12. Experiments on effects of coal particle ash content on ash formation during fluidized bed combustion%流化床燃烧中煤含灰量对灰渣形成特性的影响

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 徐志; 刘彦鹏; 骆仲泱; 倪明江

    2012-01-01

    为了研究煤颗粒灰质量分数对煤在流化床燃烧过程中灰渣形成特性的影响,在一台小型流化床反应炉上进行煤的灰质量分数对灰渣形成特性的实验.按煤颗粒的灰质量分数,把义马烟煤分为6个颗粒组,并选用各颗粒组的3个粒径范围的煤颗粒进行燃烧实验,研究煤颗粒的灰质量分数对底渣质量分数、底渣与飞灰中的碳量质量分数和粒径分布的影响.结果表明,随着煤颗粒灰质量分数的增加,燃烧形成的底渣质量分数增加,而煤颗粒的燃尽率和飞灰中的碳质量分数都降低.在粒径和燃烧时间相同的条件下,随着颗粒灰质量分数的增加,底渣中留在本粒径档的颗粒质量分数明显增加,而细颗粒的质量分数明显减少.而颗粒灰质量分数对飞灰的粒径分布没有明显的影响.%To investigate the influences of coal particle ash content on the ash formation behaviors during fluidized bed combustion, experiments were conducted on a bench-scale fluidized bed combustor. Yima bituminous coal samples were divided into 6 ranks with different ash content. For every rank of coal sample, 3 size ranges were used in the experiments. The results show that the mass fraction of the bottom residue increases with the ash content of the coal particles, while the burnout of coal particles and the carbon content of the fly ash decrease with the ash content of coal particles. The mass fraction of the bottom residues which have the same size range as the initial size range of the coal particles increases with the ash content. While the ash content of coal particles has no obvious influence on the size distribution of the fly ash.

  13. X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    O. Font; N. Moreno; X. Querol; M. Izquierdo; E. Alvarez; S. Diez; J. Elvira; D. Antenucci; H. Nugteren; F. Plana; A. Lopez; P. Coca; F.G. Pena [Institute of Environmental Assessment and Water Research (IDA-CSIC), Barcelona (Spain)

    2010-10-15

    The relevance of Al-Si glass in a number of fly ash applications, such as use as a pozzolanic material, zeolite synthesis, and geopolymer production, necessitated research towards investigation of methods for an easy and consistent determination of the glass content in this coal (co)-combustion by-products. A glass standard-addition X-ray powder diffraction (XRD)-based method is proposed in this study as an alternative to the non straightforward procedure of conventional methods for determining the amorphous components, mainly by difference of the total mass and the addition of quantified crystalline species. A >99% Al-Si glass slag sample was selected as a standard for glass. A number of glass standard/fly ash mixtures were performed on Fluidized Bed Combustion (FBC) and pulverized coal combustion (PCC) fly ashes and subsequently analyzed by XRD. The method provides results closer to quantitative proportions of the Al-Si amorphous material of this (co)-combustion by-product, with a range of values <3% when compared with those obtained by the conventional Reference Intensity Method (RIM) method, demonstrating suitability and consistence of the procedure. The mineralogy of FBC and PCC fly ash was also investigated using the RIM method. The occurrence and proportions of the crystalline components in fly ash are in line with the combustion technology and their inherent operational parameters, especially the (co)-combustion temperature. The FBC fly ash shows the highest content of relic phases from feed coal (quartz, illite, calcite, and feldspars) and lower contents of amorphous components. The PCC fly ash are characterized by the highest proportions of mullite and Al-Si glass and low contents of quartz an other relict phases. The occurrence and distribution of anhydrite and Fe-oxide species appears to be related to the content of Ca and Fe in the feed fuels, showing slightly higher contents in FBC than in PCC fly ash. 26 refs., 3 figs., 5 tabs.

  14. Particle size and compositional retrievals of the Chaiten volcanic ash from spaceborne, high spectral resolution infrared AIRS and IASI measurements

    Science.gov (United States)

    Prata, F.; Gangale, G.; Clarisse, L.

    2008-12-01

    The eruption of Chaiten volcano in early May 2008 produced copious amounts of ash and little SO2 gas. The ash clouds could be detected very well by several satellite instruments, but was unusual in that true- colour daytime MODIS satellite imagery showed the ash to be quite light in colour and difficult to distinguish from ordinary meteorological clouds. High spectral resolution infrared spectrometer and interferometer measurements from AIRS and IASI were analysed to investigate the spectral signature of the Chaiten ash clouds and compare these with ash clouds from other volcanoes, which generally appear much darker in visible imagery. It was found that the Chaiten ash had a distinctive spectral signature between 800 to 1200 wavenumbers and that this correlated very well with the signature expected from rhyolitic ash. A radiative transfer code and an ash microphysical model were used to retrieve the mean particle size of fine ash in the Chaiten clouds and best fits were found for rhyolitic particles with small (less than 2 micron) radii. These results suggest that infrared spectra may be used to retrieve both compositional and particle size information in ash clouds. Based on the spectral signatures found for these ash clouds, a new ash detection algorithm was designed and found to have improved sensitivity to thin (low opacity) ash clouds and low sensitivity to surface effects. The new algorithm offers the possibility of tracking ash clouds for longer periods of time and over greater distances. Results from both the AIRS and IASI measurements are presented for the May ash clouds from Chaitén volcano and compared with the signatures of ash clouds from andesitic volcanic clouds and quartz dominated windblown dust.

  15. A comprehensive study on the contents and leaching of trace elements from fly-ash originating from Polish hard coal by NAA and AAS methods.

    Science.gov (United States)

    Dybczynski, R; Kulisa, K; Małusecka, M; Mandecka, M; Polkowska-Motrenko, H; Sterlinski, S; Szopa, Z

    1990-01-01

    In order to assess the environmental risks associated with the emission of fly-ash into the atmosphere and its storage on waste heaps, the trace element contents of fly-ashes from burning Polish hard coal were determined by a newly developed INAA method. Leaching of trace elements from the fly-ash by water and H2SO4 solution (pH approximately 2.5) simulating acid rain, respectively, was studied using AAS and spectrophotometric methods. Analogous experiments were done with neutron-irradiated fly-ash, following the composition of the eluate gamma-spectrometrically. The new fine fly-ash (CTA-FFA-1) candidate reference material was prepared, and the certification was undertaken on the basis of an international intercomparison run. Preliminary evaluation of results shows that at least 38 elements will be certified and, in addition, the "information values" for at least 12 elements will be given.

  16. The Effect of Fly Ash Quality on the Engineering Properties of High-Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    PENG Yuchu

    2012-01-01

    Abstract:Fly ash is the most inexpensive cementitious material,and its presence in concrete has increased in recent years because it has become more durable and environmentally friendly.This study examines densified mixture concrete and the effect of fly ash quality on high-flow,high-strength concrete.Tests show that when the same mixture achieves identical flow standards(slump > 250 mm;slump flow > 600 ram),the fly ash quality affects the nature of the concrete;additionally,and adding Class F fly ash to concrete(loss on ignition =6%)is more workable than adding Class C fly ash(loss on ignition =3%).However,adding fly ash with a high loss on ignition(9%)to concrete requires a substantial increase in the mixing water and a dose of superplasticizer to achieve the required workability.This reduces the quality of the concrete,which subsequently deteriorates its safety and durability.

  17. Study of Commercial Wheat Flour Milling Process:Relation of Flour Yield,Ash and Protein Contents of Flour Mill and Characteristics of Wheat Blend%Study of Commercial Wheat Flour Milling Process: Relation of Flour Yield, Ash and Protein Contents of Flour Mill and Characteristics of Wheat Blend

    Institute of Scientific and Technical Information of China (English)

    Y S Kim; C W Deyoe; O K Chung; E Haque

    2006-01-01

    The profit margin in the flour milling industry is quite narrow, so high-quality raw materials and efficiency of milling operations are crucial for every company. Many flour mills, especially those which import wheat from other countries and have limited storage space for the different varieties or classes of wheat, can not afford to buy low quality wheat. Consequently, a mathematical model which can test the impact and interactions of raw materials, in technical point of view, would be a useful decision-making tool for the milling industry. A flour miller tests wheat for physical and chemical characteristics, cleanness and soundness. The miller also performs experimental milling, if available, to have some idea how the given wheat will behave during commercial milling. Based on these test results, the miller can only guess the commercial milling results such as flour yields and flour ash and protein contents. Thus, the objective of this study was to develop empirical equations to estimate commercial milling results, using the physical, chemical and experimental milling data of the given wheat blend and also, additionally, flour ash and protein specifications of the end-user. This was done by using the actual commercial milling procedures and their wheat physical, chemical, experimental milling data, and other vital data. Data were collected from a commercial mill located in East Asia that had four production lines and used wheat blend combinations from five different wheat classes, i.e. Hard Red Winter (HRW),Dark Northern Spring (DNS), Soft White (SW), Australian Soft (AS), and Australian Standard White (ASW) wheat to produce over 40 different products. The wheat physical and chemical characteristics included test weight, thousand kernel weight, ash and protein contents. The experimental milling data were straight-grade and patent flour yields, along with patent flour ash and protein contents from a Buhler experimental mill. The commercial milling results included

  18. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    Science.gov (United States)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  19. Properties of High Volume Fraction Fly Ash/Al Alloy Composites Produced by Infiltration Process

    Science.gov (United States)

    Kountouras, D. T.; Stergioudi, F.; Tsouknidas, A.; Vogiatzis, C. A.; Skolianos, S. M.

    2015-09-01

    In the present study, pressure infiltration is employed to synthesize aluminum alloy 7075-fly ash composites. The microstructure and chemical composition of the fly ash and the produced composite material was examined using optical and scanning electron microscopy, as well as x-ray diffraction. Several properties of the produced composite material were examined and evaluated including macro-hardness, wear, thermal expansion, and corrosion behavior. The wear characteristics of the composite, in the as-cast conditions, were studied by dry sliding wear tests. The corrosion behavior of composite material was evaluated by means of potentiodynamic corrosion experiments in a 3.5 wt.% NaCl solution. The composite specimens exhibit a homogeneous distribution of fly ash particles and present enhanced hardness values, compared to the matrix material. The high volume fraction of the fly ash reinforcement (>40%) in the composite material led to increased wear rates, attributed to the fragmentation of the fly ash particles. However, the presence of fly ash particles in the Al alloy matrix considerably decreased the coefficiency of thermal expansion, while resulting in an altered corrosion mechanism of the composite material with respect to the matrix alloy.

  20. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  1. 采用离子色谱法检测电除尘飞灰中的氨含量%Application of Ion-Chromatography Method in Detecting Ammonia Content in Electrostatic Precipitator Fly Ash

    Institute of Scientific and Technical Information of China (English)

    周飞梅; 曹志勇; 汤治; 郑志明; 汪景婷

    2014-01-01

    根据离子色谱法检测电除尘飞灰中氨含量的原理,进行检测条件优化试验,得出影响飞灰中氨含量的主要因素有溶液pH值、搅拌时间、水灰比等。在得出最佳试验条件后,进行重复性测试和加标回收率测试,结果表明离子色谱法测定飞灰中氨含量的方法具有较高的精密度和准确度,可作为监测脱硝系统氨逃逸的一种手段。%By applying the principle of ion-chromatography method for testing ammonia content in electrostatic precipitator fly ash, tests to optimize detecting conditions is carried on. It is concluded that the main factors influencing ammonia content in fly ash are pH of solution, mixing time, water and ash ratio and so forth. Af-ter optimal test condition is obtained, repeatability test and adding standard recovery rate test are conducted. The results show that ion-chromatography method is of high precision and accuracy in testing ammonia con-tent in electrostatic precipitator fly ash and it can be used to monitor ammonia escape in desulfurization system.

  2. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    Science.gov (United States)

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  3. Transport and mechanical properties of self consolidating concrete with high volume fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Ismail O. Yaman; Mustafa Tokyay [Gaziantep University, Gaziantep (Turkey). Department of Civil Engineering

    2009-02-15

    This paper presents the transport and mechanical properties of self consolidating concrete that contain high percentages of low-lime and high-lime fly ash (FA). Self consolidating concretes (SCC) containing five different contents of high-lime FA and low-lime FA as a replacement of cement (30, 40, 50, 60 and 70 by weight of total cementitious material) are examined. For comparison, a control SCC mixture without any FA was also produced. The fresh properties of the SCCs were observed through, slump flow time and diameter, V-funnel flow time, L-box height ratio, and segregation ratio. The hardened properties included the compressive strength, split tensile strength, drying shrinkage and transport properties (absorption, sorptivity and rapid chloride permeability tests) up to 365 days. Test results confirm that it is possible to produce SCC with a 70% of cement replacement by both types of FA. The use of high volumes of FA in SCC not only improved the workability and transport properties but also made it possible to produce concretes between 33 and 40 MPa compressive strength at 28 days, which exceeds the nominal compressive strength for normal concrete (30 MPa).

  4. Properties of High Volume Fly Ash Concrete Compensated by Metakaolin or Silica Fume

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compressive strength and dynamic modulus of high volume fly ash concrete with incorporation of either metakaolin or silica fume were investigated. The water to cementitious materials ratio was kept at 0.4 for all mixtures. The use of high volume fly ash in concrete greatly reduces the strength and dynamic modulus during the first 28 days. The decreased properties during the short term of high volume fly ash concrete is effectively compensated by the incorporation of metakaolin or silica fume. The DTA results confirmed that metakaolin or silica fume increase the amount of the hydration products. An empirical relationship between dynamic modulus and compressive strength of concrete has been obtained. This relation provides a nondestructive evaluation for estimating the strength of concrete by use of the dynamic modulus.

  5. Evaluation of pneumatic inclined deck separator for high-ash Indian coals

    Institute of Scientific and Technical Information of China (English)

    Nikhil Gupta

    2016-01-01

    Application of pneumatic separators in coal beneficiation is increasing rapidly over the last decade primarily due to their low capital and operating costs,and waste handling problems associated with traditional wet processing methods.Large amount of shale/rock that is extracted in coal production can be removed prior to transportation at the mine face by using this methodology.Due to the limited washing facilities in India,most of the thermal power plants burn raw coal from run-of-mine (ROM) to generate electricity.This practice causes poor utilization efficiency,high operating and maintenance costs,and high emission rates for the power plants.One potential method that can be utilized is the air-fluidized inclined vibrating deck technology.The technology was demonstrated on a pilot-scale at different coal washeries in India at a feed rate of 5-ton per hour.The pilot-scale evaluation showed that 20 %-25 % high-ash incombustible material can be eliminated from ROM feed with only minor losses in energy content (<10 %) from respective ROM coal.Furthermore,a feasibility analysis showed significant economic gains in terms of transportation cost,improving power-plant efficiency,and reducing emissions rates by using the technology.

  6. Autogenous shrinkage prediction on high-performance concrete of fly ash based on BP neural network

    Science.gov (United States)

    Wang, Baomin; Zhang, Wenping; Wang, Lijiu

    2006-11-01

    The article adopts test data of neural network for autogenous shrinkage to train and predict on the data which doesn't join training. The article's prediction is on the basis of common medium sand, 5-31.5mm limestone rubble, second class fly-ash, P.O42.5 silicate cement, considering factors include five ones such as ratio of water and cement, sand rate, content of cement, content of fly ash, etc.By adjusting various parameters of neural network structure, it obtains three optimized results of neural network simulation. The error between concrete autogtenous shrinkage value of neural network prediction and trial value is within 3%, which can meet requirement of the concrete engineering.

  7. Fresh properties of high-volume fly ash self consolidating concretes[ACI SP-235

    Energy Technology Data Exchange (ETDEWEB)

    Sahmaran, M.; Yaman, I.O.; Tokyay, M. [Middle East Technical Univ., (Turkey). Dept. of Civil Engineering

    2006-07-01

    slump flow diameter were not influenced by viscosity. The pozzolanic reaction of fly ash resulted in a longer setting time compared to an SCC mixture with an equivalent cementitious material content without FA. Replacing 60 and 70 per cent portland cement with FA resulted in a significant reduction in strength at early ages, but this was partially off-set after 28 days. The study demonstrated the double benefit of using high volumes of an industrial waste to improve the performance of SCC. 15 refs., 7 tabs., 6 figs.

  8. Experimental evidence for de novo synthesis of PBDD/PBDF and PXDD/PXDF as well as dioxins in the thermal processes of ash samples

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, K.; Ishikawa, N. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2005-07-01

    Fly ash in gasification-melting plants and conventional incineration plants can form dioxins through a process known as de novo synthesis. This paper investigated the de novo synthesis of dioxins formed as a result of fly ash catalysis activities. Thermal experiments using fly ash were performed using a flow-through reactor to investigate the formation of brominated and chlorinated-brominated dibenzodioxins (PBDD/F) and dibenzofurans (PXDD/F). Ash samples were collected at conventional stoker incineration and gasification-melting plants. Samples included ash from a bag filter (Ash A); ash from a fluidized gasification and melting furnace plant (Ash C); boiler ash (Ash B); and ash containing tetrabromobisphenol (Ash D). Samples were subjected to a thermal treatment at 300 degrees C. Results showed that dioxin levels were very high for Ash A, which suggested that temperature had a significant influence on de novo synthesis. Dioxin concentrations for Ash C had a relatively low carbon content. Considerable concentrations of PXDD/PXDF were determined for Ash A. High PBDD, PBDF, PXDD and PXDF were observed for Ash D and Ash B. The total amount of dioxins in Ash A were relatively slow to change before and after the thermal treatment of the sample. The homologue distribution patterns of PCDD and PCDF in Ash A showed significant alterations after treatment. It was concluded that de novo dioxin synthesis occurred during the experimental procedure. Results suggested that carbon content plays an important role in the production of dioxins. 3 refs., 2 tabs., 4 figs.

  9. Dynamic Stress-Strain Behaviour of Steel Fiber Reinforced High-Performance Concrete with Fly Ash

    Directory of Open Access Journals (Sweden)

    Tan Chien Yet

    2012-01-01

    Full Text Available The addition of steel fibers into concrete mix can significantly improve the engineering properties of concrete. The mechanical behaviors of steel fiber reinforced high-performance concrete with fly ash (SFRHPFAC are studied in this paper through both static compression test and dynamic impact test. Cylindrical and cube specimens with three volume fractions of end-hooked steel fibers with volume fraction of 0.5%, 1.0%, and 1.5% (39.25, 78.50, and 117.75 kg/m3 and aspect ratio of 64 are used. These specimens are then tested for static compression and for dynamic impact by split Hopkinson pressure bar (SHPB at strain rate of 30–60 s−1. The results reveal that the failure mode of concrete considerably changes from brittle to ductile with the addition of steel fibers. The plain concrete may fail under low-strain-rate single impact whereas the fibrous concrete can resist impact at high strain rate loading. It is shown that strain rate has great influence on concrete strength. Besides, toughness energy is proportional to the fiber content in both static and dynamic compressions.

  10. Concrete sustainability with very high amount of fly ash and slag

    Directory of Open Access Journals (Sweden)

    G. C. Isaia

    Full Text Available This article approaches concrete mix designs where cement is replaced by high amounts of slag and fly ash, with the purpose of turning it into a more sustainable construction material, that is, an authentic green concrete. Mix proportions with fly ash, ground-blasted furnace slag, and Portland cement were studied in binary and ternary mixtures for compressive strength levels of 40 MPa and 55 MPa. The replacement of cement with mineral additions ranged from 50% to 90% in mass. Mean decreases of 55% in the energy consumption, 78% in the CO² emissions, and 5% in the cost of the concrete m³, plus an increase of 40% in the mean index of durability were obtained, all ofwhich compared to the 40-MPa reference concrete. This study attests the technical, economical and environmental potentialities for theuse of concrete mixtures with until 90% of fly ash.

  11. High gradient magnetic filtration of cupric oxide and fly ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Lua, A.C. [Nanyang Technological University (Singapore). School of Mechanical and Production Engineering

    1996-12-31

    High gradient magnetic filtration (HGMF) tests have been carried out on cupric oxide particles and power plant fly ash which were dispersed in air streams. An experimental test rig was set up to conduct these tests. Results showed that for cupric oxide particles, filtration efficiencies of up to 95% were obtained for submicron sizes with dust loadings of up to 0.36 time the matrix volume. For fly ash, filtration efficiencies of up to 65% were obtained for submicron particles. However, all particle sizes showed progressive deterioration in efficiencies with loading. At the end of the test, the matrix had collected 0.52 times its own mass of fly ash. 2 refs., 7 figs.

  12. Wood ash used as partly sand and/or cement replacement in mortar

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Esben Østergaard; Jensen, Pernille Erland;

    2016-01-01

    Wood ash (WA) is the residue generated during incineration of wood and wood products. The WAs in focus of this work are from incineration of virgin wood. Physical and chemical properties of WA vary significantly depending on many factors related to the wood species and the incineration process...... from the differences in ash characteristics to the properties of the mortar samples. The characteristics of the ashes did vary considerably. For example, one ash had very high loss on ignition (LoI) of 14% compared to 3% for the other ashes. Ash solubility in water ranged from 18% to 28%. Two...... of the ashes were dry and sampled just after the incineration, whereas one ash had a water content of 15%, because the ash was sprayed with water to avoid dust during ash handling at the incineration plant. Regardless of replacing cement or sand with WAs, the compressive strength decreased compared...

  13. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available The gasification of two high-ash coals were studied using a pilot scale fluidised bed gasifier using oxygen enrich air and steam as the gasification agents. The results of the tests show that the fixed carbon conversion and calorific value increases...

  14. Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes

    Science.gov (United States)

    Gledhill, Andrew

    Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of

  15. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation.

    Science.gov (United States)

    Sakthivel, Tamilselvan; Reid, David L; Goldstein, Ian; Hench, Larry; Seal, Sudipta

    2013-06-01

    Fly ash, a coal combustion byproduct with a predominantly aluminosilicate composition, is modified to develop an inexpensive sorbent for oil spill remediation. The as-produced fly ash is a hydrophilic material with poor sorption capacity. A simple two-step chemical modification process is designed to improve the oil sorption capacity. First, the fly ash was transformed to a zeolitic material via an alkali treatment, which increased the specific surface area up to 404 m(2) g(-1). Then, the material was surface functionalized to form a hydrophobic material with high contact angle up to 147° that floats on the surface of an oil-water mixture. The reported oil sorption capacities of X-type zeolite sorbent with different surface functionalization (propyl-, octyl-, octadecyl-trimethoxysilane and esterification) were estimated to 1.10, 1.02, 0.86, and 1.15 g g(-1), respectively. Oil sorption was about five times higher than the as-received fly ash (0.19 g g(-1)) and also had high buoyancy critical for economic cleanup of oil over water.

  16. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart

    2012-09-01

    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  17. Modeling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs.

    Science.gov (United States)

    Létourneau-Montminy, M P; Narcy, A; Dourmad, J Y; Crenshaw, T D; Pomar, C

    2015-03-01

    A better understanding of the fate of dietary P use by growing pigs will allow an optimization of P use and enhance sustainable practices. The optimization of P utilization is complicated by the multiple criteria, such as growth performance, bone mineralization, and manure P used for assessment of needs. Mathematical modeling is a useful tool to describe relevant biological mechanisms and predict relationships that describe the whole system behavior. Modeling allows development of robust multicriteria approaches to optimize P utilization, feeding cost, and manure application cost. This paper describes and evaluates a model developed to simulate the fate of dietary P, that is, to simulate its digestive and metabolic utilization through digestion, soft tissue, and ash modules. The digestion module takes into account the varied sources of dietary minerals including responses to microbial and plant phytase and Ca and P interactions and predicts absorption and fecal excretion. The soft tissue module simulates the growth of the protein and is based on InraPorc model principles. The ash module simulates the partitioning of absorbed Ca and P into the bone, protein, and lipid compartments as well as urinary excretion. Model behavior showed that the model was able to accurately represent the impact of Lys deficiency on P retention, of Ca and P imbalances, and of Ca and P depletion and repletion sequences. The model's prediction capabilities in simulating whole-body protein, Ca, P, and ash based on published data showed high accuracy, with a slope and intercept that did not differ from 1 and 0, respectively, and an error due to disturbance (ED; variance not accounted for by regression of observed on predicted values). The model's prediction capabilities in simulating balance trial data showed good accuracy for apparent total tract digestibility (ATTD) of P (observed = -0.77 + 1.06 predicted) and P retention coefficient (observed = -4.5 + 1.15 predicted) with an ED of 89% for

  18. Prediction of the ash content of wheat flours using spectral and chemometric methods

    Directory of Open Access Journals (Sweden)

    ALINA MOROI

    Full Text Available Fourier transform infrared (FTIR spectroscopy has been considered an important method in evaluating structural properties of biomolecules. The assignment of the spectra indicated combination bands of the chemical bonds (O–H, C–H, C–C, etc. that compose the chemical constituents of biomass. This paper presents, for several regional common wheat varieties (Triticum aestivum L.: Crina, Dropia, Flamura, Gruia, Haiduc and wheat from Vaslui area, the comparative analyses of the infrared absorption spectra for two spectral ranges: near-infrared (NIR region, in the corresponding wavelength of 700-1000 nm, and middle-infrared (MIR region, in the corresponding wavenumber 600-1600 cm-1. The positions of the characteristic absorption peaks were observed at 877.49 and 941.03 nm in NIR region and 756.50, 857.86, 929.75, 999.83, 1076.34, 1150.08, 1244.92, 1336.95, 1415.46 and 1538.35 cm-1 in MIR region. The information obtained from the analysis of NIR-MIR spectra is used to rapidly determine some of physicochemical parameters of the wheat species-specific part. The aim of this study is to apply FT-NIR and FT-MIR spectroscopy to correlate those signals by the StatCorr analyze. A fast technique such as chemometric analysis on the basis of NIR and MIR spectra was used to predict the amount of ash from the flour sample. R square of prediction model is 0.7 and Root Mean Square Error of Prediction (RMSEP using two Principal Component PCs is 1.5 % which certifies the calibration model.

  19. Production of inorganic pellet binders from fly-ash. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. In the second quarter, additional fly-ash samples were collected from the E. D. Edwards station (Bartonville, IL). Experimentation was begun to study the removal of carbon from these fly-ashes by froth flotation, and make and test pellets that use fly-ash as binder. During the current quarter, flotation experiments were continued on the fly- ashes. Three types of ashes were studied: 1. Ash from the disposal pond (``wet`` ash); 2. Dry fly-ash collected directly from the standard burners (``low-carbon`` ash); 3. Dry fly-ash collected from the low-NOx burners (``high-carbon`` ash). Each of these was chemically analyzed, and conventional flotation experiments were carried out to determine the optimum reagent dosages for carbon removal. Decarbonized ashes were then made from each ash type, in sufficient quantity to be used in pelletization experiments.

  20. Incorporation of treated straw and wood fly ash into clay building brick

    DEFF Research Database (Denmark)

    Chen, Wan; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    High Cd content in straw and wood fly ash, generated from biomass-fired power plants, prohibits its recycling as fertilizer spreading on the landfilled. To improve and alter the current mainstream of fly ash treatment by landfilling, different approaches were tried for treatment of straw and wood...... fly ash, such as washing with water to quickly recover the highly soluble salts (mainly K and Cl), and treatment of the washed fly ash with elevated heavy metal content resulted from washing by electrodialytic remediation (EDR). The finding that SiO2 (quartz) accounted for a significant portion...... in the treated ash, suggests the possibility of the ash reuse in sintered clay bricks. In this study, the straw and wood fly ash treated by washing and EDR was incorporated into yellow clay bricks at different substitution rates. The properties of the clay-ash bricks were studied in terms of shrinkage, water...

  1. Influence of Utilization of High-Volumes of Class F Fly Ash on the Abrasion Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    William PRINCE

    2007-01-01

    Full Text Available Utilization of large volumes of fly ash in various concrete applications is a becoming a more general practice in an efforts towards using large quantities of fly ash. Around the world, Class C or Class F or both as available have been used in high volumes in cement-based materials. In India, majority of fly generated is of Class F type as per ASTM C 618. Yearly fly ash generation in India is approximately 95 million tonnes. Out of which around 15-20% is utilized in cement production and cement/concrete related activities. In order to increase its percentage utilization, an investigation was carried out to use it in concrete.In this paper, abrasion resistance of high volume fly ash (HVFA concretes made with 35, 45, 55, and 65% of cement replacement was evaluated in terms of its relation with compressive strength. Comparison was made between ordinary Portland cement and fly ash concrete. Test results indicated that abrasion resistance of concrete having cement replacement up to 35 percent was comparable to the normal concrete mix with out fly ash. Beyond 35% cement replacement, fly ash concretes exhibited slightly lower resistance to abrasion relative to non-fly ash concretes. Test results further indicated that abrasion resistance of concrete is closely related with compressive strength, and had a very good correlation between abrasion resistance and compressive strength (R2 value between 0.9018 and 0.9859 depending upon age.

  2. Volcanic ash at Santiaguito dome complex, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  3. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Suleyman B. Keskin; Gozde Ozerkan; Ismail O. Yaman [University of Gaziantep, Gaziantep (Turkey). Department of Civil Engineering

    2008-11-15

    This article discusses the effects of self-healing on self consolidating concretes incorporating high volumes of fly ash (HVFA-SCC) when subjected to continuous water exposure. For this purpose, self consolidating concretes with fly ash replacement ratios of 0%, 35%, and 55% were prepared having a constant water-cementitious material ratio of 0.35. A uniaxial compression load was applied to generate microcracks in concrete where cylindrical specimens were pre-loaded up to 70% and 90% of the ultimate compressive load determined at 28 days. Later, the extent of damage was determined as percentage of loss in mechanical properties and percentage of increase in permeation properties. After pre-loading, concrete specimens were stored in water for a month and the mechanical and permeation properties are monitored at every two weeks. It was observed that HVFA-SCC mixtures initially lost 27% of their strength when pre-loaded up to 90% of their ultimate strength, and after 30 days of water curing that reduction was only 7%, indicating a substantial healing. On the other hand, for SCC specimens without fly ash that were pre-loaded to the same level, the loss in strength was initially 19%, and after a month of moist curing it was only 13%. Similar observations were also made on the permeation properties with greater effects. As the HVFA-SCCs studied have an important amount of unhydrated fly ash available in their microstructure, these observations are attributed to the self-healing of the pre-existing cracks, mainly by hydration of anhydrous fly ash particles on the crack surfaces.

  4. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites.

    Science.gov (United States)

    Goh, C K; Valavan, S E; Low, T K; Tang, L H

    2016-12-01

    Incineration fly ash, a waste from municipal solid waste incineration plant can be used to replace conventional filler as reinforcing filler to enhance the mechanical strength of a composite. Surface modification was performed on the incineration fly ash before mixing into the soft polymer matrix so as to improve interfacial bond of the filler and epoxy resin. In this study, detailed characterisation of mechanical, morphological and leaching behaviours of municipal solid waste incineration (MSWI) fly ash infused composite has been carried out. Flexural and tensile test was conducted to determine the effect on mechanical properties of the composite by varying the concentration of incineration fly ash filler added into polymer matrix and surface modification of incineration fly ash filler using silane coupling agent and colloidal mesoporous silica (CMS). The results indicated that composite infused with incineration fly ash filler surface treated with CMS shown improvement on the tensile and flexural strengths. In addition, SEM images showed that surface modification of incineration fly ash with colloidal mesoporous silica enhanced the interfacial bonding with polymer resin which explained the improvement of mechanical strength. Leaching test showed result of toxic metals such as Pb, Zn, Fe, Cu, Cr, Cd and Rb immobilised in the polymer matrix of the composite. Hence, the use of MSWI fly ash as reinforcing filler in the composite appears green and sustainable because this approach is a promising opportunity to substitute valuable raw material with MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Computational Investigation of the Influence of Fly Ash Silica Content and Shape on the Erosion Behaviour of Indian Coal Fired Boiler Grade Steels

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-07-01

    A mathematical model has been developed to characterize the erosion behaviour of fly ash on boiler grade steel surfaces incorporating various ductile erosion mechanisms. These mechanisms constitute cutting wear, repeated plastic deformation and effect of operating temperature on the mechanical properties of the substrate. Parametric analysis has been carried out to study the erosion response of some typical steel grades as a function of particle impact parameters such as particle impact velocity, angle of impingement coupled with the effect of temperature on the tensile properties. Further, effects of fly ash properties such as hardness (silica content) and shape (angularity) on the erosion response have been also investigated along with the ballistic parameters. These investigations show that a small increment in the fly ash hardness can considerably augment the erosion rate of the steel surface under a given particle impingement condition. This vindicates that hardness of fly ash is one of the most critical parameter which has a direct impact in enhancing the erosion rate of boiler grade steels. The effect of fly ash shape on the erosion behaviour is also studied in conjunction with the particle hardness. This shows that the composite action of these parameters augment the erosion rate significantly.

  6. The use of a non-standard high calcium fly ash in concrete and its response to accelerated curing

    Directory of Open Access Journals (Sweden)

    Atis, C. D.

    2002-09-01

    Full Text Available An experimental work was carried out to investigate the use of a non-standard high calcium fly ash in concrete. The response of the same fly ash to the accelerated curing was also explored. With three different cementitious material contents, a total of 48 concretes were produced. The water/ cement ratios were varied from 0.40 to 0.87. Compressive strengths of the moist cured cube specimens cast from the concrete mixtures made with 0%, 15%, 30% and 45% replacement of normal Portland cement with fly ash were measured at 28 days and 3 months. Accelerated compressive strengths were also measured using warmwater method and boiling-water method in accordance with the relevant ASTM and Turkish Standards. Despite the fact that the fly ash used was a non-standard, the laboratory test results showed that it could be utilized in concrete production at a replacement level between 15% and 30% by weight basis because fly ash concrete developed comparable or higher compressive strength than that of corresponding normal Portland cement concrete. The laboratory test results also indicated that the accelerated curing could be used to predict the compressive strength of fly ash concrete with 85% correlation coefficient. The amount of fly ash was found to be immaterial in the strength prediction. The relation between warm-water method and boiling-water method was of linear form with 93% correlation coefficient.

    Se llevó a cabo un trabajo experimental para investigar el uso de una ceniza volante de alto contenido en cal en el hormigón, la cual no cumple las especificaciones recogidas en norma. También, se estudió el comportamiento de la ceniza bajo un curado acelerado. Se elaboraron un total de 48 hormigones con tres proporciones diferentes de material cementante. Las relaciones agua/cemento (a/c usadas estaban comprendidas entre 0,40 y 0,87. A 28 días y 3 meses de curado, se determinaron las resistencias a compresión de probetas cúbicas de hormig

  7. Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications.

    Science.gov (United States)

    Coutand, Marie; Cyr, Martin; Deydier, Eric; Guilet, Richard; Clastres, Pierre

    2008-02-11

    This paper reports the characterization of four meat and bone meal (MBM) ashes obtained from specific incineration (laboratory) and from co-incineration (industrial process). Three out of the four MBM ashes were mainly composed of calcium phosphates (hydroxyapatite and whitlockite). Their compositions (major and trace) were in the range for natural phosphate rocks. Trace element contents, including heavy metals, were below 0.6% and industrial ashes contained much more heavy metals than laboratory ash. The amounts of leached elements were low, especially for laboratory ash. According to the European classification of waste to be landfilled, the laboratory ash can be classified as an inert waste. Two industrial ashes are mostly inert. Only one ash is highly leachable and needs a stabilization treatment to be classified at least in the category of hazardous waste. It seems, from these results, that possibilities other than landfilling could be considered to give economic value to these ashes.

  8. Effect of high temperature curing on the compressive strength of concrete incorporating large volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Villarreal, R. [Universidad Autonoma de Nuevo Leon, Monterrey (Mexico)

    2001-07-01

    The effect of using different types of heat treatment on the compressive strength of concrete with and without large volumes of fly ash was studied. Curing of concrete is important to obtain a good quality concrete, but it is important to keep concrete from drying until the originally water-filled space in fresh cement paste has been filled to the desired extent by the products of hydration. In hot weather, high temperature promotes faster drying of concrete so a given degree of hydration is reached more rapidly than at lower temperatures. The provision of moist curing is advantageous because of a gradual gain in strength and because of reduced plastic shrinkage and drying shrinkage-cracking. The portland cement content in all the mixtures used in this study was 200 kg per cubic metre and the amount of fly ash varied from 0 to 33, 43, 50 and 56 per cent by mass of the total binder. A superplasticizer was used to obtain 200-220 mm slump. The compressive strength was tested at 3, 7, 14, 28, 56 days and at 6 months. Results showed that, using ASTM standard curing, the compressive strength of portland cement concrete made at 35 degrees C was reduced by about 12 per cent at 28 days compared to that of the concrete made at 23 degrees C. The AASHTO curing strength was found to be a bit higher than with the ASTM curing. The concrete made at 35 degrees C showed no loss of strength when continuous moist-curing was applied. The fly ash concrete mixtures that were cast at 35 degrees C were cured by covering them with membrane curing compounds and placed under ambient conditions. It was crucial to allow enough curing water to promote the pozzolanic reaction. The membrane curing did not allow the ingress of water to the concrete mass. 6 refs., 4 tabs., 13 figs.

  9. The content of chromium and copper in plants and soil fertilized with sewage sludge with addition of various amounts of CaO and lignite ash

    Directory of Open Access Journals (Sweden)

    Wysokiński Andrzej

    2016-09-01

    Full Text Available The influence of fertilization with fresh sewage sludge with the addition of calcium oxide and lignite ash in the proportions dry mass 6:1, 4:1, 3:1 and 2:1 on the content of chromium and copper in plants and soil and uptake of these elements was investigated in pot experiment. Sewage sludge were taken from Siedlce (sludge after methane fermentation and Łuków (sludge stabilized in oxygenic conditions, eastern Poland. The chromium content in the biomass of the test plants (maize, sunflower and oat was higher following the application of mixtures of sewage sludge with ash than of the mixtures with CaO. The copper content in plants most often did not significantly depend on the type of additives to the sludge. Various amounts of additives to the sewage sludge did not have a significant effect on the contents of either of the studied trace elements in plants. The contents of chromium and copper in soil after 3 years of cultivation of plants were higher than before the experiment, but these amounts were not significantly differentiated depending on the type and the amount of the used additive (i.e. CaO vs. ash to sewage sludge.

  10. A High-Resolution Map of Emerald Ash Borer Invasion Risk for Southern Central Europe

    Directory of Open Access Journals (Sweden)

    Viktoria Valenta

    2015-08-01

    Full Text Available Ash species (Fraxinus spp. in Europe are threatened by the Emerald Ash Borer (Agrilus planipennis, EAB, an invasive wood boring beetle native to East Asia and currently spreading from European Russia westwards. Based on a high-resolution habitat distribution map (grid cell size: 25 × 25 m and data on distribution and abundance of Common Ash (Fraxinus excelsior, the most widespread and highly susceptive host species of EAB in Europe, we assess the spatial distribution of EAB invasion risks for southern Central Europe (Austria, Switzerland, Liechtenstein, southern Germany, South Tyrol. We found highest F. excelsior abundance and thus invasion risks in extensive lowland floodplain forests, medium risks in zonal lowland forests and low risks in upper montane and subalpine forests. Based on average velocities of spread in Russia (13–31 km/year and North America (2.5–80 km/year from flight and human-assisted transport, EAB is likely to cover the distance (1500 km between its current range edge in western Russia and the eastern border of the study region within few decades. However, secondary spread by infested wood products make earlier introductions likely. The high susceptibility and mortality of F. excelsior leave no doubt that this beetle will become a major forest pest once it reaches Central Europe. Therefore, developing and testing management approaches with the aim to halt or at least slow down the invasion of EAB in Europe have to be pursued with great urgency.

  11. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...... analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  12. Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. O.; Bae, S. H.; Lee, H. J. [Andong National University, Andong (Korea, Republic of); Lee, K. M. [Sungkyunkwan University, Suwon (Korea, Republic of); Jung, S. H. [Korea Confirmity Laboratories, Seoul (Korea, Republic of)

    2014-12-15

    Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

  13. Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes

    KAUST Repository

    Yoon, Seyoon

    2014-03-01

    High-Volume Fly Ash (HVFA) concretes are seen by many as a feasible solution for sustainable, low embodied carbon construction. At the moment, fly ash is classified as a waste by-product, primarily of thermal power stations. In this paper the authors experimentally and statistically investigated the effects of mix-design factors on the mechanical properties of high-volume class F fly ash concretes. A total of 240 and 32 samples were produced and tested in the laboratory to measure compressive strength and Young\\'s modulus respectively. Applicability of the CEB-FIP (Comite Euro-international du Béton - Fédération Internationale de la Précontrainte) and ACI (American Concrete Institute) Building Model Code (Thomas, 2010; ACI Committee 209, 1982) [1,2] to the experimentally-derived mechanical property data for HVFA concretes was established. Furthermore, using multiple linear regression analysis, Mean Squared Residuals (MSRs) were obtained to determine whether a weight- or volume-based mix proportion is better to predict the mechanical properties of HVFA concrete. The significance levels of the design factors, which indicate how significantly the factors affect the HVFA concrete\\'s mechanical properties, were determined using analysis of variance (ANOVA) tests. The results show that a weight-based mix proportion is a slightly better predictor of mechanical properties than volume-based one. The significance level of fly ash substitution rate was higher than that of w/b ratio initially but reduced over time. © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination

    Science.gov (United States)

    Algae are known for high ash content. It is important to properly characterize their ash for value added utilization of algae as food, feed, and feedstock for biofuels. In this study, 12 algae of different sources were measured for proximate composition and mineral profile. Results showed that the r...

  15. Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation.

    Science.gov (United States)

    Grumiaux, Fabien; Demuynck, Sylvain; Pernin, Céline; Leprêtre, Alain

    2015-03-01

    Highly metal contaminated soils found in the North of France are the result of intense industrial past. These soils are now unfit for the cultivation of agricultural products for human consumption. Solutions have to be found to improve the quality of these soils, and especially to reduce the availability of trace elements (TEs). Phytostabilisation and ash-aided phytostabilisation applied since 2000 to an experimental site located near a former metallurgical site (Metaleurop-Nord) was shown previously as efficacious in reducing TEs mobility in soils. The aim of the study was to check whether this ten years trial had influenced earthworm communities. This experimental site was compared to plots located in the surroundings and differing by the use of soils. Main results are that: (1) whatever the use of soils, earthworm communities are composed of few species with moderate abundance in comparison with communities found in similar habitats outside the TEs-contaminated area, (2) the highest abundance and specific richness (4-5 species) were observed in afforested plots with various tree species, (3) ash amendments in afforested plots did not increase the species richness and modified the communities favoring anecic worms but disfavoring epigeic ones. These findings raised the questions of when and how to perform the addition of ashes firstly, to avoid negative effects on soil fauna and secondly, to keep positive effects on metal immobilization.

  16. 微波马弗炉应用于合成树脂灰分的测定%Determination of Plastic Ash Content by Microwave Muffle Furnace

    Institute of Scientific and Technical Information of China (English)

    王燕来

    2012-01-01

    采用微波马弗炉,测试聚丙烯树脂、聚丙烯树脂粉料、聚乙烯树脂和聚酯切片的灰分,分析研究了微波马弗炉测定灰分的实验技术,与通用马弗炉相比,更具有操作简便、空气污染小的优势.%Using microwave muffle furnace, the ash content of polypropylene resin, polyethylene resin powder materials, polyethylene resin and polyester chip was tested, analysis and study on the ash content determination was made by experiment technology of the microwave muffle furnace, and compared with the general muffle furnace, it has more advantage of simple operation and small air pollution.

  17. Fly-ash lobby design to convert the sceptics

    Energy Technology Data Exchange (ETDEWEB)

    Bile, P.

    1983-07-14

    New uses for pfa in structural concrete have been pioneered at Didcot power station. Twenty percent cost savings and significant gains in long-term strength are claimed for the new concrete, called high fly-ash content concrete (HFCC).

  18. Nutritional advantages of sous-vide cooking compared to boiling on cereals and legumes: Determination of ashes and metals content in ready-to-eat products.

    Science.gov (United States)

    Rondanelli, Mariangela; Daglia, Maria; Meneghini, Silvia; Di Lorenzo, Arianna; Peroni, Gabriella; Faliva, Milena Anna; Perna, Simone

    2017-05-01

    In order to guarantee the highest quality of ready-to-eat cereals and legumes, two different cooking methods have been applied: traditional cooking and sous-vide. Ashes and metals content (magnesium, potassium, iron, zinc, and copper) has been determined and compared in 50 samples of red lentils, peas, Borlotti beans, pearl barley, and cereals soup. All the samples cooked with sous-vide showed a significant increase in the content of minerals with the exception of potassium in cereal soup, iron in Borlotti beans, and magnesium in pearl barley. Ash content increased in legumes and in cereal soup cooked with sous-vide method. The higher different ashes concentration between total samples cooked with traditional cooking and with sous-vide was registered in zinc (+862 mg), iron (+314 mg), potassium (+109 mg), and copper (+95 mg). Sous-vide is preferred as it provides products with a higher concentration of metals compared to the ones cooked with traditional cooking.

  19. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  20. Risk assessment of replacing conventional P fertilizers with biomass ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Lopez Garcia, Alvaro; Rubæk, Gitte H.;

    2017-01-01

    Reutilizing biomass ashes in agriculture can substitute inputs of P from finite primary sources. However, recycling of ashes is disputed due to their content of toxic substances such as heavy metals. This study evaluates the potential risk of replacing easily soluble inorganic P fertilizer with P...... application, grain, straw and root dry matter yield, and P and Cd uptake were determined. Resin-extractable P was measured in soil and the symbiotic arbuscular mycorrhizal fungal activity, colonization, and community composition were assessed. Crop yield was not affected by ash application, while P......-uptake and mycorrhizal status were slightly enhanced with high ash applications. Changes to the mycorrhizal community composition were evident with high ash doses. Cadmium uptake in aboveground plant tissue was unaffected by ash treatments, but increased in roots with increasing doses. Consequently, we conclude...

  1. FUNDAMENTAL STUDY OF LOW-NOx COMBUSTION FLY ASH UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    ERIC M. SUUBERG; ROBERT H. HURT

    1998-10-19

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  2. Sulfate and Chloride Resistance of High Fluidity Concrete including Fly Ash and GGBS for NPP

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jea Myoung; Cho, Myung Sug [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Fly ash mixed concrete has been used for NPP concrete structures in Korea in order to prevent aging and improve durability since the Shin.Kori no.1,2 in 2005. Concentrated efforts to develop technology for the streamlining of construction work and to affect labor savings have been conducted in construction. The application of high fluidity concrete for nuclear power plants has been the research subject with the aim of further rationalization of construction works. Since high fluidity concrete can have the characteristics of high density and high strength without compaction. However, high fluidity concrete can cause thermal cracking by heat of hydration. For this reason, the amount of pozzolan binder should be increased in high fluidity concrete for nuclear power plants. In this study, the resistance of high fluidity concrete on sulfate and chloride was compared with that of the concrete currently using for nuclear power plants

  3. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  4. A new simplified approach for simultaneous retrieval of SO2 and ash content of tropospheric volcanic clouds: an application to the Mt Etna volcano

    Directory of Open Access Journals (Sweden)

    S. Pugnaghi

    2013-05-01

    Full Text Available A new procedure is presented for simultaneous estimation of SO2 and ash abundance in a volcanic plume, using thermal infrared (TIR MODIS data. Plume altitude and temperature are the only two input parameters required to run the procedure, while surface emissivity, temperature, atmospheric profiles, ash optical properties, and radiative transfer models are not necessary to perform the atmospheric corrections. The procedure gives the most reliable results when the surface under the plume is uniform, for example above the ocean, but still produces fairly good estimates in more challenging and not easily modelled conditions, such as above land or meteorological cloud layers. The developed approach was tested on the Etna volcano. By linearly interpolating the radiances surrounding a detected volcanic plume, the volcanic plume removal (VPR procedure described here computes the radiances that would have been measured by the sensor in the absence of a plume, and reconstructs a new image without plume. The new image and the original data allow computation of plume transmittance in the TIR-MODIS bands 29, 31, and 32 (8.6, 11.0 and 12.0 μm by applying a simplified model consisting of a uniform plume at a fixed altitude and temperature. The transmittances are then refined with a polynomial relationship obtained by means of MODTRAN simulations adapted for the geographical region, ash type, and atmospheric profiles. Bands 31 and 32 are SO2 transparent and, from their transmittances, the effective ash particle radius (Re, and aerosol optical depth at 550 nm (AOD550 are computed. A simple relation between the ash transmittances of bands 31 and 29 is demonstrated and used for SO2 columnar content (cs estimation. Comparing the results of the VPR procedure with MODTRAN simulations for more than 200 000 different cases, the frequency distribution of the differences shows the following: the Re error is less than ±0.5 μm in more than 60% of cases; the AOD550 error

  5. 从高碳粉煤灰中浮选回收炭的试验研究%Carbon recovery by flotation from high-carbon fly ash

    Institute of Scientific and Technical Information of China (English)

    杨大兵; 陈萱

    2012-01-01

    Guided by process mineralogy, experimental study of carbon recovery by flotation from high-carbon fly ash in a certain power plant was carried out. The results show that the fineness of fly ash and the amount of flotation reagents are the factors that affect the flotation efficiency most. By the flotation process of " one roughing and one scavenging " , fine carbon with fixed carbon content of 58. 56% and 49. 20% can be obtained with a total recovery rate of 89. 32% and the fixed carbon content in tail ash decreases to 5. 86%, while, by the closed circuit flotation process test, fine carbon with fixed carbon content of 76. 93% can be obtained with a total recovery rate of 70. 17% and the fixed carbon content in tail ash decreases to 11. 89%. Fine carbon and the tail ash can be both comprehensively utilized again.%基于工艺矿物学原理,对某动力厂排放的高碳粉煤灰进行浮选回收炭的可选性试验.结果表明,粉煤灰细度和浮选药剂用量是影响其浮选效率的重要因素.经过“一粗一扫”的浮选流程,可得固定炭含量分别为58.56%和49.20%的精炭,总回收率达到89.32%,尾灰的固定炭含量降至5.86%;而经过浮选全流程试验后,可得固定炭含量为76.93%的精炭,总回收率为70.17%,尾灰固定炭含量为11.89%,且精炭和尾灰均可综合再利用.

  6. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  7. Electrochemical removal of cadmium from bio-ash; Elektrokemisk fjernelse af cadmium fra bioasker

    Energy Technology Data Exchange (ETDEWEB)

    Juul Pedersen, Anne; Ottosen, Lisbeth M.; Simonsen, Peter; Christensen, Terkel C.

    2004-07-01

    The potential of using the method electrodialytic remediation for removal of cadmium from bioashes has been investigated. Five different types of fly ash from biomass combustion were included in the study: 1) A straw combustion fly ash from grate-firing at Avedoere power plant. 2) A fly ash from co-firing of wood and fuel oil at Avedoere power plant. 3) A suspended, grain size fractionated straw fly ash, obtained from PSO project FU 2201, fine and coarse size fraction. The ash was originally produced at Avedoere power plant. 4) A straw pellet fly ash from dust-firing at Amager power plant. Thr five ashes were characterised, and a series of preliminary elekctrodialytic remediation experiments were conducted on each ash. In spite a significant differences between the five ashes with respect to parameters such as pH and content of cadmium, all ashes showed promising remediation potential. For all ashes cadmium concentrations below the regulatory limits for recycling were reached in one or more of the preliminary remediation experiements. The best results were obtained with the suspended straw ash from PSO FU 2201, whereas the results with the wood chips ash, due to a high initial pH value, were less sucessful, meaning that the remediation process was progressing more slowly. (BA)

  8. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    Science.gov (United States)

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition.

  9. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  10. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  11. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment.

  12. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    Science.gov (United States)

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  13. Analysis of Time-Resolved Terahertz Spectroscopy of Ash Contents and Carbon Contents of Coal%利用太赫兹技术研究煤炭中的灰分含量与碳含量

    Institute of Scientific and Technical Information of China (English)

    滕学明; 赵昆; 赵卉; 宝日玛; 田璐

    2011-01-01

    Terahertz time domain spectroscopy(THz-TDS) is a new far infrared coherent spectral technique based on femtosecond laser technology.In this paper,the optical characteristics of five kinds of coal reference materials in 0.2-1.5 THz have been investigated through THz-TDS.Experimental results showed that the time delay and absorption spectrum of those five materials are totally different.The slope values of absorption spectrum K strongly depend on the types of coal reference materials with different ash and carbon contents.After careful fitting of the data,the K could be seen to exponential increase and exponential decrease with ash and carbon contents,respectively.It is demonstrated that the THz-TDS is highly sensitive to minor changes of coal types and can be used in identification of coal quality and type research.%太赫兹时域光谱(THz-TDS)是以飞秒激光为基础的新型的相干远红外光谱测量技术。本文运用THz-TDS技术研究了5种不同种类的煤炭样品在THz波段的光谱特征,结果表明光谱通过各种煤炭样品后有不同的延迟时间和吸收曲线,样品吸收曲线斜率值(K)与样品中灰分含量与碳含量有密切关系。吸收曲线斜率值(K)随灰分含量成指数关系递增,随碳含量成指数关系递减。THz-TDS技术能够分辨煤质的微小差异,可以应用于煤质检测和分析,为煤炭品质和种类的鉴定提供了新的实验方法。

  14. High-carbon fly-ash as a binder for iron ore pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.; Ripke, S.J.; Ramirez, G.

    1999-09-01

    The goal of this project was to convert currently unusable fly-ashes into a material that can be used as a binder for iron ore. Such a binder would also be useful for other high-volume markets, including foundry sand mold binders. Previously, the investigators used fly-ash in combination with calcium hydroxide as an additive while calcium chloride was added as a hardening accelerator. However, the addition of chloride salts have a detrimental effect because chlorine causes corrosion in processing equipment. Therefore, other potential hardening accelerators were investigated during this project. During production, dried iron-ore pellets are required to have crushing strength of at least 22.2 newtons (5 pounds force) per 12.7 mm (1/2 inch) diameter pellet. The pellets are then sintered at temperatures up to 1300 C and must not exhibit a significant degree of spalling or cracking. Pellets will therefore be tested to determine whether acceptable dry crushing strengths can be achieved.

  15. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sung-Won Yoo

    2017-01-01

    Full Text Available The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investigated the compressive behavior of reinforced concrete columns that contain HVFA with a 50 percent replacement rate. Six columns were fabricated for this study. The study variables were the HVFA replacement rate, tied steel ratio, and tie steel spacing. The computed ultimate strength by the American Concrete Institute (ACI code conservatively predicted the measured values, and, thus, the existing equation in the ACI code is feasible for confined RC columns that contain HVFA. In addition, an analysis model was calibrated based on the experimental results and is recommended for predicting the stress-strain relationship of confined reinforced concrete columns that contain HVFA.

  16. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive

    Science.gov (United States)

    Phoo-ngernkham, Tanakorn; Chindaprasirt, Prinya; Sata, Vanchai; Pangdaeng, Saengsuree; Sinsiri, Theerawat

    2013-02-01

    The effect of Portland cement (OPC) addition on the properties of high calcium fly ash geopolymer pastes was investigated in the paper. OPC partially replaced fly ash (FA) at the dosages of 0, 5%, 10%, and 15% by mass of binder. Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture: NaOH 10 mol/L, Na2SiO3/NaOH with a mass ratio of 2.0, and alkaline liquid/binder (L/B) with a mass ratio of 0.6. The curing at 60°C for 24 h was used to accelerate the geopolymerization. The setting time of all fresh pastes, porosity, and compressive strength of the pastes at the stages of 1, 7, 28, and 90 d were tested. The elastic modulus and strain capacity of the pastes at the stage of 7 d were determined. It is revealed that the use of OPC as an additive to replace part of FA results in the decreases in the setting time, porosity, and strain capacity of the paste specimens, while the compressive strength and elastic modulus seem to increase.

  17. Potassium-based sorbents from fly ash for high-temperature CO2 capture.

    Science.gov (United States)

    Sanna, Aimaro; Maroto-Valer, M Mercedes

    2016-11-01

    Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li2CO3 and Ca(OH)2 to evaluate their effect on CO2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO2 uptake of 1.45 mmol CO2/g sorbent for K-FA 1:1 at 700 °C. The CO2 sorption was enhanced by the presence of Li2CO3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO2/g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li2CO3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO2 uptake and reaction rates over 10 cycles.

  18. Impact of Micro Silca on the mechanical properties of high volume Fly Ash Concrete

    Science.gov (United States)

    Sripagadeesh, R.; Ramakrishnan, K.; Pugazhmani, G.; Ramasundram, S.; Muthu, D.; Venkatasubramanian, C.

    2017-07-01

    In the current situation, to overcome the difficulties of feasible construction, concrete made with various mixtures of Ordinary Portland Cement (OPC) and diverse mineral admixtures, is the wise choice for engineering construction. Mineral admixtures viz. Ground Granulated Blast Furnace Slag (GGBS), Meta kaolin (MK), Fly Ash (FA) and Silica Fume (SF) etc. are used as Supplementary Cementitious Materials (SCM) in binary and ternary blend cement system to enhance the mechanical and durability properties. Investigation on the effect of different replacement levels of OPC in M25 grade with FA + SF in ternary cement blend on the strength characteristics and beam behavior was studied. The OPC was partially replaced (by weight) with different combinations of SF (5%, 10%, 15%, 20% and 25%) and FA as 50% (High Volume Fly Ash - HVFA). The amount of FA addition is kept constant at 50% for all combinations. The compressive strength and tensile strength tests on cube and cylinder specimens, at 7 and 28 days were carried out. Based on the compressive strength results, optimum mix proportion was found out and flexural behaviour was studied for the optimum mix. It was found that all the mixes (FA + SF) showed improvement in compressive strength over that of the control mix and the mix with 50% FA + 10% SF has 20% increase over the control mix. The tensile strength was also increased over the control mix. Flexural behaviour also showed a significant improvement in the mix with FA and SF over the control mix.

  19. The application study of fly ash content light foam concrete%粉煤灰轻质泡沫混凝土的应用研究

    Institute of Scientific and Technical Information of China (English)

    冯辉红; 黄起; 屈少华

    2016-01-01

    Energy saving,environmental protection,light and thermal insulation are the major research di-rection of building insulation materials,development of fly ash content light foam concrete is well adapted to this trend.The combination of industrial waste and insulation material foam concrete made each kinds of materials from each other,and well improved the unity of building insulation materials.Analysis of the composition,characteristics and existing problems of the fly ash content light foam concrete,studied the application prospect of the domestic foam concrete as building insulation materials,and the future applica-tion prospect of fly ash content light foam concrete.%节能、环保、轻质、保温隔热是建筑保温材料的主要研究方向,粉煤灰轻质泡沫混凝土的研制很好地适应了这个课题,集工业废料与保温隔热材料泡沫混凝土相结合,各种材料取长补短,很好地改善了建筑保温材料的单一性.分析了粉煤灰轻质泡沫混凝土的组成、特性以及目前存在的问题,研究了国内泡沫混凝土作为建筑保温材料的应用情况,并展望了粉煤灰轻质泡沫混凝土的未来应用前景.

  20. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance.

  1. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    OpenAIRE

    2015-01-01

    Disposal of fly ash (FA) resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA) as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a part...

  2. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    Science.gov (United States)

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  3. Experimental Study on Volume for Fly Ash of Building Block

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2013-04-01

    Full Text Available Fly ash is a waste substance from thermal power plants, steel mills, etc. That is found in abundance in the world. It has polluted the environment, wasting the cultivated land. This study introduces an experimental research on fly ash being reused effectively, the study introduces raw materials of fly ash brick, production process and product inspection, fly ash content could be amounted to 40%~75%. High doping fly ash bricks are manufactured, which selects wet fly ash from the power plants, adding aggregate with reasonable ratio and additives with reasonable dosage and do the experimental research on manufacture products for properties, production technology and selection about technology parameter of production equipment. Index of strength grade and freezing-thawing resisting etc and the high doping fly ash brick building which we are working on can achieve the national standard on building materials industry. Based on the tests, this achievement of research has a very wide practical prospect in using fly ash, industrial waste residue, environmental protection and reducing the cost of enterprises. The efficient reuse of fly ash from coal boiler and power plants has very vital significance of protecting the environment, benefiting descendants and developing of circular economy.

  4. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  5. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes

    Energy Technology Data Exchange (ETDEWEB)

    T. Cordero; J. Rodriguez-Mirasol; J. Pastrana; J.J. Rodriguez [ETSII, University of Malaga, Malaga (Spain). Department of Chemical Engineering

    2004-08-01

    Co-pyrolysis of blends of a high-sulphur coal with different biomass wastes has been investigated as a way to obtain improved solid fuels. Experiments have been performed in a thermogravimetric laboratory system and in a pilot-scale mobile bed furnace, this last operating at 600{sup o}C. The presence of biomass enhances coal desulphurization upon thermal treatment in significant relative amounts, giving rise about as much as twice percent sulphur loss at high biomass-to-coal ratios in the starting blend in comparison with the S loss occurring upon pyrolysis of coal alone. Combustion experiments with chars resulting from co-pyrolysis of these coal-biomass blends confirm this significantly improved desulphurization. Thus, co-pyrolysis of blends of high-sulphur coals with biomass wastes provides a potential way to obtain improved solid fuels combining good heating values with environmentally acceptable S contents. The chars resulting from co-pyrolysis show heating values within the range of high-quality solid fuels whereas the ash contents remain in the vicinity of that of the starting coal except in the case of the coal-straw blend where the relatively high ash content of this biomass waste leads to co-pyrolysis chars with substantially higher ash contents and lower heating values. 19 refs., 6 figs., 4 tabs.

  6. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  7. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  8. Potential fly-ash utilization in agriculture: A global review

    Institute of Scientific and Technical Information of China (English)

    Manisha Basu; Manish Pande; P.B.S. Bhadoria; S.C. Mahapatra

    2009-01-01

    Though in last four decades various alternate energy sources have come into the limelight, the hyperbolic use of coal as a prime energy source cannot be counterbalanced. Disposal of high amount of fly-ash from thermal power plants absorbs huge amount of water, energy and land area by ash ponds. In order to meet the growing energy demand, various environmental, economic and social problems associated with the disposal of fly-ash would continue to increase. Therefore, fly-ash management would remain a great concern of the century. Fly-ash has great potentiality in agriculture due to its efficacy in modification of soil health and crop performance. The high concentration of elements (K, Na, Zn, Ca, Mg and Fe) in fly-ash increases the yield of many agricultural crops. But compared to other sectors, the use of fly-ash in agriculture is limited. An exhaustive review of numerous studies of last four decades took place in this paper, which systematically covers the importance, scope and apprehension regarding utilization of fly-ash in agriculture. The authors concluded that though studies have established some solutions to handle the problems of radioactivity and heavy metal content in flyash, long-term confirmatory research and demonstration are necessary. This paper also identified some areas, like proper handling of dry ash in plants as well as in fields, ash pond management (i.e., faster decantation, recycling of water, vertical expansion rather than horizontal), monitoring of soil health, crop quality, and fate of fly-ash in time domain, where research thrust is required. Agricultural lime application contributes to global warming as Intergovernmental Panel on Climate Change (IPCC) assumes that all the carbon in agricultural lime is finally released as CO2to the atmosphere. It is expected that use of fly-ash instead of lime in agriculture can reduce net CO2emission, thus reduce global warming also.

  9. 华南十种桉树的热值与灰分含量比较%Comparison of calorific values and ash contents of ten Eucalyptus species in South China

    Institute of Scientific and Technical Information of China (English)

    周群英; 陈少雄; 韩斐扬

    2016-01-01

    桉树是林业生物质能源的原料之一,了解桉树的热值和灰分含量能为合理利用桉树能源林提供理论参考。该研究采用热量计和马福炉对华南尾巨桉等10种桉树的不同器官进行热值和灰分含量测定。结果表明:10种桉树树叶、树枝、树根、树干和树皮的干质量热值、去灰分热值分别为15.10~21.06 kJ.g-1和16.50~22.11 kJ.g-1,器官的平均干质量热值、去灰分热值以树叶最高(19.50和20.56 kJ.g-1)、树皮的最低(17.32和18.09 kJ.g-1),说明树叶所含的高能有机物质比其它器官多;不同器官的干质量热值与去灰分热值在不同品种中的大小排序不完全一致。灰分含量在0.14%~8.5%之间,器官平均的灰分含量以树叶最高(5.13%)、树干最低(0.30%),说明树叶所含的矿质元素较多。不同器官的热值与灰分含量均差异显著(P 0.14% to 8.5% with leaves having the highest mean value(5.13%) and stem-wood the lowest(0.30%),which indicated that leaf had more mineral elements than other organs. There were significant differences in calorific values and ash con-tents of 5 organs (P<0.05). As to the whole tree, E. urophylla had the highest GCV and AFCV(18.99 and 19.18 kJ. g-1), while Corymbia torelliana had the lowest GCV and AFCV (17.53 and 17.86 kJ.g-1);C. torelliana had the high-est ash contents(1.9%) and Eucalyptus grandis the lowest(0.61%). The results of correlation analyses showed that ash content had negative correlation with GCV and AFCV,which was not significant;GCV and AFCV had significantly posi-tive correlation ( P<0.01) . For ideal plant fuel should have the characteristics of high calorific value and low ash con-tent, of 10 species, Corymbia torelliana had low calorific values and high ash contents, which indicated that it was not ideal fuel species while Eucalyptus urophylla was the optimal species.

  10. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  11. High performance fly ash mixed concrete in underground construction of Delhi metro

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.; Gupta, A.K.; Garg, R.; Gopalkrishnan, E. [DMRC, New Delhi (India)

    2003-07-01

    The paper describes the comprehensive concrete durability studies carried out for deciding the specifications for the MCIA contract for construction of 4 km of underground metro from Vishwa Vidyalaya station to Kashmere Gate station in India. The study involved adiabatic concrete temperature measurement tests to know the heat generation and temperature rising properties inside concrete mass. The paper describes the background for selection of fly ash as a part replacement up to 30% of cement in concrete including determination of specification, identification of source, collection and transportation by bulk carrier and transfer to storage silo at the concrete batching plant. Control of temperature of concrete during production and after placement requires detailed arrangements for cooling aggregates and water at batching plant and thermal insulation along with curing to the concrete placed at site. Fully tanked membrane waterproofing and special waterproofing details at construction joints also contribute towards achieving the high performance durable concrete structure. 3 refs., 6 figs., 11 tabs.

  12. Influence of portland cement replacement in high calcium fly ash geopolymer paste

    Directory of Open Access Journals (Sweden)

    Tanakorn Phoo-ngernkham

    2014-03-01

    Full Text Available This article presents the influence of ordinary Portland cement (OPC replacement in high calcium fly ash (FA geopolymer paste. FA was used to replace OPC at the rate of 5, 10 and 15% by mass of binder. Sodium silicate (Na2SiO3 and 10 molar sodium hydroxide (NaOH solutions were used as the alkaline solution in the reaction. The Na2SiO3/NaOH ratio of 2.0 and the liquid/binder (L/B ratio of 0.60 were used in all mixtures. The results of increase OPC replacement, the setting time and compressive strain capacity decreased while the compressive strength and modulus of elasticity increased. The compressive strength and modulus of elasticity at 28 days of geopolymer pastes with 15% OPC replacement were 36.7 MPa and 13,300 MPa, respectively.

  13. Surface chemical properties of novel high surface area solids synthesized from coal fly ash

    CSIR Research Space (South Africa)

    Pretorius, PJ

    2003-07-23

    Full Text Available to the presence of =AlOH- and =SiOH-type surface groups. Surface protonation constants for the various solids (unmodified ash, base-modified ash, and acid-etched zeolitic product) are reported. Metal sorption studies were performed for cadmium and copper...

  14. ICSC Problems and Perspectives of high-calcium fly ash from heat power plants in the composition of “green” building materials

    Directory of Open Access Journals (Sweden)

    Domanskaya Irina

    2016-01-01

    Full Text Available The peculiarities of the composition formation and hydraulic activity of high calcium fly ash got by burning of Kansk-Achinsk brown coals have been described. Fly ashes selected in dry state can be used as peculiar (specific binding agents (minerals on condition of their preliminary handling reducing nonuniform volume change of the ash stone during hydration and also the expansion range of their application in green building. The cavitation technologies, the organization of the fly ash granulation at heat power plants instead of hydraulic ash removal systems and enrichment by various means to extract rare-earth metals are considered to be the most perspective methods of fly ash conditioning.

  15. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial

    Energy Technology Data Exchange (ETDEWEB)

    Pourrut, Bertrand [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement (LGCgE) Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Lopareva-Pohu, Alena [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement (LGCgE) Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interaction sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, avenue Maurice Schumann, 59140 Dunkerque (France); Pruvot, Christelle [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement (LGCgE) Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Garcon, Guillaume; Verdin, Anthony [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interaction sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, avenue Maurice Schumann, 59140 Dunkerque (France); Waterlot, Christophe; Bidar, Geraldine [Universite Lille Nord de France, Lille (France); Groupe ISA, Equipe Sols et Environnement, Laboratoire Genie Civil et geoEnvironnement (LGCgE) Lille Nord de France EA 4515, 48 boulevard Vauban, 59046 Lille Cedex (France); Shirali, Pirouz [Universite Lille Nord de France, Lille (France); Universite du Littoral-Cote d' Opale, Unite de Chimie Environnementale et Interaction sur le Vivant (UCEIV), EA 4492, Maison de la Recherche en Environnement Industriel de Dunkerque 2, avenue Maurice Schumann, 59140 Dunkerque (France); and others

    2011-10-01

    Aided phytostabilisation is a cost-efficient technique to manage metal-contaminated areas, particularly in the presence of extensive pollution. Plant establishment and survival in highly metal-contaminated soils are crucial for phytostabilisation success, as metal toxicity for plants is widely reported. A relevant phytostabilisation solution must limit metal transfer through the food chain. Therefore, this study aimed at evaluating the long-term efficiency of aided phytostabilisation on former agricultural soils highly contaminated by cadmium, lead, and zinc. The influence of afforestation and fly ash amendments on reducing metal phytoavailability was investigated as were their effects on plant development. Before being planted with a tree mix, the site was divided into three plots: a reference plot with no amendment, a plot amended with silico-aluminous fly ash and one with sulfo-calcic fly ash. Unlike Salix alba and Quercus robur, Alnus glutinosa, Acer pseudoplatanus and Robinia pseudoacacia grew well on the site and accumulated, overall, quite low concentrations of metals in their leaves and young twigs. This suggests that these three species have an excluder phenotype for Cd, Zn and Pb. After 8 years, metal availability to A. glutinosa, A. pseudoplatanus and R. pseudoacacia, and translocation to their above-ground parts, strongly decreased in fly ash-amended soils. Such decreases fit well together with the depletion of CaCl{sub 2}-extractable metals in amended soils. Although both fly ashes were effective to decrease Cd, Pb and Zn concentrations in above-ground parts of trees, the sulfo-calcic ash was more efficient.

  16. 磷高强石膏-粉煤灰-石灰的耐水性研究%Study on Water Resistance of Phosphogypsum Based on High Strength Gypsum-Fly Ash-Lime Materials

    Institute of Scientific and Technical Information of China (English)

    茹晓红; 汤琦; 马保国; 邹开波

    2015-01-01

    将粉煤灰及其激发剂石灰加入到磷石膏制备的高强石膏中制备出水硬性的磷石膏粉煤灰石灰( PGFL)复合胶凝材料。通过对比试验研究了石灰、粉煤灰、磷高强石膏(PGHH)掺量对产品软化系数、抗压强度性能的影响,结果表明:加入适量的粉煤灰、石灰可以显著提高PGFL的后期绝干抗压强度和软化系数,提高材料的耐水性,掺量过多则会带来不利影响。%Phosphogypsum-fly ash-lime cementitous materials ( PGFL) was prepared by phosphogypsum based high strength hemihydrate gypsum ( PGHH) mixed with fly ash and lime. Effects of lime, fly ash and PGHH additions to PGFL properties of compressive strength and softening coefficient were investigated through comparison testing. The results showed that water resistance of PGFL material was improved by long-term dry compressive strength and softening coefficient increased significantly with proper fly ash and lime contents. However, adverse impacts may caused by too much fly ash and lime additions.

  17. Computer vision for high content screening.

    Science.gov (United States)

    Kraus, Oren Z; Frey, Brendan J

    2016-01-01

    High Content Screening (HCS) technologies that combine automated fluorescence microscopy with high throughput biotechnology have become powerful systems for studying cell biology and drug screening. These systems can produce more than 100 000 images per day, making their success dependent on automated image analysis. In this review, we describe the steps involved in quantifying microscopy images and different approaches for each step. Typically, individual cells are segmented from the background using a segmentation algorithm. Each cell is then quantified by extracting numerical features, such as area and intensity measurements. As these feature representations are typically high dimensional (>500), modern machine learning algorithms are used to classify, cluster and visualize cells in HCS experiments. Machine learning algorithms that learn feature representations, in addition to the classification or clustering task, have recently advanced the state of the art on several benchmarking tasks in the computer vision community. These techniques have also recently been applied to HCS image analysis.

  18. Research on Desilicating Process from High Aluminium Fly Ash%高铝粉煤灰脱硅反应的研究

    Institute of Scientific and Technical Information of China (English)

    宋说讲; 孔德顺

    2013-01-01

      Desilicating process of soluble sinlicon from high aluminium fly ash in certain concentration sodium hydroxide was re-searched with investagation of concentration of sodium hydroxide, temperature, time and solid content. The result showed that the optimization conditions were:concentration of sodium hydroxide 150g/L, temperature 120℃, time 30min and solid content 350g/L. Alumina silica ratio of desiliconized fly ash increased to more than 1.80.%  采用一定浓度的氢氧化钠溶液与高铝粉煤灰中可溶性二氧化硅进行反应,考察苛碱浓度、反应温度、反应时间、浆液固含条件对脱硅反应的影响。结果表明,脱硅反应的优化条件为苛碱浓度150g·L-1,温度120℃,反应时间30min,固含量350g·L-1,脱硅粉煤灰铝硅比由1.20提高到1.80以上。

  19. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    other reactive metals in addition to aluminium (iron, copper and led were tested), the combination of high total aluminium content of an ash material and low volume of gas generation is possible, since the total aluminium content comprises both the elemental and the non-elemental aluminium and it is only the elemental aluminium that generates gas, aluminium particles can survive incineration without melting and without substantial oxidation of the particle surface, solid aluminium oxide (Al{sub 2}O{sub 3}) is the stable form of aluminium in a boiler. Based on the results in this project the following recommendations for handling the ash can be given to decrease the gas generation and to prevent the risk for explosion: The content of elemental aluminium or the potential of gas generation should be analysed regularly for ash materials from municipal waste incineration plants; Metal separation - including non-magnetic metals - of the fuel for waste incineration plants is necessary; Good ventilation of the ash after wetting, together with storage in oxygen rich environment is desirable.

  20. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Extraction of vanadium from athabasca tar sands fly ash

    Science.gov (United States)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.

    1981-06-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  2. Water repellency of fly ash-enriched forest soils from eastern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Fleige, H.; Horn, R. [Forest Research Institute, Freiburg (Germany). Dept. of Soils & Environment

    2010-12-15

    Fly ash-enriched soils occur widely throughout the industrial regions of eastern Germany and in other heavily industrialized areas. A limited amount of research has suggested that fly ash enrichment alters the water repellency (WR) characteristics of soil. This study concentrates on the influence of fly ash enrichment on WR of forest soils with a focus on forest floor horizons (FFHs). The soils were a Technosol developed from pure lignite fly ash, FFHs with lignite fly ash, and FFHs without lignite fly ash enrichment. Three different methods were used to characterize soil WR. Additionally, carbon composition was determined using {sup 13}C-NMR spectra to interpret the influence of the organic matter. This study showed that the actual WR characteristics of undisturbed, fly ash-enriched soils can be explained in terms of the composition of soil organic matter, with the fly ash content playing only a minimal role. Regardless of the huge amounts of mainly mineral fly ash enrichment, all undisturbed FFHs were comparable in their WR characteristics and their carbon compositions, which were dominated by recently-formed organic substances. The pure fly ash deposit was strongly influenced by lignite remains, with the topsoil having a greater content of recent plant residues. Thus, the undisturbed topsoil was more repellent than the subsoil. When homogenized samples were used, we found a distinct effect of fly ash enrichment and structure on WR. Water repellency of the pure fly ash horizons did not differ distinctly, while the fly ash enrichment in the FFHs caused a significant reduction in WR. These results led to the assumption that water-repellent structures of the topsoils were probably the result of hydrophobic coatings of recently formed organic substances, whereby the initially high wettability of the mainly mineral, hydrophilic fly ash particles was reduced.

  3. Effects of an experimental phytase on performance, egg quality, tibia ash content and phosphorus bioavailability in laying hens fed on maize- or barley-based diets.

    Science.gov (United States)

    Francesch, M; Broz, J; Brufau, J

    2005-06-01

    A 24-week performance trial was conducted to evaluate the efficacy of an experimental phytase on performance, egg quality, tibia ash content and phosphorus excretion in laying hens fed on either a maize- or a barley-based diet. At the end of the trial, an ileal absorption assay was conducted in order to determine the influence of phytase supplementation on the apparent absorption of calcium and total phosphorus (P). Each experimental diet was formulated either as a positive control containing 3.2 g/kg non-phytate phosphorus (NPP), with the addition of dicalcium phosphate (DCP), or as a low P one, without DCP addition. Both low P diets (containing 1.3 or 1.1 g/kg NPP) were supplemented with microbial phytase at 0, 150, 300 and 450 U/kg. The birds were housed in cages, allocating two hens per cage as the experimental unit. Each of 10 dietary treatments was assigned to 16 replicates. Low dietary NPP (below 1.3 g/kg) was not able to support optimum performance of hens during the laying cycle (from 22 to 46 weeks of age), either in maize or barley diets. Rate of lay, daily egg mass output, feed consumption, tibia ash percentage and weight gain were reduced in hens fed low NPP diets. The adverse effects of a low P diet were more severe in hens on a maize diet than in those on a barley diet. Low dietary NPP reduced egg production, weight gain, feed consumption and tibia ash content and microbial phytase supplementation improved these parameters. Hens given low NPP diets supplemented with phytase performed as well as the hens on positive control diets containing 3.2 g/kg of NPP. A 49% reduction of excreta P content was achieved by feeding hens on low NPP diets supplemented with phytase, without compromising performance. Phytase addition to low NPP diets increased total phosphorus absorption at the ileal level, from 0.25 to 0.51 in the maize diet and from 0.34 to 0.58 in the barley diet. Phosphorus absorption increased linearly with increasing levels of dietary phytase

  4. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite.

    Science.gov (United States)

    Li, Jin-Hong; Ma, Hong-Wen; Huang, Wen-Hui

    2009-07-30

    In this communication, high-strength mullite ceramics was prepared from bauxite and high-aluminum fly ash that is a by-product of coal combustion in thermal power plants. The effects of the doping V(2)O(5) on the bulk density, apparent porosity, bending strength and microstructure of mullite ceramics were studied in detail. It was indicated that 5-10 mol% V(2)O(5) reduced the sintering temperature by 50 degrees C. The apparent porosity and water absorption of the mullite ceramics decreased with increasing V(2)O(5) content. Mullite ceramics with bending strength as high as 108 MPa were obtained at 1500 degrees C with the addition of 10 mol% V(2)O(5). X-ray diffraction analysis suggested that the prepared ceramics was mainly in phase of mullite, and scanning electron microscope images confirmed that it mostly existed in the shape of a long parallelepiped. This research may provide a new method in utilizing the vast resources of fly-ash waste from power plants in the production of low-cost mullite-based engineering materials.

  5. Dust separation at high temperatures a method for cleaning fly ashes? Final report; Stoftavskiljning vid hoeg temperatur en metod foer rening av flygaska? Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    An experimental study of separation of fly ashes by a filter at high temperatures, 300-650 deg C, with the purpose to study: Capture of heavy metals (Cd, Hg, Pb, Zn) in the fly ash; Relation between heavy metal capture and temperature; Relation between heavy metal capture and the availability of fuel chlorine. Pelletized forestry waste fuel was doped with heavy metals in two different forms. Pelletized Salix was also used, without doping. The study shows that: There is a strong inverse relation between the capture of heavy metals and the filter temperature; There is a strong relation between the availability of chlorine and the capture of heavy metals. Separation at 300-650 deg C gives much less heavy metals in the fly ash, however the ash is not clean enough to allow disposal in ordinary landfills. Thus, high temperature filtering does not seem to be a promising solution for producing 'clean' fly ash.

  6. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  7. High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash.

    Science.gov (United States)

    Provis, John L; Rose, Volker; Bernal, Susan A; van Deventer, Jannie S J

    2009-10-06

    The nanoscale distribution of elements within fly ash and the aluminosilicate gel products of its alkaline activation ("fly ash geopolymers") are analyzed by means of synchrotron X-ray fluorescence using a hard X-ray Nanoprobe instrument. The distribution of calcium within a hydroxide-activated (fly ash/KOH solution) geopolymer gel is seen to be highly heterogeneous, with these data providing for the first time direct evidence of the formation of discrete high-calcium particles within the binder structure of a geopolymer synthesized from a low-calcium (geopolymer gel binder structure surrounding the unreacted fly ash particles. This has important implications for the understanding of calcium chemistry within aluminosilicate geopolymer gel phases. Additionally, chromium and iron are seen to be very closely correlated within the structures of both fly ash and the geopolymer product and remain within the regions of the geopolymer which can be identified as unreacted fly ash particles. Given that the potential for chromium release has been one of the queries surrounding the widespread utilization of construction materials derived from fly ash, the observation that this element appears to be localized within the fly ash rather than dispersed throughout the gel binder indicates that it is unlikely to be released problematically into the environment.

  8. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    -solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  9. Circulating fluidized bed combustion ash characterization. The case of the Provence 250 MW unit

    Energy Technology Data Exchange (ETDEWEB)

    Lecuyer, I.; Leduc, M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Lefevre, R.; Ausset, P. [Paris-12 Univ., Creteil (France). Lab. Interuniversitaire des Systemes Atmospheriques

    1997-05-01

    The Provence 250 MW Circulating Fluidized Bed Combustion Unit (Gardanne, France) is burning a high sulfur (2 to 4%), high ash content (30%) local lignite. This peculiar fuel already contains about 15% of CaO which allows it to capture the sulfur dioxide in situ without adding any complementary sorbent. The ash chemical composition (bed ash and ESP ash) that reflects the particularities of the coal is presented. SEM and DRX observations confirm the presence of anhydrite CaSO{sub 4}, lime, CaS, quartz and traces of hematite. Most of particles are roughly-shaped but microspheres can also be detected in fly ash. The very high sulfate content may be worrying for the environment in disposals. Hardened samples do not seem to retain compounds from leaching: high quantities of calcium and sulfates are still leached from these crushed samples. (author) 10 refs.

  10. R&D of Novel Materials for Animal Litters Using High Carbon Fly Ash Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett J. [Ceramatec, Inc., Salt Lake City, UT (United States); Kadota, Rod [Ceramatec, Inc., Salt Lake City, UT (United States)

    2012-10-29

    This research program performed by Ceramatec may significantly increase the beneficial utilization of fly ash, and improve the overall performance of high quality animal litter products. Ceramatec has developed a novel high surface area material, which is capable of ammonia adsorption. High surface area zeolites when combined with agglomerated fly ash can significantly reduce the use of naturally mined materials (i.e. clay bentonite) for animal litter manufacture. This not only preserves natural resources and the natural environment, but it also will reduce CO2 emissions, via the reduced need for heavy mining equipment. This novel animal litter is made with over 85% of recycled materials, thus preventing their disposition to landfills. The novel litter material is similar to traditional clay-like litters, and it is clumpable and has superior odor control properties.

  11. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite

    Science.gov (United States)

    Jitchaiyaphum, Khamphee; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2013-05-01

    Cellular lightweight concrete (CLC) with the controlled density of approximately 800 kg/m3 was made from a preformed foam, Type-I Portland cement (OPC), fly ash (FA), or natural zeolite (NZ), and its compressive strength, setting time, water absorption, and microstructure of were tested. High-calcium FA and NZ with the median particle sizes of 14.52 and 7.72 μm, respectively, were used to partially replace OPC at 0, 10wt%, 20wt%, and 30wt% of the binder (OPC and pozzolan admixture). A water-to-binder mass ratio (W/B) of 0.5 was used for all mixes. The testing results indicated that CLC containing 10wt% NZ had the highest compressive strength. The replacement of OPC with NZ decreased the total porosity and air void size but increased the capillary porosity of the CLC. The incorporation of a suitable amount of NZ decreased the setting time, total porosity, and pore size of the paste compared with the findings with the same amount of FA. The total porosity and cumulative pore volume decreased, whereas the gel and capillary pores increased as a result of adding both pozzolans at all replacement levels. The water absorption increased as the capillary porosity increased; this effect depended on the volume of air entrained and the type or amount of pozzolan.

  12. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals.

    Science.gov (United States)

    Boca Santa, Rozineide A Antunes; Soares, Cíntia; Riella, Humberto Gracher

    2016-11-15

    Geopolymers are produced using alkali-activated aluminosilicates, either as waste or natural material obtained from various sources. This study synthesized geopolymers from bottom ash and metakaolin (BA/M) in a 2:1wt ratio to test the solidification/immobilization (S/I) properties of heavy metals in geopolymer matrices, since there is very little research using BA in this type of matrices. Therefore, a decision was made to use more than 65% of BA in geopolymer synthesis with and without the addition of heavy metals. The S/I tests with metals used 10, 15 and 30ml of a waste solution after pickling of printed circuit boards containing metals, including Pb, Cr, Cu, Fe, Sn, As and Ni, in different proportions. As alkali activator, the NaOH and KOH were used in the concentrations of 8 and 12M in the composition of Na2SiO3 in 1:2vol ratios. To test S/I efficiency, tests were conducted to obtain the leached and solubilized extract. The analysis was carried out through X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and compressive strength tests. The geopolymer showed a high degree of S/I of the metals; in some samples, the results reached nearly 100%.

  13. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress

    Energy Technology Data Exchange (ETDEWEB)

    Lopareva-Pohu, A.; Verdin, A.; Garcon, G.; Sahraoui, A.L.H.; Pourrut, B.; Debiane, D.; Waterlot, C.; Laruelle, F.; Bidar, G.; Douay, F.; Shirali, P. [University of Lille Nord France, Lille (France)

    2011-06-15

    Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils.

  14. Technology for processing ash from thermal/electric plants without waste products

    Energy Technology Data Exchange (ETDEWEB)

    Tyurnikova, V.I.; Krasnikova, N.A.; Panin, A.S.; Konovalenko, P.F.

    1979-07-01

    Possibility of using flotation for enriching volatile ash from heating/electric power stations are investigated. On ash samples containing 9 percent carbon from the Nikolaev thermal/ electric plant, it was demonstrated that by using flotation with an apolar collector and T-66 reagent, the ash content was increased to 98.6% permitting it to be used for producing high ash construction materials. A foam carbon-containing product from the process has a heat of combustion of 4,000 kilocalories/ kilogram and can be reused as a fuel. Flowsheet for the flotation process is presented.

  15. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    Directory of Open Access Journals (Sweden)

    Alaa M. Rashad

    2015-12-01

    Full Text Available Disposal of fly ash (FA resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a partial replacement of cement in traditional paste/mortar/concrete mixtures based on Portland cement (PC. Fresh properties, mechanical properties, abrasion resistance, thermal properties, drying shrinkage, porosity, water absorption, sorptivity, chemical resistance, carbonation resistance and electrical resistivity of paste/mortar/concrete mixtures containing HVFA (⩾45% as cement replacement have been reviewed. Furthermore, additives used to improve some properties of HVFA system have been reviewed.

  16. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    straw from soils with higher cadmium content. To avoid that a farm with a low cadmium concentration in the straw receives ash with a high content, one could combust area-wise and recycle area-wise, or choose not to fetch straw from farms with high cadmium contents in soils, or spread only bottom ash. However, if fly ash is not utilised, a large part of the potassium is lost. The conclusion is that recycling of straw ash to fields is feasible and development work should continue after this pre-study. The pre-study need to be developed in the following areas: Means to spread a small quantity of ash to fields, with as small a negative effect as possible. Machines for spreading straw ash have been studied in some Swedish investigations, and before proceeding further one should gather additional information, a.o. on foreign machinery for spreading straw ash Test lime spreading techniques, pipe model, for agglomerated ash (wet, cured, crushed and sieved straw ash) As ash is a fertiliser, a method to calculate doses should be developed. This implies a.o. an analysis of potassium and phosphorus available to plants The availability of cadmium to plants should be studied in order to determine in which phase of a crop rotation ash should be returned in order to minimize the risk that plants take up cadmium If one chooses to recycle only bottom ash, one should continue to investigate means to extract potassium from fly ash, as ca 50 % of the potassium content is in the fly ash

  17. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    OpenAIRE

    F. Mat Yahaya; Muthusamy, K.; Sulaiman, N.

    2014-01-01

    This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0) with 100% ordinary Portland cement (control specimen) and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20) has been identified as the best performing mix after cubes (150×150×150 mm) containing various content of POFA as partial c...

  18. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  19. A high unburned carbon fly ash concrete’s performance characteristics

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Valderrama

    2011-01-01

    Full Text Available Engineering today requires that structures are strong and durable; the latter concept is a decisive factor in their design and construction. The scientific community continues developing new cementitious materials and improving tra-ditional concrete’s properties, specifically reducing permeability by incorporating materials such as pozzolans. This paper analyses the effect of fly ash (FA added to concrete on mechanical strength regarding compression, capillary absorption and chloride permeability and their behaviour compared to concrete containing silica fume (SF. An optimum 10% mechanical strength was found for fly ash; however, this increased with addition, resulting in positive effects on durability. Fly ash had lower performance for all properties evaluated when compared to silica fume.

  20. Fly ash porous material using geopolymerization process for high temperature exposure.

    Science.gov (United States)

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat

    2012-01-01

    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.

  1. Washing of fly ash from combustion of municipal solid waste using water as leachant; Vattentvaett av flygaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Zhao, Dongmei

    2010-03-15

    Ashes from combustion of municipal solid waste contain a large amount of minerals, salts and other metal compounds that are more or less soluble in water. The metal salts are often enriched in the fly ash which leads to a classification of the ash as hazardous waste. This makes ash management complicated and costly. Many stabilisation methods for Municipal Solid Waste Incineration (MSWI) fly ash have been developed and most of them are based on a removal of chloride and sulfate in addition to a binding of metals in less soluble forms. The aim is to avoid the common situation that the ash does not comply to leaching limit values due to release of harmless salts. The aim of this project was to investigate if a simple washing with water can remove enough of the fly ash content of chloride and sulphate so that the ash can be landfilled in a simpler and less costly way than today. The project was focused on fly ashes from the MSWI units owned by Boraas Energi och Miljoe AB and Renova AB Goeteborg, i.e. a electro filter ash from grate fired boilers at Renova and a cyclone ash from a fluid bed boiler at Boraas. The results show that the main part of the chloride content of the ashes can be removed easily, but the washing with water is less effective in the removal of sulphate. A water-to-ash ratio of 1-2 l/kg removes about 100% of chloride but only 8-16% of the sulphate content. In many cases, the leachability of sulphate increases after the washing step. This is due to the rather complex sulphate chemistry with several possible reactions taking place in the ash-water system. For both the tested ashes the high level of chloride leaching is an important factor that prevents admittance on a landfill for hazardous waste without treatment.. The leaching of certain metals, such as Pb, is also high from both ashes but in the case of the Renova fly ash this is dealt with by treatment of the ash according to the Bamberg method. After a water washing with L/S 1-2 (L/kg dry ash

  2. Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Directory of Open Access Journals (Sweden)

    Sičáková Alena

    2017-06-01

    Full Text Available The binding potential of fly ash (FA as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm FA, used in varying percentages to the original (unground; dm = 74.1 μm one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden can be applied through its incorporation into the geopolymer mixtures.

  3. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  4. High content analysis in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Rinaldi, Federica; Motti, Dario; Ferraiuolo, Laura; Kaspar, Brian K

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ash analysis of flour sample by using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bilge, Gonca; Sezer, Banu; Eseller, Kemal Efe; Berberoglu, Halil; Koksel, Hamit; Boyaci, Ismail Hakki

    2016-10-01

    Ash content is a measure of total mineral content in flour. It is also an important quality parameter in terms of nutritional labeling as well as processing properties of various cereal products. However, laboratory analysis takes a long time (5-6 h) and results in considerable waste of energy. Therefore, the aim of the study was to develop a new method for ash analysis in wheat flour by using laser induced breakdown spectroscopy (LIBS). LIBS is a multi-elemental, quick and simple spectroscopic method. Unlike basic ash analysis method, it has the potential to analyze a sample in a considerably short time. In the study, wheat flours with different ash contents were analyzed using LIBS and the spectra were evaluated with partial least squares (PLS) method. The results were correlated with the ones taken from standard ash analysis method. Calibration graph showed good linearity with the ash content between 0.48 and 1.39%, and 0.992 coefficient of determination (R2). Limit of detection for ash analysis was calculated as 0.026%. The results indicated that LIBS is a promising and reliable method with high sensitivity for routine ash analysis in flour samples.

  6. Pure zeolite synthesis from silica extracted from coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, N.; Querol, X.; Plana, F.; Andres, J.M.; Janssen, M.; Nugteren, H. [CSIC, Barcelona (Spain). Inst. Earth Science ' Jaume Almera'

    2002-07-01

    Pure zeolites can be synthesised from silica extracted from fly ash by alkaline leaching. If the process is optimised the solid residue arising from this extraction may also contain a relatively high content of zeolitic material mixed with residual fly ash components. Both the pure and the impure zeolitic material have a high potential for application in waste-water and flue gas-cleaning technologies. The silica extraction potential of 23 European coal fly ashes covering most of the possible fly ash types is investigated in this study. Optimisation of leaching processes, by varying temperature, time and alkali/fly ash rates, permitted extraction yields up to 140 g of SiO{sub 2} per kg using a single step process, but the extraction yields may reach up to 210 g kg{sup -1} by applying thermal pre-treatments prior to the extraction. The solid residue arising from the silica extraction experiments shows a high NaP1 zeolite content. A high Si/Al ratio of the glass matrix, the occurrence of easily soluble silica phases in the original fly ash and a high reactive surface area were found to be the major parameters influencing silica extraction. High purity 4A and X zeolitic material was obtained by combining the silica extracts from the Meirama fly ash and a waste solution from the Al-anodising industry. The results allowed conversion of the silica extraction yields to an equivalent 630 g of pure 4A-X zeolite per kg of fly ash with a cation exchange capacity of 4.7 meq g{sup -1}.

  7. Self-cementing Mechanism of CFBC Coal Ashes at Early Ages

    Institute of Scientific and Technical Information of China (English)

    SONG Yuanming; QIAN Jueshi; WANG Zhi; WANG Zhijuan

    2008-01-01

    The self-cementing mechanism at early ages of circulating fluidized bed combustion (CFBC) coal ashes was studied by X-ray diffraction (XRD), infrared (IR) spectroscopy and chemical method. The results indicate that the amorphous phase is predominant in CFBC coal ashes. The polymerization degree of [SiO4] and [AlO6] of CFBC desulphurization coal ashes is lower than that of those without desulphurization. The contents of the components with fast hydration rate of CFBC desulphurization coal ashes are significantly greater than those of the ashes without desulphurization. This work confirms that the amorphous minerals with high chemical activity are the main causes of the self-cementing property of CFBC desulphurization coal ashes at early ages.

  8. Revegetation of lagoon ash using the legume species Acacia auriculiformis and Leucaena leucocephala

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.C.; Wong, J.P.K.; Zhang, Z.Q.; Wong, J.W.C.; Wong, M.H. [Hong Kong Baptist University, Hong Kong (China). Inst. of Natural Resources and Waste Management

    2000-07-01

    This paper describes a greenhouse study conducted to evaluate the potential use of two legume species, Acacia auriculiformis and Leucaena leucocephala for growth on ameliorated lagoon ash with or without nitrogen fixing bacteria inoculation. Even though amendments of 30% (w/w) vermiculite or with sewage sludge compost were added to improve the chemical and physical limitations of lagoon ash, significant suppressions in biomass and plant nutrient content were found with ameliorated lagoon ash in comparison to an agricultural soil. The high proportion of clay-sized ({lt} 53{mu}m) ash particles limited root growth. In addition, heavy metal toxicity was a possible factor contributing to poor seeding growth. Higher plant productivity resulted from the sewage sludge compost-amended lagoon ash than with vermiculite due to a greater contribution of plant nutrients in the compost. Both species showed potential to establish on amended lagoon ash, with Acacia auriculiformis being the best adapted.

  9. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Directory of Open Access Journals (Sweden)

    S. R. Bragança

    2009-06-01

    Full Text Available A metamorphic limestone and a dolomite were employed as SO2 sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O2 level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (~60% for Ca/S = 2 was obtained.

  10. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  11. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  12. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  13. Mineral-char interaction during gasification of high-ash coals in fluidized-bed gasification

    CSIR Research Space (South Africa)

    Oboirien, BO

    2011-09-01

    Full Text Available and Table 1. Coal Properties sample New Vaal Grootegeluk proximate analyses calori�c value (MJ/kg, ad) 18.11 21.40 ash (wt %, ad) 37.15 37.50 moisture (wt %, ad) 5.84 1.90 volatile matter (wt %, ad) 22.24 28.30 �xed carbon (wt %, ad) (calculation) 34...

  14. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  15. Experiment study on the performance of pebble concrete with different fly ash content%粉煤灰掺量对卵石混凝土性能影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    李红梅; 李树山; 贾明晓; 解伟; 陈爱玖

    2016-01-01

    Through some experiments on performance of the pebble concrete with different fly ash content,effects of fly ash content on the slump,compressive strength,splitting tensile strength,static compressive modulus of elasticity and temperature rise of hydration heat of the pebble concrete were investigated.The results show that the unit water in the concrete is alleviated effectively due to adding volume of fly ash,when the slump of the fresh concrete is kept constant.The early strength of concrete decreases much more with the increasing of fly ash content.When the fly ash content is less than 30%,compressive strength of 180 days is gradually close to pure cement concrete. When the fly ash content is increased,the temperature rise of hydration heat can be significantly reduced,when the fly ash content is 40%, the peak temperature is reduced by 5~7 ℃.%开展粉煤灰不同掺量下卵石混凝土材料性能试验,研究粉煤灰掺量对卵石混凝土坍落度、抗压强度、劈拉强度、静力抗压弹模以及混凝土水化热温升的影响规律。试验结果表明,保持新拌混凝土坍落度不变时,掺粉煤灰有效降低混凝土的单位用水量;随着粉煤灰掺量的增加,混凝土早期抗压强度降低较多;当粉煤灰掺量不超过30%时,180 d强度逐渐接近纯水泥混凝土的强度;增加粉煤灰的掺量,可显著降低混凝土水化热温升,掺量为40%时,峰值温度平均降低5~7℃。

  16. Ⅱ级灰对配制大掺量粉煤灰混凝土的性能影响%THE EFFECT OF THE Ⅱ GRADE FLY ASH ON PREPAREING HIGH-VOLUME FLY ASH CONCRETE

    Institute of Scientific and Technical Information of China (English)

    余丽武; 吴志平; 吴志强

    2009-01-01

    采用微观分析技术,研究了江西省当地产的Ⅱ级粉煤灰的性状,并选用当地典型原材料,采用超量取代的方法,选取5种不同掺量的粉煤灰,配制中等强度的大掺量粉煤灰混凝土(High Fly-ash ContentConcrete,简称HFCC),综合分析和探讨了大掺量粉煤灰混凝土的力学性能和耐久性.结果表明,与普通混凝土相比,采用江西省Ⅱ级灰配制的大掺量粉煤灰混凝土后期强度增幅显著,56d强度甚至能超过普通混凝土,弹性模量-强度比和抗渗性均高于普通混凝土,而抗冻性和抗碳化能力均有所下降.

  17. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    Science.gov (United States)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  18. Utilization of municipal solid waste incineration ash in Portland cement clinker

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Charles Hoi King; Barford, John Patrick; McKay, Gordon [Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering, Hong Kong (China)

    2011-08-15

    Municipal solid waste incineration (MSWI) ash is used in part as raw materials for cement clinker production by taking advantage of the high contents of SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO. It is necessary for environmental reasons to establish a material utilization system for the incineration waste ash residue instead of disposing these ashes into landfill. The aim of this paper is to study the feasibility of replacing clinker raw materials by waste ash residue for cement clinker production. MSWI bottom ash and MSWI fly ash are the main types of ashes being evaluated. The ashes were mixed into raw mixture with different portions of ash residue to produce cement clinker in a laboratory furnace at approximately 1400 C. X-ray diffraction and X-ray fluorescence techniques were used to analyze the phase chemistry and chemical composition of clinkers in order to compare these ash-based clinkers with commercial Portland cement clinker. (orig.)

  19. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O' Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  20. A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash

    KAUST Repository

    Celik, Kemal

    2014-09-01

    The purpose of this study is to compare the effects of Portland cement replacement on the strength and durability of self-consolidating concretes (SSC). The two replacement materials used are high-volume natural pozzolan (HVNP), a Saudi Arabian aluminum-silica rich basaltic glass and high-volume Class-F fly ash (HVFAF), from Jim Bridger Power Plant, Wyoming, US. As an extension of the study, limestone filler (LF) is also used to replace Portland cement, alongside HVNP or HVFAF, forming ternary blends. Along with compressive strength tests, non-steady state chloride migration and gas permeability tests were performed, as durability indicators, on SCC specimens. The results were compared to two reference concretes; 100% ordinary Portland cement (OPC) and 85% OPC - 15% LF by mass. The HVNP and HVFAF concrete mixes showed strength and durability results comparable to those of the reference concretes; identifying that both can effectively be used to produce low-cost and environmental friendly SCC. © 2013 Elsevier Ltd. All rights reserved.

  1. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.).

    Science.gov (United States)

    Rebek, Eric J; Herms, Daniel A; Smitley, David R

    2008-02-01

    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  2. Influence of mineral and chemical composition of coal ashes on their fusibility

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Kitano, K.; Takeda, S.; Tsurue, T. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Applied Mineralogy

    1995-10-01

    The relationships between ash-fusion temperature (AFT) and mineral and chemical composition of coals and coal ashes from a wide variety of deposits (41) were studied by a melting test, X-ray diffractometry, light microscopy, differential-thermal, thermogravimetric and chemical analyses. A reliable explanation and prediction of AFT only from the total chemical composition of coal ash is inadequate because most important are the modes of elemental combination (minerals and phases) in coal and coal ash, as well as their behaviour during heating. The coals, which have low-melting temperature ashes, are lower rank coals with increased concentrations of S, Ca, Mg, Fe and Na and respectively, sulphates, carbonates, sulphides, oxides, montmorillonite, and feldspars. The coals with high-melting temperature ashes have an advanced rank and increased contents of Si, Al and Ti and respectively, quartz, kaolinite, illite and rutile, as well as some Fe oxides and siderite. The behaviour of chemical components and various coal and coal-ash minerals during heating is discussed, and their refractory and fluxing influence on ash fusibility is described. Lower AFT is related to increased proportions of the fluxing sulphate, silicate and oxide minerals such as anhydrite, acid plagioclases, K feldspars, Ca silicates and hematite in high-temperature coal ashes. Higher AFT is a result of decreased fluxing minerals and increased refractory minerals such as quartz, metakaolinite, mullite, and rutile in these ashes. Defined softening, hemispherical and fluid ash-fusion temperatures fit various processes of inorganic transformations which are discussed. A reliable explanation and prediction of ash-fusion characteristics can be made when the coal and coal-ash minerals and their amounts, as well as their refractory and fluxing action during heating, are known. 31 refs., 7 figs., 5 tabs.

  3. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah

    2015-03-01

    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  4. Study on the effect of Mg2+ and Na+ on the fusibility of coal ash with high ash fusion point%Mg2+和Na+对高熔点煤灰熔融性的影响

    Institute of Scientific and Technical Information of China (English)

    高峰; 马永静

    2012-01-01

    Adjustment of coal ash fusibility of high fusion point coal has been attracted by attention of many researchers in coal gasification and combustion. The effect of Mg2+ and Na+ on the fusibility behavior of the high fusion temperature coal ash from Yangquan Guzhuang was studied in this paper, using the method of adding different amount of MgO and Na2CO3(5% ~ 25%) to the coal ash. The result shown that the ash fusion temperature monotonically decreases with increasing addition amount of MgO, while the ash fusion temperatures exhibit low valley and reach the minimum when the addition amount of Na2CO3 is 15%. Investigated by XRD, mullite and cristobalite are detected in the Yangquan Guzhuang coal ash, which results in the ash fusion temperature of the coal ash higher than 1 750 t. Additions reacting with silicate minerals can form more low-melting eutectic minerals, such as cordierite and nepheline, etc. Meanwhile, the additions of Mg2+ and Na+ cause non-bridged oxygen and oligomers increasing, then the ash fusion temperature reduce. Ternary phase diagram and SEM micrograph confirm that the local clustering of partial elements and reunited phenomenon of coal ash under high temperature condition result in the different effect of Mg2+ and Na+ on the coal ash fusibility behavior.%以山西阳泉固庄高熔点煤灰为研究对象,通过向煤灰中添加不同量的MgO与Na2 CO3,研究了Mg2+与Na+在高温下对煤灰熔融性的影响.研究结果表明,煤灰熔融温度随氧化镁的添加(5%~25%)单调下降;而随氧化钠添加(5%~25%)出现先降后升现象,在氧化钠添加量为15%时,灰熔点达到最低.XRD分析表明,阳泉固庄煤灰熔融温度高(大于1750℃)的原因是高温条件下耐熔矿物莫来石、方英石的存在.添加外加剂后,高温时外加剂与硅酸盐矿物反应,生成了更多的低共熔矿物霞石、堇青石等.同时,Mg2+和Na+的加入会使得非桥氧数量增多,高温煤灰低聚物增多,降

  5. Electrodialytic removal of Cd from straw ash in a pilot plant

    DEFF Research Database (Denmark)

    Lima, Ana Teresa; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2008-01-01

    Ashes from biomass combustion contain many macro and micro nutrients and its reuse in agricultural fields could be beneficial. In the case of straw ash, however, the content of Cd is often too high for the ash to be utilized this way. In Denmark the limiting concentration for spreading the ash...... in agricultural land is 5.0 mg Cd/kg and in order to utilize the nutrients in the straw ash it is necessary to decrease the Cd content to meet this limiting concentration. It has been previously shown, at a laboratory scale, that the Cd concentration can successfully be decreased by an electrodialytic method...... this concentration still exceeds the limiting concentration, valuable experience concerning the practical operation through scale-up was obtained. In addition, the experiments are a good basis for further scale-up and optimization of the process for improved Cd removal to meet the requirements. A very important...

  6. Electrochemical treatment of wood combustion fly ash for the removal of cadmium

    DEFF Research Database (Denmark)

    Damø, Anne Juul

    2002-01-01

    Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, especially the fly ash...... fractions contain amounts of the toxic heavy metal Cd that may exceed the limiting values for agricultural utilisation given by the Danish EPA. In this work the advances of using an electrochemical remediation method to reduce the Cd content in wood combustion fly ash - for the aim of recycling...... - is described. The method, which is named electrodialytic remediation, uses a low voltage direct current a cleaning agent. Under optimised remediation conditions with the fly ash suspended in a 0.25 M ammonium citrate mixture, more than 70 % of the initial Cd was removed from the wood fly ash using...

  7. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues.

    Science.gov (United States)

    Tao, Xiao-Qing; Shen, Dong-Sheng; Shentu, Jia-Li; Long, Yu-Yang; Feng, Yi-Jian; Shen, Chen-Chao

    2015-03-01

    Ash from incinerated e-waste dismantling residues (EDR) may cause significant health risks to people through ingestion, inhalation, and dermal contact exposure pathways. Ashes of four classified e-waste types generated by an incineration plant in Zhejiang, China were collected. Total contents and the bioaccessibilities of Cd, Cu, Ni, Pb, and Zn in ashes were measured to provide crucial information to evaluate the health risks for incinerator workers and children living in vicinity. Compared to raw e-waste in mixture, ash was metal-enriched by category incinerated. However, the physiologically based extraction test (PBET) indicates the bioaccessibilities of Ni, Pb, and Zn were less than 50 %. Obviously, bioaccessibilities need to be considered in noncancer risk estimate. Total and PBET-extractable contents of metal, except for Pb, were significantly correlated with the pH of the ash. Noncancer risks of ash from different incinerator parts decreased in the order bag filter ash (BFA) > cyclone separator ash (CFA) > bottom ash (BA). The hazard quotient for exposure to ash were decreased as ingestion > dermal contact > inhalation. Pb in ingested ash dominated (>80 %) noncancer risks, and children had high chronic risks from Pb (hazard index >10). Carcinogenic risks from exposure to ash were under the acceptable level (<10(-6)) both for children and workers. Exposure to ash increased workers' cancer risks and children's noncancer risks. Given the risk estimate is complex including toxicity/bioaccessibility of metals, the ways of exposure, and many uncertainties, further researches are required before any definite decisions on mitigating health risks caused by exposure to EDR incinerated ash are made.

  8. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  9. Insulating brick from fly ash of thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.N.; Majumdar, A.; Majumdar, S.K.

    1986-04-01

    Disposal of fly ash, a major byproduct of thermal power stations burning high ash pulverized fuel, has posed a serious problem of storage space required on one hand and the cost involved on the other. Fly ash possesses pozzolanic property. R and D work on utilization of fly ash in the form of sand-lime brick or cellular concrete has been already done. Other avenues of utilization are cement and concrete industry. All these are based on pozzolanic property of fly ash which decreases with the increase of unburnt carbon content in the same. The overall present consumption of fly ash is barely 5-7 per cent of the total production. A process has been developed to utilize fly ash with comparatively higher amount of carbonaceous matter in particular, to make insulating/semi-insulating bricks of standard size through use of other normal ingredients like clay (a plastic material), sulphite lye, molasses, etc. as binder along with some propertion of saw dust. The bricks made so far have been tested for their normal properties and these conform to a product of semi-insulating type. 21 refs., 2 tabs.

  10. 具有高比表面积的稻壳灰的制备及其化学活性的研究%Study on Preparation of Rice Husk Ash with High Specific Surface Area and Its Chemical Reactivity

    Institute of Scientific and Technical Information of China (English)

    冯庆革; 林清宇; 童张法; S.Sugita

    2004-01-01

    Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.

  11. Centrifuge modelling and finite element analysis of reinforced fly ash walls

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, J.N.; Shaikh, Z. [Indian Institute of Technology, Bombay (India). Dept.of Civil Engineering

    2003-07-01

    Centrifuge modeling of unreinforced and reinforced fly ash wall was done with varying water content to study the failure pattern and their behaviour. Fly ash was from the ash disposal pond of Koradi Thermal Power Plant (KTPP) in Nagpur, India. The fly ash walls without reinforcement are liable to fail and sudden failure of slopes have been noticed. Unreinforced fly ash wall shows a sharp decrease in the strength for a water content on the higher side of optimum moisture content. Fly ash walls reinforced with geotextiles performed satisfactorily even at very high rpm. A non-linear finite element analysis was carried out to evaluate the distribution of stresses and deformations. The lateral deformation obtained by the finite element analysis and the centrifuge modeling is found to be sufficiently less than the permissible limit. The lateral deformations of the reinforced retaining wall does not decrease appreciably with increase in the stiffness of reinforcement but decreases as the modulus of the backfill soil increases. More research is required on the long-term mechanical and chemical behaviour of the fly ash material and the long-term stability of the reinforced fly ash walls. 14 refs., 3 tabs.

  12. The Mineral Transformation of Huainan Coal Ashes in Reducing Atmospheres

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; Yoshihiko Ninomiya; DONG Zhong-bing; ZHANG Ming-xu

    2006-01-01

    By using the advanced instrumentation of a Computer Controlled Scanning Electron Microscope (CCSEM),X-ray diffraction (XRD) and X-ray fluorescence (XRF), the ash composition and the mineral components of six typical Huainan coals of different origins were studied. The transformation of mineral matter at high temperatures was tracked by XRD in reducing conditions. The quartz phase decreased sharply and the anorthite content tended to increase at first and then decreased with increasing temperatures. The formed mullite phase reached a maximum at 1250 ℃ but showed a tendency of slow decline when the temperature was over 1250 ℃. The mullite formed in the heating process was the main reason of the high ash melting temperature of Huainan coals. Differences in peak intensity of mullite and anorthite reflected differences in phase concentration of the quenched slag fractions, which contributed to the differences in ash melting temperatures. The differences in the location of an amorphous hump maximum indicated differences of glass types which may affect ash melting temperatures. For Huainan coal samples with relatively high ash melting temperatures, the intensity of the diffraction lines for mullite under reducing condition is high while for the samples with relatively low ash melting temperature the intensity for anorthite is high.

  13. The effect of He-ash poisoning on L-mode and high ? operations in ITER-like plasma

    Science.gov (United States)

    Tateishi, G.; Itoh, S. I.; Yagi, M.

    1997-11-01

    The burning performance of the self-ignited steady-state plasma is investigated based on a point model. For the ITER-like parameters, the theoretical model scaling law 0741-3335/39/11/008/img7, which could explain the characteristics of the L-mode and the high 0741-3335/39/11/008/img8 fairly well, and the effect of He-ash poisoning are introduced simultaneously. The solutions are obtained by solving the particle and energy balance equations in steady-state conditions, taking account of the effect of radiation loss due to He ash and fuel ions. Typically, there exist four solutions of the plasma current at fixed temperature. The divergence of the temperature, which is predicted by a previous study (Fukuyama et al 1995 Nucl. Fusion 35 1669) for the pure plasma in the high 0741-3335/39/11/008/img8, disappears under the influence of He ash. In the low-density limit, the L-mode branches and the high 0741-3335/39/11/008/img8 branches are well separated on the plane of the current and the temperature. On the other hand, the merging of two branches occurs at higher densities due to the nonlinear effect contained in the scaling law. Examining the constraints imposed on the core plasma (the density limit, the 0741-3335/39/11/008/img11 limit and so on), we found that the self-ignited state of the high 0741-3335/39/11/008/img8 operation would be difficult.

  14. Intra- and inter-unit variation in fly ash petrography and mercury adsorption: Examples from a western Kentucky power station

    Science.gov (United States)

    Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.

    2000-01-01

    Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.

  15. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    Science.gov (United States)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  16. Different tree ages and change of ash content in Cinnamomi Cortex%肉桂树龄与其灰分含量变化的关系研究

    Institute of Scientific and Technical Information of China (English)

    李玲; 杨炯珍; 姜平川

    2012-01-01

    objective To describe the relation between different tree ages and quality of Cinnamomi Cortex. Methods The ash of cinnamon of different ages in 16 Guangxi geographic mark protection was determined. Results When the age of cinnamon was less than 10 years, the ash content was in line with the Pharmacopoeia; when the tree age of cinnamon more than 15 years, the ash content of most did not meet the Pharmacopoeia. Conclusion We suggest that Chinese Pharmacopoeia for the total ash part of cinnamon should be modified.%目的 对肉桂树龄与其灰分含量变化的关系进行研究.方法 对广西肉桂地理标志保护范围内的16个地区、市、县的不同树龄的肉桂进行灰分测定.结果 当肉桂树龄<10年,其总灰分含量符合药典规定;而当肉桂树龄≥15年时,其灰分含量大多数不符合药典规定.结论 建议对中国药典2010版一部中对于肉桂检查项下的总灰分部分的相关规定进行修改.

  17. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.

    Science.gov (United States)

    Deonarine, Amrika; Bartov, Gideon; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    The Tennessee Valley Authority Kingston coal ash spill in December 2008 deposited approximately 4.1 million m(3) of fly ash and bottom ash into the Emory and Clinch River system (Harriman, Tennessee, U.S.A.). The objective of this study was to investigate the impact of the ash on surface water and sediment quality over an eighteen month period after the spill, with a specific focus on mercury and methylmercury in sediments. Our results indicated that surface water quality was not impaired with respect to total mercury concentrations. However, in the sediments of the Emory River near the coal ash spill, total mercury concentrations were 3- to 4-times greater than sediments several miles upstream of the ash spill. Similarly, methylmercury content in the Emory and Clinch River sediments near the ash spill were slightly elevated (up to a factor of 3) at certain locations compared to upstream sediments. Up to 2% of the total mercury in sediments containing coal ash was present as methylmercury. Mercury isotope composition and sediment geochemical data suggested that elevated methylmercury concentrations occurred in regions where native sediments were mixed with coal ash (e.g., less than 28% as coal ash in the Emory River). This coal ash may have provided substrates (such as sulfate) that stimulated biomethylation of mercury. The production of methylmercury in these areas is a concern because this neurotoxic organomercury compound can be highly bioaccumulative. Future risk assessments of coal ash spills should consider not only the leaching potential of mercury from the wastes but also the potential for methylmercury production in receiving waters.

  18. Effects of kaolin-additions in combustion of wood fuels on hardening and leaching properties of ash; Paaverkan av kaolintillsats vid foerbraenning av biobraensle paa askans haerdnings- och lakningsegenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Karlfeldt, Karin (Dept. of Chemical And Biological Engineering, Chalmers Univ. of Technology, SE-412 96 Goeteborg (Sweden)). e-mail: bms@chalmers.se

    2007-06-15

    In several investigations it has been shown that kaolin works well as an anti-agglomerating and anti-ash sintering agent in combustion of bio-fuels with a potassium rich ash in fluidised bed boilers. Combustion tests have shown that the kaolin addition may result in an ash melting temperature that is a couple of hundred degrees centigrade higher than for the original ash. This way the kaolin hinders the fouling of super heater surfaces by sticky ash. Many boiler owners treat their wood fuel ash with the aim to recycle it to forest soil as a nutrient source and acid neutralising agent. Therefore it was considered important to investigate if an addition of kaolin in the boiler would have a negative influence on the ash leaching properties. Thus, the aim of the project was to investigate the hardening reactions and leaching properties of normal wood ash and wood ash produced with addition of kaolin. The ash samples were produced in the same boiler and in similar combustion conditions. It was especially interesting to study if the ash would contain soluble aluminium due to the kaolin addition since aluminium in solution may have negative effects on the eco system. The results showed that an important difference between the normal fly ash and the fly ash with kaolin was that the release of potassium i leaching was decreased due to the kaolin addition, especially at high pH levels. This is positive, since potassium normally is released very fast in the forest. In addition, the kaolin containing ash has a faster initial setting/hardening process than the normal ash. The structure of the hardened ash particles is also more durable than that of the normal ash. This is also a positive effect since it indicates that it could be possible to handle the hardened ash after a shorter storage period. However, it has not been investigated if this effect remains in large scale operation and in a longer time perspective. The acid neutralising capacity of fly ash with kaolin is

  19. Measuring the ash content of coal using natural gamma radiation. Medida del contenido de cenizas de carbones mediante radioactividad gamma natural

    Energy Technology Data Exchange (ETDEWEB)

    Legazpi, P.V.

    1990-10-01

    The receipt of consignments of coal at a power station can present serious problems. These concern not only the vast quantities of material involved and the associated problem of analysis, but also the decision as to whether the consignment is acceptable or not. A method based on natural radioactivity can provide an approximate analysis of ash content in under five minutes. In discussing approximate values it must be remembered that about 5% of the consignment is analysed, which implies some minimal sampling errors. This is also a technique which can be readily automated and adapted for use on lorries, rail cars and conveyors to provide a complete sampling system. It does not require special certification for the use of radiation equipment or any form of special protection. The accumulated error when using this method is amply compensated for by manpower costs and other expenditure resulting from sampling errors and the ease with which other methods may be fixed. The system yields very favourable economic benefits in the short term. 7 figs.

  20. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  1. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    Science.gov (United States)

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  2. Research into the automation of the proximate analysis of coal (II): the establishment of a method for the rapid determination of ash in coal, and combustion residues in coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Y.

    1986-01-01

    The JIS method for coal ash analysis requires 2.5-3 hours for ashing and a total of 3-3.5 hours for the complete determination. The author reports a new method in which ashing time is reduced to about 3 minutes and overall analysis time to approximately 30 minutes. The former is achieved by employing oxygen and using a new type of ashing vessel, while the latter time reduction is due to the introduction of cooling. Measurement precision with the new method is adequate for all practical purposes, apart from in the case of Miike coal, which has a particularly high sulfur content. 2 references, 4 figures, 17 tables.

  3. Leachability of antimony from energy ashes. Total contents, leachability and remedial suggestions; Lakning av antimon fraan energiaskor. Totalhalter, lakbarhet samt foerslag till aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias [Oerebro Univ. (Sweden)

    2006-01-15

    In the current project total concentrations for antimony in 31 energy ashes have been compiled. The average concentration of antimony in boiler fly ash and grate boiler fly ash is 192 and 1,140 mg/kg, respectively. The corresponding antimony concentrations for boiler ashes and grate bottom ashes are 86,5 and 61,8 mg/kg, respectively. Multivariate calculations clearly pointed out waste as the major source for antimony in ashes. The difference between total antimony concentration in fly ash and bottom ash is greatest for grate boilers, in average 18 times higher in the fly ash. The difference for CFB/BFB-boilers is only slightly more than 2. However, based on amount, 75% of the total antimony inventory is recovered in the fly ashes for both CFB/BFB and grate boilers. Eleven (eight of which were bottom ashes) out of the 31 samples exceeded the guidelines for inert waste. It is clear that the higher ionic strength in the solutions from the fly ashes contribute to decrease the solubility for critical minerals retaining antimony. In addition, the fly ashes have considerably larger effective surface able to sorb trace elements. A clear and positive covariance was discovered between aluminium and antimony. Furthermore, it was noted that antimony showed no typical anionic behaviour despite the fact that it according to the geochemical calculations should be present as SbO{sub 3}{sup -}. At L/S 10, a maximum of 1% of the total antimony concentration is leached. This should be compared to chloride that had 94% of the total concentration leached at L/S 10. There was no correlation between the leached antimony concentrations and the total antimony concentrations. The sequential extractions also suggest a low leachability for antimony from the ashes. In average only 9,6% is released at pH 7, 7,3% at pH 5, 3,6% during reducing conditions and 3,2% during oxidising conditions. In total, only 24% of the total antimony concentrations is released during the four extraction steps. The

  4. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.

    Science.gov (United States)

    Freire, Márcia; Lopes, Helena; Tarelho, Luís A C

    2015-12-01

    Bottom and fly ashes streams collected along a year in several biomass thermal plants were studied. The bulk composition of ashes and other chemical characteristics that may impact soil application showed a high variability depending on the ash stream, combustion technology and ash management practice at the power plants. The acid neutralization capacity (ANC) and metal's availability for leaching at fixed pH 7 and 4 was performed according with EA NEN 7371, as a quick evaluation method to provide information on the long-term behavior of ashes, regarding heavy metals and also plant nutrients release. Also the pH dependence leachability study was performed according to CEN/TS 14429 for predicting the leaching behavior under different scenarios. Leachability profiles were established between pH 3 and 12, allowing to distinguish different solubility control phenomena of toxic heavy metals (Cu, Cr, Mn, Ni, Zn, Pb) as well as other salts (Ca, K, Mg, Na, Cl). The ANC of fly ashes at pH 4 (3.6-9.6 molH(+)/kg) were higher than that observed for the bottom ashes (1.2-2.1 molH(+)/kg). Ashes were also characterized for persistent organic pollutants (POP), such as polycyclic aromatic hydrocarbons (PAH) and paradibenzodioxines and furanes (PCDD/F). Contents were found to be much higher in fly ash than in bottom ash streams. None of the PAH levels did reach the current national limit value of sewage sludge application in soils or the guide value for ash in north European countries. However, PCDD/F contents, which are not regulated, varied from non-detectable levels to high amounts, regardless the level of loss on ignition (LOI) or unburned carbon content in fly ashes. Given the current ash management practices and possible use of blends of bottom and fly ash streams as soil conditioners resembles clear the urgent need to regulate ash utilization in soils, incorporating limit values both for heavy metals, PAH and PCDD/F.

  5. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))

    2008-07-15

    phosphor content and the content of the stated micro elements are equally sized in the three fractions. Provided that the ash observes the quality demands as to i.e. heavy metals, ash may be a good fertilizer choice as regards phosphate and potassium, among others. On the contrary, ash contains no nitrogen. Many field trials have shown that the availability and the utilization of phosphate are often almost on artificial fertilizer level. The higher the combustion temperature, the lower is the phosphate availability. Bottom ash would be more suitable for fertilizer purposes than fly ash. Partly the heavy metal content in bottom ash is lower, and partly the P solubility is higher. However, the trials only show the short term P and K availability. The availability of especially phosphate must be seen on a longer term, as phosphate only must replace the P and K that is used by the crop. Normally, Danish arable areas are in a fertilizer condition so fine that an optimum yield can be obtained if P and K are available during a longer period. Therefore, further studies are needed for examining the P and K availability for a longer term than one year. The nutrient composition and concentration in the examined ash products are in level with fertilizers. However, the variation between the products is so high that the utilization range of the ash products will be very wide. Five of the products are mostly characterised as K fertilizer, two are primarily P fertilizers, while one can be characterised as PK fertilizer. (LN)

  6. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  7. Laboratory Studies of Ice Nucleation on Volcanic Ash

    Science.gov (United States)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  8. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni

    2002-02-01

    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  9. Cast Iron With High Carbon Content

    Science.gov (United States)

    Curreri, P. A.; Hendrix, J. C.; Stefanescu, D. M.

    1986-01-01

    Method proposed for solidifying high-carbon cast iron without carbon particles segregating at upper surface. Solidification carried out in low gravity, for example on airplane flying free-fall parabolic trajectory. Many different microstructures obtained by proposed technique, and percentage by weight of carbon retained in melt much higher than at present.

  10. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  11. Transpirational drying effects on energy and ash content from whole-tree chipping operations in a southern pine plantation

    Science.gov (United States)

    J. Cutshall; D. Greene; S. Baker; Dana Mitchell

    2011-01-01

    Newly announced North American bioenergy projects will likely increase the demand for woody biomass substantially over the next five to ten years. High harvesting and transportation costs for woody biomass from forests are commonly identified as key constraints to expanding this new industry and meeting expected wood fiber demand. In addition to a cost-competitive...

  12. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  13. Chemical and thermal analysis of biomass ash from wooden chips and wheat straw combustion

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Luxa, Jan; Bartůněk, Vilém; Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    In this paper, we would like to demonstrate that biomass ash with appropriate composition can be used for the fabrication of high performance composites. Biomass ash from wooden chips and packed wheat straw was characterized using XRF and XRD. While the biomass ash contained high amount of carbon, it was thermally treated in order to reduce carbon content. The chemical and phase composition of treated biomass ash was again analyzed in detail by XRF and XRD. Moreover, the thermal treatment process was analyzed using STA. In the next step, the pozzolanic activity was analyzed using Frattini test. Potentiometric method was used for pH measurement. Since the both biomass ashes were pozzolana active, they are potentially suitable as a pozzolana active admixture in the cement, lime and alkali activated aluminosilicate composites.

  14. 玉米杆灰中全钾量的快速测定方法的研究%THE STUDY FAST-SPEED TO TAKE MEASURES OF POTASSIUM-CONTENT IN MAIZE ASH

    Institute of Scientific and Technical Information of China (English)

    吴凤山; 冯桂荷

    2001-01-01

    钾是农作物所必需的三大营养元素之一,本文叙述了快速测定玉米杆灰中钾含量的方法.%Potassium is one of the element in the three essential nutrients for growth of the ugriclitural produce.In this articles,give a description of way on fast-speed to take measures of potassium-content in maize ash.

  15. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    Directory of Open Access Journals (Sweden)

    A. Kylling

    2013-10-01

    Full Text Available The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  16. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    Science.gov (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  17. Effects of fluxing agents on gasification reactivity and gas composition of high ash fusion temperature coal

    Directory of Open Access Journals (Sweden)

    Zhao Ruifang

    2015-01-01

    Full Text Available A Na-based fluxing agent Na2O (NBFA and a composite fluxing agent (mixture of CaO and Fe2O3 with mass ratio of 3:1, CFA for short were used to decrease the ash fusion temperature of the Dongshan and Xishan coal from Shanxi of China and make these coal meet the requirements of the specific gasification process. The main constituents of the fluxing agents used in this study can play a catalyst role in coal gasification. So it is necessary to understand the effect of fluxing agents on coal gasification reactivity and gas composition. The results showed that the ash fusion temperature of the two coal used decreased to the lowest point due to the eutectic phenomenon when 5 wt% of CFA or NBFA was added. Simultaneously, the gas molar ratio of H2/CO changed when CFA was added. A key application was thus found where the gas molar ratio of H2/CO can be adjusted by controlling the fluxing agent amount to meet the synthetic requirements for different chemical products.

  18. Mechanical properties of high dense coal fly-ash bulk materials by plasma spark sintering (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, G.; Hasezaki, K.; Nakashita, A.; Kakuda, H. [Shimane University, Shimane (Japan). Dept. of Material Science

    2008-10-15

    Coal fly-ash bulk materials were prepared by spark plasma sintering (SPS). The as-received coal fly ash produced by Misumi Power Station (The Chugoku Electric Power Co. Inc.), had an average particle size of 19 mm and contained about 2% carbon from unburned coal. The sintering temperature was 1273 K for 10 min. The mass density of the sintered compact was 2.4 x 103 kg/m{sup 3}. After three-point flexural testing of the compact, the average flexural strength and Young's modulus were 25.6 MPa and 23.0 GPa, respectively. From the flexural strength, the Weibull modulus was found to be m = 6.13, indicating that the compact was a typical ceramics. Fractographic examination indicated that in all specimens the fracture origin was located on the bottom surface and was not an intrinsic flaw. Vickers indentation test showed that the fracture toughness was 0.61 MPa.m{sup 0.5} and the calculated critical flaw size c{sub 0}, was 0.18 mm. This c{sub 0} value was larger than that of the voids and the unburned carbon at the fracture surface. It is noteworthy that the mechanical strength of the sintered compact was not affected by the voids and unburned carbon.

  19. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  20. Biotic mortality factors affecting emerald ash borer (Agrilus planipennis) are highly dependent on life stage and host tree crown condition.

    Science.gov (United States)

    Jennings, D E; Duan, J J; Shrewsbury, P M

    2015-10-01

    Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae were highly dependent on EAB life stage and host tree crown condition. In relatively healthy trees (i.e., with a low EAB infestation) and for early instars, host tree resistance was the most important mortality factor. Conversely, in more unhealthy trees (i.e., with a moderate to high EAB infestation) and for later instars, parasitism and predation were the major sources of mortality. Life-table analyses also indicated how the lack of sufficient levels of host tree resistance and natural enemies contribute to rapid population growth of EAB at recently colonized sites. Our findings provide further evidence of the mechanisms by which EAB has been able to successfully establish and spread in North America.

  1. Assessment and comparison of three high-aluminum fly ash utilization scenarios in Inner Mongolia, China using an eco-efficiency indicator.

    Science.gov (United States)

    Yang, Shuo; Lin, Ling; Li, Shao Peng; Li, Qiang; Wang, Xiu Teng; Sun, Liang

    2017-05-01

    Utilization of fly ash is of great importance in China in the context of resource and environmental crises. Different fly ash utilization processes are proposed, and some have been practically applied. However, none of these fly ash utilization pathways has been evaluated comprehensively by integrating both environmental and economic perspectives. In this study, three high-aluminum fly ash utilization methods in Mongolia were assessed and compared based on the concept of eco-efficiency. The environmental assessment was conducted in accordance with life-cycle assessment principles, and a monetization-weighting approach was applied to obtain social willingness-to-pay as a reflection of environmental impact. The environmental assessment results revealed that the reuse of fly ash had significant advantage for saving primary resource, while solid waste, depletion of water, and global warming were the three highest environmental impacts from the life cycle perspective. The economic performance assessment showed positive net profits for fly ash utilization, but high value-added products were not necessarily indicative of better economic performance due to the relatively high operation cost. Comparison of the eco-efficiency indicators (EEIs) implied that the process of scenario 1#, which produced mullite ceramic and active calcium silicate, was the most recommended out of the three scenarios on the present scale. This judgment was consistent with the evaluation of the resource utilization rate. The present study showed that the EEI could be used to compare different fly ash utilization processes in a comprehensive and objective manner, thus providing definitive and insightful suggestions for decision-making and technical improvement.

  2. Liners for waste containment constructed with class F and C fly ashes.

    Science.gov (United States)

    Palmer, B G; Edil, T B; Benson, C H

    2000-09-15

    Hydraulic conductivity of a Class F fly ash containing residual organic carbon was evaluated in this study using laboratory and field tests. Compacted specimens of the Class F fly ash mixed with various materials (sand, Class C fly ash, and bottom ash) were prepared in the laboratory at various water contents and different compactive efforts. Hydraulic conductivity of the compacted specimens was measured using flexible-wall permeameters. A test pad was constructed to determine whether a low hydraulic conductivity liner could be constructed with Class F fly ash mixtures. Sealed double-ring infiltrometers and two-stage borehole permeameters were used to measure the field hydraulic conductivity of the test pad. Specimens were also removed from the test pad for hydraulic conductivity testing in the laboratory. Results of the study showed that mixtures of Class F and Class C fly ashes along with coarse aggregate can be compacted to hydraulic conductivities needed for landfill liners provided compaction is wet of optimum water content. The field tests showed that constructing a fly ash liner with hydraulic conductivities similar to those found in the laboratory is challenging, and requires careful attention to factors that result in cracks and permeable interlift regions that result in high field hydraulic conductivity. Leachate collected from the base of the test pad also showed that metal leaching must be considered when designing a liner with fly ash.

  3. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB...

  4. Electrodialytic remediation of fly ash from co-combustion of wood and straw

    DEFF Research Database (Denmark)

    Chen, Wan; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    The heavy metal content in fly ash from biomass combustion, such as straw, wood and sludge, often needs reducing before the ash can be used as fertilizer for agricultural land or as a component in the production of construction materials. In this study, fly ash from a boiler fueled with wood chips...... and straw was treated either by electrodialytic remediation (EDR) directly or by a combination of EDR and pre-wash with distilled water to investigate the possibilities of reducing the heavy metal content and reusing nutrients as fertilizer and bulk material in construction materials. Different experimental...... set-ups were tested for EDR treatment primarily of Cd and Pb as well as of Cu and Zn. Elemental contents such as K, P and Ni were compared in ash samples before and after treatment. The results showed that pre-washing caused an increase in total concentrations of most heavy metals because the highly...

  5. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    , climate/meteorological conditions after the ash spread/fire and soil background characteristics. In addition, after the fire heating can change soil original properties increasing the complexity of the ash effects on soil properties. After fire, ash is highly dynamic and very easily transported by wind until the first rains. When wetted, ash compacts and binds onto soil surface, and wind has low capacity to transport it. The post-rain ash dynamic is influenced by water erosion (in slope areas), infiltration into soil profile and vegetation recuperation. This means that ash produced in one place will have implications in other areas, including not burned areas (e.g wind transport and water erosion). This is a clear indication that ash effects go much further than the fire affected area. Due the heterogeneity of soil and ash properties and their dynamic across the landscape, the impacts of ash on soil system can be diverse, producing a mosaic of different effects and responses after ash treatment and/ or fire. In this communication it will be presented and discussed the advances and scientific development of ash effects and dynamic in soil system.

  6. Research on use of high calcium desulfurization ash in autoclaved brick%利用高钙固硫灰生产蒸压砖的研究

    Institute of Scientific and Technical Information of China (English)

    陈滨; 刘恒波; 万军

    2012-01-01

      The paper researches on the process of high calcium desulfurization ash autoclaved brick, and puts forward the ways to use the high calcium, high sulfur and low silicon of fly ash from the circulating fluidized bed boiler.%  对高钙固硫灰生产蒸压砖的生产工艺进行了研究,提出了重点解决循环流化床锅炉粉煤灰的高钙、高硫、低硅难题的有效途径

  7. De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation.

    Science.gov (United States)

    He, Yanqing; Fang, Zhenhong; Zhang, Jian; Li, Xinliang; Bao, Jie

    2014-10-01

    In this study, corn stover with different ash content was pretreated using dry dilute acid pretreatment method at high solids loading of 67% (w/w). The results indicate that the hydrolysis yield of corn stover is increased from 43.30% to 70.99%, and ethanol yield is increased from 51.74% to 73.52% when ash is removed from 9.60% to 4.98%. The pH measurement of corn stover slurry indicates that the decrease of pretreatment efficiency is due to the neutralization of sulfuric acid by alkaline compounds in the ash. The elemental analysis reveals that the ash has the similar composition with the farmland soil. This study demonstrates the importance of ash removal from lignocellulose feedstock under high solids content pretreatment.

  8. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    F. Mat Yahaya

    2014-06-01

    Full Text Available This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0 with 100% ordinary Portland cement (control specimen and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20 has been identified as the best performing mix after cubes (150×150×150 mm containing various content of POFA as partial cement replacement were prepared, continuously water cured and subjected to compressive strength test at 28 days. At the second stage of study, control specimen (P0 and high strength concrete mix containing 20% POFA (P20 were prepared in form of cylinders with reinforcement bar buried in the middle for corrosion resistance test. Specimens were subjected to half cell potential technique following the procedures outlined in ASTM C876 (1994. Incorporation of POFA as partial cement replacement has contributed to densification of microstructure making the concrete denser thus exhibit higher resistance towards corrosion as compared to plain concrete.

  9. Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning x-ray micro-diffraction (μ-SXRD)

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sungchul [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Meral, Cagla [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Department of Civil Engineering, Middle East Technical University, 06800 Ankara (Turkey); Oh, Jae-eun [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Moon, Juhyuk [Civil Engineering Program, Department of Mechanical Engineering, State University of New York at Stony Brook, NY 11794 (United States); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-05-01

    The present study focuses on identification and micro-structural characterization of the hydration products formed in high-volume fly ash (HVFA)/portland cement (PC) systems using monochromatic scanning x-ray micro-diffraction (μ-SXRD) and SEM-EDS. Pastes with up to 80% fly ash replacement were studied. Phase maps for HVFA samples using μ-SXRD patterns prove that μ-SXRD is an effective method to identify and visualize the distribution of phases in the matrix. μ-SXRD and SEM-EDS analysis shows that the C-S-H formed in HVFA system containing 50% or more of fly ash has a similar structure as C-S-H(I) with comparatively lower Ca/Si ratio than the one produced in PC system. Moreover, coexistence of C-S-H(I) and strätlingite is observed in the system containing 80% of fly ash, confirming that the amount of alumina and silicate phases provided by the fly ash is a major factor for the formation of C-S-H(I) and strätlingite in HVFA system. - Highlights: • High-volume fly ash (HVFA) paste was studied by scanning x-ray micro-diffraction. • Coexistence of C-S-H(I) and strätlingite in the HVFA system is clearly shown. • The distribution of minor phases in the HVFA system is shown. • Differences between inner and outer products of fly ash are observed by SEM-EDS.

  10. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  11. Utilisation of different types of coal fly ash in the production of ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Kockal, N. U.

    2012-11-01

    The influence of varying proportions of different types of fly ash (used in place of feldspar) and different sintering temperatures on the sintered properties of ceramic tile bodies was evaluated. The results indicated that sintering ceramic tiles with a high fly ash content at a high temperature caused a decrease in the properties because of bloating. The ceramic samples containing a higher amount of fly ash that were sintered at low temperature exhibited lower water absorption, larger shrinkage and strength because of the densification observed also in microstructural investigation. (Author) 25 refs.

  12. Alkaline hydrothermal zeolites synthesized from high SiO{sub 2} and Al{sub 2}O{sub 3} co-disposal fly ash filtrates

    Energy Technology Data Exchange (ETDEWEB)

    Vernon S. Somerset; Leslie F. Petrik; Richard A. White; Michael J. Klink; David Key; Emmanuel I. Iwuoha

    2005-12-01

    A co-disposal reaction was used wherein fly ash (FA) was reacted with acid mine drainage (AMD), to collect filtrates for zeolite synthesis. Raw fly ash as well as fly ash leached with HCl were subjected to the same alkaline hydrothermal zeolite synthesis conditions, as for the co-disposal filtrates, in order to evaluate the zeolitic material obtained. The Si and Al contents of the fly ash (FA) filtrates were used as precursor species for the alkaline hydrothermal conversion of the fly ash filtrates into zeolites. These filtrates were then analysed by XRF spectrometry for quantitative determination of SiO{sub 2} and Al{sub 2}O{sub 3}. The (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio obtained in the filtrates range from 1.4 to 2.5. The (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio was used to predict whether the fly ash filtrates could successfully be converted into faujasite zeolitic material by the adopted synthesis procedures. If the (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio is higher than 1.5 in the co-disposal filtrates, it favours the formation of faujasite. The zeolite synthesis included an alkaline fusion of the co-disposal filtrates, followed by aging for 8 hours and hydrothermal conversion by crystallisation at 100{sup o}C. Different variables were investigated during the synthesis of zeolite to ascertain their influence on the end product. These variables include adding different amounts of deionised water to the FA-related starting material, using different compositions of FA related starting material and different FA:NaOH ratios in fusing the starting material. 15 refs., 3 figs., 2 tabs.

  13. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  14. Characterization of Fly Ash Generated from Matla Power Station in Mpumalanga, South Africa

    Directory of Open Access Journals (Sweden)

    Olushola S. Ayanda

    2012-01-01

    Full Text Available In this study, fly ash was obtained from Matla power station and the physicochemical properties investigated. The fly ash was characterized by x-ray fluorescence, x-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry. Surface area, particle size, ash and carbon contents, pH, and point of zero charge were also measured. The results showed that the fly ash is alkaline and consists mainly of mullite (Al6Si2O13 and quartz (SiO2. Highly toxic metals As, Sb, Cd, Cr, and Pb as well as metals that are essential to health in trace amounts were also present. The storage and disposal of coal fly ash can thus lead to the release of leached metals into soils, surface and ground waters, find way into the ecological systems and then cause harmful effect to man and its environments.

  15. Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    Low-temperature gasification allows the production of energy from biomass with high contents of low melting point compounds, like sewage sludge, and the recycling of the nutrients as P from the resulting ashes as renewable fertiliser. Major drawbacks are, however, the presence of heavy metals...... and the low plant-availability of Al- and Fe- phosphate compounds in the gasification ashes. In the present research, the feasibility of a 2-compartment electrodialytic (ED) setup for P separation from Al, Fe and heavy metals in two different low-temperature gasification ashes was investigated. One ash...... was from gasification of sewage sludge where P was precipitated with Fe and Al salts, from which it was possible to extract up to 26% of the P. The other ash was from co-gasification of a mixture of biologically precipitated sewage sludge and wheat straw pellets. More promising results were obtained...

  16. Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.

    Directory of Open Access Journals (Sweden)

    Er.Amit Kumar Ahirwar

    2015-02-01

    Full Text Available This experiment was conducted to investigate the engineering properties of fly ash cement concrete for rigid pavement construction. Results have shown that 30% of fly ash and 70% of cement has a superior performance. In addition, the use of fly ash would result in reduction of the cost of cement which is usually expensive in all construction materials. High strength of concrete can be made by this and the further integration of admixture or alternate adds to improve the properties of concrete. Test result of specimens indicates that the workability and strength chacteristcs are changed due to incorporation with fly ash. Slump test having an appropriate workable mix of a concrete, gave sufficient compressive strength and flexural strength. Test results of 28 days specimens have graphically interpolated for the different results and so that to calculate the optimum content of fly ash.

  17. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  18. CO2 Rebinding by Oil Shale CFBC Ashes: Effect of Pre-Treatment

    Science.gov (United States)

    Trikkel, Andres; Keelmann, Merli; Aranson, Aljona; Kuusik, Rein

    Power production in Estonia is predominantly based on combustion of a local low-grade fossil fuel Estonian oil shale. Due to the high content of carbonaceous mineral matter in oil shale, its combustion is related to formation of lime-containing ashes (content of free CaO 10-30%) which could be utilized as sorbents for CO2. In the present research CO2 uptake by circulating fluidized bed and pulverized firing ashes from different technological devices (furnace, cyclones etc) of an operating power plant was studied and the effect of pre-treatment (grinding, calcination at different temperatures) of these ashes on their capture capacity was estimated using thermogravimetric, SEM, X-Ray and EDX analysis methods. It was found that capture capacities were determined mainly by free CaO content in the ashes, thereby, fluidized bed ashes showed higher CaO conversion levels (19.2-74.2%) as compared to pulverized firing ones (8.7-51.8%). Pre-treatment conditions influenced noticeably CO2 uptake. Grinding decreased CO2 capture capacity of fluidized bed ashes, calcination at higher temperatures decreased capture capacity of both types of ashes. Clarification of this phenomenon was given. Kinetic analysis of the process has been carried out, mechanism of the reactions and respective kinetic constants have been estimated.

  19. Corrosion of high temperature resisting alloys exposed to heavy fuel ash; Corrosion de aleaciones resistentes a altas temperaturas expuestas a ceniza de combustoleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Wong Moreno, Adriana del Carmen

    1998-03-01

    The objective of the performed research was to study the degradation process by high temperature corrosion of alloys exposed to heavy fuel oil ashes through a comparative experimental evaluation of its performance that allowed to establish the mechanisms involved in the phenomenon. The experimentation carried out involved the determination of the resistance to the corrosion of 14 alloys of different type (low and medium alloy steels, ferritic and austenitic stainless steels, nickel base alloys and a FeCrAl alloy of type ODS) exposed to high temperatures (580 Celsius degrees - 900 Celsius degrees) in 15 ash deposits with different corrosive potential, which were collected in the high temperature zone of boilers of thermoelectric power stations. The later studies to the corrosion tests consisted of the analysis by sweeping electron microscopy supported by microanalysis of the corroded probes, with the purpose of determining the effect of Na, V and S on the corrosivity of the ash deposits and the effect of the main alloying elements on the corrosion resistance of the alloys. Such effects are widely documented to support the proposed mechanisms of degradation that are occurring. The global analysis of the generated results has allowed to propose a model to explain the global mechanism of corrosion of alloys exposed to the high temperatures of ash deposits. The proposed model, complements the processed one by Wilson, widely accepted for fused vanadates, as far as on one hand, it considers the effect of the sodium sulfate presence (in addition to the vanadium compounds) in the deposits, and on the other hand, it extends it to temperatures higher than the point of fusion of constituent vanadium compounds of the deposits. Both aspects involve considering the roll that the process of diffusion of species has on the degradation and the capacity of protection of the alloy. The research performed allowed to confirm what the Wilson model had established for deposits with high

  20. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    Science.gov (United States)

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T  450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new

  1. Characterization and electrodialytic treatment of wood combustion fly ash for removal of cadmium

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2003-01-01

    Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, the fly ash fractions......-for the aim of recycling-was described. Initial characterisation of the experimental ash showed that the Cd content exceeded the limiting values for agricultural use and therefore needed treatment before being recycled. The pH in the ash was very high (13.3), and the Cd was not soluble at these alkaline...... conditions. However, significant amounts of Cd could be extracted at neutral to alkaline conditions using an ammonium citrate solution as a desorption agent.Electrodialytic remediation experiments showed that, under optimised remediation conditions using a mixture of ammonium citrate (0.25M) and NH"3 (1...

  2. Research on arsenic content and its speciation distribution characteristics in overlying coal and fly ash recycling soil%覆煤及粉煤灰回用土壤砷质量比与赋存形态研究

    Institute of Scientific and Technical Information of China (English)

    王明仕; 张晓; 杨娜娜; 钦凡; 刘克武

    2012-01-01

    为了解覆煤及粉煤灰回用土壤砷含量及赋存形态分布特征,选取贵州省兴仁县某村农耕旱地土壤为研究对象,采用逐级化学提取法对土壤样品进行试验.结果表明:研究区土壤中砷质量比为15.71~169.55 mg/kg,波动范围较大;土壤砷质量比最高值为169.55mg/kg,远远高于土壤砷质量比自然背景值(15 mg/kg)、世界土壤砷平均质量比(6.0 mg/kg)及我国土壤砷平均质量比(9.2 mg/kg);对照样土壤砷质量比为15.71 mg/kg,也略高于土壤中砷质量比的自然背景值(15mg/kg).研究区土壤砷污染问题已较为严重,这除与该地区地层中砂岩及粉砂岩砷质量比较高所导致的土壤砷背景质量比偏高有关以外,最主要的原因是覆煤广泛存在及粉煤灰大面积回用农田所致.该研究区土壤中砷主要以残渣态存在(72.16%),其次为硫化物结合态(15.45%)、铁锰氧化物结合态(5.89%)、有机态砷(3.06%)、碳酸盐结合态(2.51%),水溶态和可交换态砷均较低(0.93%).研究区土壤总砷量较高,但迁移转化能力较弱,对环境及人体健康的危害程度尚有待讨论.%In order to understand the arsenic content and speciation distribution characteristics in overlying coal and fly ash recycling soil, dry land farming soils from Xingren County, Guizhou province were studied in this paper with sequential chemical extraction method. The results shows that the range of soil arsenic level in the researched area is within 15.71 - 169.55 mg/kg, the fluctuation range is very large. It is closely related with the different content of high arsenic contained coal and fly ash in the soil samples. The maximum value of soil arsenic (169.55 mg/kg) is much higher than the soil environmental background values(15 mg/kg) , the world average soil arsenic content (6.0 mg/kg) and soil arsenic average content in China (9.2 mg/kg). The content of arsenic in the control samples is 15.71 mg/kg, which is also slightly

  3. Effect of lime and wood ash on the nixtamalization of maize and tortilla chemical and nutritional characteristics.

    Science.gov (United States)

    Pappa, María Renée; de Palomo, Patricia Palacios; Bressani, Ricardo

    2010-06-01

    The objective of the study was to obtain information on the chemical composition, functional properties, sensory quality and protein value of tortillas made from the nixtamalization of maize using either lime or wood ashes. The Ca, K, Mg, Fe, and Zn content of lime and wood ashes showed lime to be high in Ca content while wood ash contained more K and about 71% of the Ca content of lime. Both contained relatively high levels of Mg, Fe and Zn, but more so in the wood ashes. The level of reagent for nixtamalization was set at 0.8% of the maize weight. All other processing conditions were kept constant. The pH of the cooking solution was 12.0 for lime and 10.9 for wood ash. The moisture content of maize at 60 min of cooking was 45.8% for both treatments, however after 12 h of soaking, moisture level was 51.0% for the lime treatment and only 46.8% for the ash treatment. Solids (2.4%) in the lime cooking liquor were higher than in the wood ash liquor (1.0%). Chemical composition changes were similar between treatments in masa and tortilla; however, both masa and tortillas absorbed relatively high levels of all minerals including Fe and Zn from the wood ash treatment. The different treatment influenced functional properties particularly hardness and color. Tortilla characteristics were also similar. Protein quality of both alkali cooked products was lower than that of raw corn, more so the product from the wood ash treatment. Although some differences were observed in the sensory studies, human subjects did not dislike the wood ash made tortillas.

  4. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  5. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    Full Text Available BACKGROUND: Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. CONCLUSIONS AND SIGNIFICANCE: The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis

  6. 高强度等级粉煤灰水泥的试验研究%Experimental Rresearch on Fly Ash Cement Which Meet High Strength

    Institute of Scientific and Technical Information of China (English)

    易龙生; 齐莉娜; 李来顺; 冯泽平; 毛齐

    2015-01-01

    通过机械粉磨、化学药剂复合激发粉煤灰的活性,制得了粉煤灰掺量达50%的高掺量粉煤灰水泥。试验结果表明:最佳粉磨时间为30 min,激发剂选用NaOH。在粉煤灰、熟料、石膏与激发剂配比为50∶44∶5∶1下,制得的高掺量粉煤灰水泥强度达到52.5R等级,且各项性能均满足普通硅酸盐水泥的技术标准。%Through mechanical grinding and chemical excitation to stimulate the activity of lfy ash, the study prepared high volume lfy ash cement,which lfy ash prepared up to 50%. The results showed that:the optimum experiment conditions is that grinding for 30 min, the activator takes NaOH. The mix proportion is m(fly ash)∶m(clinker)∶m(plaster)∶m(activator)=50∶44∶5∶1, it prepared large volume fly ash cement which strength grade can reach 52.5R, and it meet the standard of portland cement.

  7. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  8. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  9. KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

    2000-11-01

    Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

  10. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  11. Freeze-Thaw Resistance of Normal and High Strength Concretes Produced with Fly Ash and Silica Fume

    Directory of Open Access Journals (Sweden)

    Cenk Karakurt

    2015-01-01

    Full Text Available This study is based on determination of the freeze-thaw resistance of air-entrained and non-air-entrained normal strength concrete (NC and high strength concrete (HSC produced with fly ash and silica fume according to surface scaling. The procedure allows us to measure the amount of scaling per unit surface area due to a number of well defined freezing and thawing cycles in the presence of deicing salt. The weight loss, surface scaling, moisture uptake, and internal damage were measured after 0 and after every 4th freeze-thaw cycle. The test results showed that the freeze-thaw resistance is influenced directly by the compressive strength property of the concrete. Silica fume significantly reduced the resistance of normal strength concrete against freeze-thaw effect without plasticizing agent. The surface scaling of silica fume concrete without admixture was 22% higher than reference normal concrete.

  12. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    Science.gov (United States)

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents.

  13. Characteristics of the ultrafine component of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    M.R. Jones; A. McCarthy; A.P.P.G. Booth [University of Dundee, Dundee (United Kingdom). Concrete Technology Unit, Division of Civil Engineering

    2006-11-15

    Post-production processing of fly ash (FA) is an important issue for its use in concrete. Given (i) the need for environmental protection, (ii) the measures being applied on coal-fired power stations to reduce acidic gas emissions and (iii) the effect these have had on fly ash quality, there is a need to consider efficient post-production processing to enhance fly ash characteristics. This is particularly important for fly ash used as a cement in concrete production, since the additional residual carbon content and decreased fineness significantly affect its quality. This paper details the material characteristics of an ultrafine, low-lime fly ash (UF-FA), produced, in this case, by processing a coarse FA (referred to as parent FA) from a bituminous coal-fired power station via air-cyclonic separation. The UF-FA is shown to have much improved material characteristics compared to the parent FA in terms of morphology, mineralogy and chemical composition. Further results are presented on the effect of UF-FA on the properties of cementitious systems. Improved consistence and compressive strengths of combined Portland cement (PC) and UF-FA mortars were observed, whilst enhanced PC hydration and a high degree of FA reactivity were concluded from heat of hydration measurements and calcium hydroxide contents of pastes. 20 refs., 10 figs., 1 tab.

  14. Distribution and mode of occurrence of uranium in bottom ash derived from high-germanium coals.

    Science.gov (United States)

    Sun, Yinglong; Qi, Guangxia; Lei, Xuefei; Xu, Hui; Li, Lei; Yuan, Chao; Wang, Yi

    2016-05-01

    The radioactivity of uranium in radioactive coal bottom ash (CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride (HF) leaching, Siroquant (Rietveld) quantification, magnetic separation, and electron probe microanalysis (EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe-Mn oxide fractions was dominant (59.1% and 34.9%, respectively). The former was mainly incorporated into aluminosilicates, retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite (Fe3O4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment.

  15. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    Science.gov (United States)

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards.

  16. Precious Metals in Municipal Solid Waste Incineration Bottom Ash

    Energy Technology Data Exchange (ETDEWEB)

    Muchova, Lenka; Bakker, Erwin; Rem, Peter [Faculty of Civil Engineering and Geosciences, Materials and Environment, TU Delft (Netherlands)], E-mail: P.C.REM@TUDELFT.NL

    2009-04-15

    Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam's bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.

  17. Production of inorganic pellet binders from fly-ash. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. Work in the first quarter concentrated on obtaining samples of all of the materials to be used (fly-ash, and magnetite ore), training of personnel on pelletization procedures, obtaining and setting up pelletization apparatus in the MTU laboratories, and running pelletization experiments with bentonite binder to establish a baseline for comparison with the fly-ash binders to be made.

  18. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  19. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  20. Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding

    Directory of Open Access Journals (Sweden)

    Harjinder Singh Mann

    2016-10-01

    Full Text Available This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency of clay fly ash bricks were measured with a NaI(Tl detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

  1. Experimental investigation of clay fly ash bricks for gamma-ray shielding

    Energy Technology Data Exchange (ETDEWEB)

    Mann Harjinder Singh; Mudahar, Gumel Singh [Dept. of Physics, Punjabi University, Patiala (India); Brar, Gurdarshan Singh [Dept. of Higher Education, Additional Project Director, Chandigarh (India); Mann, Kulwinder Singh [Dept. of Applied Sciences, I.K. Gujral Punjab Technical University, Jalandhar (India)

    2016-10-15

    This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

  2. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    Energy Technology Data Exchange (ETDEWEB)

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    The overall objective of this research was to determine the feasibility of recovering a very fine fraction of fly ash, that is 5 microns in diameter or less and examining the characteristics of these materials in new or at least less traditional applications. These applications included as a polymer filler or as a 'super' pozzolanic concrete additive. As part of the effort the ash from 6 power plants was investigated and characterized. This work included collection from ESP Hoppers and ponds. The ash was thoroughly characterized chemically and physically. Froth flotation was used to reduce the carbon and testing showed that flotation could effectively reduce carbon to acceptable levels (i.e. 0.5% LOI) for most of the substrates tested. in order to enable eventual use as fillers. Hydraulic classification was used in the separation of the fine ash from the coarse ash. Hydraulic classification requires the ash to be dispersed to be effective and a range of dispersants were tested for adsorption as well as sedimentation rate. A wide range of dosages were required (0.3 to 10 g/kg). In general the ponded ash required less dispersant. A model was developed for hydraulic classification. A pilot-scale hydraulic classifier was also designed and operated for the project. Product yields of up to 21% of feed solids were achieved with recoveries of <5 {micro}m particles as high as 64%. Mean particle sizes (D{sub 50}) of the ultra fine ash (UFA) products varied from 3.7 to 10 {micro}m. A patent was filed on the classifier design. A conceptual design of a Process Demonstration Unit (PDU) with a feed rate of 2 tons of raw ash feed per hour was also completed. Pozzolanic activity was determined for the UFA ashes in mortars. In general the overall strength index was excellent with values of 90% achieved in 3 days and {approx}100% in 7 days. Three types of thermoplastic polymers were evaluated with the UFA as a filler: high density polyethylene, thermoplastic elastomer and

  3. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available South Africa has abundant resources of high-ash and other low-quality coals. The aim of this work is to investigate the possibility of using fluidised bed gasification technology to convert these coals into clean fuel gas. The fuel gas can be used...

  4. The aluminium content of infant formulas remains too high

    OpenAIRE

    2013-01-01

    Background Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content ...

  5. Estimates of total ash content from 2006 and 2009 explosion events at Bezymianny volcano with use of a regional atmospheric modeling system

    Science.gov (United States)

    Moiseenko, K. B.; Malik, N. A.

    2014-01-01

    The December 24, 2006, and December 16, 2009, strong explosion events at Bezymianny Volcano (Kamchatka Peninsula) were accompanied by extensive ash-falls in proximal and medium-distal area (events and quantify effects of atmospheric dispersal, gravitational settling, and particle aggregation on the observed ash-fall deposit patterns. It was found that the orography-induced atmospheric disturbances provided first-order influence on ash dispersal regime in the events owing to enhanced turbulence rates in a free troposphere above mountains and low-level airflows generated by mesoscale pressure perturbations. A total mass of ash from these eruptions is inverted based on grain-size sample data and model-calculated Green's function for atmospheric transport with use of a multiple regression approach. We demonstrate that in the absence of precise data on individual and collective settling rates the proposed inversion technique, which explicitly constrains fall velocity spectrum within individual sieve classes and aggregated modes, provides more reliable estimate for total erupted mass compared to procedures employing constant shape factor or prescribed settling rates within the framework of a simple linear regression model.

  6. Effect of Climate Change on Service Life of High Volume Fly Ash Concrete Subjected to Carbonation—A Korean Case Study

    Directory of Open Access Journals (Sweden)

    Ki-Bong Park

    2017-01-01

    Full Text Available The increase in CO2 concentrations and global warming will increase the carbonation depth of concrete. Furthermore, temperature rise will increase the rate of corrosion of steel rebar after carbonation. On the other hand, compared with normal concrete, high volume fly ash (HVFA concrete is more vulnerable to carbonation-induced corrosion. Carbonation durability design with climate change is crucial to the rational use of HVFA concrete. This study presents a probabilistic approach that predicts the service life of HVFA concrete structures subjected to carbonation-induced corrosion resulting from increasing CO2 concentrations and temperatures. First, in the corrosion initiation stage, a hydration-carbonation integration model is used to evaluate the contents of the carbonatable material, porosity, and carbonation depth of HVFA concrete. The Monte Carlo method is adopted to determine the probability of corrosion initiation. Second, in the corrosion propagation stage, an updated model is proposed to evaluate the rate of corrosion, degree of corrosion for cover cracking of concrete, and probability of corrosion cracking. Third, the whole service life is determined considering both corrosion initiation stage and corrosion propagation stage. The analysis results show that climate change creates a significant impact on the service life of durable concrete.

  7. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  8. Modeling for Predicting the Flammable Content of Fly Ash Base on a Particle Swarm Optimized Back Propagation Neural Network%粒子群优化BP神经网络飞灰可燃物预测建模

    Institute of Scientific and Technical Information of China (English)

    吕太; 郭志清

    2013-01-01

    The magnitude of the flammable content of fly ash represents one of the important factors influencing the efficiency of a boiler and plays an important role in economic operation of the boiler. The authors optimized the linking weight value and threshold one between the nodes of a BP neural network by using the PSO (paricle swarm optimization) algorithm and established a BP neural network-based model optimized by using the PSO algorithm ( called as a PSO-BP model for short). The model can thoroughly give a full play of both overall optimization searching ability of the particle swarm optimization algorithm and the local searching edge of the BP algorithm. The operating parameters of a 670 t/h boiler were used to predict the flammable content of the flying ash. It has been found that compared with the BP neural network based model,the PSO-BP model is more precise and faster to come to a converging point, thus offering a feasible method for analyzing and predicting the flammable content of fly ash in large-sized utility boilers.%用PSO算法对BP神经网络结点间的连接权值和阈值进行优化,建立PSO优化BP神经网络模型(简称PSO-BP模型).此模型充分发挥了粒子群算法的全局寻优能力和BP算法的局部搜索优势.利用某670 t/h锅炉运行参数对锅炉飞灰可燃物进行预测.结果显示PSO-BP模型比BP神经网络模型预测值更精确,收敛速度更快,为大型电厂锅炉飞灰可燃物的分析和预测提供了一条可行的方法.

  9. Experimental study on fly ash capture mercury in flue gas

    Institute of Scientific and Technical Information of China (English)

    Mercedes; DíAZ-SOMOANO; Patricia; ABAD-VALLE; M.Rosa; MARTíNEZ-TARAZONA

    2010-01-01

    Systematic experiments were conducted on a fixed-bed reactor to investigate the interaction between fly ash and mercury,the results implied that fly ash can capture mercury effectively.Among different fly ashes,the unburned carbon in the FA2 and FA3 fly ashes has the highest mercury capture capacity,up to 10.3 and 9.36 μg/g,respectively,which is close to that of commercial activated carbon.There is no obvious relationship between mercury content and carbon content or BET surface area of fly ash.Petrography classification standard was applied to distinguish fly ash carbon particles.Carbon content is not the only variable that controls mercury capture on fly ash,there are likely significant differences in the mercury capture capacities of the various carbon forms.Mercury capture capacity mainly depends on the content of anisotropy carbon particles with porous network structure.

  10. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  11. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  12. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  13. Effect of fly ash composition on the sulfate resistance of concrete[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, R.D.; Thomas, M.D.A. [New Brunswick Univ., Fredericton, NB (Canada); Folliard, K.J.; Drimalas, T. [Texas Univ., Austin, TX (United States)

    2009-07-01

    Studies have shown that low-calcium Class F fly ashes obtained from burning coal in power stations can increase the sulfate resistance of Portland cement concrete. In many cases the sulfate resistance of concrete containing high-calcium Class C fly ash can be reduced compared to concrete without fly ash, due to the presence of crystalline C3A in the fly ash and calcium aluminate in the glass. This study investigated the differences in the glass composition and sulfate resistance of fly ashes with a range of calcium contents. The objective was to determine whether the behaviour of high-calcium fly ashes could be improved by blending with low-calcium fly ash. The sulfate resistance of cementitious systems consisting of a Type I Portland cement blended with Class F and Class C fly ashes of varying composition was evaluated by monitoring the length change of mortar bars stored in 5 per cent sodium sulfate solution. Scanning electron microscopy and electron dispersive X-ray analysis were used to characterize the glass phases of the fly ashes. The position occupied by the glass when plotted on a CaO-SiO{sub 2}-Al{sub 2}O{sub 3} ternary was identified as belonging to one of the fields occupied by the mineral phases mullite, anorthosite or gehlenite. The glass showed a transition from alumino-silicate in Class F fly ash to a calcium alumino-silicate or mixed calcium-aluminate/alumino-silicate in Class C fly ashes with higher calcium contents. Fly ashes with high amounts of calcium-aluminate glass had reduced sulfate resistance when tested in mortars. Blends of Class C and Class F fly ashes had better sulfate resistance than mixes made with only Class C fly ash. A relationship was established between the calcium oxide content of the blended fly ash and sulfate resistance of mortar. 8 refs., 5 tabs., 10 figs.

  14. The Effect of Commercial Rice Husk Ash Additives on the Porosity, Mechanical Properties, and Microstructure of Alumina Ceramics

    Directory of Open Access Journals (Sweden)

    Mohammed Sabah Ali

    2017-01-01

    Full Text Available A porous ceramic is made from composite materials which consist of alumina and commercial rice husk ash. This type of ceramics is obtained by mixing the commercial rice husk ash as a source of silica (SiO2 and a pore forming agent with alumina (Al2O3 powder. To obtain this type of ceramic, a solid-state technique is used with sintering at high temperature. This study also investigated the effects of the rice husk ash ratios on the mechanical properties, porosity, and microstructure. The results showed that, by increasing the content of the rice husk ash from 10 to 50 wt%, there is an increase in the porosity from 42.92% to 49.04%, while the mechanical properties decreased initially followed by an increase at 30 wt% and 50 wt%; the hardness at 20 wt% of the ash content was recorded at 101.90 HV1. When the ash content was increased to 30 wt% and 50 wt%, the hardness was raised to 150.92 HV1 and 158.93 HV1, respectively. The findings also revealed that the tensile and compressive strengths experienced a decrease at 10 wt% of the ash content and after that increase at 30 wt% and 50 wt% of rice husk ash. XRD analysis found multiple phases of ceramic formation after sintering for the different rice husk ash content.

  15. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Robl; J.G. Groppo; Robert Rathebone

    2005-12-14

    Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

  16. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.

    Science.gov (United States)

    Hui, K S; Chao, C Y H

    2006-09-01

    Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed.

  17. Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Yi Li; Fu-Shen Zhang [Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences

    2010-04-15

    Heterogeneous photo-Fenton process using an amorphous FeOOH as catalyst was studied to degrade Methyl Orange (MO) dye in aqueous solution. The amorphous FeOOH was prepared by dissolution and precipitation using a high iron-containing fly ash as raw material. The ash not only provided iron source but also acted as a supporter of amorphous FeOOH. Coating the fly ash particles with the amorphous FeOOH significantly enhanced the removal of MO, and 2.5 g of catalyst was sufficient to degrade 50 mg MO from 1 l of aqueous solution at pH 7.0 after 80 min. Oxidant concentration, solution pH, UV/dark/sunlight and recycling of the catalyst were investigated in order to evaluate the photo-Fenton effects. Moreover, variations of particle size before and after preparation, separation of solid-liquid and stability of the amorphous FeOOH in the catalyst were studied. It was testified that the amorphous FeOOH on the surface of fly ash was stable and the Fenton catalyst was easily separated from the aqueous system.

  18. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  19. Revegetation of lagoon ash using the legume species Acacia auriculiformis and Leucaena leucocephala.

    Science.gov (United States)

    Cheung, K C; Wong, J P; Zhang, Z Q; Wong, J W; Wong, M H

    2000-07-01

    A greenhouse study was conducted to evaluate the potential use of two legume species, Acacia auriculiformis and Leucaena leucocephala for growth on ameliorated lagoon ash with or without nitrogen (N(2))-fixing bacteria inoculation. Even though amendments of 30% (w/w) vermiculite or with sewage sludge compost were added to improve the chemical and physical limitations of lagoon ash, significant suppressions in biomass and plant nutrient content were found with ameliorated lagoon ash in comparison to an agricultural soil. The high proportion of clay-sized (<53 microm) ash particles limited root growth. In addition, heavy metal toxicity was a possible factor contributing to poor seedling growth. Higher plant productivity resulted from the sewage sludge compost-amended lagoon ash than with vermiculite due to a greater contribution of plant nutrients in the compost. Nodulation was inhibited in ameliorated lagoon ash but not in agricultural soil. High pH and electrical conductivity and elevated toxic metals may be important parameters that limit bacterial activity. Both species showed potential to establish on amended lagoon ash, with Acacia auriculiformis being the best adapted.

  20. Shedding light on filovirus infection with high-content imaging.

    Science.gov (United States)

    Pegoraro, Gianluca; Bavari, Sina; Panchal, Rekha G

    2012-08-01

    Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  1. Shedding Light on Filovirus Infection with High-Content Imaging

    Directory of Open Access Journals (Sweden)

    Rekha G. Panchal

    2012-08-01

    Full Text Available Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  2. Alkali-activation potential of biomass-coal co-fired fly ash

    OpenAIRE

    Shearer, C.R.; Provis, J.L.; Bernal, S.A.; Kurtis, K.E.

    2016-01-01

    Co-fired fly ash, derived from the co-combustion of coal and biomass, is examined as a potential precursor for geopolymers. Compared to a coal fly ash, two co-fired fly ashes have a lower vitreous content and higher carbon content, primarily due to differing combustion processing variables. As a result, binders produced with these co-fired fly ashes have reduced reaction potential. Nevertheless, compressive strengths are generally highest for all ashes activated with solutions with a molar ra...

  3. 锂渣复合粉煤灰高性能混凝土早期抗压强度影响因素的比较分析%The Comparative Analysis of Influence on the Early Compressive strength of lithium Slag Compound Fly Ash High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    周海雷; 杨恒阳; 努尔开力·依孜特罗甫; 侍克斌

    2012-01-01

    Lithium slag compound fly ash high performance concrete was made by the orthogonal experiment design method, the preparation of the use of poor analysis and variance analysis method to analyze the impact that the water-binder ratio, lithium slag mix content and the fly ash for lithium slag compound fly ash of high performance concrete compressive strength of the early. Lithium slag on lithium slag compound fly ash high performance concrete compressive strength has significance effects Dmng early. Dmng analysis of the poor, poor relative difference degree was introduced the concept.%运用正交试验设计的方法配制锂渣复合粉煤灰高性能混凝土,运用极差分析和方差分析的方法分析了水胶比、锂渣掺量和粉煤灰掺量对锂渣复合粉煤灰高性能混凝土的早期抗压强度的影响,得出锂渣较粉煤灰对锂渣复合粉煤灰高性能混凝土早期抗压强度影响显著.在进行极差分析时,引入了极差相对差异度这一概念.

  4. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  5. The utilisation of fly ash in CO2 mineral carbonation

    Directory of Open Access Journals (Sweden)

    Jaschik Jolanta

    2016-03-01

    Full Text Available The fixation of CO2 in the form of inorganic carbonates, also known as mineral carbonation, is an interesting option for the removal of carbon dioxide from various gas streams. The captured CO2 is reacted with metal-oxide bearing materials, usually naturally occurring minerals. The alkaline industrial waste, such as fly ash can also be considered as a source of calcium or magnesium. In the present study the solubility of fly ash from conventional pulverised hard coal fired boilers, with and without desulphurisation products, and fly ash from lignite fluidised bed combustion, generated by Polish power stations was analysed. The principal objective was to assess the potential of fly ash used as a reactant in the process of mineral carbonation. Experiments were done in a 1 dm3 reactor equipped with a heating jacket and a stirrer. The rate of dissolution in water and in acid solutions was measured at various temperatures (20 - 80ºC, waste-to-solvent ratios (1:100 - 1:4 and stirrer speeds (300 - 1100 min-1. Results clearly show that fluidised lignite fly ash has the highest potential for carbonation due to its high content of free CaO and fast kinetics of dissolution, and can be employed in mineral carbonation of CO2.

  6. Bacterial Treatment and Metal Characterization of Biomedical Waste Ash

    Directory of Open Access Journals (Sweden)

    Shelly Heera

    2014-01-01

    Full Text Available Biomedical waste ash generated due to the incineration of biomedical waste contains large amounts of heavy metals and polycyclic aromatic hydrocarbons (PAHs, which is disposed of in regular landfills, and results in unfavorable amounts of hazardous materials seeping into the ground and may pollute surface water and groundwater. Therefore, it is essential to remove the toxicity of ash before disposal into landfills or reutilization. Environmental characteristic analysis of BMW ash showed increased hardness (1320 mg/L and chloride (8500 mg/L content in leachate compared to World Health Organization (WHO and Environment Protection Agency (EPA guidelines for drinking water (hardness, 300 mg/L; chloride, 250 mg/L. The alkalinity and pH of the ash leachate were 400 mg/L and 8.35, respectively. In this paper, study was carried out to investigate the metal tolerance level of bacterial isolates isolated from soil. The isolate Bacillus sp. KGMDI can tolerate up to 75 mg/L of metal concentration (Mn, Mo, Cr, Fe, Cu, and Zn in enriched growth medium. This shows that the isolated culture is capable of growing in presence of high concentration of heavy metals and acts as potential biological tool to reduce the negative impact of BMW ash on the environment during landfilling.

  7. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y.Chen; X.Chen; 等

    2003-01-01

    The microstructure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the in-fluence of different carbon content.The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elon-gation.Besides,new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.

  8. Evaluation of dissolution rate on high plutonium content MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shinichi; Kurita, Ichiro; Endo, Hideo; Higuchi, Hidetoshi; Kihara, Yoshiyuki [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Ogasawara, Masahiro; Shinada, Masanori; Kowata, Masato [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2002-06-01

    The dissolution rate of high Pu content MOX fuel into nitric acid was measured as a function of Pu content. MOX fuel samples, pressed and sintered, were dissolved in 7 M of boiling nitric acid, and the dissolution rate was measured by analyzing the Pu and U concentration in the solution. The dissolution rate of MOX fuel tended to decrease with the increase in the Pu content and was reduced after 6 hours of dissolution. These results agreed well with previous ones, but the dissolution rate was 3-6 times faster than those. It is estimated that the cause of this difference was due to underestimation of the surface area of MOX fuel powder and the difference of the MOX O/M ratio. (author)

  9. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  10. Developmental toxicity assay using high content screening of zebrafish embryos.

    Science.gov (United States)

    Lantz-McPeak, Susan; Guo, Xiaoqing; Cuevas, Elvis; Dumas, Melanie; Newport, Glenn D; Ali, Syed F; Paule, Merle G; Kanungo, Jyotshna

    2015-03-01

    Typically, time-consuming standard toxicological assays using the zebrafish (Danio rerio) embryo model evaluate mortality and teratogenicity after exposure during the first 2 days post-fertilization. Here we describe an automated image-based high content screening (HCS) assay to identify the teratogenic/embryotoxic potential of compounds in zebrafish embryos in vivo. Automated image acquisition was performed using a high content microscope system. Further automated analysis of embryo length, as a statistically quantifiable endpoint of toxicity, was performed on images post-acquisition. The biological effects of ethanol, nicotine, ketamine, caffeine, dimethyl sulfoxide and temperature on zebrafish embryos were assessed. This automated developmental toxicity assay, based on a growth-retardation endpoint should be suitable for evaluating the effects of potential teratogens and developmental toxicants in a high throughput manner. This approach can significantly expedite the screening of potential teratogens and developmental toxicants, thereby improving the current risk assessment process by decreasing analysis time and required resources.

  11. The Use of Coal Bottom Ash In Hot Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Charles Begyina Kodjo Nketsiah

    2015-05-01

    Full Text Available Bottom ash is a waste material from coal burnt to generate electric power. It is incombustible and non-biodegradable; hence, the best way to dispose it is by recycling rather than incineration and land filling. Past research on bottom ash in road building have focused mainly on embankment filling, sub-base and base courses; except boiler slag which has received much attention in Hot Mix Asphalt (HMA. Bottom ash from Tanjung Bin Power Station was thus investigated through laboratory testing to justify its use in HMA construction in Malaysia. This Paper analysed the data with regards to performance in HMA. In the Marshall Mix design, the material largely satisfied the Stability, Flow and Stiffness requirements which were comparable to that of conventional aggregates, although void contents were a bit higher. When blended with granite, all the parameters were met. Contrary to past suggestions that bottom ash in HMA consumes more bitumen, the 6.4% (51.20g Optimum Bitumen Content (OBC achieved in this study does not necessarily translate into high consumption, compared to OBC of 5.3% (59.63g in the case of granite. The HMA also proved to be highly resistant to moisture-induced damage and satisfied the minimum JKR specification for Static Uniaxial Load Strain.

  12. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water.

    Science.gov (United States)

    Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu

    2012-09-01

    To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10.

  13. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Science.gov (United States)

    Nakadi, Flávio V.; Rosa, Lilian R.; da Veiga, Márcia A. M. S.

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL- 1, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method.

  14. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  15. Molecular Dynamics of Materials Possessing High Energy Content.

    Science.gov (United States)

    1988-01-26

    I -RI90 634 MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY 1/1 r CONTENTCU) COLUMBIA UNIV MENd YORK N J TURRO 26 JAN GO I RFOSR-TR-88-0168...Bolling Air Force Base, D.C. 2 61102F_ 2303 I B2 11 T,TL.E (Inciuoe Security Classification) Molecular Dynamics of Materials Possessing High Energy...York 10027 (212) 280-2175 TITLE: MOLECULAR DYNAMICS OF MATERIALS POSSESSING HIGH ENERGY CONTENT .. 0 0 88 2 ... "" ’% ,i u , . .. .. ....... ŝ" ;! ,i

  16. Information management for high content live cell imaging

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2009-07-01

    Full Text Available Abstract Background High content live cell imaging experiments are able to track the cellular localisation of labelled proteins in multiple live cells over a time course. Experiments using high content live cell imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders identification of previously gathered data that may be relevant to current analyses. Whilst solutions exist for managing image data, they are primarily concerned with storage and retrieval of the images themselves and not the data derived from the images. There is therefore a requirement for an information management solution that facilitates the indexing of experimental metadata and results of high content live cell imaging experiments. Results We have designed and implemented a data model and information management solution for the data gathered through high content live cell imaging experiments. Many of the experiments to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to nucleus in individual cells. The functionality of this database has been enhanced by the addition of an algorithm that automatically annotates results of these experiments with the timings of translocations and periods of any oscillatory translocations as they are uploaded to the repository. Testing has shown the algorithm to perform well with a variety of previously unseen data. Conclusion Our repository is a fully functional example of how high throughput imaging data may be effectively indexed and managed to address the requirements of end users. By implementing the automated analysis of experimental results, we have provided a clear impetus for individuals to ensure that their data forms part of that which is stored in the repository. Although focused on imaging, the solution provided is sufficiently generic to be applied to other functional proteomics and genomics experiments. The software is available from: fhttp://code.google.com/p/livecellim/

  17. The potential of four woody species for the revegetation of fly ash deposits from the ‘Nikola Tesla-a’ thermoelectric plant (Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    Kostić Olga

    2012-01-01

    Full Text Available Four woody species, Tamarix tentandra Pallas, Populus alba L. and Robinia pseudoacacia L. (planted and Amorpha fruticosa L. (naturally colonized were studied at two fly ash deposit lagoons, weathered 3 (L1 and 11 years (L2. All species were assessed in terms of their invasive ability, photosynthetic efficiency, photosynthetic pigments and damage symptoms, while the characteristics of the habitat were assessed in terms of trace element content and the pH and EC of the ash. A reduced vitality of all populations growing on the ash was observed, except for the naturally colonized A. fruticosa. High vitality on all sites, except at L2, increased chlorophyll content and absence of damage symptoms indicates a tolerance in relation to the uptake of toxic elements from the ash. Therefore, the characteristics of naturally colonized species can be used for modeling future actions of biological restoration of fly ash deposits.

  18. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    OpenAIRE

    A. Kylling; Kahnert, M.; Lindqvist, H.; T. Nousiainen

    2013-01-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furtherm...

  19. Removal of phosphate from aqueous solution by zeolite synthesized from fly ash.

    Science.gov (United States)

    Chen, Jiangang; Kong, Hainan; Wu, Deyi; Hu, Zhanbo; Wang, Zaosheng; Wang, Yanhua

    2006-08-15

    Fifteen Chinese fly ashes were converted hydrothermally into zeolites, and phosphate immobilization capacity (PIC) of the synthesized zeolites and the corresponding raw fly ashes were determined using an initial phosphate concentration of 1000 mg/L. Results showed that there was a remarkable increase in PIC (from 1.2 to 7.6 times) following the synthesis process. Fractionation of immobilized phosphorus indicated that Fe+Al-P increased most significantly and consistently among all the phosphorus fractions following the conversion of fly ash to zeolite. The PIC and Ca+Mg-P were closely related to Ca content (with r values of 0.9683 and 0.9651, respectively) rather than Mg content (with r values of 0.3920 and 0.3212, respectively). The r values of PIC and Fe+Al-P with Fe content (with r values of 0.4686 and 0.6385, respectively) were higher than those with Al content (with r values of -0.7857 and -0.3770, respectively). Although calcium and iron components were mainly involved in phosphate immobilization, there was no significant change of Ca and Fe content following the conversion of fly ash to zeolite. Increase in dissociated Fe(2)O(3) and specific surface area probably accounted for the enhancement in PIC of synthesized zeolites compared with corresponding fly ashes. The PIC value of zeolites showed a significant correlation with dissociated Fe(2)O(3) (r=0.6186). The specific surface area increased 26.0-89.4 times as a result of the conversion of fly ash to zeolite. The maximum removal of phosphate occurred within different pH ranges for zeolites which were synthesized from high, medium and low calcium fly ashes and this behavior was explained by the reaction of phosphate with calcium and iron components.

  20. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    Science.gov (United States)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  1. Aggressive content of high school students' TV viewing.

    Science.gov (United States)

    Yoon, Jina S; Somers, Cheryl L

    2003-12-01

    The purpose of this study was to examine high school students' exposure to television programming with aggressive content and to explore whether consumption of aggressive TV varied by sex and ethnicity. Participants were 472 boys and girls from two high schools, one urban and one suburban. Definitions of both direct and indirect aggression were used to rate TV programs, and the participants' exposure to both was assessed. Analysis yielded a statistically significant effect for sex but not ethnicity as girls watched more TV programs containing indirect aggression. Also, exposure to aggressive TV content peaked in Grade 10 and fell sharply thereafter. The importance of educating adolescents about the images they view is highlighted. Implications for research are discussed.

  2. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  3. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  4. The aluminium content of infant formulas remains too high.

    Science.gov (United States)

    Chuchu, Nancy; Patel, Bhavini; Sebastian, Blaise; Exley, Christopher

    2013-10-08

    Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium.

  5. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Peter; Fleige, Heiner; Horn, Rainer [Inst. for Plant Nutrition and Soil Science, Christian-Albrechts-Univ. zu Kiel (Germany)

    2010-03-15

    Background, aim, and scope: From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, 'how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?' Materials and methods: The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm{sup 3}). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment. Results: The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha{sup -1}. The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated

  6. Determination of Content of Nitrate Removal of Ammonia in Ash of Boiler Flue Gas of Coal-ifred Units%燃煤机组锅炉烟气脱硝灰中氨含量测定

    Institute of Scientific and Technical Information of China (English)

    刘政修

    2015-01-01

    NOx is one of the main pollutants in the atmospheric environment, which is mainly from the thermal power generating units. Rely on low nitrogen combustion technology, far less than the emission requirements. Selective catalytic reduction (SCR) technology is the power plant flue gas DeNOx Technology is currently the most widely the highest efficiency and most mature, application. At present, online ammonia escape monitoring technology has many problems, affecting the ammonia escape the accuracy and stability of the monitoring data. In determining the type of fuel, furnace structure, the arrangement of heating surface, excess air, furnace air distribution and denitration catalyst type and other conditions, good control of ammonia addition amount and escape volume is the key to guarantee the NOx removal rate. Coal-fired boiler dust fly ash ammonia content can reflect the denitration ammonia escape rate conditions. According to foreign reports, under normal circumstances, the ammonia content in flue dust electricity is generally in the range of 50mg/kg-100mg/kg. The determination method of ammonia is no ash in domestic, no denitrification operation of fly ash containing ammonia affects the amount of accumulated data. In this paper, through a lot of experiments, the conditions of ammonia dissolved in ash determined (such as dissolution time, mixing state, cement water ratio, ash sample quantity and stability), developed methods for determination of ammonia in ash.%NOx是大气环境的主要污染物之一,其主要来源为火力发电机组。依靠低氮燃烧技术,远达不到排放要求。选择性催化还原脱硝(简称SCR)技术是目前效率最高、最成熟、应用最广泛的电厂烟气脱硝技术。目前,在线氨逃逸监测技术存在诸多问题,影响了氨逃逸监测数据的准确度和稳定性。在燃料种类、炉膛结构、受热面布置、过量空气量、炉膛气流分布以及脱硝催化剂类型等条件确定的情

  7. Engineering properties for high kitchen waste content municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    Wu Gao; Yunmin Chen; Liangtong Zhan; Xuecheng Bian

    2015-01-01

    Engineering properties of municipal solid waste (MSW) depend largely on the waste’s initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW). After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings were obtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field ca-pacities of decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3) compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorter duration and a lower potential capacity; (4) the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  8. Liquid alternative diesel fuels with high hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Hancsok, Jenoe; Varga, Zoltan; Eller, Zoltan; Poelczmann, Gyoergy [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon Processing; Kasza, Tamas [MOL Hungarian Oil and Gas Plc., Szazhalombatta (Hungary)

    2013-06-01

    Mobility is a keystone of the sustainable development. In the operation of the vehicles as the tools of mobility internal combustion engines, so thus Diesel engines will play a remarkable role in the next decades. Beside fossil fuels - used for power these engines - liquid alternative fuels have higher and higher importance, because of their known advantages. During the presentation the categorization possibilities based on the chronology of their development and application will be presented. The importance of fuels with high hydrogen content will be reviewed. Research and development activity in the field of such kind of fuels will be presented. During this developed catalytic systems and main performance properties of the product will be presented which were obtained in case of biogasoils produced by special hydrocracking of natural triglycerides and in case of necessity followed by isomerization; furthermore in case of synthetic biogasoils obtained by the isomerization hydrocracking of Fischer-Tropsch paraffins produced from biomass based synthesis gas. Excellent combustion properties (cetane number > 65-75), good cold flow properties and reduced harmful material emission due to the high hydrogen content (C{sub n}H{sub 2n+2}) are highlighted. Finally production possibilities of linear and branched paraffins based on lignocelluloses are briefly reviewed. Summarizing it was concluded that liquid hydrocarbons with high isoparaffin content are the most suitable fuels regarding availability, economical and environmental aspects, namely the sustainable development. (orig.)

  9. Engineering properties for high kitchen waste content municipal solid waste

    Directory of Open Access Journals (Sweden)

    Wu Gao

    2015-12-01

    Full Text Available Engineering properties of municipal solid waste (MSW depend largely on the waste's initial composition and degree of degradation. MSWs in developing countries usually have a high kitchen waste content (called HKWC MSW. After comparing and analyzing the laboratory and field test results of physical composition, hydraulic properties, gas generation and gas permeability, and mechanical properties for HKWC MSW and low kitchen waste content MSW (called LKWC MSW, the following findings were obtained: (1 HKWC MSW has a higher initial water content (IWC than LKWC MSW, but the field capacities of decomposed HKWC and LKWC MSWs are similar; (2 the hydraulic conductivity and gas permeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3 compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG generation rate but a shorter duration and a lower potential capacity; (4 the primary compression feature for decomposed HKWC MSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation of HKWC MSW is greater than that of LKWC MSW; and (5 the shear strength of HKWC MSW changes significantly with time and strain. Based on the differences of engineering properties between these two kinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including high leachate production, high leachate mounds, low LFG collection efficiency, large settlement and slope stability problem, and corresponding advice for the management and design of HKWC MSW landfills was recommended.

  10. Quantitative Phase Development of crystalline, nano-crystalline and amorphous phases during hydration of OPC blended with siliceous fly ash

    OpenAIRE

    Dittrich, Sebastian

    2015-01-01

    Ambitious efforts driven by political and environmental considerations to reduce carbon dioxide emission are currently present, amongst other branches in the construction material industry as well. One possible solution concentrates on the replacement of cement by supplementary cementitious materials like fly ash or granulated blast furnace slag. Due to its high amorphous phase content and the related reactivity potential fly ash seems well suited for being used in cement or concrete. Unfortu...

  11. Soil quality in a cropland soil treated with wood ash containing charcoal

    Science.gov (United States)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined

  12. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    OpenAIRE

    A. Kylling; Kahnert, M.; Lindqvist, H.; T. Nousiainen

    2014-01-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent sp...

  13. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Mehrali, Mohammad

    2016-01-01

    As a ceramic-like material, geopolymers show a high quasi-brittle behavior and relatively low fracture energy. To overcome this, the addition of fibers to a brittle matrix is a well-known method to improve the flexural strength. Moreover, the success of the reinforcements is dependent on the fibe...

  14. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing.

    Science.gov (United States)

    Arnquist, Isaac J; Hoppe, Eric J; Bliss, Mary; Grate, Jay W

    2017-03-07

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for (232)Th and (238)U, respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for (232)Th and 2 pg/g for (238)U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  15. Mass Spectrometric Determination of Uranium and Thorium in High Radiopurity Polymers Using Ultra Low Background Electroformed Copper Crucibles for Dry Ashing

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Hoppe, Eric J.; Bliss, Mary; Grate, Jay W.

    2017-02-21

    A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of 1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, 2) dissolving both the ash and the boat in acid, 3) performing a column separation to remove copper, and 4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to μBq/kg of material. Samples of biomedical polyester (Max-Prene® 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for Th and U respectively. These levels correspond to 25 and 25 μBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for Th and 2 pg/g for U, corresponding to 4 and 25 μBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries, and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

  16. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  17. Mosses accumulate heavy metals from the substrata of coal ash

    OpenAIRE

    Vukojević Vanja; Sabovljević Marko; Jovanović S.

    2005-01-01

    Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators) can be used for phytoremediation (removal of contaminants from soils) or phytomining (growing a crop of plants to harvest the metals). Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia). The content of various heavy meta...

  18. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  19. ASH position paper: Adherence and persistence with taking medication to control high blood pressure.

    Science.gov (United States)

    Hill, Martha N; Miller, Nancy H; DeGeest, Sabina

    2010-10-01

    Nonadherence and poor or no persistence in taking antihypertensive medications results in uncontrolled high blood pressure, poor clinical outcomes, and preventable health care costs. Factors associated with nonadherence are multilevel and relate not only to the patient, but also to the provider, health care system, health care organization, and community. National guideline committees have called for more aggressive approaches to implement strategies known to improve adherence and technologies known to enable changes at the systems level, including improved communication among providers and patients. Improvements in adherence and persistence are likely to be achieved by supporting patient self-management, a team approach to patient care, technology-supported office practice systems, better methods to measure adherence, and less clinical inertia. Integrating high blood pressure control into health care policies that emphasize and improve prevention and management of chronic illness remains a challenge. Four strategies are proposed: focusing on clinical outcomes; empowering informed, activated patients; developing prepared proactive practice teams; and advocating for health care policy reform. With hypertension remaining the most common reason for office visits, the time is now.

  20. Associative properties of {sup 137}Cs in biofuel ashes

    Energy Technology Data Exchange (ETDEWEB)

    Ravila, A.; Holm, E. [Lund Univ. (Sweden). Dept. of Radiation Physics

    1999-07-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash.

  1. SYNTHESIS AND CHARACTERIZATION OF HIGH BELITE SULFOALUMINATE CEMENT THROUGH RICH ALUMINA FLY ASH AND DESULFURIZATION GYPSUM

    Directory of Open Access Journals (Sweden)

    BING MA,

    2013-03-01

    Full Text Available The objective of this study was the preparation and characterization of high belite sulfoaluminate cement (HBSC from industrial residues. HBSC promises eco-friendly building materials with great mechanical performance at earlier ages than Ordinary Portland Cement (OPC. Preliminary results show the formation of main phase dicalcium silicate (C2S and ye’elimite (C4A3$ at 1250°C, as determined by X-ray diffraction (XRD, are promising. The formation of minerals in the clinker was analyzed by differential scanning calorimetry-thermogravimetry (DSC–TG. Likewise, Scanning electron microscope (SEM and XRD were used to carry out the analysis of the micro-structural and hydration products. The main HBSC hydration products, Ettringite and amorphous Al(OH3, were formed in the early stages; however, during the later stages, monosulfate and Strätlingite were formed. Isothermal conduction calorimetry measurements indicate that hydration properties of the cements are comparable to OPC; the total hydration heat after 3 days was 438 J/g. The optimum compressive strength values of the mortars after 1-, 3-, 7-, and 28-days were 24.9 MPa, 33.2 MPa, 35.6 MPa and 52.8 MPa which can meet the requirement of special structures.

  2. Investigation of basic properties of fly ash from urban waste incinerators in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-guo; XU Xin; WANG Jun; YANG Shi-jian; ZHANG Yan

    2007-01-01

    Basic properties of fly ash samples from different urban waste combustion facilities in China were analyzed using as X-ray fluorescence(XRF), scanning electron microscopy(SEM),X-ray diffraction(XRD). The leaching toxicity procedure and some factors influencing heavy metals distribution in fly ash were further investigated. Experimental results indicate that the fly ash structures are complex and its properties are variable. The results of XRF and SEM revealed that the major elements (>10000 mg/kg, listed in decreasing order of abundance) in fly ash are O, Ca,Cl, Si, S, K, Na, Al, Fe and Zn. These elements account for 93% to 97%, and the content of Cl ranges from 6.9% to 29%, while that of SiO2 does from 4.48% to 24.84%. The minor elements (1000 to 10000mg/kg) include Cr, Cu and Pb. Primary heavy metals in fly ash include Zn, Pb, Cr, Cu etc. According to standard leaching test, heavy metal leaching levels vary from 0 to 163.1 mg/L (Pb) and from 0.049 to 164.9 mg/L (Zn), mostly exceeding the Chinese Identification Standard for hazardous wastes. Morphology of fly ash is irregular, with both amorphous structures and polycrystalline aggregates. Further research showed that heavy metals were volatilized at a high furnace temperature, condensed when cooling down during the post-furnace system and captured at air pollution control systems. Generally, heavy metals are mainly present in the forms of aerosol particulates or tiny particulates enriched on surfaces of fly ash particles. The properties of fly ash are greatly influenced by the treatment capacities of incinerators or the variation of waste retention time in chamber. Fly ash from combustors of larger capacities generally has higher contents of volatile component and higher leaching toxicity, while those of smaller capacities often produce fly ash containing higher levels of nonvolatile components and has lower toxicity. The content of heavy metals and leaching toxicity maybe have no convincing correlation, and

  3. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007......; Race, 2001; Ramsden, 2003). This trend appears closely related to the ‘from-teaching-to-learning’ movement, which has had a strong influence on pedagogy since the early nineties (Keiding, 2007; Terhart, 2003). Another interpretation of the current interest in methodology can be derived from...... for selection of content (Klafki, 1985, 2000; Myhre, 1961; Nielsen, 2006). These attempts all share one feature, which is that criteria for selection of content appear very general and often, more or less explicitly, deal with teaching at the first Bologna-cycle; i.e. schooling at the primary and lower...

  4. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  5. Fruit characterization of high oil content avocado varieties

    Directory of Open Access Journals (Sweden)

    Gómez-López Vicente Manuel

    2002-01-01

    Full Text Available To expand the data bank on avocado (Persea americana Mill. varieties all over the world, and to select good varieties for commercial or improving purposes, a partial fruit characterization of 13 high oil content (11.23-18.80% was performed. The chosen varieties are growing in a Venezuelan germplasm bank: Fuerte, Peruano, Lula, Ortega, Red Collinson, Alcemio, Araira 1, Pope, Ettinger, Gripiña 5, Barker, Duke, and Ryan. They were characterized for pulp oil and moisture; weight (whole fruit, seed, pulp and peel; length, width and fruit shape; peel characteristics (roughness, color and hand peeling; and ripeness time. The variety Ryan showed the highest oil content (18.80% and calorific value (191 Kcal/100 g wet flesh. Avocado varieties grown in Venezuela have generally less oil content and are generally lighter than those from other countries. Most of the varieties had low pulp proportion, and were pyriform, with rough green peel and difficult to hand peel. Red Collinson had an uncommon reddish peel. The ripening time was between 4 and 10 days after harvest.

  6. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    In an earlier study, financed by Varmeforsk, 'Q4-238 Environmental guidelines for reuse of ash in civil engineering applications', the total content of arsenic and lead was shown to determine whether or not reuse of some of the ashes in construction work is feasible. The model used to calculate the guidelines uses the total concentration of metals to evaluate the health risks resulting from exposure to the ashes. The use of total concentration can lead to overly conservative risk assessments if a significant fraction of the total metal content is not bioavailable. Better precision in the risk assessment can be given by the use of the bioavailable fraction of arsenic and lead in the model. As a result, ashes which are rejected on the basis of total metal concentration may be acceptable for use in engineering construction when the assessment is based on the bioavailable fraction. The purpose of the study was to (i) compile information on the oral bioavailability of arsenic, antimony and a selection of metals in ashes and similar materials, and on in vitro methods for determination of oral bioavailability, and (ii) experimentally estimate oral bioavailability of arsenic, antimony and some metals in a selection of ashes by analysis of the gastrointestinal bioaccessibility of these elements. The investigated elements were antimony, arsenic, lead, cadmium, copper, chromium, nickel and zinc. In the literature study performed within the project a number of static and dynamic in vitro methods simulating gastrointestinal processes of contaminants were compiled. The methods include one or several segments, i.e. mouth, stomach and intestine. Among the compiled methods, the RIVM (Rijksinstituut voor volksgesundheid en milieu) in vitro method was used in the experimental part of the project. The advantages with the method was that: the method to a high degree mimicked the human gastrointestinal processes (the method included three segments mouth, stomach, and intestine

  7. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; P.H. Li; S.K. Pu; Z.X. Yuan; B.F. Xu; D.X. Lou; A.M. Guo; S.B.Zhou

    2003-01-01

    The microstructure and mechanical properties of new kind of hot-rolled high strengthand high elongation steels with retained austenite were studied by discussing the in-fluence of different carbon content. The research results indicate that carbon contenthas a significant effect on retaining austenite and consequently resulting in high elon-gation. Besides, new findings about relationship between carbon content and retainedaustenite as well as properties were discussed in the paper.

  8. State of volcanic ash dispersion prediction

    Science.gov (United States)

    Eliasson, Jonas; Palsson, Thorgeir; Weber, Konradin

    2017-04-01

    The Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions created great problems for commercial aviation in Western Europe and in the North Atlantic region. Comparison of satellite images of the visible and predicted ash clouds showed the VAAC prediction to be much larger than the actual ash clouds. No official explanation of this discrepancy exists apart from the definition of the ash cloud boundary. Papers on simulation of the Eyjafjallajökull ash cloud in peer reviewed journals, typically attempted to simulate the VAAC predictions rather than focusing on the satellite pictures. Sporadic measurements made in-situ showed much lower ash concentrations over Europe than the predicted values. Two of the weak points in ash cloud prediction have been studied in airborne measurements of volcanic ash by the Universities in Kyoto Japan, Iceland and Düsseldorf Germany of eruptions in Sakurajima, Japan. It turns out that gravitational deformation of the plume and a streak fallout process make estimated ash content of clouds larger than the actual, both features are not included in the simulation model. Tropospheric plumes tend to ride in stable inversions this causes gravitational flattening (pancaking) of the volcanic plume, while diffusion in the mixing layer is insignificant. New rules from ICAO, effective from November 2014, reiterate that jetliners should avoid visible ash, this makes information on visible ash important. A procedure developed by JMÁs Tokyo VAAC uses satellite images of visible ash to correct the prediction. This and the fact that meteorological data necessary to model gravitational dispersion and streak fallout do not exist in the international database available to the VAAĆs. This shows that close monitoring by airborne measurements and satellite and other photographic surveillance is necessary.

  9. Image analysis benchmarking methods for high-content screen design.

    Science.gov (United States)

    Fuller, C J; Straight, A F

    2010-05-01

    The recent development of complex chemical and small interfering RNA (siRNA) collections has enabled large-scale cell-based phenotypic screening. High-content and high-throughput imaging are widely used methods to record phenotypic data after chemical and small interfering RNA treatment, and numerous image processing and analysis methods have been used to quantify these phenotypes. Currently, there are no standardized methods for evaluating the effectiveness of new and existing image processing and analysis tools for an arbitrary screening problem. We generated a series of benchmarking images that represent commonly encountered variation in high-throughput screening data and used these image standards to evaluate the robustness of five different image analysis methods to changes in signal-to-noise ratio, focal plane, cell density and phenotype strength. The analysis methods that were most reliable, in the presence of experimental variation, required few cells to accurately distinguish phenotypic changes between control and experimental data sets. We conclude that by applying these simple benchmarking principles an a priori estimate of the image acquisition requirements for phenotypic analysis can be made before initiating an image-based screen. Application of this benchmarking methodology provides a mechanism to significantly reduce data acquisition and analysis burdens and to improve data quality and information content.

  10. Temporal variations in the constituents of volcanic ash and adherent water-soluble components in the Unzen Fugendake eruption during 1990-1991

    Science.gov (United States)

    Nogami, K.; Hirabayashi, J.; Ohba, T.; Ossaka, J.; Yamamoto, M.; Akagi, S.; Ozawa, T.; Yoshida, M.

    2001-07-01

    A change in the chemical compositions of volcanic gases is one of the noticeable phenomena that frequently occurs prior to an eruption. Analysis of the water-soluble components adhering to volcanic ash is available for remote monitoring of volcanic gases from inaccessible volcanoes. It is a secure method for monitoring volcanic activity without using particular devices. Prolonged volcanic eruption at the Unzen Fugendake volcano from 1990 to 1995 started with a phreatic eruption after 198 years of dormancy. Volcanic activity changed from a phreatic and phreatomagmatic eruption to a magmatic eruption with pyroclastic flows in May 1991. The relationship between the chemical composition of volcanic ash and the contents of the water-soluble components adhering to it are discussed in relation to the early stage of the long-term eruption. Volcanic ash ejected by phreatic and phreatomagmatic eruption before dome formation was the product of the alteration in the volcanoclastic materials beneath the surface. The ash had a high content of water-soluble components, which was caused by the absorption of hydrogen chloride and sulfur dioxide gases from magma into wet debris before dome formation. Volcanic ashes which were generated by pyroclastic flows after dome formation were fresh lava fragments. While the contents of water-soluble sulfate adhering to the ash noticeably decreased, those of water-soluble chloride adhering to the ash hardly decreased. The considerable decrease in the contents of water-soluble sulfate was caused by the reaction of volcanic gases with dry lava fragments. Contrary to this, the concentration of hydrogen chloride gas in ash clouds was extremely high, which obstructed the decrease in the water-soluble chloride content in the ash. Volatility of chlorine and sulfur from volcanic rock suggests that the inner temperature of pyroclastic flows was higher than 600~700° C at least.

  11. Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump.

    Science.gov (United States)

    Eze, Chuks P; Nyale, Sammy M; Akinyeye, Richard O; Gitari, Wilson M; Akinyemi, Segun A; Fatoba, Olanrewaju O; Petrik, Leslie F

    2013-11-15

    The mobility of species in coal fly ash (FA), co-disposed with brine using a wet ash handling system, from a coal fired power generating utility has been investigated. The study was conducted in order to establish if the wet ash dump could act as a salt sink. The ash was dumped as a slurry with 5:1 brine/ash ratio and the dam was in operation for 20 years. Weathered FA samples were collected along three cores at a South African power station's wet ash dump by drilling and sampling the ash at 1.5 m depth intervals. A fresh FA sample was collected from the hoppers in the ash collection system at the power station. Characterization of both fresh FA and weathered FA obtained from the drilled cores S1, S2 and S3 was done using X-ray diffraction (XRD) for mineralogy, X-ray fluorescence (XRF) for chemical composition and scanning electron microscopy (SEM) for morphology. Analysis of extracted pore water and moisture content determination of the fresh FA and the weathered FA obtained from the drilled cores S1, S2 and S3 was done in order to evaluate the physico-chemical properties of the FA. The XRD analysis revealed changes in mineralogy along cores S1, S2 and S3 in comparison with the fresh FA. The SEM analysis revealed spherical particles with smooth outer surfaces for the fresh FA while the weathered ash samples obtained from cores S1, S2 and S3 consisted of agglomerated, irregular particles appearing to be encrusted, etched and corroded showing that weathering and leaching had occurred in the ash dump. The moisture content (MC) analysis carried out on the fresh FA (1.8%) and the weathered FA obtained from the drilled cores S1 (41.4-73.2%), S2 (30.3-94%) and S3 (21.7-76.2%)indicated that the ash dump was water logged hence creating favourable conditions for leaching of species. The fresh fly ash (n = 3) had a pH of 12.38 ± 0.15, EC value of 4.98 ± 0.03 mS/cm and TDS value of 2.68 ± 0.03 g/L, the pH of the drilled core S1 (n = 45) was 10.04 ± 0

  12. Toxicity of waste gasification bottom ash leachate.

    Science.gov (United States)

    Sivula, Leena; Oikari, Aimo; Rintala, Jukka

    2012-06-01

    Toxicity of waste gasification bottom ash leachate from landfill lysimeters (112 m(3)) was studied over three years. The leachate of grate incineration bottom ash from a parallel setup was used as reference material. Three aquatic organisms (bioluminescent bacteria, green algae and water flea) were used to study acute toxicity. In addition, an ethoxyresorufin-O-deethylase (EROD) assay was performed with mouse hepatoma cells to indicate the presence of organic contaminants. Concentrations of 14 elements and 15 PAH compounds were determined to characterise leachate. Gasification ash leachate had a high pH (9.2-12.4) and assays with and without pH adjustment to neutral were used. Gasification ash leachate was acutely toxic (EC(50) 0.09-62 vol-%) in all assays except in the algae assay with pH adjustment. The gasification ash toxicity lasted the entire study period and was at maximum after two years of disposal both in water flea (EC(50) 0.09 vol-%) and in algae assays (EC(50) 7.5 vol-%). The grate ash leachate showed decreasing toxicity during the first two years of disposal in water flea and algae assays, which then tapered off. Both in the grate ash and in the gasification ash leachates EROD-activity increased during the first two years of disposal and then tapered off, the highest inductions were observed with the gasification ash leachate. The higher toxicity of the gasification ash leachate was probably related to direct and indirect effects of high pH and to lower levels of TOC and DOC compared to the grate ash leachate. The grate ash leachate toxicity was similar to that previously reported in literature, therefore, confirming that used setup was both comparable and reliable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characteristics of element distributions in an MSW ash melting treatment system.

    Science.gov (United States)

    Sekito, T; Dote, Y; Onoue, K; Sakanakura, H; Nakamura, K

    2014-09-01

    Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion...... fly ashes was studied. Four fly ashes were investigated, originating from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. One of the straw ashes had been pre-washed and was obtained suspended in water, the other ashes were obtained naturally dry...

  15. Fly ash-reinforced thermoplastic starch composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.F.; Yu, J.G.; Wang, N. [Tianjin University, Tianjin (China). School of Science

    2007-01-02

    As a by-product from the combustion of pulverized coal, fly ash was, respectively, used as the reinforcement for formamide and urea-plasticized thermoplastic starch (FUPTPS) and glycerol-plasticized thermoplastic starch (GPTPS). The introduction of fly ash improved tensile stress from 4.56 MPa to 7.78 MPa and Youngs modulus increased trebly from 26.8 MPa to 84.6 MPa for fly ash-reinforced FUPTPS (A-FUPTPS), while tensile stress increased from 4.55 MPa to 12.86 MPa and Youngs modulus increased six times from 76.4 MPa to 545 MPa for fly ash-reinforced GPTPS (A-GPTPS). X-ray diffractograms illustrated that fly ash destroyed the formation of starch ordered crystal structure, so both A-GPTPS and FUPTPS could resist the starch re-crystallization (retrogradation). Also fly ash improved water resistance of TPS. As shown by rheology, during the thermoplastic processing, the extruder screw speed effectively adjusted the flow behavior of A-FUPTPS, while the increasing of the processing temperature effectively ameliorated the flow behavior of A-GPTPS. However, superfluous ash contents (e.g., 20 wt%) worsened processing fluidity and resulted in the congregation of fly ash in FUPTPS matrix (tested by SEM) rather than in GPTPS matrix. This congregation decreased the mechanical properties and water resistance of the materials.

  16. Soil Properties in Coniferous Forest Stands Along a Fly Ash Deposition Gradient in Eastern Germany

    Institute of Scientific and Technical Information of China (English)

    S. KLOSE; F. MAKESCHIN

    2005-01-01

    Physical, chemical, and microbial properties of forest soils subjected to long-term fly ash depositions were analyzed in spruce (Picea abies (L.) Karst.) stands of eastern Germany on three forest sites along an emission gradient of 3 (high input), 6, and 15 km (low input) downwind of a coal-fired power plant. Past emissions resulted in an atypical high mass of mineral fly ash constituents in the organic horizons at the high input site of 128 t ha-1 compared to 58 t ha-1 at the low input site. Magnetic susceptibility measurements proved that the high mineral content of the forest floor was a result of fly ash accumulation in these forest stands. Fly ash deposition in the organic horizons at Site Ⅰ versus Ⅲsignificantly increased the pH values, effective cation exchange capacity, base saturation and, with exception of the L horizon, concentrations of mobile heavy metals Cd, Cr, and Ni, while stocks of organic C generally decreased. A principal component analysis showed that organic C content and base status mainly controlled soil microbial biomass and microbial respiration rates at these sites, while pH and mobile fractions of Cd, Cr, and Ni governed enzyme activities. Additionally,it was hypothesized that long-term fly ash emissions would eventually destabilize forest ecosystems. Therefore, the results of this study could become a useful tool for risk assessment in forest ecosystems that were subjected to past emissions from coal-fired power plants.

  17. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    mechanical action. It is known, that performance of fly ash in concrete improves with its increased fineness. Intensive milling of fly ash leads to the increasing fly ash fineness and to the enhancement of its hydration activity. The cement-fly ash composites with 25 wt.% of activated fly ash as cement replacement have exhibited a higher 28-day compressive strength in comparison with a reference concrete sample without fly ash. An unfavorable effect in milling process is the agglomeration of fine particles of fly ash. By high-energy milling of fly ash with addition of surfactants, the ultrafine products can be prepared. Concrete samples containing such fly ash have achieved higher compressive strengths than the reference sample without fly ash or with addition of non-milled fly ash. The considerable physical effect of ultrafine fly ash consists in superior filling of spaces between coarser cement particles and in the favorable influence of hardness of the mixtures at setting.The current research activities in mechanochemistry are oriented to the mechanical activation of poly-component systems. The knowledge in this field indicate that by high-energy milling of fly ash as a poly-component system and following heating of prepared metastable precursors, the cement minerals could be prepared.

  18. High resolution DNA content measurements of mammalian sperm

    Energy Technology Data Exchange (ETDEWEB)

    Pinkel, D.; Lake, S.; Gledhill, B.L.; Van Dilla, M.A.; Stephenson, D.; Watchmaker, G.

    1982-01-01

    The high condensation and flat shape of the mammalian sperm nucleus present unique difficulties to flow cytometric measurement of DNA content. Chromatin compactness makes quantitative fluorescent staining for DNA difficult and causes a high index of refraction. The refractive index makes optical measurements sensitive to sperm head orientation. We demonstrate that the optical problems can be overcome using the commercial ICP22 epiillumination flow cytometer (Ortho Instruments, Westwood, MA) or a specially built cell orientating flow cytometer (OFCM). The design and operation of the OFCM are described. Measurements of the angular dependence of fluorescence from acriflavine stained rabbit sperm show that it is capable of orienting flat sperm with a tolerance of +-7/sup 0/. Differences in the angular dependence for the similarly shaped bull and rabbit sperm allow discrimination of these cells. We show that DNA staining with 4-6 diamidino-2-phenylindole (DAPI) or an ethidium bromide mithramycin combination allows resolution of the X and Y populations in mouse sperm. They have also been successful with sperm from the bull, ram, rabbit, and boar. Reliable results with human sperm are not obtained. The accuracy of the staining and measurement techniques are verified by the correct determination of the relative content of these two populations in sperm from normal mice and those with the Cattanach (7 to X) translocation. Among the potential uses of these techniques are measurement of DNA content errors induced in sperm due to mutagen exposure, and assessment of the fractions of X and Y sperm in semen that may have one population artifically enriched.

  19. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    Science.gov (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  20. Modeling calcium dissolution from oil shale ash: Part 1. Ca dissolution during ash washing in a batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    Batch dissolution experiments were carried out to investigate Ca leachability from oil shale ashes formed in boilers operating with different combustion technologies. The main characteristics of Ca dissolution equilibrium and dynamics, including Ca internal mass transfer through effective diffusion coefficients inside the ash particle were evaluated. Based on the collected data, models allowing simulation of the Ca dissolution process from oil shale ashes during ash washing in a batch reactor were developed. The models are a set of differential equations that describe the changes in Ca content in the solid and liquid phase of the ash-water suspension. (author)

  1. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    Science.gov (United States)

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  2. The Gray Institute 'open' high-content, fluorescence lifetime microscopes.

    Science.gov (United States)

    Barber, P R; Tullis, I D C; Pierce, G P; Newman, R G; Prentice, J; Rowley, M I; Matthews, D R; Ameer-Beg, S M; Vojnovic, B

    2013-08-01

    We describe a microscopy design methodology and details of microscopes built to this 'open' design approach. These demonstrate the first implementation of time-domain fluorescence microscopy in a flexible automated platform with the ability to ease the transition of this and other advanced microscopy techniques from development to use in routine biology applications. This approach allows easy expansion and modification of the platform capabilities, as it moves away from the use of a commercial, monolithic, microscope body to small, commercial off-the-shelf and custom made modular components. Drawings and diagrams of our microscopes have been made available under an open license for noncommercial use at http://users.ox.ac.uk/~atdgroup. Several automated high-content fluorescence microscope implementations have been constructed with this design framework and optimized for specific applications with multiwell plates and tissue microarrays. In particular, three platforms incorporate time-domain FLIM via time-correlated single photon counting in an automated fashion. We also present data from experiments performed on these platforms highlighting their automated wide-field and laser scanning capabilities designed for high-content microscopy. Devices using these designs also form radiation-beam 'end-stations' at Oxford and Surrey Universities, showing the versatility and extendibility of this approach. © 2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. Study on use of MSWI fly ash in ceramic tile.

    Science.gov (United States)

    Haiying, Zhang; Youcai, Zhao; Jingyu, Qi

    2007-03-06

    In this work, MSWI (municipal solid waste incineration) fly ash is used as a blending in production of ceramic tile by taking advantage of its high contents of SiO(2), Al(2)O(3) and CaO. Besides, macro-performance and microstructure of the product as well as its leaching toxicity in practical application were studied by means of XRD, IR and SEM analysis, and leaching toxicity and sequential chemical extraction analysis of the product. It is found that when 20% fly ash is added, the product registers a high compressive strength of 18.6MPa/cm(2) and a low water absorption of 7.4% after being sintered at 960 degrees C. It is found that the glazed tile shows excellent resistance against leaching, in accordance with HVEP stand, of heavy metals with Cdproduct and can hardly be extracted. Leaching toxicity of heavy metals in the product, especially Hg, Pb, Zn and Cd, is substantially reduced to less than one-tenth of that in fly ash. In addition, specifications of Hg, Pb, Zn and Cd are largely changed and only a small portion of these heavy metals exists in soluble phases. These results as a whole suggest that the use of MSWI fly ash in ceramic tile constitutes a potential means of adding value.

  4. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  5. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash

    Institute of Scientific and Technical Information of China (English)

    Jianguo Jiang; Sicong Tian; Chang Zhang

    2013-01-01

    The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas.The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash,and the sequestered CO2 could be entirely released at high temperatures.When CO2 content was reduced to 12%,the reaction rate decreased; the uptake fell to 41 g CO2/kg ash,and 70.7% of the sequestered CO2 could be released.With 12% CO2 in the presence of SO2,the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash,and only 52.9% of the sequestered CO2 could be released.SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.

  6. Runaway electron dynamics in tokamak plasmas with high impurity content

    Science.gov (United States)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  7. High-content screening of functional genomic libraries.

    Science.gov (United States)

    Rines, Daniel R; Tu, Buu; Miraglia, Loren; Welch, Genevieve L; Zhang, Jia; Hull, Mitchell V; Orth, Anthony P; Chanda, Sumit K

    2006-01-01

    Recent advances in functional genomics have enabled genome-wide genetic studies in mammalian cells. These include the establishment of high-throughput transfection and viral propagation methodologies, the production of large-scale cDNA and siRNA libraries, and the development of sensitive assay detection processes and instrumentation. The latter has been significantly facilitated by the implementation of automated microscopy and quantitative image analysis, collectively referred to as high-content screening (HCS), toward cell-based functional genomics application. This technology can be applied to whole genome analysis of discrete molecular and phenotypic events at the level of individual cells and promises to significantly expand the scope of functional genomic analyses in mammalian cells. This chapter provides a comprehensive guide for curating and preparing function genomics libraries and performing HCS at the level of the genome.

  8. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  9. Ash chemistry in MSW incineration plants: Advanced characterization and thermodynamic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Flemming J.; Laursen, Karin; Arvelakis, S. (and others)

    2004-07-15

    A number of ash samples where collected at four Danish municipal solid waste incineration (MSWI) plants. Samples of bottom ash/slag, 2nd-3rd pass ashes and ESP/E-filter ash were collected at the plants. The ashes were analyzed by a number of standard chemical analyses, and a number of advanced analytical techniques. The wet chemical analyses of the different ash fractions revealed that residual ash is formed on the grate by interaction of the main ash forming elements, Al, Ca, Fe and Si. Some of this ash is entrained from the grate and carried with the flue gas along the flue gas duct, where volatile species of K, Na, Pb, Zn, Cl and S starts to condense heterogeneously on the fly ash, thereby causing a dilution of the main ash forming elements. When compared plant-by-plant, the ash chemical analyses showed that the plant with the highest S-content in the fly ash is the one with the most often operational problems in relation to deposition, while a high Cl-content is indicative of a high corrosive potential. An existing Computer Controlled Scanning Electron Microscopy (CCSEM) algorithm was extended with chemical classes covering Pb- and Zn-rich phases. This has made it possible also to analyze MSW-derived ashes by use of CCSEM. Representative samples of 2nd-3rd pass and ESP/E-filter ashes from the four plants have been analyzed by Quantitative X-Ray Diffraction (QXRD) analysis. Only a few crystalline phases were identified: KCl, NaCl, CaSO{sub 4}, SiO{sub 2} and CaCO{sub 3} being the main ones. No crystalline phases containing Pb or Zn were identified by QXRD. A comparison between CCSEM and QXRD revealed the expected surface nature of the CCSEM analysis. Samples of 2nd-3rd pass and ESP/E-filter ash from the four plants where investigated for melting behavior in the Simultaneous Thermal Analyzer (STA). It was shown that it is possible to quantify the melting behavior of these ashes, and that the melting goes on in two steps (salts followed by silicates/oxides). The

  10. [Ash Meadows Purchase Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las Vegas...

  11. HIGH-TEMPERATURE GASIFICATION OF RDF WASTE AND MELTING OF FLY ASH OBTAINED FROM THE INCINERATION OF MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Marián Lázár

    2015-02-01

    Full Text Available Objective of this paper is to describe innovative solutions of thermal processing of selected components of municipal waste (so-called RDF waste using low-ionized depended plasma arc generated by a progressive and promising technology, which is plasma reactor. Its application can transform hazardous waste into inert waste while significantly reducing the volume of waste. Results given in this paper indicate experimentally achieved outputs with thermal disposal of RDF waste and ash from municipal waste. 

  12. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  13. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  14. The dust content of QSO hosts at high redshift

    CERN Document Server

    Calura, F; Vignali, C; Pozzi, F; Pipino, A; Matteucci, F

    2013-01-01

    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by stan...

  15. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.

    2015-06-01

    Full Text Available This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF and rice husk ash (RHA. Similar reaction products were identified, independent of the type of silicate used, but with subtle differences in the composition of the C-S-H gels, leading to different strength losses after elevated temperature exposure. Cements produced with the alternative activators developed higher compressive strengths than those produced with commercial silicate. All samples retained strengths of more than 50 MPa after exposure to 600 °C, however, after exposure to 800 °C only the specimens produced with the RHA-based activator retained measurable strength. This study elucidated that silicate-activated slag binders, either activated with commercial silicate solutions or with sodium silicates based on SF or RHA, are stable up to 600 °C.Este estudio evaluó las propiedades mecánicas, y cambios estructurales inducidos por exposición a temperaturas elevadas, de cementos de escoria activada alcalinamente producidos con silicatos sódicos derivados de humo de sílice (SF y ceniza de cascarilla de arroz (RHA. Se identificaron productos de reacción similares, independiente del tipo de silicato utilizado, pero con diferencias menores en la composición de las geles C-S-H, lo cual indujo diferentes pérdidas de resistencia posterior a exposición a temperaturas elevadas. Los cementantes producidos con los activadores alternativos desarrollaron resistencias a la compresión más altas que aquellos producidos con silicato comercial. Todas las muestras retuvieron resistencias de más de 50 MPa posterior a la exposición a 600 °C, sin embargo, posterior a la exposición a 800 °C únicamente muestras producidas con activadores de RHA retuvieron resistencias medibles. Este estudio elucidó que cementantes de escoria activada con

  16. Power plant ash and slag waste management technological direction when Kansk-Achinsk brown coal is burned

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2017-01-01

    Full Text Available Today resource efficiency technology development in all industries where conventional raw material is being replaced by local natural resources and industrial waste is an essential matter. Along with that most producing operations are overload with wide range of waste produced during technological process. Thermal power stations are real world evidence. Their main waste is ash and slag which accumulated in great amounts in often overfull ash dumps. The goal of present work is to find perspective ash dump waste utilization methods. The study will be based on experimentally obtained data: elementary compound and properties of Kansk-Achinsk brown coal. Research methods: experimental, chemical silicate analysis, mineralogical forms identification within samples by using ASM X-ray diffraction analysis. Experiments resulted with the following conclusions: silica is ash main component, and ash has the form of ore concentrate analogy in a number of elements. We think that ASM main properties which make it useful for utilization are: high content of calcium oxide; high ash sorption properties; ASM radiation safety class which makes them safe to be used in materials, goods, and structures production for residence and public buildings construction and reconstruction; sufficiently high content of individual elements.

  17. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Directory of Open Access Journals (Sweden)

    Justin G A Whitehill

    Full Text Available The emerald ash borer (Agrilus planipennis is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp. that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica, which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER, and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  18. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Science.gov (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  19. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  20. Semisolid Slurry Preparation of Die Steel with High Chromium Content

    Institute of Scientific and Technical Information of China (English)

    MAO Wei-min; ZHAO Ai-min; ZHANG Li-juan; ZHONG Xue-you

    2004-01-01

    The semisolid slurry preparation of die steels Cr12 and Cr12MoV with high chromium content was studied. The results show that the semisolid slurry of both steels with solid of 40 %-60 % can be made by electromagnetic stirring method and is easy to be discharged from the bottom little hole of the stirring chamber. The sizes of the spherical primary austenite in the slurry of die steels Cr12 and Cr12MoV are 50-100 μm and 80-150 μm, respectively. The homogeneous temperature field and solute field for both steel melts are obtained. The strong temperature fluctuation in the melt with many fine primary austenite grains occurs and the remelting of the secondary arm roots at the same time is accelerated because of the electromagnetic stirring. These are the most important reasons for deposition of spherical primary austenite grains.

  1. High-Content Screening for Quantitative Cell Biology.

    Science.gov (United States)

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.

  2. Preparation of Garlic Powder with High Allicin Content

    Institute of Scientific and Technical Information of China (English)

    LI Yu; XU Shi-ying

    2007-01-01

    Garlic powder with high allicin content was prepared using microwave-vacuum and vacuum drying as well as microencapsulation to protect alliinase activity throughout the stomach and improve the ratio of alliin transforming into allicin. The results showed that the optimal drying condition was 376.1 W for 3 min, 282.1 W for 3 min, 188 W for 9 min, and 94 W for 3 min. The thiosulfinates retention after drying was 90.2%. Following drying, the garlic powder was microencapsulated by modified fluidized bed technique. Scanning electron microscope revealed good integrity and core materials that were embedded in the microcapsules. Studies on the release kinetics of microencapsulated garlic granulates in vitro using simulated intestinal fluid indicated that release of garlic powder could be controlled in the intestine by passing stomach conditions.

  3. Automation in high-content flow cytometry screening.

    Science.gov (United States)

    Naumann, U; Wand, M P

    2009-09-01

    High-content flow cytometric screening (FC-HCS) is a 21st Century technology that combines robotic fluid handling, flow cytometric instrumentation, and bioinformatics software, so that relatively large numbers of flow cytometric samples can be processed and analysed in a short period of time. We revisit a recent application of FC-HCS to the problem of cellular signature definition for acute graft-versus-host-disease. Our focus is on automation of the data processing steps using recent advances in statistical methodology. We demonstrate that effective results, on par with those obtained via manual processing, can be achieved using our automatic techniques. Such automation of FC-HCS has the potential to drastically improve diagnosis and biomarker identification.

  4. High-content analysis for drug delivery and nanoparticle applications.

    Science.gov (United States)

    Brayden, David J; Cryan, Sally-Ann; Dawson, Kenneth A; O'Brien, Peter J; Simpson, Jeremy C

    2015-08-01

    High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.

  5. Thermal and Ash Characterization of Indonesian Bamboo and Its Potential for Solid Fuel and Waste Valorization

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2016-08-01

    Full Text Available Bamboo has been widely used in Indonesia for construction, handicrafts, furniture and other uses. However, the use of bamboo as a biomass for renewable energy source has not been extensively explored. This paper describes the thermal and ash characterization of three bamboo species found in Indonesia, i.e. Gigantochloa apus, Gigantochloa levis and Gigantochloa atroviolacea. Characterization of bamboo properties as a solid fuel includes proximate and ultimate analyses, calorific value measurement and thermogravimetric analysis. Ash characterization includes oxide composition analysis and phase analysis by X-Ray diffraction. The selected bamboo species have calorific value comparable with wood with low nitrogen and sulphur contents, indicating that they can be used as renewable energy sources. Bamboo ash contains high silicon so that bamboo ash has potential to be used further as building materials or engineering purposes. Ash composition analysis also indicates high alkali that can cause ash sintering and slag formation in combustion process. This implies that the combustion of bamboo requires the use of additives to reduce the risk of ash sintering and slag formation. Article History: Received May 15, 2016; Received in revised form July 2nd, 2016; Accepted July 14th, 2016; Available online How to Cite This Article: Purbasari, A., Samadhi, T.W. & Bindar, Y. (2016 Thermal and Ash Characterization of Indonesian Bamboo and its Potential for Solid Fuel and Waste Valorization. Int. Journal of Renewable Energy Development, 5(2, 95-100. http://dx.doi.org/10.14710/ijred.5.2.96-100 

  6. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  7. Ash from a pulp mill boiler--characterisation and vitrification.

    Science.gov (United States)

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial.

  8. Sintered coal ash/flux materials for building materials

    Energy Technology Data Exchange (ETDEWEB)

    Dry, C.; Meier, J.; Bukowski, J. [University of Illinois, Urbana, IL (United States). School of Architecture

    2004-03-01

    An Illinois coal ash, which has metals and a large amount of iron, is considered to be an especially difficult waste for disposal. In the process described in this paper, the high iron and metal content is used to create a building material with special properties. The metals are sequestered. The metals allow a process that creates value-added products, building materials. The products are inexpensively prepared colored, strong, lightweight insulative structural panels. By either sintering in an oven at 725{sup o}C or by adding a flux and sintering at 525{sup o}C, panels are produced which will not leach metals from the ash. The use of an acid with the fly ash as a flux was investigated in comparison with fly ash control samples. The effects of sintering samples at different temperatures and with or without vacuum were also observed. Properties of the samples, including values for strength, water absorption, insulation, and color, are presented from this study.

  9. Fly ash of mineral coal as ceramic tiles raw material.

    Science.gov (United States)

    Zimmer, A; Bergmann, C P

    2007-01-01

    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  10. Volcanic Ash fall Impact on Vegetation, Colima 2005

    Science.gov (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  11. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  12. Ash in composting of source-separated catering waste.

    Science.gov (United States)

    Koivula, Niina; Räikkönen, Tarja; Urpilainen, Sari; Ranta, Jussi; Hänninen, Kari

    2004-07-01

    Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had

  13. Selective catalytic reduction of NO by ammonia over oil shale ash and fly ash catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Changtao Yue; Shuyuan Li [University of Petroleum, Beijing (China). State Key Lab of Heavy Oil Processing

    2003-07-01

    Acid rain and urban air pollution, produced mainly by pollutants such as SOX and NOX and other volatile organic compounds, has become the most serious environmental problem. The selective catalytic reduction (SCR) of NO with NH{sub 3} in the presence of oxygen is a wellproven method to limit the NOX emissions. The work in this field has been the subject of much research in recent years. In this paper, NO reduction with NH{sub 3} over oil shale ash or fly ash catalysts was studied. Fe, Cu, V or Ni as active elements was loaded by adding aqueous solutions of the metal nitrate over the oil shale ash or fly ash support. The activities of the catalysts for NO removal were measured in a fixed-bed reactor. According to the results, oil shale ash or fly ash, after pre-treatment, can be reasonably used as the SCR catalyst support to remove NO from flue gas. Cu gave the highest catalytic activity and NO conversion for fly ash while V for oil shale ash. As the support, fly ash is more feasible than oil shale ash. Because of their low cost and high efficiency, the catalysts should be used in the SCR process. Further research on this subject is necessary in the future to understand more details of the SCR system and issue of pollution control. 9 refs., 2 figs., 2 tabs.

  14. Cementitious Spray Dryer Ash-Tire Fiber Material for Maximizing Waste Diversion

    Directory of Open Access Journals (Sweden)

    Charles E. Riley

    2011-01-01

    Full Text Available Spray dryer absorber (SDA material, also known as spray dryer ash, is a byproduct of coal combustion and flue gas scrubbing processes that has self-cementing properties similar to those of class C fly ash. SDA material does not usually meet the existing standards for use as a pozzolan in Portland cement concrete due to its characteristically high sulfur content, and thus unlike fly ash, it is rarely put to beneficial use. This paper presents the results of a study with the objective of developing beneficial uses for SDA material in building materials when combined with tire fiber reinforcement originating from a recycling process. Specifically, spray dryer ash was investigated for use as the primary or even the sole binding component in a mortar or concrete. This study differs from previous research in that it focuses on very high contents of spray dryer ash (80 to 100 percent in a hardened product. The overarching objective is to divert products that are normally sent to landfills and provide benefit to society in beneficial applications.

  15. Effects of the content of fly ash and slag on the resistance to sulfate of concrete%粉煤灰和矿粉含量对混凝土抗硫酸盐腐蚀影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    聂庆科; 白冰; 李华伟; 韩松; 王英辉

    2015-01-01

    Anti-corrosion performance by adding fly ash and slag powder in the ordinary Portland cement concrete to improve concrete was studied. Studies show that the demands of various strength of several concrete resistance to sulfate can be satisfied by adding 10%, 20%and 30% fly ash.For the S95 slag powder,the high strength concrete(C40,C45)can reach to the content of 30%and still meet the concrete resistance to sulfate performance index.However,for the slightly lower strength concrete(C30,C35),subjecting to 150 times of sulphate erosion test,the strength is lower than 70%,which failed to meet the demand. On the other hand,for all strength tests of sample, sulfate resistance of fly ash concrete is much better than the mineral admixture,but the sulfate resistance of concrete is decreased slightly with the increases of admixture content.%在普通硅酸盐水泥混凝土中加入一定的粉煤灰和矿粉来改善混凝土的抗硫酸盐腐蚀性能是可行的。研究表明,掺入10%、20%和30%的粉煤灰能够满足各个强度等级混凝土的抗硫酸盐性能指标。对于S95矿粉,在高强混凝土中( C40、C45)掺量达到30%,仍然可以满足混凝土抗硫酸盐性能指标,而强度稍低的混凝土(C30、C35)中,经过150次硫酸盐侵蚀后试件强度已经低于70%,未能达到标准要求。在各个强度等级配合比中,掺粉煤灰的混凝土抗硫酸盐性能要明显优于掺矿粉,但掺料掺量增加后试件抗硫酸盐性能稍有下降。

  16. CONTENTS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The Development and Evolution of the Idea of the Mandate of Heaven in the Zhou Dynasty The changes in the idea of Mandate of Heaven during the Shang and Zhou dynasties are of great significance in the course of the development of traditional Chinese culture. The quickening and awakening of the humanistic spirit was not the entire content of the Zhou idea of Mandate of Heaven. In the process of annihilating the Shang dynasty and setting up their state, the Zhou propagated the idea of the Mandate of Heaven out of practical needs. Their idea of the Mandate of Heaven was not very different from that of the Shang. From the Western Zhou on, the Zhou idea of Mandate of Heaven by no means developed in a linear way along a rational track. The intermingling of rationality and irrationality and of awakening and non-awakening remained the overall state of the Zhou intellectual superstructure after their "spiritual awakening".

  17. Use of Coal Bottom Ash as Mechanical Stabiliser in Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Abdus Salaam Cadersa

    2014-01-01

    Full Text Available This paper presents the laboratory investigation work which forms part of a full scale research road project in Mauritius where coal bottom ash is used as mechanical stabiliser in a saprolitic subgrade soil. Three mixtures of subgrade soil and CBA were investigated in the laboratory, each containing varying percentages of coal bottom ash by weight (15%, 30%, and 40%, resp.. The laboratory research indicated that the mechanical properties of the subgrade soil are improved with the addition of bottom ash. Highest values for soaked and unsoaked CBR values were obtained for the mixture containing 30% by weight of bottom ash, which were 145% and 95%, respectively, as compared to 40% and 55% for the subgrade soil alone. Upon addition of coal bottom ash, a considerable decrease in swelling potential during soaking was observed for the mixture containing 40% by weight of CBA. The swell decreased from 0.17% for the subgrade soil alone to 0.04% for the mixture containing 40% by weight of CBA. Moreover, a CBA content of 30% resulted in a mix of intermediate plasticity as compared to the subgrade soil which is highly plastic. It is concluded that coal bottom ash can be used successfully as a mechanical stabilizer in the experimental subgrade soil by addition of 30 to 40% of CBA.

  18. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model

    Directory of Open Access Journals (Sweden)

    Inés Garcia-Lodeiro

    2016-07-01

    Full Text Available In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC hydration and the alkali activation of fly ash (AAFA. Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt % and low clinker (20 wt % to 30 wt % content. The clinker component favors curing at ambient temperature. A hydration mechanism is proposed based on the authors’ research on these hybrid binders over the last five years. The mechanisms for OPC hydration and FA alkaline activation are summarized by way of reference. In hybrid systems, fly ash activity is visible at very early ages, when two types of gel are formed: C–S–H from the OPC and N–A–S–H from the fly ash. In their mutual presence, these gels tend to evolve, respectively, into C–A–S–H and (N,C–A–S–H. The use of activators with different degrees of alkalinity has a direct impact on reaction kinetics but does not modify the main final products, a mixture of C–A–S–H and (N,C–A–S–H gels. The proportion of each gel in the mix does, however, depend on the alkalinity generated in the medium.

  19. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    the probe temperature did influence the composition of deposits for coals with medium ash deposition propensities. These results may indicate that coals with medium to high ash deposition propensities in existing boilers may cause increasing ash deposit formation in future boilers with higher steam...

  20. Effect of the Content of Fly ash and Slag on the Strength of Mortar%粉煤灰、矿渣掺量对胶砂强度的影响

    Institute of Scientific and Technical Information of China (English)

    周万良

    2011-01-01

    the strength of mortar with different content of fly ash and slag was studied. The reswlts indicate; With the increase of substituted amount of cement by fly ash in cement mortar, 3d and 28d compressive and flexural strength of mortar gradually decreases. With the increase of substituted amount of cement by slag in cement mortar, 3d compressive and flexural strength of mortar continuously decreases; if substituted amount is less than 55% , the 28d compressive and flexural strength of the mortar is higher than that of the mortar without slag, if substituted amount is greater than 60% , that will become lower.%对不同粉煤灰、矿渣掺量的胶砂抗压、抗折强度进行了研究.结果表明,水泥胶砂中随粉煤灰取代水泥量增加,胶砂3d、28d抗压和抗折强度不断减小.水泥胶砂中随矿渣取代水泥量增加,胶砂3d抗压和抗折强度不断减小;当矿渣取代量小于55%时,胶砂28d的抗压和抗折强度均稍有提高,当矿渣取代量大于60%时,胶砂28d的抗压和抗折强度均会下降.

  1. Synthesis of A type zeolite from rice husk ash; Momigarabai kara no A gata zeolite no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K. [Kyushu National Industrial Research Institute, Saga (Japan); Hara, N. [Kagoshima Prefectural Industrial Technology Center, Kagoshima (Japan)

    1995-09-01

    Attempts have been made on synthesizing A-type zeolite from rice husk ash made from burning under different conditions. The rice husk ash (comprising SiO2 at 90 and odd percent) was obtained by heating the rice husk to remove volatile constituents, burning at 350{degree}C to reduce carbon content, and further burning at 400 to 900{degree}C. Soda aluminate and caustic soda were used as additional materials for zeolite. Zeolite was synthesized by so mixing the raw materials that predetermined composition is achieved, adding seed crystals, and heating at 90{degree}C. The result may be summarized as follows: raising the burning temperature reduces the carbon content and increases whiteness of the rice husk ash; dissolution velocity of rice husk ash into NaOH aqueous solution was measured to evaluate the reactivity of the ash (the higher the more preferable); raised burning temperature causes transfer from amorphous state to crystalline state, reducing the dissolution velocity; the lower the burning temperature, the higher the A-type zeolite production rate becomes; whiteness in zeolite is insufficient; preparing water glass from rice husk ash and synthesizing zeolite therefrom achieves high whiteness and high production rate. 6 refs., 4 figs., 2 tabs.

  2. Study on high belite cement clinker calcination with ashes from circulating fluidized bed combustion%固硫灰制备高贝利特水泥

    Institute of Scientific and Technical Information of China (English)

    吕淑珍; 陈雪梅; 卢忠远; 彭艳华

    2011-01-01

    In order to explore new utilizing approach of ashes from circulating fluidized bed combustion(CFBC ashes for short), high belite cement is prepared by using CFBC ashes to substitute partial raw materials. Calcining temperature and mineral composition of clinker are analyzed by thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) respectively, and the physical mechanical properties of clinker are tested. The results show that the main minerals of high belite cement clinker are C2S,C4A3S,G2AF and CaSO4;compression strength of 3 days is more than 30 Mpa.and that of 28 days is more than 80 Mpa while incorporation of proper amount of gypsum.%为了探索固硫灰新的利用途径,利用固硫灰替代部分原料制备高贝利特水泥,采用TG-DTA综合热分析法、XRD射线衍射等方法分别确定了生料的煅烧温度和熟料的矿物组成,并对水泥的物理力学性能进行了检测.研究表明,制备的高贝利特水泥主要矿物组成是C2S、C4A3(S)、C2AF和CaSO4;掺入适量的石膏后,其3d抗压强度达到30 MPa以上,28 d抗压强度达到80 MPa以上.

  3. An oral multispecies biofilm model for high content screening applications

    Science.gov (United States)

    Kommerein, Nadine; Stumpp, Sascha N.; Müsken, Mathias; Ehlert, Nina; Winkel, Andreas; Häussler, Susanne; Behrens, Peter; Buettner, Falk F. R.; Stiesch, Meike

    2017-01-01

    Peri-implantitis caused by multispecies biofilms is a major complication in dental implant treatment. The bacterial infection surrounding dental implants can lead to bone loss and, in turn, to implant failure. A promising strategy to prevent these common complications is the development of implant surfaces that inhibit biofilm development. A reproducible and easy-to-use biofilm model as a test system for large scale screening of new implant surfaces with putative antibacterial potency is therefore of major importance. In the present study, we developed a highly reproducible in vitro four-species biofilm model consisting of the highly relevant oral bacterial species Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis. The application of live/dead staining, quantitative real time PCR (qRT-PCR), scanning electron microscopy (SEM) and urea-NaCl fluorescence in situ hybridization (urea-NaCl-FISH) revealed that the four-species biofilm community is robust in terms of biovolume, live/dead distribution and individual species distribution over time. The biofilm community is dominated by S. oralis, followed by V. dispar, A. naeslundii and P. gingivalis. The percentage distribution in this model closely reflects the situation in early native plaques and is therefore well suited as an in vitro model test system. Furthermore, despite its nearly native composition, the multispecies model does not depend on nutrient additives, such as native human saliva or serum, and is an inexpensive, easy to handle and highly reproducible alternative to the available model systems. The 96-well plate format enables high content screening for optimized implant surfaces impeding biofilm formation or the testing of multiple antimicrobial treatment strategies to fight multispecies biofilm infections, both exemplary proven in the manuscript. PMID:28296966

  4. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  5. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  6. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  7. 基于灰关联熵分析的大掺量粉煤灰混凝土导热性能影响因素研究%Grey Correlation Entropy Method to Analyze Thermal Properties of High Volume Fly Ash Concrete

    Institute of Scientific and Technical Information of China (English)

    哈斯图雅

    2015-01-01

    为了探究各因素对大掺量粉煤灰混凝土导热性能的影响,通过试验,以导热系数为主要导热性能指标,运用灰关联熵分析的手段,定量分析了水胶比、粉煤灰掺量、减水剂掺量、砂率和骨料干湿状态对大掺量粉煤灰混凝土导热系数影响的显著程度。经计算分析得出:对大掺量粉煤灰混凝土导热性能影响最大的是砂率,其次依次为粉煤灰掺量、水胶比、减水剂掺量和骨料干湿状态。在进行大掺量粉煤灰混凝土配合比设计时,从导热性能方面考虑,必须严格控制砂率。%In order to explore the factors that influence the performance of high volume fly ash concrete heat conduction,through the test,use conductivity as the mainly thermal performance indicators, using the grey relation entropy analysis method,to analysis the effect of degree of water binder ratio,fly ash content,water reducing agent dosage,sand ratio and aggregate in dry and wet conditions to high vol-ume fly ash concrete heat conduction quantitativiy.Through calculation and analysis:the most significant factor influence on performance of high volume fly ash concrete heat conduction is sand rate,followed by the amount of fly ash,water binder ratio,dosage of water reducer and aggregate in dry and wet condi-tions.In high volume fly ash concrete mix design,considering thethermal conductivity performance,must strictly control therate of sand.

  8. Fractionation and Mobility of Thallium in Volcanic Ashes after Eruption of Eyjafjallajökull (2010) in Iceland.

    Science.gov (United States)

    Karbowska, Bozena; Zembrzuski, Wlodzimierz

    2016-07-01

    Volcanic ash contains thallium (Tl), which is highly toxic to the biosphere. The aim of this study was to determine the Tl concentration in fractions of volcanic ash samples originating from the Eyjafjallajökull volcano. A sequential extraction scheme allowed for a study of element migration in the environment. Differential pulse anodic stripping voltammetry using a flow measuring system was selected as the analytical method to determine Tl content. The highest average content of Tl in volcanic ash was determined in the fraction entrapped in the aluminosilicate matrix (0.329 µg g(-1)), followed by the oxidizable fraction (0.173 µg g(-1)). The lowest content of Tl was found in the water soluble fraction (0.001 µg g(-1)); however, this fraction is important due to the fact that Tl redistribution among all the fractions occurs through the aqueous phase.

  9. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    Science.gov (United States)

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    -263. Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H., Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena. doi:10.1016/j.catena.2014.06.018 Dorta Almenar, I., Navarro Rivero, F.J., Arbelo, C.D., Rodríguez, A., Notario del Pino, J., The temporal distribution of water-soluble nutrients from high mountain soils following a wildfire within legume scrubland of Tenerife, Canary Islands, Spain. Catena. Escuday, M., Arancibia-Miranda, N., Pizarro, C., Antilén, M., Effect of ash from forest fires on leaching in volcanic soils. Catena. doi:10.1016/j.catena.2014.08.006 León, J., Echeverría, M.T., Marti, C., Badía, D., Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain). Catena. doi:10.1016/j.catena.2014.05.024 Lombao, A., Barreiro, A., Carballas, T., Fontúrbel, M.T., Martín, C., Vega, J.A., Fernández, C., Díaz-Raviña, M., 2014. Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena. doi:10.1016/j.catena.2014.08.007 Pereira, P., Jordan, A., Cerda, A., Martin, D. (2014) Editorial: The role of ash in fire-affected ecosystems, Catena (In press) doi:10.1016/j.catena.2014.11.016 Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014a) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690. Pereira, P., Ubeda, X., Mataix-Solera, J., Oliva, M., Novara, A. (2014) Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania, Solid Earth, 5, 209-225. Silva, V., Pereira, J.S., Campos, I., Keizer, J.J., Gonçalves, F., Abrantes, N., Toxicity assessment of aqueous extracts of ash from forest fires. Catena doi:10.1016/j.catena.2014.06.021

  11. Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan

    Energy Technology Data Exchange (ETDEWEB)

    B. Uzal; L. Turanli; H. Yucel; M.C. Goncuoglu; A. Culfaz [Nigde University, Nigde (Turkey). Department of Civil Engineering

    2010-03-15

    Pozzolanic activity of clinoptilolite, the most common natural zeolite mineral, was studied in comparison to silica fume, fly ash and a non-zeolitic natural pozzolan. Chemical, mineralogical and physical characterizations of the materials were considered in comparative evaluations. Pozzolanic activity of the natural zeolite was evaluated with various test methods including electrical conductivity of lime-pozzolan suspensions; and free lime content, compressive strength and pore size distribution of hardened lime-pozzolan pastes. The results showed that the clinoptilolite possessed a high lime-pozzolan reactivity that was comparable to silica fume and was higher than fly ash and a non-zeolitic natural pozzolan. The high reactivity of the clinoptilolite is attributable to its specific surface area and reactive SiO{sub 2} content. Relatively poor strength contribution of clinoptilolite in spite of high pozzolanic activity can be attributable to larger pore size distribution of the hardened zeolite-lime product compared to the lime-fly ash system.

  12. Utilisation of zeolitised coal fly ash as immobilising agent of a metallurgical waste

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pereira, C.; Galiano, Y.L.; Rodriguez-Pinero, M.A.; Vale, J.; Querol, X. [University of Sevilla, Seville (Spain). Dept. Ingenieria Quimica y Ambiental, Escuela Superior Ingenieros Industriales

    2002-07-01

    Partially zeolitised coal fly ash from a Spanish power station has been studied as the immobilising agent of an arc furnace dust waste (s-WA). The hazardous metals normally found in this kind of waste are lead, cadmium, and chromium. In addition, the dust usually has a high zinc content resulting from the use of galvanised scrap. Because of its heavy metal content, s-WA is classified as hazardous waste, according to Spanish regulations. Different zeolitisation procedures, depending on the treatment of the fly ash with NaOH and KOH alkaline solutions, using reflux heating and different times of attack were tested. The zeolitised products were studied using XRD in order to characterise the solid phases produced. The solidification/stabilisation (S/S) trials of s-WA were carried out using the zeolitised ashes, as well as the original coal fly ash, in mixtures containing 20% (w/w) of ordinary Portland cement. To evaluate the efficiency of the immobilisation process, some specific criteria were defined, with regard to some physical (compressive strength) and chemical (pH and metal concentrations in TCLP leachates) characteristics of the S/S solids. Finally, comparisons among the stabilising mixtures were made and the role of the zeolitisation of fly ash in the S/S process was evaluated.

  13. Characterisation of MSWI bottom ash for potential use as subbase in Greenlandic road construction

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2012-01-01

    The waste management situation in Greenland needs to be improved. Most waste in towns is incinerated with only limited separation prior to incineration and the bottom ash residue is disposed of at uncontrolled disposal sites. The bottom ash could be a valuable resource within the expansion...... was acceptable for reuse after some small adjustments in the grain size distribution to prevent frost sensitivity. Results obtained from heavy metal content and heavy metal leaching complied with the Danish guideline values for reuse of waste materials in construction. Leaching of Cu and Cr was high from small...

  14. Modeling calcium dissolution from oil shale ash: Part 2.. Continuous washing of the ash layer

    Energy Technology Data Exchange (ETDEWEB)

    Velts, O.; Kallas, J. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia); Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Hautaniemi, M.; Kuosa, M. [Lappeenranta University of Technology, Laboratory of Separation Technology, Skinnarilankatu 34, Lappeenranta 53851 (Finland); Kuusik, R. [Tallinn University of Technology, Laboratory of Inorganic Materials, 5 Ehitajate Str., Tallinn 19086 (Estonia)

    2010-05-15

    In the present work a possible approach to the utilization of oil shale ash containing free lime in precipitated calcium carbonate (PCC) production is elucidated. This paper investigates the Ca (calcium) dissolution process during continuous washing of pulverized firing (PF) and fluidized bed combustion (FBC) oil shale ash layers in a packed-bed leaching column. The main characteristics of the Ca dissolution process from ash are established. The effect of water flow rate is investigated by conducting leaching experiments of oil shale ashes formed in boilers operating with different combustion technologies. The values of the overall and liquid phase mass transfer coefficients are evaluated based on experiments using the developed ash layer washing model. The model is a set of partial differential equations that describe the changes in Ca content in the stagnant layer of ash and in the water flowing through the ash layer. An example in which the model is applied to environmental assessment and estimation of Ca leaching from industrial oil shale ash fields is provided. (author)

  15. Zeolite synthesis from paper sludge ash at low temperature (90 degrees C) with addition of diatomite.

    Science.gov (United States)

    Wajima, Takaaki; Haga, Mioko; Kuzawa, Keiko; Ishimoto, Hiroji; Tamada, Osamu; Ito, Kazuhiko; Nishiyama, Takashi; Downs, Robert T; Rakovan, John F

    2006-05-20

    Paper sludge ash was partially converted into zeolites by reaction with 3M NaOH solution at 90 degrees C for 24 h. The paper sludge ash had a low abundance of Si and significant Ca content, due to the presence of calcite that was used as a paper filler. Diatomite was added to the NaOH solution to increase its Si content in order to synthesize zeolites with high cation exchange capacity. Diatomite residue was filtered from solution before addition of ash. The original ash without addition of diatomite yielded hydroxysodalite with a cation exchange capacity ca. 50 cmol/kg. Addition of Si to the solution yielded Na-P1 (zeolite-P) with a higher cation exchange capacity (ca. 130 cmol/kg). The observed concentrations of Si and Al in the solution during the reaction explain the crystallization of these two phases. The reaction products were tested for their capacity for PO(4)(3-) removal from solution as a function of Ca(2+) content, suggesting the formation of an insoluble Ca-phosphate salt. The product with Na-P1 exhibits the ability to remove NH(4)(+) as well as PO(4)(3-) from solution in concentrations sufficient for application in water purification. Both NH(4)(+) and PO(4)(3-) removal showed little variation with pH between 5 and 9. Alternative processing methods of zeolite synthesis, including the addition of ash to an unfiltered Si-NaOH solution and addition of a dry ash/diatomite mixture to NaOH solution, were tested. The third process yielded materials with lower cation exchange capacity due to formation of hydroxysodalite. The second process results in a product with relatively high cation exchange capacity, and reduces the number of processing steps necessary for zeolite synthesis.

  16. Utilization Of Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S. D. Nagrale

    2012-07-01

    Full Text Available India is a major rice producing country, and the husk generated during milling is mostly used as a fuel in the boilers for processing paddy, producing energy through direct combustion and / or by gasification. About 20 million tones of Rice Husk Ash (RHA is produced annually. This RHA is a great environment threat causing damage to the land and the surrounding area in which it is dumped. Lots of ways are being thought of for disposing them by making commercial use of this RHA. RHA can be used as a replacement for concrete (15 to 25%.This paper evaluates how different contents of Rice Husk Ash added to concrete may influence its physical and mechanical properties. Sample Cubes were tested with different percentage of RHA and different w/c ratio, replacing in mass the cement. Properties like Compressive strength, Water absorption and Slump retention were evaluated.

  17. Research on use of high calcium desulfurization ash in autoclaved brick CHEN Bin LIU Heng-bo WAN Jun%利用高钙固硫灰生产蒸压砖的研究

    Institute of Scientific and Technical Information of China (English)

    陈滨; 刘恒波; 万军

    2012-01-01

      The paper researches on the process of high calcium desulfurization ash autoclaved brick, and puts forward the ways to use the high calcium, high sulfur and low silicon of fly ash from the circulating fluidized bed boiler.%  对高钙固硫灰生产蒸压砖的生产工艺进行了研究,提出了重点解决循环流化床锅炉粉煤灰的高钙、高硫、低硅难题的有效途径。

  18. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  19. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  20. Evalu