WorldWideScience

Sample records for high arctic plant

  1. High-Arctic plant-herbivore interactions under climate influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...

  2. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Science.gov (United States)

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  3. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Directory of Open Access Journals (Sweden)

    Sabine B Rumpf

    Full Text Available The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  4. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    Full Text Available This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs. Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems.

  5. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  6. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Directory of Open Access Journals (Sweden)

    Adrian Zwolicki

    Full Text Available We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina. Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  7. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  8. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    2008-01-01

    , the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... of anti-herbivore defenses and improves the nutritional quality of the food plants. Zackenberg data on the relationship between variation in density of collared lemmings in winter and UV-B radiation indirectly supports this mechanism, which was originally proposed on the basis of a positive relationship...

  9. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

    Directory of Open Access Journals (Sweden)

    Jakub Těšitel

    2014-04-01

    Full Text Available The development of vegetation in Arctic glacier forelands has been described as unidirectional, non-replacement succession characterized by the gradual establishment of species typical for mature tundra with no species turnover. Our study focused on two early colonizers of High Arctic glacier forelands: Saxifraga oppositifolia (Saxifragaceae and Braya purpurascens (Brassicaceae. While the first species is a common generalist also found in mature old growth tundra communities, the second specializes on disturbed substrate. The demographic population structures of the two study species were investigated along four glacier forelands in Petuniabukta, north Billefjorden, in central Spitsbergen, Svalbard. Young plants of both species occurred exclusively on young substrate, implying that soil conditions are favourable for establishment only before soil crusts develop. We show that while S. oppositifolia persists from pioneer successional stages and is characterized by increased size and flowering, B. purpurascens specializes on disturbed young substrate and does not follow the typical unidirectional, non-replacement succession pattern. Plants at two of the forelands were examined for the presence of root-associated fungi. Fungal genus Olpidium (Fungus incertae sedis was found along a whole successional gradient in one of the forelands.

  10. Speciation in arctic and alpine diploid plants

    OpenAIRE

    Gustafsson, A Lovisa S

    2013-01-01

    The main objectives of this thesis are to study patterns and processes of plant speciation in arctic and alpine diploid plants. Cryptic species are here referred to as morphologically similar individuals belonging to the same taxonomic species but that are unable to produce fertile offspring (i.e. 'sibling' species). The arctic flora is considered as one of the most species-poor floras of the world, and the latitudinal gradient with decreasing diversity from low to high latitudes is likely...

  11. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  12. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    Science.gov (United States)

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.

  13. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic.

    Science.gov (United States)

    Cooper, Elisabeth J; Dullinger, Stefan; Semenchuk, Philipp

    2011-01-01

    In tundra areas where the growing season is short, any delay in the start of summer may have a considerable effect on plant development, growth and reproductive success. Climate models suggest long-term changes in winter precipitation in the Arctic, which may lead to deeper snow cover and a resultant delay in date of snow melt. In this paper, we investigated the role of snow depth and melt out date on the phenological development and reproductive success of vascular plants in Adventdalen, Svalbard (78° 10'N, 16° 06'E). Effects of natural variations in snow accumulation were demonstrated using two vegetation types (snow depth: meadow 21 cm, heath 32 cm), and fences were used to experimentally increase snow depth by over 1m. Phenological delay was greatest directly after snowmelt in the earlier phenological phases, and had the largest effect on the early development of those species which normally green-up early (i.e. Dryas, Papaver, Salix, Saxifraga). Compressed growing seasons and length of the reproductive period led to a reduced reproductive success in some of the study species. There were fewer flowers, fewer plots with dispersing seeds, and lower germination rates. This can have consequences for plant establishment and community composition in the long-term.

  14. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming

    Science.gov (United States)

    Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.

    2016-11-01

    The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.

  15. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity

    Science.gov (United States)

    Semenchuk, Philipp R.; Gillespie, Mark A. K.; Rumpf, Sabine B.; Baggesen, Nanna; Elberling, Bo; Cooper, Elisabeth J.

    2016-12-01

    The duration of specific periods within a plant’s life cycle are critical for plant growth and performance. In the High Arctic, the start of many of these phenological periods is determined by snowmelt date, which may change in a changing climate. It has been suggested that the end of these periods during late-season are triggered by external cues, such as day length, light quality or temperature, leading to the hypothesis that earlier or later snowmelt dates will lengthen or shorten the duration of these periods, respectively, and thereby affect plant performance. We tested whether snowmelt date controls phenology and phenological period duration in High Arctic Svalbard using a melt timing gradient from natural and experimentally altered snow depths. We investigated the response of early- and late-season phenophases from both vegetative and reproductive phenological periods of eight common species. We found that all phenophases follow snowmelt patterns, irrespective of timing of occurrence, vegetative or reproductive nature. Three of four phenological period durations based on these phenophases were fixed for most species, defining the studied species as periodic. Periodicity can thus be considered an evolutionary trait leading to disadvantages compared with aperiodic species and we conclude that the mesic and heath vegetation types in Svalbard are at risk of being outcompeted by invading, aperiodic species from milder biomes.

  16. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine;

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area...... and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum...

  17. Biogeochemistry: Arctic plants take up mercury vapour

    Science.gov (United States)

    Shotyk, William

    2017-07-01

    Trace elements are enriched in plants by natural processes, human activities or both. An analysis of mercury in Arctic tundra vegetation offers fresh insight into the uptake of trace metals from the atmosphere by plants. See Letter p.201

  18. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importan...

  19. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    Science.gov (United States)

    Bjerke, Jarle W.; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Jepsen, Jane U.; Lovibond, Sarah; Vikhamar-Schuler, Dagrun; Tømmervik, Hans

    2014-08-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32-39%) of the Arctic, but much of the Arctic shows stable (57-64%) or reduced productivity (browning, factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011-September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000-11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research.

  20. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Gillespie, Mark A K; Rumpf, Sabine B.

    2016-01-01

    during late-season are triggered by external cues, such as day length, light quality or temperature, leading to the hypothesis that earlier or later snowmelt dates will lengthen or shorten the duration of these periods, respectively, and thereby affect plant performance. We tested whether snowmelt date...... be considered an evolutionary trait leading to disadvantages compared with aperiodic species and we conclude that the mesic and heath vegetation types in Svalbard are at risk of being outcompeted by invading, aperiodic species from milder biomes....

  1. Arctic Late Cretaceous and Paleocene Plant Community Succession

    Science.gov (United States)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  2. Stratospheric ozone depletion : High arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, P.; Solheim, B.; Zielke, M.; Buskens, A; Doorenbosch, M.; Fijn, R.; Herder, J.; Callaghan, T.; Bjoern, L.O.; Jones, D.G.; Broekman, R.; Blokker, P.; van de Poll, W.H.

    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed

  3. Was the Eocene Arctic a Source Area for Exotic Plants and Mammals? (Invited)

    Science.gov (United States)

    Eberle, J. J.; Harrington, G. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, J. H.

    2010-12-01

    Today’s High Arctic is undergoing rapid warming, but the impact on its animal and plant communities is not clear. As a deep time analog to better understand and predict the impacts of global warming on the Arctic biota, early Eocene (52-53 Ma) rocks on Ellesmere Island, Nunavut in Canada’s High Arctic (~79°N latitude) preserve evidence of diverse terrestrial ecosystems that supported dense forests inhabited by turtles, alligators, snakes, primates, tapirs, brontotheres, and hippo-like Coryphodon. The fossil localities were just a few degrees further south and still well above the Arctic Circle during the early Eocene; consequently, the biota experienced months of continuous sunlight as well as darkness, the Arctic summer and winter, respectively. The flora and fauna of the early Eocene Arctic imply warmer, wetter conditions than at present, and recently published analyses of biogenic phosphate from fossil fish, turtle, and mammal estimate warm summers (19 - 20 C) and mild, above-freezing winters. In general, temperature estimates for the early Eocene Arctic can be compared to those found today in temperate rainforests in the Pacific Northwest of the United States. The early Eocene Arctic mammalian fauna shares most genera with coeval mid-latitude faunas thousands of kilometers to the south in the US Western Interior, and several genera also are shared with Europe and Asia. Recent analyses suggest that the large herbivores such as hippo-like Coryphodon were year-round inhabitants in the Eocene Arctic forests. Although several of the Eocene Arctic mammalian taxa are hypothesized to have originated in either mid-latitude North America or Asia, the earlier occurrence of certain clades (e.g., tapirs) in the Arctic raises the possibility of a northern high-latitude origin. Analysis of the early Eocene Arctic palynoflora indicates comparable richness to early Eocene plant communities in the US Western Interior, but nearly 50% of its species (mostly angiosperms) are

  4. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    Science.gov (United States)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  5. Phytochemical profiles and antioxidant potential of four Arctic vascular plants from Svalbard

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Singh, S.M.; DeSouza, L.; Wahidullah, S.

    an important research field in biomedicine. The high-Arctic flora is dominated by lichens, mosses, liverworts and algae, while vascular plants are less abundant (Matveyeva and Chernov 2000). The vascular flora of Svalbard has been described by Rønning... have revealed the presence of natural sources of antioxidants in Antarctic lichens (Paudel et al. 2008), mosses (Bhattarai et al. 2008), fish (Ansaldo 2000), as well as in Arctic macroalgae (Aguilera et al. 2002; Dummermuth et al. 2003), lichens...

  6. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  7. Science Traverses in the Canadian High Arctic

    Science.gov (United States)

    Williamson, Marie-Claude

    2012-01-01

    The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.

  8. A regional approach to plant DNA barcoding provides high species resolution of sedges (Carex and Kobresia, Cyperaceae) in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Clerc-Blain, Jessica L E; Starr, Julian R; Bull, Roger D; Saarela, Jeffery M

    2010-01-01

    Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world's some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth's landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies.

  9. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.

    Science.gov (United States)

    Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka

    2015-10-01

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.

  10. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord...... light data, we estimate an annual Arctic Ocean benthic GPP of 11.5 × 107 t C yr−1. On average, this value represents 26% of the Arctic Ocean annual net phytoplankton production estimates. This scarcely considered component is thus potentially important for contemporary and future Arctic ecosystem...

  11. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic.

    Science.gov (United States)

    Provencher, J F; Braune, B M; Gilchrist, H G; Forbes, M R; Mallory, M L

    2014-04-01

    Baseline data on trace element concentrations are lacking for many species of Arctic marine birds. We measured essential and non-essential element concentrations in Arctic tern (Sterna paradisaea) liver tissue and brain tissue (mercury only) from Canada's High Arctic, and recorded the presence/absence of gastrointestinal parasites during four different phases of the breeding season. Arctic terns from northern Canada had similar trace element concentrations to other seabird species feeding at the same trophic level in the same region. Concentrations of bismuth, selenium, lead and mercury in Arctic terns were high compared to published threshold values for birds. Selenium and mercury concentrations were also higher in Arctic terns from northern Canada than bird species sampled in other Arctic areas. Selenium, mercury and arsenic concentrations varied across the time periods examined, suggesting potential regional differences in the exposure of biota to these elements. For unknown reasons, selenium concentrations were significantly higher in birds with gastrointestinal parasites as compared to those without parasites, while bismuth concentrations were higher in Arctic terns not infected with gastrointestinal parasites.

  12. Diminished response of arctic plants to warming over time.

    Directory of Open Access Journals (Sweden)

    Kelseyann S Kremers

    Full Text Available The goal of this study is to determine if the response of arctic plants to warming is consistent across species, locations and time. This study examined the impact of experimental warming and natural temperature variation on plants at Barrow and Atqasuk, Alaska beginning in 1994. We considered observations of plant performance collected from 1994-2000 "short-term" and those from 2007-2012 "long-term". The plant traits reported are the number of inflorescences, inflorescence height, leaf length, and day of flower emergence. These traits can inform us about larger scale processes such as plant reproductive effort, plant growth, and plant phenology, and therefore provide valuable insight into community dynamics, carbon uptake, and trophic interactions. We categorized traits of all species monitored at each site into temperature response types. We then compared response types across traits, plant growth forms, sites, and over time to analyze the consistency of plant response to warming. Graminoids were the most responsive to warming and showed a positive response to temperature, while shrubs were generally the least responsive. Almost half (49% of response types (across all traits, species, and sites combined changed from short-term to long-term. The percent of plants responsive to warming decreased from 57% (short-term to 46% (long-term. These results indicate that the response of plants to warming varies over time and has diminished overall in recent years.

  13. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  14. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  15. High-Arctic butterflies become smaller with rising temperatures

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Eskildsen, Anne; Hansen, Rikke Reisner

    2015-01-01

    size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500...

  16. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  17. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  18. The unseen iceberg: Plant roots in arctic tundra

    Science.gov (United States)

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  19. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... for some species. Responses to cold-season soil warming are vegetation type- and species-specific, with potentially stronger responses in moister vegetation types. This study therefore highlights the contrasting effect of snow in a tundra landscape and has important implications for projections of whole...

  20. Plants impact structure and function of bacterial communities in Arctic soils

    NARCIS (Netherlands)

    Kumar, Manoj; Mannisto, Minna K.; van Elsas, Jan Dirk; Nissinen, Riitta M.

    2016-01-01

    Microorganisms are prime drivers of ecosystem functions in the Arctic, and they are essential for vegetation succession. However, very little is known about the phylogenetic and functional diversities of the bacterial communities associated with Arctic plants, especially in low organic matter soils.

  1. Microbial life beneath a high arctic glacier.

    Science.gov (United States)

    Skidmore, M L; Foght, J M; Sharp, M J

    2000-08-01

    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.

  2. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena

    2008-01-01

    Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed...... for analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared...

  3. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants

    DEFF Research Database (Denmark)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna Maritta;

    2016-01-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few...... Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future....... emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating......The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few...

  4. Legal Instruments for Marine Sanctuary in the High Arctic

    Directory of Open Access Journals (Sweden)

    Kathleen Morris

    2016-05-01

    Full Text Available In response to heightened threat to Arctic marine biodiversity due to polar ice melt, the following paper seeks to use qualitative secondary research to analyze existing anthropogenic threat to Arctic marine life and to evaluate current efforts on the part of the Arctic Council to protect biodiversity through a network of state-created marine protected areas (MPAs. We conclude that the current method for MPA creation fails to offer adequate pathways for creation of MPAs in Areas Beyond National Jurisdiction (ABNJ, the high seas which fall beyond individual countries’ exclusive economic zones (EEZs. Thus, our central research question is to determine what legal basis and mechanisms exist for the creation of MPAs in ABNJs, with particular focus on the Arctic marine environment. In keeping with The United Nations Convention on Biological Diversity’s (UNCBD precautionary approach, along with specific rules embodied within The United Nations Convention on the Law of the Sea (UNCLOS, we find a basis for creation of MPAs in the ABNJ. The text evaluates findings from the Boulogne-sur-Mer international conference of 2011 to suggest that such MPA creation in ABNJ could be approached via four pathways: regional agreement, UNCLOS implementing agreement, UNCBD additional protocol, or an Arctic Sanctuary modeled on the Antarctic Treaty. While we explore all four options, we argue that, due to geopolitical constraints, a comprehensive regional agreement offers the best path to High Arctic MPA creation.

  5. Controls over nutrient flow through plants and microbes in Arctic tundra. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schimel, J.

    1994-02-01

    Ecosystem productivity in the Arctic is strongly controlled by N availability to plants. Thus, disturbances to the Arctic system are likely to have their greatest impacts by altering the supply of nutrients to plants. Thus, to understand the dynamics of Arctic tundra, a complete understanding of the controls on N cycling in tundra soils is necessary. This project focused on understanding nutrient dynamics in arctic tussock tundra, specifically evaluating the role of microbial uptake and competition for nutrients as a control on plant N-uptake. The project consisted of several major components: Short- and long-term partitioning of NH{sub 4}{sup +} in tussock tundra (1990--1991); Measurement of NH{sub 4}{sup +} uptake rates by Eriophorum vaginatum and by soil microbes; Determination of microbial NH{sub 4}{sup +} and NO{sub 3}{minus} uptake kinetics; and Determination of the partitioning of NH{sub 4}{sup +} and amino acids between E. vaginatum and soil microbes.

  6. A Pliocene chronostratigraphy for the Canadian western and high Arctic

    Science.gov (United States)

    Gosse, John; Braschi, Lea; Rybczynski, Natalia; Lakeman, Thomas; Zimmerman, Susan; Finkel, Robert; Barendregt, Rene; Matthews, John

    2014-05-01

    The Beaufort Formation comprises an extensive (1200 km long, more than 1 km thick) clastic wedge that formed during the Pliocene along the western Canadian Arctic Archipelago (CAA). In the western Arctic, the Ballast Brook (BB) site on Banks Is. exposes more than 20 km of section through the sandy and pebble sandy braided stream deposits with detrital organic beds. Farther north, Beaufort Fm fluvial and estuarine facies have been examined on Meighen Is. In the high Arctic, high terrace gravels (450 m high surface) at the Fyles Leaf Bed (FLB) and Beaver Pond (BP) sites on Ellesmere Is. are not considered part of the Beaufort Fm but have similar paleoenvironmental records. Fossil plant and faunal material from these sediments is often very well preserved and provides evidence of a boreal-type forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The paleoenvironmental records from the Beaufort Fm in the western CAA sites have revealed a similar ecosystem with noteworthy differences in MAT and perhaps seasonality. New burial ages from Meighen Is. indicate a maximum age of 6.1 Ma, consistent with yet much older than previous age estimates, but supportive of paleomagnetic and biostratigraphy at the same location. The age differences may account for some of the interpreted variations in paleoenvironments, in addition to spatial differences in

  7. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands.

  8. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change.

  9. Improved UV-B screening capacity does not prevent negative effects of ambient UV irradiance on PSII performance in High Arctic plants. Results from a six year UV exclusion study

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2010-01-01

    Long-term responses of ambient solar ultraviolet (UV) radiation were investigated on Salix arctica and Vaccinium uliginosum in a High Arctic heath ecosystem in Zackenberg, northeast Greenland. Over a period of six years, UV exclusion was conducted in the growing season by means of filters: 60% UV......, exposing the vegetation to high spring UV-B, and to be present in the future to the degree the ozone layer is not fully recovered....

  10. Water vapor intrusions into the High Arctic during winter

    Science.gov (United States)

    Doyle, J. G.; Lesins, G.; Thackray, C. P.; Perro, C.; Nott, G. J.; Duck, T. J.; Damoah, R.; Drummond, J. R.

    2011-06-01

    The meridional transport of water vapor into the High Arctic, accompanied by dry enthalpy and clouds, impacts the surface radiative forcing. The evolution of one such moist intrusion over 9-11 February 2010 is presented. The event is analyzed using a unique blend of measurements including a new pan-Arctic retrieval of column water vapor from the Microwave Humidity Sounders, water vapor profiles from a Raman lidar and a ground-based microwave radiometer at the Polar Environment Atmospheric Research Laboratory (PEARL), in Eureka (80°N, 86°W), on Ellesmere Island in the Canadian High Arctic. A radiation model reveals the intrusion is associated with a 17 W m-2 average increase in downwelling longwave irradiance. Optically thin clouds, as observed by the lidar, contribute a further 20 W m-2 to the downwelling longwave irradiance at their peak. Intrusion events are shown to be a regular occurrence in the Arctic winter with implications for the understanding of the mechanisms driving Arctic Amplification.

  11. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...... for assimilation and validation. This paper presents the performances of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models....

  12. Early Paleogene Arctic terrestrial ecosystems affected by the change of polar hydrology under global warming:Implications for modern climate change at high latitudes

    Institute of Scientific and Technical Information of China (English)

    Gaytha; A.; LANGLOIS

    2010-01-01

    Our understanding of both the role and impact of Arctic environmental changes under the current global warming climate is rather limited despite efforts of improved monitoring and wider assessment through remote sensing technology. Changes of Arctic ecosystems under early Paleogene warming climate provide an analogue to evaluate long-term responses of Arctic environmental alteration to global warming. This study reviews Arctic terrestrial ecosystems and their transformation under marked change of hydrological conditions during the warmest period in early Cenozoic, the Paleocene and Eocene. We describe a new approach to quantitatively reconstruct high latitudinal paleohydrology using compound-specific hydrogen isotope analysis which applies empirically derived genus-specific hydrogen isotope fractionations to in situ biomolecules from fossil plants. We propose a moisture recycling model at the Arctic to explain the reconstructed hydrogen isotope signals of ancient high latitude precipitation during early Paleogene, which bears implications to the likely change of modern Arctic ecosystems under the projected accelerated global warming.

  13. Volatile organic compound emissions from arctic vegetation highly responsive to experimental warming

    Science.gov (United States)

    Rinnan, Riikka; Kramshøj, Magnus; Lindwall, Frida; Schollert, Michelle; Svendsen, Sarah H.; Valolahti, Hanna

    2017-04-01

    Arctic areas are experiencing amplified climate warming that proceeds twice as fast as the global temperature increase. The increasing temperature is already causing evident alterations, e.g. changes in the vegetation cover as well as thawing of permafrost. Climate warming and the concomitant biotic and abiotic changes are likely to have strong direct and indirect effects on emission of volatile organic compounds (VOCs) from arctic vegetation. We used long-term field manipulation experiments in the Subarctic, Low Arctic and High Arctic to assess effects of climate change on VOC emissions from vegetation communities. In these experiments, we applied passive warming with open-top chambers alone and in combination with other experimental treatments in well-replicated experimental designs. Volatile emissions were sampled in situ by drawing air from plant enclosures and custom-built chambers into adsorbent cartridges, which were analyzed by thermal desorption and gas chromatography-mass spectrometry in laboratory. Emission increases by a factor of 2-5 were observed under experimental warming by only a few degrees, and the strong response seems universal for dry, mesic and wet ecosystems. In some cases, these vegetation community level responses were partly due to warming-induced increases in the VOC-emitting plant biomass, changes in species composition and the following increase in the amount of leaf litter (Valolahti et al. 2015). In other cases, the responses appeared before any vegetation changes took place (Lindwall et al. 2016) or even despite a decrease in plant biomass (Kramshøj et al. 2016). VOC emissions from arctic ecosystems seem more responsive to experimental warming than other ecosystem processes. We can thus expect large increases in future VOC emissions from this area due to the direct effects of temperature increase, and due to increasing plant biomass and a longer growing season. References Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan

  14. High-Arctic butterflies become smaller with rising temperatures.

    Science.gov (United States)

    Bowden, Joseph J; Eskildsen, Anne; Hansen, Rikke R; Olsen, Kent; Kurle, Carolyn M; Høye, Toke T

    2015-10-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change.

  15. Relation between extinction and assisted colonization of plants in the arctic-alpine and boreal regions.

    Science.gov (United States)

    Pykälä, Juha

    2017-06-01

    Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic-alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic-alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic-alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic-alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic-alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry. © 2016 Society for Conservation Biology.

  16. Arctic Solutions The Frozen (Thawing) Relations of the High North

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Ch.

    2010-07-01

    It's cold, inhospitable and deadly. The image of the Arctic in years past is one of bewilderment, ignorance and awe. How the image of the Arctic has changed in recent years can be directly linked to our recognition that the Arctic has a great deal to offer in meeting the basic needs of future generations. Although we are still in awe of the Arctic's cruel beauty, new technologies are making it easier to explore the once unmanageable environment. The Arctic has moved into the mainstream with a host of suitors jockeying for position in the race to possess the Arctic and all that it contains. To highlight this increased interest, Russia's 'National Security Until 2020' initiative, has upgraded the High North to one of Russia's main priorities and identifies the Arctic as liable to produce military conflict in the future linked to competition for the Arctic's abundant raw materials.1 Even Canada, a peaceful and respectful country, has stepped outside the box of traditional Canadian rhetoric by giving Canada's Northern Strategy a tag line: 'Our North, our heritage, our future'. The Arctic is increasingly viewed as central to meeting the challenges of an ever changing world where climate change and economic benefit drive international agreements and policies. However Canada and Russia are not the only actors here. The other Arctic Five states: Denmark, Norway, and the United States of America all lay claims to some area or activity within the Arctic region. The Arctic is a unique part of this world, one that has been left largely untouched by human hands, and one that is on the brink of being changed forever. To fully understand Arctic issues, resource figures must be taken into account. Every nation involved in the Arctic debate has considered and based its policies on its set of numbers and resource estimates. A U.S. Geological Survey (USGS) in 2009 put Arctic resource figures in the range of thirty percent of the

  17. Is climate change affecting wolf populations in the high arctic?

    Energy Technology Data Exchange (ETDEWEB)

    Mech, L.D. [Northern Prairie Wildlife Research Center, Biological Resources Division, U.S. Geological Survey, 8711-37th St., SE, 58401-7317 Jamestown, North Dakota (United States)

    2004-11-01

    Global climate change may affect wolves in Canadas High Arctic (80{sup o} N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  18. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    Science.gov (United States)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  19. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site.

    Science.gov (United States)

    Hobbie, John E; Shaver, Gaius R; Rastetter, Edward B; Cherry, Jessica E; Goetz, Scott J; Guay, Kevin C; Gould, William A; Kling, George W

    2017-02-01

    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3 °C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.

  20. Potential for mercury reduction by microbes in the high arctic.

    Science.gov (United States)

    Poulain, Alexandre J; Ní Chadhain, Sinéad M; Ariya, Parisa A; Amyot, Marc; Garcia, Edenise; Campbell, Peter G C; Zylstra, Gerben J; Barkay, Tamar

    2007-04-01

    The contamination of polar regions due to the global distribution of anthropogenic pollutants is of great concern because it leads to the bioaccumulation of toxic substances, methylmercury among them, in Arctic food chains. Here we present the first evidence that microbes in the high Arctic possess and express diverse merA genes, which specify the reduction of ionic mercury [Hg(II)] to the volatile elemental form [Hg(0)]. The sampled microbial biomass, collected from microbial mats in a coastal lagoon and from the surface of marine macroalgae, was comprised of bacteria that were most closely related to psychrophiles that had previously been described in polar environments. We used a kinetic redox model, taking into consideration photoredox reactions as well as mer-mediated reduction, to assess if the potential for Hg(II) reduction by Arctic microbes can affect the toxicity and environmental mobility of mercury in the high Arctic. Results suggested that mer-mediated Hg(II) reduction could account for most of the Hg(0) that is produced in high Arctic waters. At the surface, with only 5% metabolically active cells, up to 68% of the mercury pool was resolved by the model as biogenic Hg(0). At a greater depth, because of incident light attenuation, the significance of photoredox transformations declined and merA-mediated activity could account for up to 90% of Hg(0) production. These findings highlight the importance of microbial redox transformations in the biogeochemical cycling, and thus the toxicity and mobility, of mercury in polar regions.

  1. Evapotranspiration across plant types and geomorphological units in polygonal Arctic tundra

    Science.gov (United States)

    Raz-Yaseef, Naama; Young-Robertson, Jessica; Rahn, Thom; Sloan, Victoria; Newman, Brent; Wilson, Cathy; Wullschleger, Stan D.; Torn, Margaret S.

    2017-10-01

    Coastal tundra ecosystems are relatively flat, and yet display large spatial variability in ecosystem traits. The microtopographical differences in polygonal geomorphology produce heterogeneity in permafrost depth, soil temperature, soil moisture, soil geochemistry, and plant distribution. Few measurements have been made, however, of how water fluxes vary across polygonal tundra plant types, limiting our ability to understand and model these ecosystems. Our objective was to investigate how plant distribution and geomorphological location affect actual evapotranspiration (ET). These effects are especially critical in light of the rapid change polygonal tundra systems are experiencing with Arctic warming. At a field site near Barrow, Alaska, USA, we investigated the relationships between ET and plant cover in 2014 and 2015. ET was measured at a range of spatial and temporal scales using: (1) An eddy covariance flux tower for continuous landscape-scale monitoring; (2) An automated clear surface chamber over dry vegetation in a fixed location for continuous plot-scale monitoring; and (3) Manual measurements with a clear portable chamber in approximately 60 locations across the landscape. We found that variation in environmental conditions and plant community composition, driven by microtopographical features, has significant influence on ET. Among plant types, ET from moss-covered and inundated areas was more than twice that from other plant types. ET from troughs and low polygonal centers was significantly higher than from high polygonal centers. ET varied seasonally, with peak fluxes of 0.14 mm h-1 in July. Despite 24 hours of daylight in summer, diurnal fluctuations in incoming solar radiation and plant processes produced a diurnal cycle in ET. Combining the patterns we observed with projections for the impact of permafrost degradation on polygonal structure suggests that microtopographic changes associated with permafrost thaw have the potential to alter tundra

  2. Persistent history of the bird-dispersed arctic-alpine plant Vaccinium vitis-idaea L. (Ericaceae) in Japan.

    Science.gov (United States)

    Ikeda, Hajime; Yoneta, Yusuke; Higashi, Hiroyuki; Eidesen, Pernille Bronken; Barkalov, Viachenslav; Yakubov, Valentin; Brochmann, Christian; Setoguchi, Hiroaki

    2015-05-01

    Arctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal. In light of these hypotheses, we investigated the biogeographic history of the marginal Japanese populations of the widespread arctic-alpine plant Vaccinium vitis-idaea (Ericaceae), which is bird-dispersed, potentially over long distances. We sequenced three nuclear loci and one plastid DNA region in 130 individuals from 65 localities covering its entire geographic range, with a focus on its marginal populations in Japan. We found a homogenous genetic pattern across its enormous range based on the loci analysed, in contrast to the geographically structured variation found in a previous study of amplified fragment length polymorphisms in this species. However, we found several unique haplotypes in the Japanese populations, excluding the possibility that these marginal populations result from recent southward migration. Thus, even though V. vitis-idaea is efficiently dispersed via berries, our study suggests that its isolated populations in Japan have persisted during several cycles of cold and warm climate during the Pleistocene.

  3. Connecting climate signals with phytoplankton productivity and composition in a high Arctic fjord

    NARCIS (Netherlands)

    van de Poll, Willem

    2016-01-01

    Kongsfjorden is a high Arctic fjord on the West coast of Spitsbergen in a rapidly changing region that experiences both Arctic and sub-Arctic influences. This fjord has been subject to intense research since the 1980s. More recently, an effort was started by the AWI to collect daily physical, chemic

  4. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North......-Eastern Greenland. RGR was assessed for apical (leaves, stem, reproductive organs) and lateral meristems (secondary growth of stem and branches) and accompanied by measures of gross ecosystem production (GEP), branching and tissue carbon (C) concentration. Measurements were based on harvest and biometric methods...... limits the growth of Cassiope but not that of Salix in North-Eastern Greenland. Summer warming thus has the potential to stimulate biomass production in the High Arctic but major species-specific differences are expected....

  5. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  6. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    Science.gov (United States)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  7. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence...... of the tides improves the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  8. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  9. Bioluminescence as an ecological factor during high Arctic polar night

    Science.gov (United States)

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-11-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  10. Herbivore impact on moss depth, soil temperature and arctic plant growth

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    2001-01-01

    We provide evidence for a mechanism by which herbivores may influence plant abundance in arctic ecosystems, These systems are commonly dominated by mosses, the thickness of which influences the amount of heat reaching the soil surface. Herbivores can reduce the thickness of the moss layer by means o

  11. Congruent responses to weather variability in high arctic herbivores.

    Science.gov (United States)

    Stien, Audun; Ims, Rolf A; Albon, Steve D; Fuglei, Eva; Irvine, R Justin; Ropstad, Erik; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif Egil; Veiberg, Vebjørn; Yoccoz, Nigel G

    2012-12-23

    Assessing the role of weather in the dynamics of wildlife populations is a pressing task in the face of rapid environmental change. Rodents and ruminants are abundant herbivore species in most Arctic ecosystems, many of which are experiencing particularly rapid climate change. Their different life-history characteristics, with the exception of their trophic position, suggest that they should show different responses to environmental variation. Here we show that the only mammalian herbivores on the Arctic islands of Svalbard, reindeer (Rangifer tarandus) and sibling voles (Microtus levis), exhibit strong synchrony in population parameters. This synchrony is due to rain-on-snow events that cause ground ice and demonstrates that climate impacts can be similarly integrated and expressed in species with highly contrasting life histories. The finding suggests that responses of wildlife populations to climate variability and change might be more consistent in Polar regions than elsewhere owing to the strength of the climate impact and the simplicity of the ecosystem.

  12. Bacterial reduction of mercury in the high arctic

    DEFF Research Database (Denmark)

    Møller, Annette Klæstrup

    from three snow depths and freshwater only showed a scattered representation of the phyla and genera in comparison to strains identified by culture independent methods. The microbial composition of all arctic sample sites was significantly different, with the two uppermost snow layers being most......, Bacteroidetes, Actinobacteria and Planctomycetes in freshwater. The bacteria identified in this study both included phylotypes commonly found in cold environments as well as rare phylotypes. During the time of sampling atmospheric ozone measurements and total Hg measurements in the snow indicated...... suggested that this may be important in the deeper snow layers. This highlights the importance of microbial mercury transformation in the biogeochemical mercury cycling in the High Arctic. While bacterial Hg reduction by the mercuric reductase, MerA, is widespread in temperate environments, its distribution...

  13. Observations of atmospheric chemical deposition to high Arctic snow

    Science.gov (United States)

    Macdonald, Katrina M.; Sharma, Sangeeta; Toom, Desiree; Chivulescu, Alina; Hanna, Sarah; Bertram, Allan K.; Platt, Andrew; Elsasser, Mike; Huang, Lin; Tarasick, David; Chellman, Nathan; McConnell, Joseph R.; Bozem, Heiko; Kunkel, Daniel; Duan Lei, Ying; Evans, Greg J.; Abbatt, Jonathan P. D.

    2017-05-01

    Rapidly rising temperatures and loss of snow and ice cover have demonstrated the unique vulnerability of the high Arctic to climate change. There are major uncertainties in modelling the chemical depositional and scavenging processes of Arctic snow. To that end, fresh snow samples collected on average every 4 days at Alert, Nunavut, from September 2014 to June 2015 were analyzed for black carbon, major ions, and metals, and their concentrations and fluxes were reported. Comparison with simultaneous measurements of atmospheric aerosol mass loadings yields effective deposition velocities that encompass all processes by which the atmospheric species are transferred to the snow. It is inferred from these values that dry deposition is the dominant removal mechanism for several compounds over the winter while wet deposition increased in importance in the fall and spring, possibly due to enhanced scavenging by mixed-phase clouds. Black carbon aerosol was the least efficiently deposited species to the snow.

  14. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  15. Climate Change Influences on Species Interrelationships and Distributions in High-Arctic Greenland

    DEFF Research Database (Denmark)

    D. R., Klein; Bruun, H. H.; Lundgren, R.

    2008-01-01

    , reproduction, and dispersal of all life forms present. Climate-associated changes in the biotic communities of the region are altering inter-species interactions, notably pollination, seed dispersal and plant-herbivore relations. Sexual reproduction and dispersal of propagules, primarily seeds, are essential...... processes underlying maintenance of genetic diversity in plant communities in Northeast Greenland. Wind and water transport of seeds are primary methods by which plants disperse and become established in the High Arctic, particularly at shorter distances. Birds and mammals are also involved and may...... be of particular significance to long-distance seed dispersal. In Northeast Greenland, dispersal of viable seeds may frequently occur by passage through the guts of geese and musk oxen. Research at Zackenberg on the role of insects in pollination of flowering plants has shown that Diptera species, primarily flies...

  16. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  17. The Unexpected Re-Growth of Ice-Entombed Bryophytes in the Canadian High Arctic

    Science.gov (United States)

    La Farge, C.

    2014-12-01

    The rapid retreat of glaciers and ice caps throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based ice. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little Ice Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little Ice Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial margins. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau ice caps on Baffin Island, Nunavut, where ice retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their

  18. Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity.

    Science.gov (United States)

    Eidesen, Pernille Bronken; Ehrich, Dorothee; Bakkestuen, Vegar; Alsos, Inger Greve; Gilg, Oliver; Taberlet, Pierre; Brochmann, Christian

    2013-11-01

    We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization.

  19. Single-particle characterization of the High Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-01-01

    Full Text Available Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker \\textit{Oden} and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a

  20. Role of dispersants of oil on copepods in high arctic areas

    DEFF Research Database (Denmark)

    Gustavson, Kim; Nørregaard, Rasmus Dyrmose; Møller, Eva Friis;

    2013-01-01

    The purpose of the project is to increase the knowledge on the effects of using dispersants on oil spills in high arctic areas: more precisely, to investigate accumulation in and effects on high arctic copepods. Such knowledge is crucial for performing a robust net environmental benefit analysis...... prior to making a decision as to whether or not dispersant may be allowed as an operational oil spill response in high arctic sea areas....

  1. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  2. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic – Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols

    Directory of Open Access Journals (Sweden)

    X. Feng

    2015-03-01

    pan-Arctic. Bound fatty acids (b-FAs, hydroxy FAs, n-alkane-α, ω-dioic acids (DAs and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil. This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolysable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in the arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in the arctic river sediments.

  3. Investigating cytoskeletal function in chloroplast protrusion formation in the arctic-alpine plant Oxyria digyna.

    Science.gov (United States)

    Holzinger, A; Wasteneys, G O; Lütz, C

    2007-05-01

    Arctic and alpine plants like Oxyria digyna have to face enhanced environmental stress. This study compared leaves from Oxyria digyna collected in the Arctic at Svalbard (78 degrees N) and in the Austrian Alps (47 degrees N) at cellular, subcellular, and ultrastructural levels. Oxyria digyna plants collected in Svalbard had significantly thicker leaves than the samples collected in the Austrian Alps. This difference was generated by increased thickness of the palisade and spongy mesophyll layers in the arctic plants, while epidermal cells had no significant size differences between the two habitats. A characteristic feature of arctic, alpine, and cultivated samples was the occurrence of broad stroma-filled chloroplast protrusions, 2 - 5 microm broad and up to 5 microm long. Chloroplast protrusions were in close spatial contact with other organelles including mitochondria and microbodies. Mitochondria were also present in invaginations of the chloroplasts. A dense network of cortical microtubules found in the mesophyll cells suggested a potential role for microtubules in the formation and function of chloroplast protrusions. No direct interactions between microtubules and chloroplasts, however, were observed and disruption of the microtubule arrays with the anti-microtubule agent oryzalin at 5 - 10 microM did not alter the appearance or dynamics of chloroplast protrusions. These observations suggest that, in contrast to studies on stromule formation in Nicotiana, microtubules are not involved in the formation and morphology of chloroplast protrusions in Oxyria digyna. The actin microfilament-disrupting drug latrunculin B (5 - 10 microM for 2 h) arrested cytoplasmic streaming and altered the cytoplasmic integrity of mesophyll cells. However, at the ultrastructural level, stroma-containing, thylakoid-free areas were still visible, mostly at the concave sides of the chloroplasts. As chloroplast protrusions were frequently found to be mitochondria-associated in Oxyria

  4. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    Science.gov (United States)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  5. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    Science.gov (United States)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  6. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  7. Feedbacks Between Microenvironment and Plant Functional Type and Implications for CO2 Flux in Arctic Ecosystems

    Science.gov (United States)

    Squires, E.; Rodenheizer, H.; Natali, S.; Mann, P.

    2013-12-01

    Future climate models predict a warmer, drier Arctic, with resultant shifts in vegetative composition and implications for ecosystem carbon budgets. The impact of vegetation change, however, may depend on which plant functional groups are favored in a warming Arctic. Physiological and functional differences between plant groups influence both the local microenvironment and, on a broader scale, whole-ecosystem CO2 flux. We examined the interactions between plants and their microenvironment, and analyzed the effect of these interactions on both soil microbial communities and CO2 flux across different functional groups. Physical and biological aspects of the microenvironment differed between plant functional groups. Lichen patches were characterized by deeper thaw depths, lower soil moisture, greater thermal conductivity, and a thinner organic layer than mosses. To better understand the development of these plant-environment interactions, we conducted a reciprocal transplant experiment, switching multiple lichen and moss patches. Temporal changes in environmental parameters at these sites will demonstrate how different plants modify their environment and will help identify associated implications for soil microbial communities and CO2 flux. We measured CO2 flux and used Biolog assays to examine soil microbial communities in undisturbed patches of mosses, lichens, and shrubs. Patches of birch shrubs had more negative net ecosystem exchange, signifying a carbon sink. Soils from alder shrubs and mosses hosted more active microbial communities than soils under birch shrubs and lichens. These results suggest a strong link between environment, plant functional type, and C cycling. Understanding how this relationship differs among plant functional types is an important part of predicting ecosystem carbon budgets as Arctic vegetation composition shifts in response to climate change.

  8. The role of sea ice for vascular plant dispersal in the Arctic.

    Science.gov (United States)

    Alsos, Inger Greve; Ehrich, Dorothee; Seidenkrantz, Marit-Solveig; Bennike, Ole; Kirchhefer, Andreas Joachim; Geirsdottir, Aslaug

    2016-09-01

    Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.

  9. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    Science.gov (United States)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  10. Slow recovery of High Arctic heath communities from nitrogen enrichment.

    Science.gov (United States)

    Street, Lorna E; Burns, Nancy R; Woodin, Sarah J

    2015-04-01

    Arctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1)  yr(-1) ; 'low' and 'high', respectively) for 3-8 yr. We investigated whether significant effects on vegetation composition and ecosystem nutrient status persisted up to 18 yr post-treatment. Although the tundra heath is no longer N saturated, N treatment effects persist and are strongly P-dependent. Vegetation was more resilient to N where no P was added, although shrub cover is still reduced in low-N plots. Where P was also added (5 kg P ha(-1)  yr(-1) ), there are still effects of low N on community composition and nutrient dynamics. High N, with and without P, has many lasting impacts. Importantly, N + P has caused dramatically increased moss abundance, which influences nutrient dynamics. Our key finding is that Arctic ecosystems are slow to recover from even small N inputs, particularly where P is not limiting.

  11. Role of dispersants of oil on copepods in high arctic areas

    DEFF Research Database (Denmark)

    Gustavson, Kim; Nørregaard, Rasmus Dyrmose; Møller, Eva Friis

    2013-01-01

    The purpose of the project is to increase the knowledge on the effects of using dispersants on oil spills in high arctic areas: more precisely, to investigate accumulation in and effects on high arctic copepods. Such knowledge is crucial for performing a robust net environmental benefit analysis...

  12. Nutrient Limitations Constrain the Feedback Capacity of Landscapes in the High Arctic: Nonlinearities and Synergism

    Science.gov (United States)

    Arens, S. J.; Sullivan, P. F.; Welker, J. M.; Rogers, M. C.; Holland, K.; Schimel, J.; Persson, K.

    2006-12-01

    Nutrient availability appears to be a controlling factor in the structure and function of High Arctic terrestrial systems as depicted by biological hot spots such as bird cliffs which are found throughout the arctic. Understanding the processes by which nutrients control plant production, canopy structure, and ecosystem carbon cycling have been well studied in the Low Arctic, where fertilization experiments have been employed for decades. Few studies have examined how the amount and type of nutrient augmentations (fertilization) affects the magnitude and pattern of CO2 exchange, species composition and optical properties of prostrate dwarf-shrub, herb tundra, the largest ecosystem in the High Arctic. In this study, amendments of three levels of nitrogen (N) (0.5 g/m2, 1.0 g/m2 and 5.0 g/m2) phosphorus (P) (2.5 g/m2) were initiated in prostrate dwarf- shrub, herb tundra near Pituffik (Thule), Greenland (76¢ªN, 68¢ªW). Species composition, net ecosystem CO2 exchange (NEE), gross primary photosynthesis (GPP), ecosystem respiration (ER) and plot-level normalized difference vegetation index (NDVI) were used to quantify changes in ecosystem structure and function. Non- linear responses to the addition of different levels of N were observed. CO2 gas exchange and NDVI showed indicated the strongest response at middle levels of N addition (1.0 g/m2). Strong and synergystic responses to the combined addition of nitrogen and phosphorus were observed. Increases in vegetation density and a shift in species composition were observed when N and P were added to these systems, partially explaining the near doubling of NDVI values from 0.3 to 0.6. Rates of NEE, GPP and ER were significantly higher when N and P were combined compared to independent additions of each or when compared to non-fertilized areas. Our results indicate that feedback processes such as CO2 exchange, optical properties and vegetation composition and structure are co-limited by N and P and that the addition

  13. Physical properties of High Arctic tropospheric particles during winter

    Directory of Open Access Journals (Sweden)

    L. Bourdages

    2009-03-01

    Full Text Available A climatology of particle properties in the wintertime High Arctic troposphere is constructed using measurements from a lidar and cloud radar located at Eureka, Nunavut Territory (80° N, 86° W. Four different particle groupings are considered: aerosols, mixed-phase clouds, ice clouds and boundary-layer ice crystals. Two-dimensional histograms of occurrence probabilities against depolarization and radar/lidar colour ratio, as well as their vertical distributions, are presented. The largest ice crystals originate from mixed-phase clouds, whereas the smallest are topographic blowing snow residuals in the boundary layer. Ice cloud crystals have depolarization and size decreasing with height. The depolarization trend is associated with the large ice crystal sub-population. Small crystals depolarize more than large ones in ice clouds at a given altitude, and show constant modal depolarization with height. Ice clouds in the mid-troposphere are sometimes observed to precipitate to the ground. Water clouds are constrained to the lower troposphere and are associated with the surface inversion layer depth. Aerosols are most abundant near the ground and are frequently mixed with the other particle types. The data are used to construct a classification chart for particle scattering in wintertime Arctic conditions.

  14. High levels of molecular chlorine in the Arctic atmosphere

    Science.gov (United States)

    Liao, Jin; Huey, L. Gregory; Liu, Zhen; Tanner, David J.; Cantrell, Chris A.; Orlando, John J.; Flocke, Frank M.; Shepson, Paul B.; Weinheimer, Andrew J.; Hall, Samuel R.; Ullmann, Kirk; Beine, Harry J.; Wang, Yuhang; Ingall, Ellery D.; Stephens, Chelsea R.; Hornbrook, Rebecca S.; Apel, Eric C.; Riemer, Daniel; Fried, Alan; Mauldin, Roy L.; Smith, James N.; Staebler, Ralf M.; Neuman, J. Andrew; Nowak, John B.

    2014-02-01

    Chlorine radicals can function as a strong atmospheric oxidant, particularly in polar regions, where levels of hydroxyl radicals are low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone, and the oxidation of mercury to more toxic forms. Here we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We report high levels of molecular chlorine, of up to 400 pptv. Concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimate that the chlorine radicals produced from the photolysis of molecular chlorine oxidized more methane than hydroxyl radicals, on average, and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyses mercury oxidation and the breakdown of tropospheric ozone. We therefore suggest that molecular chlorine exerts a significant effect on the atmospheric chemistry of the Arctic.

  15. Prediction of Arctic plant phenological sensitivity to climate change from historical records.

    Science.gov (United States)

    Panchen, Zoe A; Gorelick, Root

    2017-03-01

    The pace of climate change in the Arctic is dramatic, with temperatures rising at a rate double the global average. The timing of flowering and fruiting (phenology) is often temperature dependent and tends to advance as the climate warms. Herbarium specimens, photographs, and field observations can provide historical phenology records and have been used, on a localised scale, to predict species' phenological sensitivity to climate change. Conducting similar localised studies in the Canadian Arctic, however, poses a challenge where the collection of herbarium specimens, photographs, and field observations have been temporally and spatially sporadic. We used flowering and seed dispersal times of 23 Arctic species from herbarium specimens, photographs, and field observations collected from across the 2.1 million km(2) area of Nunavut, Canada, to determine (1) which monthly temperatures influence flowering and seed dispersal times; (2) species' phenological sensitivity to temperature; and (3) whether flowering or seed dispersal times have advanced over the past 120 years. We tested this at different spatial scales and compared the sensitivity in different regions of Nunavut. Broadly speaking, this research serves as a proof of concept to assess whether phenology-climate change studies using historic data can be conducted at large spatial scales. Flowering times and seed dispersal time were most strongly correlated with June and July temperatures, respectively. Seed dispersal times have advanced at double the rate of flowering times over the past 120 years, reflecting greater late-summer temperature rises in Nunavut. There is great diversity in the flowering time sensitivity to temperature of Arctic plant species, suggesting climate change implications for Arctic ecological communities, including altered community composition, competition, and pollinator interactions. Intraspecific temperature sensitivity and warming trends varied markedly across Nunavut and could

  16. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.

  17. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.

    2013-01-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more...... season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes....

  18. Effects of increased snow on growth response and allocation patterns of arctic plants

    Science.gov (United States)

    Addis, C. E.; Bret-Harte, M. S.

    2013-12-01

    Warming in the Arctic has led to an increase in shrub cover on the tundra that has been well documented in arctic Alaska. Fall and winter precipitation are also predicted to increase in arctic regions under continued climate change, resulting in greater snow depths and insulating winter soil, thus facilitating overwinter nitrogen mineralization by microbes. We predict that this increased microbial activity will enhance plant growth because more nutrients will be available for plant uptake at spring thaw. We studied the effect of increased snow on plant growth and nutrient allocation patterns using snow fences located across a gradient of shrub height and density at Toolik Field Station on the north slope of Alaska's Brooks Range. We compared growth and nutrient content of deciduous shrubs, evergreen shrubs, and graminoids on either side of the fences. Species behaved individualistically, with some showing increased growth with snow addition, others showing decreased growth, and some showing no effect of snow at all. The biggest increases in growth were seen in deciduous shrubs, particularly Salix pulchra, due to increases in secondary, or radial, growth which allowed plants to support more branches and thus more leaves. This provides a preliminary mechanistic explanation for the widespread increase in shrub cover across the northern latitudes. In addition, species that experienced increases in biomass due to snow also generally displayed increased nitrogen and carbon content in both leaves and stems, indicating that plants which got bigger were also better able to capture available resources. We conclude that faster growing species with the ability to respond rapidly to changes in nutrient availability will likely dominate under continued climate change, and may alter important ecosystem processes such as carbon and nitrogen storage.

  19. Revisiting factors controlling methane emissions from high-Arctic tundra

    Directory of Open Access Journals (Sweden)

    M. Mastepanov

    2013-07-01

    Full Text Available The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006–2010 of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R2 > 0.75, which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010 despite large differences in climatic factors (temperature and water table. Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2

  20. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.;

    2013-01-01

    with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006-2010) of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods...... explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors...... controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...

  1. High Arctic Paraglacial Coastal Evolution in Northern Billefjorden, Svalbard

    Science.gov (United States)

    Strzelecki, Matt; Long, Antony; Lloyd, Jerry

    2013-04-01

    Most sediment budget studies in paraglacial, High Arctic, environments have focussed attention on quantifying sediment fluxes in glacial and fluvial catchments. In contrast, little attention has been paid to the functioning of the paraglacial coastal zone with existing models of coastal change based on relict systems developed in mid latitude settings. The pristine coasts of Spitsbergen provided a superb opportunity to quantify how High Arctic coasts are respondingto rapid climate warming and associated paraglacial landscape transformation. In this paper we reconstruct the development of the paraglacial coasts in Petuniabukta and Adolfbukta, the northernmost bays of Billefjorden, central Spitsbergen. The study area is characterized by a sheltered location, a semi-arid, sub-polar climate, limited wave fetch and tidal range, and rapid retreat of all surrounding glaciers. Using a combination of geomorphological, sedimentological, remote sensing and dating methods, we study the processes controlling the coastal zone development over annual, century and millennial timescales. Interannual changes observed between 2008-2010 show that gravel barriers in the study area are resilient to the impacts of local storms and the operation of sea-ice processes. In general, the processes controlling the short-term barrier development often operate in the opposite direction to the landforming patterns visible in the longer-term evolution. Over multi-decadal timescales, since the end of the Little Ice Age. we observe drammatic changes in sediment flux and coastal response under an interval characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. A new approach of dating juvenile mollusc found in uplifted marine barriers led to the better understating of the Late Holocene evolution of a Petuniabukta coastal zone and its reaction to deglaciation, glacioisostatic uplift and sea-level fluctuations. We propose a new

  2. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart;

    2016-01-01

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi......-agreements and accuracies variations in the measured suspended sediment concentrations. The discharge weighted mean...

  3. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic - Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols

    Science.gov (United States)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-03-01

    Hydrolysable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in the arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with changing climate. Here, we examine the molecular composition and source of hydrolysable compounds isolated from surface sediments derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α, ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments

  4. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols

    Science.gov (United States)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-08-01

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river

  5. The Pliocene High Arctic terrestrial palaeoenvironmental record and the development of the western Canadian Arctic coastal plain

    Science.gov (United States)

    Rybczynski, N.; Braschi, L.; Gosse, J. C.; Kennedy, C.; Fraser, D.; Lakeman, T.

    2013-12-01

    The Pliocene fossil record of the High Arctic is represented by a collection of sites that occur across the Canadian Arctic Archipelago (CAA), with deposits in the west comprising a 1200 km-long dissected clastic wedge (Beaufort Formation) and those in the east represented by high terrace gravel deposits. Fossil material from these sites is often very well preserved and provides evidence of a boreal-type forest. In the eastern Arctic our research sites includes the Fyles Leaf Bed (FLB) and the Beaver Pond (BP) sites, on west central Ellesmere Island. These are about 10 km apart and preserve evidence of forest and peatlands. The BP fossil site preserves the remains of fossil vertebrates including fish, frog, horse, beaver, deerlet, and black bear, consistent with a boreal type forest habitat. The FLB site has recently yielded the first fossil evidence for a High Arctic camel, identified with the help of collagen fingerprinting from a fragmentary limb bone (tibia). Although modern camels live in open habitats, biogeographic and comparative dental evidence, in combination, suggest that the North American Arctic camels were browsers, and therefore forest-dwelling. Paleoenvironmental reconstruction of the Ellesmere sites has yielded a Mean Annual Temperature of between 14 to 22 degrees Celsius warmer than today. Minimum cosmogenic nuclide burial ages of 3.4 and 3.8 Ma obtained for the BP and FLB sites, respectively, are consistent with vertebrate and floral biostratigraphic evidence. The Beaufort Formation, located in the Western CAA, was formed by a regional northwesterly flowing braided fluvial system. The Beaufort Formation appears to have filled at least the western portions of the 100 km-wide channels that currently separate the islands of the CAA. Intervals of Pliocene continental-shelf progradation are recorded in the lower Iperk Formation, which is situated offshore and includes complex sigmoid-oblique clinoforms indicative of high-energy, coarse

  6. Mapping plant functional type distributions in Arctic ecosystems using WorldView-2 satellite imagery and unsupervised clustering

    Science.gov (United States)

    Langford, Z.; Kumar, J.; Hoffman, F. M.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The Arctic has emerged as an important focal point for the study of climate change. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Modeling of Arctic tundra vegetation requires representation of the heterogeneous tundra landscape, which includes representation of individual plant functional types (PFT). Vegetation exhibits unique spectral characteristics that can be harnessed to discriminate plant types and develop quantitative vegetation indices, such as the Normalized Difference Vegetation Index. We have combined high resolution multi-spectral remote sensing from the WorldView-2 satellite with LiDAR-derived digital elevation models to characterize the tundra landscape in four 100m X 100m sites within the Barrow Environmental Observatory, a 3021 hectare research reserve located at the northern most location on the Alaskan Arctic Coastal Plain. Classification of landscape PFT's using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season (June - August) to collect vegetation surveys from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. We will describe two versions of PFT upscaling from WorldView-2 imagery: 1) a version computed from multiple imagery through the growing season and 2) a version computed from a single image in the middle of the growing season. This approach allowed us to test the degree to which including phenology helps predict PFT distribution

  7. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.

    Science.gov (United States)

    Emmerton, Craig A; St Louis, Vincent L; Humphreys, Elyn R; Gamon, John A; Barker, Joel D; Pastorello, Gilberto Z

    2016-03-01

    High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.

  8. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  9. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    Science.gov (United States)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003–2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  10. The ecology and biological affinity of Arctic dinoflagellates and their paleoceanographical significance in the Canadian High Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Rochon, A [ISMER-UQAR, 310 allee des Ursulines, Rimouski QC, G5L 3A1 (Canada)], E-mail: Andre_rochon@uqar.qc.ca

    2009-01-01

    Dinoflagellates are eukaryotic organisms and constitute an important group of marine primary producers. Approximately 10-15% of living dinoflagellates produce a highly resistant dormant cyst that is fossilisable, and which constitute an excellent proxy indicator of the upper water column conditions and productivity. Relatively little is known on the distribution in time and space of the dinoflagellate life cycle (i.e., vegetative and cyst stages) in the Canadian Arctic; most studies usually focusing on other groups of organisms (e.g., diatoms). Here, we present information on the ecology of dinoflagellate cysts and how they relate to their counterpart plankton stages. We discuss the importance of considering the biological affinities of dinoflagellates cysts and their relevance for paleoceanographical interpretations. We also provide insight on the actual lack of such knowledge for the Canadian Arctic cyst and plankton assemblages.

  11. Peopling of the high Arctic - induced by sea ice?

    Science.gov (United States)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  12. Remote Sensing of Ocean Color in the High Arctic

    Science.gov (United States)

    Cota, G. F.; Platt, T.; Harrison, W. G.

    1997-01-01

    With four years of NASA SeaWiFS funding I established a completely new capability and expertise for in-water optical measurements nearly from scratch and with very little optical background. My first-year budget included only capital for a profiling spectral radiometer. Over the next 30 months we conducted six cruises and collected almost 300 optical profiles in challenging environments; many were collected from 21' launches. I also changed institutions during this period: it is very disruptive to move, set up a new lab, and hire and train new people, etc. We also did not have access to NASA funds for almost a year during the move because of difficulties in subcontracting and/or transferring funds. Nevertheless, we delivered data sets from six bio-optical cruises from three high latitude regions, although only two or three cruises from two areas were promised for our SeaWiFS research. The three Canadian Arctic field programs comprise the most comprehensive high latitude bio-optical and biogeochemical data sets in existence. Optical and pigment data from all six cruises have been submitted to NASA and are being included in the algorithm development test set. Additional data are still being submitted.

  13. Development of high strength line pipe for Arctic applications

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.E.; Klein, R.; Bai, D. [Evraz Inc., Regina, SK (Canada). Frontier Pipe Research Unit

    2009-07-15

    The pipelines that will carry large volumes of natural gas from the Mackenzie Delta and the Alaska North Slope to Alberta will have to meet stringent new requirements on material performance. High strength steels with thick pipe walls will be needed to accommodate the high operating pressure that will be needed to transmit gas over long distances. In addition, low operating temperatures and strain-based designs will be needed to meet Arctic operating conditions in areas of continuous or discontinuous permafrost. The Mackenzie Gas Project (MGP) has specified 762 mm OD x 16.2 mm WT Grade 550 (APIx80). Although the pipe has a high degree of ductility, material performance is of concern in terms of girth welds and associated heat affected zones. Studies have shown that the weld strength must overmatch the longitudinal strength of the pipe by at least 5 per cent in order to deflect any failure from a crack on the weld fusion line. The weld itself and the HAZ must also demonstrate a high degree of toughness. While proponents of the Alaska gas pipeline wish to use Grade 690 (APIx100) line pipe, full stress capacity tests have yet to be completed for Grade 690 material in the preferred gauge of 19 to 25 mm. Therefore, this paper examined 3 key issues pertaining to the performance of high strength line pipe in strain-based designs. These included girth weld HAZ toughness; work hardening characteristics; and achievement of very high strength levels. It was concluded that much more effort is needed to fully optimize these steels and to translate preliminary laboratory solutions to workable processing technologies. 15 refs., 2 tabs., 8 figs.

  14. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-05-02

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulTemx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulTemx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  15. A high arctic experience of uniting research and monitoring

    Science.gov (United States)

    Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas

    2017-07-01

    Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.

  16. Water Temperature Dynamics in High Arctic River Basins

    Science.gov (United States)

    Blaen, P. J.; Hannah, D. M.; Brown, L. E.; Milner, A. M.

    2012-04-01

    Despite the high sensitivity of polar regions to climate change, and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap is addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3 - 3.2 °C) were the lowest and most thermally-stable near the glacier terminus but increased downstream (0.7 - 2.3 °C km-1). Non-glacial rivers, where discharge was sourced primarily from snowmelt, were warmer (mean 2.9 - 5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones with increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of Alaskan rivers but low at all sites when compared to alpine glacierized environments at lower latitudes. Thermal regimes were strongly correlated (pgeomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesise warmer and more variable temperature regimes may prevail in future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow- and groundwater sources. Importantly, such changes could have implications for species diversity and abundance in benthic communities and influence rates of ecosystem functioning in high-latitude aquatic systems.

  17. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  18. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    Science.gov (United States)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  19. COMPARING FIELD PERFORMANCES OF DENUDER TECHNIQUES IN THE HIGH ARCTIC

    Science.gov (United States)

    A field evaluation between two annular denuder system configurations was conducted during the spring of 2003 in the marine Arctic (Ny-Ålesund, Svalbard). The IIA annular denuder system (ADS) employs a series of five single channel annular denuders, a cyclone and a filter pack to ...

  20. Evaluation of PBL schemes in WRF for high Arctic conditions

    DEFF Research Database (Denmark)

    Kirova-Galabova, Hristina; Batchvarova, Ekaterina; Gryning, Sven-Erik

    2015-01-01

    We examined the features of the Arctic boundary layer during winter (land and sea covered by snow/ice) and summer (sea covered by sea ice) using Weather Research and Forecasting (WRF) model version 3.4.1 and radiosounding data collected at Station Nord (81.65N, 16.65W) . The dataset consist...

  1. High paleotemperatures in the Late Cretaceous Arctic ocean

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jenkyns, H.; Forster, A.; Schouten, S.

    2004-01-01

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposit

  2. High paleotemperatures in the Late Cretaceous Arctic ocean

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jenkyns, H.; Forster, A.; Schouten, S.

    2004-01-01

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposit

  3. Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain

    DEFF Research Database (Denmark)

    Beulig, Felix

    2016-01-01

    is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade-long drying manipulation on an Arctic floodplain influences CH4-associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage......As surface temperatures are expected to rise in the future, ice-rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes......-induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers...

  4. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  5. Ice Mass Changes in the Russian High Arctic from Repeat High Resolution Topography.

    Science.gov (United States)

    Willis, Michael; Zheng, Whyjay; Pritchard, Matthew; Melkonian, Andrew; Morin, Paul; Porter, Claire; Howat, Ian; Noh, Myoung-Jong; Jeong, Seongsu

    2016-04-01

    We use a combination of ASTER and cartographically derived Digital Elevation Models (DEMs) supplemented with WorldView DEMs, the ArcticDEM and ICESat lidar returns to produce a time-series of ice changes occurring in the Russian High Arctic between the mid-20th century and the present. Glaciers on the western, Barents Sea coast of Novaya Zemlya are in a state of general retreat and thinning, while those on the eastern, Kara Sea coast are retreating at a slower rate. Franz Josef Land has a complicated pattern of thinning and thickening, although almost all the thinning is associated with rapid outlet glaciers feeding ice shelves. Severnaya Zemlya is also thinning in a complicated manner. A very rapid surging glacier is transferring mass into the ocean from the western periphery of the Vavilov Ice Cap on October Revolution Island, while glaciers feeding the former Matusevich Ice Shelf continue to thin at rates that are faster than those observed during the operational period of ICESat, between 2003 and 2009. Passive microwave studies indicate the total number of melt days is increasing in the Russian Arctic, although much of the melt may refreeze within the firn. It is likely that ice dynamic changes will drive mass loss for the immediate future. The sub-marine basins beneath several of the ice caps in the region suggest the possibility that mass loss rates may accelerate in the future.

  6. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice......, and secondly oceanic oil drift in ice affected conditions. Both investigations are made with the coupled ocean - sea ice model HYCOM-CICE at 10 km resolution, which is also used operationally at DMI and allows detailed studies of sea ice build-up, drift and melt. To investigate the sea ice decrease of the last...... and changing dynamics and discuss how they relate to satellite observations. The relation to the upper ocean heat content is also investigated. The decreasing sea ice has opened up for increased ship traffic and oil exploration in the polar oceans. To avoid damage on the pristine Arctic ecosystem...

  7. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  8. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, Charlotte; Tagesson, Håkan Torbern;

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  9. Circadian Countermeasures in the High Arctic during Summer

    Science.gov (United States)

    2014-11-01

    June 2014 were conservative in their permissible limits of off-station travel in effort to protect the health and safety of station personnel. In...herein found that regulating outdoor travel and unnecessary exposure to bright nocturnal light can have a positive impact on the sleep quality of Arctic...off station for work or leisure . From our experience, the CO and SWO in June 2014 were more conservative than their 2012 counterparts in their

  10. Three recent ice entrapments of Arctic cetaceans in West Greenland and the eastern Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    MP Heide-Jørgensen

    2002-07-01

    Full Text Available Three ice entrapments of Monodontids have been reported in the western North Atlantic since 1993. Hunters in Disko Bay, West Greenland, discovered one in March 1994 that included about 150 narwhals (Monodon monoceros. The entrapment occurred during a sudden cold period which caused ice to form rapidly. The trapped whales were subject to hunting, but about 50 of the killed whales could not be retrieved in the ice. The whales were trapped in a small opening in the ice and because of that they would probably have succumbed even if not discovered by hunters. Two entrapments involving white whales or belugas (Delphinapterus leucas occurred in the eastern Canadian Arctic in May 1999; one in Lancaster Sound discovered by polar bear (Ursus maritimus researchers and one in Jones Sound discovered by hunters. The first included one bowhead whale (Balaena mysticetus and about 40 belugas that were being preyed upon by polar bears. The second involved at least 170 belugas, of which about 100 were killed by polar bears and 17 were taken by hunters. The entrapments in Disko Bay and Jones Sound both occurred in areas where entrapments have previously been reported, whereas the one in Lancaster Sound was in a new area.

  11. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  12. Climate warming decreases the survival of the little auk (Alle alle), a high Arctic avian predator

    Science.gov (United States)

    Hovinen, Johanna E H; Welcker, Jorg; Descamps, Sébastien; Strøm, Hallvard; Jerstad, Kurt; Berge, Jørgen; Steen, Harald

    2014-01-01

    Delayed maturity, low fecundity, and high adult survival are traits typical for species with a long-life expectancy. For such species, even a small change in adult survival can strongly affect the population dynamics and viability. We examined the effects of both regional and local climatic variability on adult survival of the little auk, a long-lived and numerous Arctic seabird species. We conducted a mark-resighting study for a period of 8 years (2006-2013) simultaneously at three little auk breeding sites that are influenced by the West Spitsbergen Current, which is the main carrier of warm, Atlantic water into the Arctic. We found that the survival of adult little auks was negatively correlated with both the North Atlantic Oscillation (NAO) index and local summer sea surface temperature (SST), with a time lag of 2 and 1 year, respectively. The effects of NAO and SST were likely mediated through a change in food quality and/or availability: (1) reproduction, growth, and development of Arctic Calanus copepods, the main prey of little auks, are negatively influenced by a reduction in sea ice, reduced ice algal production, and an earlier but shorter lasting spring bloom, all of which result from an increased NAO; (2) a high sea surface temperature shortens the reproductive period of Arctic Calanus, decreasing the number of eggs produced. A synchronous variation in survival rates at the different colonies indicates that climatic forcing was similar throughout the study area. Our findings suggest that a predicted warmer climate in the Arctic will negatively affect the population dynamics of the little auk, a high Arctic avian predator. PMID:25247069

  13. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    Science.gov (United States)

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results

  14. Timing, Magnitude and Sources of Ecosystem Respiration in High Arctic Tundra of NW Greenland

    Science.gov (United States)

    Lupascu, M.; Xu, X.; Lett, C.; Maseyk, K. S.; Lindsey, D. S.; Thomas, J. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    High arctic ecosystems with low vegetation density contain significant stocks of organic carbon (C) in the form of soil organic matter that range in age from modern to ancient. How rapidly these C pools can be mineralized and lost to the atmosphere as CO2 (ecosystem respiration, ER) as a consequence of warming and, or changes in precipitation is a major uncertainty in our understanding of current and future arctic biogeochemistry and for predicting future levels of atmospheric CO2. In a 2-year study (2010-2011), we monitored seasonal changes in the magnitude, timing and sources of ER and soil pore space CO2 in the High Arctic of NW Greenland under current and simulated, future climate conditions. Measurements were taken from May to August at a multi-factorial, long-term climate change experiment in prostrate dwarf-shrub tundra on patterned ground with 5 treatments: (T1) +2oC warming, (T2) +4oC warming, (W) +50% summer precipitation, (T2W) +4oC + 50% summer precipitation, and (C) control. ER (using opaque chambers) and soil CO2 concentrations (wells) were monitored daily via infrared spectroscopy (LI-COR 800 & 840). The source of CO2 was inferred from its radiocarbon (14C) content analyzed at the AMS facility in UCI. CO2 was sampled monthly using molecular sieve traps (chambers) or evacuated canisters (wells). Highest rates of ER are observed on vegetated ground with a maximum in mid summer - reflecting a peak in plant productivity and soil temperature. Respiration rates from bare ground remain similar throughout the summer. Additional soil moisture, administered or due to precipitation events, strongly enhances ER from both vegetated and bare ground. Daily ER budget for the sampling period was of 53.1 mmol C m-2 day-1 for the (C) vegetated areas compared to the 60.0 for the (T2), 68.1 for the (T2W) or the 79.9 for the (W) treatment. ER was highly correlated to temperature (eg. C = 0.8; T2W = 0.8) until middle of July, when heavy precipitation started to occur. In

  15. New High-Resolution Images of Summer Arctic Sea Ice

    Science.gov (United States)

    Kwok, Ronald; Untersteiner, Norbert

    2011-02-01

    In 1995 a group of government and academic scientists were appointed by the vice president of the United States to review and advise on acquisitions of imagery obtained by classified intelligence satellites (National Technical Means) and to recommend the declassification of certain data sets for the benefit of science. The group is called MEDEA and was first described by Richelson [1998]. MEDEA disbanded in 2000 but reassembled in 2008. On 15 June 2009, under the auspices of MEDEA, the U.S. Geological Survey (USGS) released to the public as Literal Image Derived Products (LIDPs) numerous images with 1-meter resolution acquired since 1999 at six locations in the Arctic Basin (Beaufort Sea, Canadian Arctic, Fram Strait, East Siberian Sea, Chukchi Sea, and Point Barrow). These locations are named “fiducial sites” to suggest that the collected imagery establishes a baseline data set for understanding recent and future changes. Data in the Global Fiducials Library (GFL) can be accessed via http://gfl.usgs.gov/. This data repository is updated by USGS as additional data become available.

  16. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (PLoS ONE 10(9): e0136536.

  17. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    Science.gov (United States)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    ecosystem sinks for the 15N tracer in the long-term were organic humus soil, followed by bryophytes and then vascular plants, it is concluded that greater N deposition resulting in greater released of N from melting snowpack could significantly enrich the plant N pool and possibly enhance plant growth (with a potential to increase C storage) in the future. Overall, this study shows that high arctic tundra has considerable short- and long term- capacity for retention of snow-melt deposited N, with very tight internal recycling that allows 100% of the initially sequestered N to be retained over 10 years. Such capacity for pollutant N retention may exacerbate the impact that increased N deposition has on high arctic tundra.

  18. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  19. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    , and to unravel the relative importance of biotic and abiotic factors on ecosystem functioning. This thesis considers how selected vertebrate species in a high Arctic ecosystem respond to climatic variability, using 13 years of data from the monitoring programme at Zackenberg, Northeast Greenland. The main focus...

  20. Modeling of Arctic Storms with a Variable High-Resolution General Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roesler, Erika Louise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bosler, Peter Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.

  1. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination...... with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...

  2. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    , and secondly oceanic oil drift in ice affected conditions. Both investigations are made with the coupled ocean - sea ice model HYCOM-CICE at 10 km resolution, which is also used operationally at DMI and allows detailed studies of sea ice build-up, drift and melt. To investigate the sea ice decrease of the last......The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice...... decade, we have performed a reanalysis simulation of the years 1990-2011, forced with ERA Interim atmospheric data. Thus, the simulation includes both the period before the recent sea ice decrease and the full period of decrease up till today. We will present our model results of the thinning...

  3. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    Directory of Open Access Journals (Sweden)

    Alain Berinstain

    2013-03-01

    Full Text Available Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  4. Deployment of a fully-automated green fluorescent protein imaging system in a high arctic autonomous greenhouse.

    Science.gov (United States)

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-03-13

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated.

  5. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  6. Sleep and the endogenous melatonin rhythm of high arctic residents during the summer and winter.

    Science.gov (United States)

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Arendt, Josephine

    2015-03-15

    The seasonal extremes of photoperiod in high latitudes place particular strain on the human circadian system. Arctic residence has been associated with poor sleep in both summer and winter. The goal of the work reported here was to study the circadian rhythms of individuals living in the high Arctic by measuring sleep variables and the timing of melatonin production. Two research trials were conducted in the built environment of CFS Alert (82° 29' 58″ N). Participants wore motion logging devices (actigraphs), which measure ambient light as well as motion, for 1week to provide data on sleep quantity, quality and light exposure. On the penultimate day of each trial, the participants were maintained together in a gymnasium with lounge chairs and saliva was collected at regular intervals to measure melatonin and assess the dim light melatonin onset (DLMO), offset (MelOFF), 50% rise and fall times of the whole profile and total production. In general, sleep duration was found to be significantly different between the January and June data collections at CFS Alert, with participants in June sleeping 50min on average less each day compared to their January counterparts. In June sleep was mistimed in many subjects relative to circadian phase as evidenced by the melatonin rhythm. Exposure to bright evening light was the most likely causal factor and should be avoided in the Arctic summer. The Arctic summer represents a particularly challenging environment for obtaining sufficient sleep. This has implications for the cognitive performance of staff during work hours.

  7. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)

    Science.gov (United States)

    Zhang, Tao; Fei Wang, Neng; Qin Zhang, Yu; Yu Liu, Hong; Yan Yu, Li

    2015-10-01

    This study assessed the diversity and distribution of fungal communities in eight marine sediments of Kongsfjorden (Svalbard, High Arctic) using 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Sedimentary fungal communities showed high diversity with 42,219 reads belonging to 113 operational taxonomic units (OTUs). Of these OTUs, 62 belonged to the Ascomycota, 26 to Basidiomycota, 2 to Chytridiomycota, 1 to Zygomycota, 1 to Glomeromycota, and 21 to unknown fungi. The major known orders included Hypocreales and Saccharomycetales. The common fungal genera were Pichia, Fusarium, Alternaria, and Malassezia. Interestingly, most fungi occurring in these Arctic sediments may originate from the terrestrial habitats and different basins in Kongsfjorden (i.e., inner basin, central basin, and outer basin) harbor different sedimentary fungal communities. These results suggest the existence of diverse fungal communities in the Arctic marine sediments, which may serve as a useful community model for further ecological and evolutionary study of fungi in the Arctic.

  8. Life on a Changing Edge: Arctic-Alpine Plants at the Edges of Permanent Snowfields that are Receding Due to Climate Change at Glacier National Park

    Science.gov (United States)

    Apple, M. E.; Martin, A. C.; Moritz, D. J.

    2013-12-01

    Glaciers and snowfields are intrinsic parts of many alpine landscapes but they are retreating rapidly at Glacier National Park in Montana, USA. Plants that inhabit the edges of glaciers and snowfields are vulnerable to habitat changes wrought by the recession of these frozen bodies. Snowfields provide plants with frost protection in the winter and water in the form of melting snow during the summer. However, changes in snowfield and glacial edges may leave plants exposed to frost in the winter and subjected to water stress in the summer, which would likely have an impact on important processes, including emergence from the soil, leaf expansion, root growth, flowering, seed germination, seedling establishment, photosynthesis, and transpiration. Because these processes influence the survival of plants, responses of snowfield plants to changing edges will likely result in changes in species abundance, distribution and diversity, which will in turn influence community composition. In summer 2012, we initiated a study of Glacier National Park's snowfield plants by establishing 2m2 plots at geospatially referenced 50m transects extending outwards from the toe and perpendicularly outward from the lateral edges of currently permanent snowfields at Siyeh Pass, Piegan Pass, and Preston Park, with an additional 100m transect extending from an impermanent snowfield to treeline at Mt. Clements near Logan Pass. We constructed species lists and determined percent cover for each species in each 2m2 plot, and used high resolution photographs of each plot as records and for fine scale determinations of species presence and location. In addition, we searched for rare arctic-alpine plants which, due to their rarity, may be especially vulnerable to changes in snowfields and glaciers. Two species of rare arctic-alpine plants, Tofieldia pusilla and Pinguicula vulgaris, were found near snowmelt-fed springs, rivulets, and tarns but were not found adjacent to the snowfields. Thus, they may

  9. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2013-02-01

    Full Text Available Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada and Zeppelin Station (Svalbard, Norway; one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada; and three temperate Canadian sites at St. Anicet (Québec, Kejimkujik (Nova Scotia and Egbert (Ontario. Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0 at Alert and no trend (−0.5, +0.7 at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1 at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8 at St. Anicet, −1.6% yr−1 (−2.4, −1.0 at Kejimkujik and −2.2% yr−1 (−2.8, −1.7 at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM and total particulate mercury (TPM at Alert were also performed, indicating increases from 2002 to 2009

  10. Microbes in high arctic snow and implications for the cold biosphere.

    Science.gov (United States)

    Harding, Tommy; Jungblut, Anne D; Lovejoy, Connie; Vincent, Warwick F

    2011-05-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83(o)N). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere.

  11. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.

    Science.gov (United States)

    Descamps, Sébastien; Aars, Jon; Fuglei, Eva; Kovacs, Kit M; Lydersen, Christian; Pavlova, Olga; Pedersen, Åshild Ø; Ravolainen, Virve; Strøm, Hallvard

    2017-02-01

    The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.

  12. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    Science.gov (United States)

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  13. Photosynthetic Characterization of Plant Functional Types from Coastal Tundra to Improve Representation of the Arctic in Earth System Models

    Science.gov (United States)

    Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.

    2012-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that

  14. Sources of inorganic and monomethyl mercury to high and sub Arctic marine ecosystems

    Science.gov (United States)

    Kirk, Jane Liza

    Monomethyl mercury (MMHg), a toxic and bioaccumulative form of Hg, is present in some Canadian high and sub Arctic marine mammals at concentrations high enough to pose health risks to Northern peoples using these animals as food. To quantify potentially large sources of Hg to Arctic marine ecosystems, we examined several aspects of Hg cycling in the Canadian Arctic Archipelago (CAA) and Hudson Bay. Firstly, we quantified net Hg inputs to Hudson Bay from atmospheric Hg depletion events (AMDEs). During AMDEs, gaseous elemental Hg(0) (GEM), which is present in the Arctic atmosphere at global background concentrations, is oxidized to inorganic Hg(II) species that deposit to snowpacks. By simultaneously monitoring Hg in the atmosphere and in snowpacks of western Hudson Bay, we demonstrated that most of the Hg(II) deposited during AMDEs is rapidly (photo)reduced and emitted to the atmosphere. Secondly, we examined Hg speciation in marine waters of the CAA and Hudson Bay. We found high concentrations of MMHg and dimethyl Hg (DMHg; a toxic, gaseous form of Hg) in deep marine waters, where they are likely produced from Hg(II). Arctic marine waters were also found to be a substantial source of DMHg and GEM to the atmosphere. Thirdly, we quantified Hg exports to Hudson Bay from two major rivers, the Nelson and the Churchill, which have been altered for hydroelectric power production. When landscapes are inundated during river diversion or reservoir creation, microbial production of MMHg is stimulated in flooded soils. Newly produced MMHg can then be exported to downstream waterbodies. We found that annual inputs of total Hg (THg; includes both Hg(II) and MMHg) to Hudson Bay from combined Nelson and Churchill River discharge were comparable to inputs from AMDEs. MMHg inputs from river discharge are, however, ˜13 times greater than those from annual snowmelt of Hudson Bay snowpacks. Finally, although combined river and AMDE Hg inputs may account for a large portion of the THg

  15. Characterizing Near-Infrared Sky Brightness in the Canadian High Arctic

    CERN Document Server

    Sivanandam, Suresh; Abraham, Roberto; Tekatch, Anthony; Steinbring, Eric; Ngan, Wayne; Welch, Doug L; Law, Nicholas M

    2012-01-01

    We present the first measurements of the near-infrared (NIR), specifically the J-band, sky background in the Canadian High Arctic. There has been considerable recent interest in the development of an astronomical observatory in Ellesmere Island; initial site testing has shown promise for a world-class site. Encouragement for our study came from sky background measurements on the high Antarctic glacial plateau in winter that showed markedly lower NIR emission when compared to good mid-latitude astronomical sites due to reduced emission from OH airglow lines. This is possibly a Polar effect and may also be present in the High Arctic. To test this hypothesis, we carried out an experiment which measured the the J-band sky brightness in the High Arctic during winter. We constructed a zenith-pointing, J-band photometer, and installed it at the Polar Environment Atmospheric Research Laboratory (PEARL) near Eureka, Nunavut (latitude: 80 degrees N). We present the design of our photometer and our results from our shor...

  16. Rapid Collapse of the Vavilov Ice Cap, Russian High Arctic.

    Science.gov (United States)

    Willis, M. J.; Zheng, W.; Durkin, W. J., IV; Pritchard, M. E.; Ramage, J. M.; Dowdeswell, J. A.; Benham, T. J.; Glazovsky, A.; Macheret, Y.; Porter, C. C.

    2016-12-01

    Cold based ice caps and glaciers are thought to respond slowly to environmental changes. As sea ice cover evolves in the Arctic, a feedback process alters air-temperatures and precipitation patterns across the region. During the last decades of the 20th century the land-terminating western margin of the Vavilov Ice Cap, on October Revolution Island of the Severnaya Zemlya Archipelago, advanced slowly westwards. The advance was driven by precipitation changes that occurred about half a millennia ago. InSAR shows that in 1996 the margin sustained ice speeds of around 20 m/yr. By 2000 the ice front had moved a short distance into the Kara Sea and had transitioned to a marine-terminating front, although an ice apron around the ice margin indicates the ice there was still frozen to the bed and there is no evidence of calving in satellite imagery. In 2013 ice motions near the terminus had accelerated to around 1 m/day. By late 2015 the main trunk of the newly activated outlet glacier attained speeds of 25 m/day and the inland portion of the ice cap thinned at rates of more than 0.3 m/day. The acceleration of the outlet glacier occurred due to its advance over weak, water-saturated marine sediments that provide little resistance to ice flow, and to the removal of lateral resistive stresses as the glacier advanced out into an open embayment. Longitudinal stretching at the front forces an increase in the surface slope upstream. Rapid rates of motion inland generate frictional melt at the bed, possibly aided by cryohydrological warming. Large areas of the interior of the Vavilov ice cap are now below the equilibrium line and the grounded portion of the ice cap is losing mass at a rate of 4.5 km3 w.e./year. The changes at the Vavilov are likely irrecoverable in a warming climate due to a reduction in the accumulation area of the ice cap. Increased precipitation drove the advance, which accelerated due to the presence of soft sediments. The acceleration lowered the elevation

  17. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  18. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Bareiss

    2009-08-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in an Arctic landscape. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formula currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an untypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that only the use of a hydrodynamic three-layer temperature-profile model achieves enough accuracy for heat flux calculations as it reliably reproduces the temporal variability of the surface temperature.

  19. Changing Export of Dissolved Black Carbon from Arctic Rivers

    Science.gov (United States)

    Stubbins, A.; Spencer, R. G.; Mann, P. J.; Dittmar, T.; Niggemann, J.; Holmes, R. M.; McClelland, J. W.

    2014-12-01

    Arctic rivers carry black carbon (BC) from Arctic soils to the ocean, linking two of the largest carbon stores on Earth. Wildfires have charred biomass since land plants emerged. BC, a refractory component of char, has accumulated in soils. In the oceans, dissolved BC (DBC) has also accumulated. Here we use samples and data collected as part of the long-term, high temporal resolution Arctic Great Rivers Observatory to model export of DBC from the six largest Arctic Rivers. Scaling to the pan-Arctic catchment, we report that ~3 million tons of DBC are delivered to the Arctic Ocean each year, which is ~8% of dissolved organic carbon loads to the Arctic Ocean. We suggest the transfer of Arctic river DBC to areas of deep water formation is a major source of DBC to the deep ocean carbon store. As the Arctic warms, greater wildfire occurrence is expected to produce more BC and changing hydrology and permafrost thaw to promote DBC export. Thus, the transfer of BC from Arctic soils to the ocean is predicted to increase.

  20. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode;

    2015-01-01

    experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...

  1. Characterizing Arctic sea ice topography using high-resolution IceBridge data

    OpenAIRE

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.; Farrell, Sinead L.; Newman, Thomas; Harbeck, Jeremy P.; FELTHAM, DANIEL L.; Richter-Menge, Jackie A.

    2015-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009–2014 within the Beaufort/Chukchi and Central Arcti...

  2. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena

    2017-04-21

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton respiration may be stimulated in the light is particularly relevant for the high Arctic where plankton communities experience continuous daylight in spring and summer. Here we demonstrate that plankton community respiration evaluated under the continuous daylight conditions present in situ, tends to be higher than that evaluated in the dark. The ratio between community respiration measured in the light (Rlight) and in the dark (Rdark) increased as the 2/3 power of Rlight so that the Rlight:Rdark ratio increased from an average value of 1.37 at the median Rlight measured here (3.62 µmol O2 L-1 d-1) to an average value of 17.56 at the highest Rlight measured here (15.8 µmol O2 L-1 d-1). The role of respiratory processes as a source of CO2 in the Arctic has, therefore, been underestimated and is far more important than previously believed, particularly in the late spring, with 24 h photoperiods, when community respiration rates are highest.

  3. Astronomical seeing and ground-layer turbulence in the Canadian High Arctic

    CERN Document Server

    Hickson, P; Pfrommer, T; Steinbring, E

    2013-01-01

    We report results of a two-year campaign of measurements, during arctic winter darkness, of optical turbulence in the atmospheric boundary-layer above the Polar Environment Atmospheric Laboratory in northern Ellesmere Island (latitude +80 deg N). The data reveal that the ground-layer turbulence in the Arctic is often quite weak, even at the comparatively-low 610 m altitude of this site. The median and 25th percentile ground-layer seeing, at a height of 20 m, are found to be 0.57 and 0.25 arcsec, respectively. When combined with a free-atmosphere component of 0.30 arcsec, the median and 25th percentile total seeing for this height is 0.68 and 0.42 arcsec respectively. The median total seeing from a height of 7 m is estimated to be 0.81 arcsec. These values are comparable to those found at the best high-altitude astronomical sites.

  4. Arctic cut-off high drives the poleward shift of a new Greenland melting record

    Science.gov (United States)

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-06-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade.

  5. Arctic Cut-Off High Drives the Poleward Shift of a New Greenland Melting Record

    Science.gov (United States)

    Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J. F.; Datta, R.; Briggs, K.

    2016-01-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Here, using reanalysis data and the outputs of a regional climate model, we show that the persistence of an exceptional atmospheric ridge, centered over the Arctic Ocean, was responsible for a poleward shift of runoff, albedo and surface temperature records over the Greenland during the summer of 2015. New records of monthly mean zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5,700+/-50 m isohypse over the Arctic were associated with the formation and persistency of a cutoff high. The unprecedented (1948-2015) and sustained atmospheric conditions promoted enhanced runoff, increased the surface temperatures and decreased the albedo in northern Greenland, while inhibiting melting in the south, where new melting records were set over the past decade. Subject terms: Earth sciences Atmospheric science Climate science

  6. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  7. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Cooper, Elisabeth J.

    2013-01-01

    frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5...

  8. The active methanotrophic community in a wetland from the High Arctic.

    Science.gov (United States)

    Graef, Christiane; Hestnes, Anne Grethe; Svenning, Mette Marianne; Frenzel, Peter

    2011-08-01

    The dominant terminal process of carbon mineralization in most freshwater wetlands is methanogenesis. With methane being an important greenhouse gas, the predicted warming of the Arctic may provide a positive feedback. However, the amount of methane released to the atmosphere may be controlled by the activity of methane-oxidizing bacteria (methanotrophs) living in the oxic surface layer of wetlands. Previously, methanotrophs have been isolated and identified by genetic profiling in High Arctic wetlands showing the presence of only a few genotypes. Two isolates from Solvatnet (Ny-Ålesund, Spitsbergen; 79°N) are available: Methylobacter tundripaludum (type I) and Methylocystis rosea (type II), raising the question whether the low diversity is a cultivation effect. We have revisited Solvatnet applying stable isotope probing (SIP) with (13) C-labelled methane. 16S rRNA profiling revealed active type I methanotrophs including M. tundripaludum, while no active type II methanotrophs were identified. These results indicate that the extant M. tundripaludum is an active methane oxidizer at its locus typicus; furthermore, Methylobacter seems to be the dominant active genus. Diversity of methanotrophs was low as compared, e.g. to wetland rice fields in the Mediterranean. This low diversity suggests a high vulnerability of Arctic methanotroph communities, which deserves more attention.

  9. Low Density of Top Predators (Seabirds and Marine Mammals in the High Arctic Pack Ice

    Directory of Open Access Journals (Sweden)

    Claude R. Joiris

    2016-01-01

    Full Text Available The at-sea distribution of top predators, seabirds and marine mammals, was determined in the high Arctic pack ice on board the icebreaker RV Polarstern in July to September 2014. In total, 1,620 transect counts were realised, lasting 30 min each. The five most numerous seabird species represented 74% of the total of 15,150 individuals registered: kittiwake Rissa tridactyla, fulmar Fulmarus glacialis, puffin Fratercula arctica, Ross’s gull Rhodostethia rosea, and little auk Alle alle. Eight cetacean species were tallied for a total of 330 individuals, mainly white-beaked dolphin Lagenorhynchus albirostris and fin whale Balaenoptera physalus. Five pinniped species were represented by a total of 55 individuals and the polar bear Ursus maritimus was represented by 12 individuals. Four main geographical zones were identified: from Tromsø to the outer marginal ice zone (OMIZ, the Arctic pack ice (close pack ice, CPI, the end of Lomonosov Ridge off Siberia, and the route off Siberia and northern Norway. Important differences were detected between zones, both in species composition and in individual abundance. Low numbers of species and high proportion of individuals for some of them can be considered to reflect very low biodiversity. Numbers encountered in zones 2 to 4 were very low in comparison with other European Arctic seas. The observed differences showed strong patterns.

  10. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  11. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    -B was demonstrated to decrease photosynthesis and shift carbon allocation from shoots to roots. Moreover, ambient UV-B increased plant stress with detrimental effects on electron processing in the photosynthetic apparatus. Plant responses did not lead to clear changes in the amount of fungal root symbionts...... on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg...

  12. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  13. Tight coupling between leaf area index and foliage N content in arctic plant communities

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Shaver, G.R.

    2005-01-01

    The large spatial heterogeneity of arctic landscapes complicates efforts to quantify key processes of these ecosystems, for example productivity, at the landscape level. Robust relationships that help to simplify and explain observed patterns, are thus powerful tools for understanding and predicting

  14. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  15. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  16. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rozema, Jelte [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)]. E-mail: jelte.rozema@ecology.falw.vu.nl; Boelen, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands); Blokker, Peter [Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2005-10-15

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. - Polar plant responses to UV-B may be different in the Arctic than Antarctic regions.

  17. Winter temperature conditions (1670-2010) reconstructed from varved sediments, western Canadian High Arctic

    Science.gov (United States)

    Amann, Benjamin; Lamoureux, Scott F.; Boreux, Maxime P.

    2017-09-01

    Advances in paleoclimatology from the Arctic have provided insights into long-term climate conditions. However, while past annual and summer temperature have received considerable research attention, comparatively little is known about winter paleoclimate. Arctic winter is of special interest as it is the season with the highest sensitivity to climate change, and because it differs substantially from summer and annual measures. Therefore, information about past changes in winter climate is key to improve our knowledge of past forced climate variability and to reduce uncertainty in climate projections. In this context, Arctic lakes with snowmelt-fed catchments are excellent potential winter climate archives. They respond strongly to snowmelt-induced runoff, and indirectly to winter temperature and snowfall conditions. To date, only a few well-calibrated lake sediment records exist, which appear to reflect site-specific responses with differing reconstructions. This limits the possibility to resolve large-scale winter climate change prior the instrumental period. Here, we present a well-calibrated quantitative temperature and snowfall record for the extended winter season (November through March; NDJFM) from Chevalier Bay (Melville Island, NWT, Canadian Arctic) back to CE 1670. The coastal embayment has a large catchment influenced by nival terrestrial processes, which leads to high sedimentation rates and annual sedimentary structures (varves). Using detailed microstratigraphic analysis from two sediment cores and supported by μ-XRF data, we separated the nival sedimentary units (spring snowmelt) from the rainfall units (summer) and identified subaqueous slumps. Statistical correlation analysis between the proxy data and monthly climate variables reveals that the thickness of the nival units can be used to predict winter temperature (r = 0.71, pc research such as data-model comparisons and proxy-data assimilation in climate model simulations.

  18. New Exoplanet Surveys in the Canadian High Arctic at 80 Degrees North

    CERN Document Server

    Law, Nicholas M; Murowinski, Richard; Carlberg, Raymond; Ngan, Wayne; Salbi, Pegah; Ahmadi, Aida; Steinbring, Eric; Halman, Mark; Graham, James

    2012-01-01

    Observations from near the Eureka station on Ellesmere Island, in the Canadian High Arctic at 80 degrees North, benefit from 24-hour darkness combined with dark skies and long cloud-free periods during the winter. Our first astronomical surveys conducted at the site are aimed at transiting exoplanets; compared to mid-latitude sites, the continuous darkness during the Arctic winter greatly improves the survey's detection efficiency for longer-period transiting planets. We detail the design, construction, and testing of the first two instruments: a robotic telescope, and a set of very wide-field imaging cameras. The 0.5m Dunlap Institute Arctic Telescope has a 0.8-square-degree field of view and is designed to search for potentially habitable exoplanets around low-mass stars. The very wide field cameras have several-hundred-square-degree fields of view pointed at Polaris, are designed to search for transiting planets around bright stars, and were tested at the site in February 2012. Finally, we present a concep...

  19. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  20. Development of generative structures of polar Caryophyllaceae plants: the Arctic Cerastium alpinum and Silene involucrata, and the Antarctic Colobanthus quitensis

    Directory of Open Access Journals (Sweden)

    Kellmann-Sopyła Wioleta

    2017-03-01

    Full Text Available The embryology of three polar flowering plants of the family Caryophyllaceae was studied using the methods and techniques of the light, normal and fluorescence microscopes, and the electron microscopes, scanning and transmission. The analyzed species were Colobanthus quitensis of West Antarctic (King George Island, South Shetlands Islands as well as Cerastium alpinum and Silene involucrata of the Arctic (Spitsbergen, Svalbard. In all evaluated species, flowering responses were adapted to the short Arctic and Australian summer, and adaptations to autogamy and anemogamy were also observed. The microsporangia of the analyzed plants produced small numbers of microspore mother cells that were differentiated into a dozen or dozens of trinucleate pollen grains. The majority of mature pollen grains remained inside microsporangia and germinated in the thecae. The monosporous Polygonum type (the most common type in angiosperms of embryo sac development was observed in the studied species. The egg apparatus had an egg cell and two synergids with typical polarization. A well-developed filiform apparatus was differentiated in the micropylar end of the synergids. In mature diaspores of the analyzed plants of the family Caryophyllaceae, a large and peripherally located embryo was, in most part, adjacent to perisperm cells filled with reserve substances, whereas the radicle was surrounded by micropylar endosperm composed of a single layer of cells with thick, intensely stained cytoplasm, organelles and reserve substances. The testae of the analyzed plants were characterized by species-specific primary and secondary sculpture, and they contained large amounts of osmophilic material with varied density. Seeds of C. quitensis, C. alpinum and S. involucrata are very small, light and compact shaped.

  1. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  2. Arctic Sovereignty Disputes: International Relations Theory in the High North

    Science.gov (United States)

    2011-12-01

    Sea USGS United States Geological Service xii THIS PAGE INTENTIONALLY LEFT BLANK xiii ACKNOWLEDGMENTS I would like to express...Osica, “The High North as a New Area of Cooperation and Rivalry,” Nowa Europa Special Issue, vol. 1, no. 4, 2010. 16 Northwest Passage indicates...Osica, Olaf. “The High North as a New Area of Cooperation and Rivalry.” Nowa Europa Special Issue, vol. I, no. 4, 2010. Regjeringen Norway. “Joint

  3. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    , as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter...

  4. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic): Aquatic Fungi in the Arctic.

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem.

  5. Depletion of stratospheric ozone over the Antarctic and Arctic : Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  6. Depletion of stratospheric ozone over the Antarctic and Arctic : Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview

    NARCIS (Netherlands)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-01-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to

  7. Heavy metal bioaccumulation and histopathological alterations in wild Arctic hares (Lepus arcticus) inhabiting a former lead-zinc mine in the Canadian high Arctic: A preliminary study.

    Science.gov (United States)

    Amuno, S; Niyogi, S; Amuno, M; Attitaq, J

    2016-06-15

    A preliminary study was undertaken to determine post-mining baseline accumulation of selected trace metals, and histopathological alterations in free-living arctic hares (Lepus arcticus) inhabiting the vicinity of a former lead-zinc mine located on North Baffin Island in the Canadian High Arctic. Trace metal analysis included measurement of As, Cd, Fe, Pb and Zn in tissues, and histopathological assessment comprised of evaluation and scoring the severity of metal-induced hepatic and renal lesions. Metal contents in hepatic and renal tissues from hares from the mine area compared with the reference locations did not differ significantly suggesting that the animals are not uniformly exposed to background levels of metals in the environment. However, relatively higher accumulation pattern of Pb and Cd were noted in liver tissues of hare from the mine area compared to the background area, but did not induce increased lesions. Surface soils near the mine area contained relatively higher levels of trace metals (Zn>Mn>Pb>Cd>As) compared to reference soils, and with soil levels of Cd showing strong correlation with Cd accumulation in kidney tissues. Generally, both case and reference animals showed similar but varying severities of hepatic and renal lesions at the sublethal level, notably vascular congestion, occasional large hepatocyte nuclei, binucleate hepatocytes, yellow-brown pigmentation in the cytoplasm of hepatocytes and clustering of lymphocytes. Only hares with relatively higher accumulation of Pb from the mine area showed evidence of renal edema and hemorrhage of the capsular surface. This study constitutes the first assessment of metal induced histopathological alterations in arctic hares exposed to a historical mining area in the high arctic.

  8. Pollution in the Summertime Canadian High Arctic observed during NETCARE 2014: Investigation of origin and composition

    Science.gov (United States)

    Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan

    2015-04-01

    The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources

  9. The Need and Opportunity for an Integrated Research, Development and Testing Station in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip

  10. Remediation of metal-contaminated land for plant cultivation in the Arctic/subarctic region

    Science.gov (United States)

    Kikuchi, Ryunosuke; Gorbacheva, Tamara T.; Ferreira, Carla S.

    2017-04-01

    Hazardous activities and/or industries involve the use, storage or disposal of hazardous substances. These substances can sometimes contaminate the soil, which can remain contaminated for many years. The metals can have severe effects of on ecosystems. In the Arctic/subarctic regions, the Kola Peninsula (66-70°N and 28°30'-41°30'E) in Russia is one of the seriously polluted regions: close to the nickel-copper smelters, the deposition of metal pollutants has severely damaged the soil and ground vegetation, resulting in a desert area. An area of 10-15 km around the smelters on the Kola Peninsula is today dry sandy and stony ground. A great amount of financial aid is usually required to recover theland. Considering cost performance, a pilot-scale (4ha) field test was carried out to investigate how to apply municipal sewage sludge for rehabilitation of degraded land near the Ni-Cu smelter complex on the Kola Peninsula. The above-mentioned field test for soil rehabilitation was performed while smelting activities were going on; thus, the survey fields were suffering from pollution emitted by the metallurgical industry, and may continue to suffer in the future. After the composting of sewage sludge, the artificial substratum made from the compost was introduced to the test field for the polluted-land remediation, and then willows, birches and grasses were planted on the substratum. The following remarkable points in pollution load were observed between the background field and the rehabilitation test field (e.g. polluted land): (i) the annual precipitation amount of SO42- (5668 g/ha) in the rehabilitation test field was over 5 times greater than that in the background field; (ii) the Pb amount (1.5 g/ha) in the rehabilitation test field was 29 times greater than that in the background field; (iii) the Co amount (10.9 g/ha) in the rehabilitation test field was 54 times greater than that in the background field; (iv) the Cu amount (752 g/ha) in the rehabilitation field

  11. Aphid-willow interactions in a high Arctic ecosystem: responses to raised temperature and goose disturbance.

    Science.gov (United States)

    Gillespie, Mark A K; Jónsdóttir, Ingibjörg S; Hodkinson, Ian D; Cooper, Elisabeth J

    2013-12-01

    Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed.

  12. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    Directory of Open Access Journals (Sweden)

    Jonathan H Cohen

    Full Text Available The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  13. Sediment dynamics in paired High Arctic lakes revealed from high-resolution swath bathymetry and acoustic stratigraphy surveys

    Science.gov (United States)

    Normandeau, A.; Lamoureux, S. F.; Lajeunesse, P.; Francus, P.

    2016-09-01

    High Arctic lakes are commonly used for paleoclimatic reconstructions because they are particularly sensitive to climate variability. However, the processes leading to sediment deposition and distribution in these lakes are often poorly understood. Here for the first time in the Canadian High Arctic, we present original data resulting from swath bathymetry and subbottom surveys carried out on two lakes at Cape Bounty, Melville Island. The results reveal the dynamic nature of the lakes, in which mass movement deposits and bedforms on the deltas reflect frequent slope instabilities and hyperpycnal flow activity. The analysis of the mass movement deposits reveals that small blocky debris flows/avalanches, debris flows, and a slide occurred during the Holocene. These mass movements are believed to have been triggered by earthquakes and potentially by permafrost thawing along the shoreline. Altogether, these mass movement deposits cover more than 30% of the lake floors. Additionally, the river deltas on both lakes were mapped and reveal the presence of several gullies and bedforms. The presence of gullies along the delta front indicates that hyperpycnal flows generated at the river mouth can transport sediment in different trajectories downslope, resulting in a different sediment accumulation pattern and record. The dynamic nature of these two lakes suggests that further analysis on sediment transport and distribution within Arctic lakes is required in order to improve paleoclimatic reconstructions.

  14. Deep-ocean predation by a high Arctic cetacean

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Jørgensen, Ole A

    2004-01-01

    A bioenergetic model for two narwhal (Monodon monoceros) sub-populations was developed to quantify daily gross energy requirements and estimate the biomass of Greenland halibut (Reinhardtius hippoglossoides) needed to sustain the sub-populations for their 5-month stay on wintering grounds in Baffin...... Bay. Whales in two separate wintering grounds were estimated to require 700 tonnes (s.e. 300) and 90 tonnes (s.e. 40) of Greenland halibut per day, assuming a diet of 50% Greenland halibut. Mean densities and length distributions of Greenland halibut inside and outside of the narwhal wintering grounds...... were correlated with predicted whale predation levels based on diving behavior. The difference in Greenland halibut biomass between an area with high predation and a comparable area without whales, approximately 19000 tonnes, corresponded well with the predicted biomass removed by the narwhal sub...

  15. Seasonal narwhal habitat associations in the high Arctic

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Logdson, M.L.

    2004-01-01

    grounds often coincided with areas of concurrent high density of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) and predictable open water in winter pack ice in Baffin Bay. These quantitative habitat models made it possible to reconcile the behavioral traits of narwhals with dynamic...... and 2000 and fitted with satellite-linked time-depth recorders. Geographic positions of whales at 24-h time steps were linked to dive behavior variables compressed on a daily scale, including numbers of dives to different target depths or durations, time near the surface, daily dive rate, and travel speed....... Whale movements and behavior were linked to biophysical variables in a raster format using a GIS (bathymetry, bottom topography, bottom temperature, and distance from the coastline) and analyzed using linear and generalized linear mixed models, accounting for temporal autocorrelation and random...

  16. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-02-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  17. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    The quantification of the relationship between accumulation of snow and vegetation is crucial for understanding the influence of vegetation dynamics. We here present an analysis of the thickness of the snow and hydrological availability in relation to the seven main vegetation types in the High...... Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  18. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province

    DEFF Research Database (Denmark)

    Tegner, Christian; Storey, Michael; Holm, Paul Martin

    2011-01-01

    in the Northeast Atlantic resulted in spreading and volcanism (61– 25 Ma) on both sides of Greenland, pushing Greenland northwards relative to North America. The tectonic setting in the High Arctic thus changed from extensional to compressional and volcanic activity was terminated. Evaluation of plate kinematic...... perthite feldspars and coeval resetting of Rb–Sr isotopes by hydrothermal fluids provide further support for thermal overprinting. This thermal event is interpreted as a result of compressional tectonism of the Kap Cannon Thrust Zone in which older Palaeozoic metasediments were thrusted northwards over...

  19. Astronomical Sky Quality Near Eureka, in the Canadian High Arctic

    CERN Document Server

    Steinbring, Eric; Drummond, James R

    2011-01-01

    Nighttime visible-light sky brightness and transparency are reported for the Polar Environment Research Laboratory (PEARL), located on a 610-m high ridge near the Eureka research station, on Ellesmere Island, Canada. Photometry of Polaris obtained in V band with the PEARL All Sky Imager (PASI) over two winters is supported by standard meteorological measurements and visual estimates of sky conditions from sea level. These data show that during the period of the study, October through March of 2008/09 and 2009/10, the sky near zenith had a mean surface brightness of 19.7 mag/square-arcsec when the sun was more than 12 deg below the horizon, reaching 20.7 mag/square-arcsec during astronomical darkness with no moon. Skies were without thick cloud and potentially usable for astronomy 86% of the time (extinction <2 mag). Up to 68% of the time was spectroscopic (<0.5 mag), attenuated by ice crystals, or clear with stable atmospheric transparency. Those conditions can persist for over 100 hours at a time. Furt...

  20. Black Carbon Sources Constrained by Observations in the Russian High Arctic.

    Science.gov (United States)

    Popovicheva, Olga B; Evangeliou, Nikolaos; Eleftheriadis, Konstantinos; Kalogridis, Athina C; Sitnikov, Nikolay; Eckhardt, Sabine; Stohl, Andreas

    2017-04-04

    Understanding the role of short-lived climate forcers such as black carbon (BC) at high northern latitudes in climate change is hampered by the scarcity of surface observations in the Russian Arctic. In this study, highly time-resolved Equivalent BC (EBC) measurements during a ship campaign in the White, Barents, and Kara Seas in October 2015 are presented. The measured EBC concentrations are compared with BC concentrations simulated with a Lagrangian particle dispersion model coupled with a recently completed global emission inventory to quantify the origin of the Arctic BC. EBC showed increased values (100-400 ng m(-3)) in the Kara Strait, Kara Sea, and Kola Peninsula and an extremely high concentration (1000 ng m(-3)) in the White Sea. Assessment of BC origin throughout the expedition showed that gas-flaring emissions from the Yamal-Khanty-Mansiysk and Nenets-Komi regions contributed the most when the ship was close to the Kara Strait, north of 70° N. Near Arkhangelsk (White Sea), biomass burning in mid-latitudes, surface transportation, and residential and commercial combustion from Central and Eastern Europe were found to be important BC sources. The model reproduced observed EBC concentrations efficiently, building credibility in the emission inventory for BC emissions at high northern latitudes.

  1. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Science.gov (United States)

    Gao, Q.; Leck, C.; Rauschenberg, C.; Matrai, P. A.

    2012-07-01

    The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud Ocean Study (ASCOS) in August 2008, particulate organic matter (POM, with size range > 0.22 μm) and dissolved organic matter (DOM, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM (> 5 kDa) and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the enrichment of polysaccharides in the high Arctic open lead SML.

  2. Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic.

    Science.gov (United States)

    Niederberger, Thomas D; Perreault, Nancy N; Lawrence, John R; Nadeau, Jay L; Mielke, Randall E; Greer, Charles W; Andersen, Dale T; Whyte, Lyle G

    2009-03-01

    The perennial springs at Gypsum Hill (GH) and Colour Peak (CP), situated at nearly 80 degrees N on Axel Heiberg Island in the Canadian high Arctic, are one of the few known examples of cold springs in thick permafrost on Earth. The springs emanate from deep saline aquifers and discharge cold anoxic brines rich in both sulfide and sulfate. Grey-coloured microbial streamers form during the winter months in snow-covered regions of the GH spring run-off channels (-1.3 degrees C to 6.9 degrees C, approximately 7.5% NaCl, 0-20 p.p.m. dissolved sulfide, 1 p.p.m. dissolved oxygen) but disappear during the Arctic summer. Culture- and molecular-based analyses of the 16S rRNA gene (FISH, DGGE and clone libraries) indicated that the streamers were uniquely dominated by chemolithoautotrophic sulfur-oxidizing Thiomicrospira species. The streamers oxidized both sulfide and thiosulfate and fixed CO(2) under in situ conditions and a Thiomicrospira strain isolated from the streamers also actively oxidized sulfide and thiosulfate and fixed CO(2) under cold, saline conditions. Overall, the snow-covered spring channels appear to represent a unique polar saline microhabitat that protects and allows Thiomicrospira streamers to form and flourish via chemolithoautrophic, phototrophic-independent metabolism in a high Arctic winter environment characterized by air temperatures commonly below -40 degrees C and with an annual average air temperature of -15 degrees C. These results broaden our knowledge of the physical and chemical boundaries that define life on Earth and have astrobiological implications for the possibility of life existing under similar Martian conditions.

  3. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  4. The Canadian Arctic ACE/OSIRIS Validation Project at PEARL: Validating Satellite Observations Over the High Arctic

    Science.gov (United States)

    Walker, Kaley A.; Strong, Kimberly; Fogal, Pierre F.; Drummond, James R.

    2016-04-01

    Ground-based measurements provide critical data for the validation of satellite retrievals of atmospheric trace gases and for the assessment of long-term stability of these measurements. As of February 2016, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has been making measurements of the Earth's atmosphere for nearly twelve years and Canada's Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite has been operating for fourteen years. As ACE and OSIRIS operations have extended beyond their planned two-year missions, there is an ongoing need to validate the trace gas data profiles from the ACE-Fourier Transform Spectrometer (ACE-FTS), the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) and OSIRIS. In particular, validation comparisons are needed during Arctic springtime to understand better the measurements of species involved in stratospheric ozone chemistry. To this end, thirteen Canadian Arctic ACE/OSIRIS Validation Campaigns have been conducted during the spring period (February - April in 2004 - 2016) at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80N, 86W). For the past decade, these campaigns have been undertaken in collaboration with the Canadian Network for the Detection of Atmospheric Change (CANDAC). The spring period coincides with the most chemically active time of year in the Arctic, as well as a significant number of satellite overpasses. A suite of as many as 12 ground-based instruments, as well as frequent balloon-borne ozonesonde and radiosonde launches, have been used in each campaign. These instruments include: a ground-based version of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a terrestrial version of the ACE-MAESTRO, a SunPhotoSpectrometer, two CANDAC zenith-viewing UV-visible grating spectrometers, a Bomem DA8 Fourier transform spectrometer

  5. Arctic smoke record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe

    Science.gov (United States)

    Stohl, A.; Berg, T.; Burkhart, J. F.; Fjæraa, A. M.; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W. W.; Oltmans, S.; Shiobara, M.; Simpson, D.; Solberg, S.; Stebel, K.; Ström, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.

    2006-10-01

    In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near NyÅlesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also enhanced. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing - black carbon concentrations were the highest ever recorded at Zeppelin -, and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at NyÅlesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly enhanced levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke

  6. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic.

    Science.gov (United States)

    Vincent, Warwick F; Mueller, Derek R; Bonilla, Sylvia

    2004-04-01

    Microbial communities occur throughout the cryosphere in a diverse range of ice-dominated habitats including snow, sea ice, glaciers, permafrost, and ice clouds. In each of these environments, organisms must be capable of surviving freeze-thaw cycles, persistent low temperatures for growth, extremes of solar radiation, and prolonged dormancy. These constraints may have been especially important during global cooling events in the past, including the Precambrian glaciations. One analogue of these early Earth conditions is the thick, landfast sea ice that occurs today at certain locations in the Arctic and Antarctic. These ice shelves contain liquid water for a brief period each summer, and support luxuriant microbial mat communities. Our recent studies of these mats on the Markham Ice Shelf (Canadian high Arctic) by high performance liquid chromatography (HPLC) showed that they contain high concentrations of chlorophylls a and b, and several carotenoids notably lutein, echinenone and beta-carotene. The largest peaks in the HPLC chromatograms were two UV-screening compounds known to be produced by cyanobacteria, scytonemin, and its decomposition product scytonemin-red. Microscopic analyses of the mats showed that they were dominated by the chlorophyte genera cf. Chlorosarcinopsis, Pleurastrum, Palmellopsis, and Bracteococcus, and cyanobacteria of the genera Nostoc, Phormidium, Leptolyngbya, and Gloeocapsa. From point transects and localized sampling we estimated a total standing stock on this ice shelf of up to 11,200 tonnes of organic matter. These observations underscore the ability of microbial communities to flourish despite the severe constraints imposed by the cryo-ecosystem environment.

  7. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    Science.gov (United States)

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  8. A Large Ornithurine Bird (Tingmiatornis arctica) from the Turonian High Arctic: Climatic and Evolutionary Implications

    Science.gov (United States)

    Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald

    2016-12-01

    Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.

  9. Managing scientific diving operations in a remote location: the Canadian high Arctic.

    Science.gov (United States)

    Sayer, Martin D J; Küpper, Frithjof C; van West, Pieter; Wilson, Colin M; Brown, Hugh; Azzopardi, Elaine

    2013-12-01

    Global climate change is expected to alter the Arctic bioregion markedly in coming decades. As a result, monitoring of the expected and actual changes has assumed high scientific significance. Many marine science objectives are best supported with the use of scientific diving techniques. Some important keystone environments are located in extremely remote locations where land-based expeditions offer high flexibility and cost-effectiveness over ship-based operations. However, the extreme remoteness of some of these locations, coupled with complex and unreliable land, sea and air communications, means that there is rarely quick access (diving medical intervention or recompression. In 2009, a land based expedition to the north end of Baffin Island was undertaken with the specific aim of establishing an inventory of the diversity of seaweeds and their pathogens that was broadly representative of a high Arctic marine environment. This account highlights some of the logistical considerations taken on that expedition; specifically it outlines the non-recompression treatment pathway that would have been adopted in the event of a diver suffering decompression illness.

  10. High tolerance of protozooplankton to ocean acidification in an Arctic coastal plankton community

    Directory of Open Access Journals (Sweden)

    N. Aberle

    2012-09-01

    Full Text Available Impacts of ocean acidification (OA on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal protozooplankton (PZP in the following community during the post-bloom period in the Kongsfjorden (Svalbard to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on PZP composition and diversity. Both, the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of protozoans remained unaffected by changes in pCO2/pH. The different pCO2 treatments did not have any effect on food availability and phytoplankton composition and thus no indirect effects e.g. on the total carrying capacity and phenology of PZP could be observed. Our data points at a high tolerance of this Arctic PZP community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include PZP in order to test whether the observed low sensitivity of protozoans to OA is typical for coastal communities where changes in seawater pH occur frequently.

  11. Nitrous oxide production and emission in high arctic soils of NW Greenland

    Science.gov (United States)

    Stills, A.; Lupascu, M.; Czimczik, C. I.; Sharp, E. D.; Welker, J. M.; Schaeffer, S. M.

    2010-12-01

    Nitrous oxide (N2O) is a potent ozone depleting greenhouse gas with a global warming potential 298 times larger than carbon dioxide (CO2 on a 100-year time scale. Recent studies identified arctic soils undergoing thawing and changes in drainage as potentially large sources of N2O to the atmosphere. More in situ2O production in and emission from arctic soils are needed to understand ecosystem feedbacks to climate change in high arctic tundra, and the role of high latitudes in the global N2O budget. We monitored the concentration of N2O in soils and emissions of N2O to the atmosphere from prostrate shrub tundra in NW Greenland under current and future climate conditions. Measurements were made monthly from June to August 2010 at a long-term climate change experiment started in 2003 consisting of +2oC warming (T1), +4oC warming (T2), +50% summer precipitation (W), +4oC × +50% summer precipitation (T2W), and control (C). In each treatment, N2O was monitored from vegetated and barren soils. In addition, we quantified nitrogen (N) mineralization rates. The concentration of N2O in soils was measured by sampling air from permanent wells ranging from 20 to 90 cm soil depth. N2O emissions were measured every 15 minutes for one hour using opaque, static chambers. Nitrous oxide samples were collected manually with syringes and stored in pre-evacuated glass vials with butyl rubber septa and aluminum crimp. The vials were sealed with silicon, shipped to UC Irvine, and analyzed by GC-ECD (Shimadzu GC-2014). To determine soil N mineralization rates, resin bags were installed under PVC cores from 8 to 10 cm in early spring in all treatments. Bags were removed at peak season. A second set was installed to capture end-of-season mineralization rates. Resin bags were extracted for future analysis of total accumulated ammonium and nitrate. Soil cores concurrently collected with resin bag installation and removal will be analyzed for % C and N, and were extracted for future analysis of

  12. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-07-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud Ocean Study (ASCOS in August 2008, particulate organic matter (POM, with size range > 0.22 μm and dissolved organic matter (DOM, < 0.22 μm, obtained after filtration samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM (> 5 kDa and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Aerosol particles, artificially generated by bubbling experiments, were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides could be one of the possible mechanisms for the

  13. Freshwater discharges drive high levels of methylmercury in Arctic marine biota.

    Science.gov (United States)

    Schartup, Amina T; Balcom, Prentiss H; Soerensen, Anne L; Gosnell, Kathleen J; Calder, Ryan S D; Mason, Robert P; Sunderland, Elsie M

    2015-09-22

    Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.

  14. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer

    Directory of Open Access Journals (Sweden)

    Q. Gao

    2012-01-01

    Full Text Available The surface microlayer (SML represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW. Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS. During the Arctic Summer Cloud-Ocean Study (ASCOS in August 2008, particulate and dissolved organic matter (POM, DOM samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5° E. Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML. Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22–70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.

  15. High renesting rates in arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment

    Science.gov (United States)

    Gates, H. River; Lanctot, Richard B.; Powell, Abby N.

    2013-01-01

    The propensity to replace a clutch is a complex component of avian reproduction and poorly understood. We experimentally removed clutches from an Arctic-breeding shorebird, the Dunlin (Calidris alpina arcticola), during early and late stages of incubation to investigate replacement clutch rates, renesting interval, and mate and site fidelity between nesting attempts. In contrast to other Arctic studies, we documented renesting by radiotracking individuals to find replacement clutches. We also examined clutch size and mean egg volume to document changes in individual females’ investment in initial and replacement clutches. Finally, we examined the influence of adult body mass, clutch volume, dates of clutch initiation and nest loss, and year on the propensity to renest. We found high (82–95%) and moderate (35–50%) rates of renesting for early and late incubation treatments. Renesting intervals averaged 4.7–6.8 days and were not different for clutches removed early or late in incubation. Most pairs remained together for renesting attempts. Larger females were more likely to replace a clutch; female body mass was the most important parameter predicting propensity to renest. Clutches lost later in the season were less likely to be replaced. We present evidence that renesting is more common in Arctic-breeding shorebirds than was previously thought, and suggest that renesting is constrained by energetic and temporal factors as well as mate availability. Obtaining rates of renesting in species breeding at different latitudes will help determine when this behavior is likely to occur; such information is necessary for demographic models that include individual and population-level fecundity estimates.

  16. Hydrology modifies ecosystem responses to warming through interactions between soil, leaf and canopy processes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, K. S.; Welker, J. M.; Lett, C.; Czimczik, C. I.; Lupascu, M.; Seibt, U. H.

    2013-12-01

    . Net carbon and water fluxes in the elevated temperature plots were similar to the control plots, as enhanced soil respiration offset the increased photosynthetic uptake. The T2 plants also had the highest leaf N content and specific leaf area (SLA), whereas watering, both in combination with higher temperatures and alone, reduced leaf SLA and leaf N relative to control plots. Warming increases soil N availability, but this is allocated differently depending on the precipitation regime. Where water limitation prevents increased canopy development the plants direct the N towards increasing the photosynthetic capacity of larger, thinner leaves, increasing leaf-level light use efficiency. However, with additional water, the distribution of N over a larger total leaf area results in overall greater productivity gains. Hydrology clearly modifies the response to warming in high Arctic ecosystems, through soil-plant interactions affecting both leaf and canopy scale processes. Our results provide a unique data set with which to parameterize and test models of ecosystem responses in the coming century.

  17. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    Science.gov (United States)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  18. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    Science.gov (United States)

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  19. High numbers of heat-loving bacteria found in cold Arctic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-09-15

    This article reported on a study of subzero sediments in the Arctic Ocean off the Norwegian island of Spitsbergen where scientists from the University of Calgary detected high numbers of thermophilic bacteria. The spores may offer an opportunity to trace seepages of fluids from hot sub-seafloor habitats and potentially indicate undiscovered offshore petroleum reservoirs. The Arctic spores that appear to have been transported from deeper hot spots were revived during experimental incubations at 40 to 60 degrees Celsius. Ongoing surveys are expected to identify the source, or sources, of these misplaced microbes. Since these bacteria are anaerobic, their high abundance and steady supply into the sediments indicate they are coming from a large oxygen-free habitat. One possible source may be a deep pressurized oil reservoir from which upward-leaking hydrocarbons carry bacteria into overlying seawater. Another source could be related to fluid circulation through warm ocean crust at spreading ridges. The thermophiles may get carried out of the abyssal hot spots by ocean currents that disperse them to the cold sediments. The spores also offer insight for understanding how biodiversity is maintained by the passive dispersal of small cells over large distances.

  20. Ukpik: testbed for a miniaturized robotic astronomical observatory on a high Arctic mountain

    Science.gov (United States)

    Steinbring, Eric; Leckie, Brian; Hardy, Tim; Caputa, Kris; Fletcher, Murray

    2012-09-01

    Mountains along the northwestern coast of Ellesmere Island, Canada, possess the highest peaks nearest the Pole. This geography, combined with an atmospheric thermal inversion restricted to below ~1000 m during much of the long arctic night, provides excellent opportunities for uninterrupted cloud-free astronomy - provided the challenges of these incredibly remote locations can be overcome. We present a miniaturized robotic observatory for deployment on a High Arctic mountaintop. This system tested the operability of precise optical instruments during winter, and the logistics of installation and maintenance during summer. It is called Ukpik after the Inuktitut name for the snowy owl, and was deployed at two sites accessible only by helicopter, each north of 82 degrees latitude; one on rock at 1100 m elevation and another on a glacier at 1600 m. The instrument suite included at first an all-sky-viewing camera, with the later addition of a small telescope to monitor Polaris, both protected by a retractable weather-proof enclosure. Expanding this to include a narrow-field drift-scanning camera for studying extra-solar planet transits was also investigated, but not implemented. An unique restriction was that all had to be run on batteries recharged primarily by a wind turbine. Supplementary power came from a methanol fuel-cell electrical generator. Communications were via the Iridium satellite network. The system design, and lessons learned from three years of operation are discussed, along with prospects for time-domain astronomy from isolated, high-elevation polar mountaintops.

  1. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia.

    Science.gov (United States)

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  2. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): an annotated checklist of an Arctic flora

    Science.gov (United States)

    Bull, Roger D.

    2017-01-01

    The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls) Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa), a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls) Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety) are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata), seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites) and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium taxa recorded

  3. Thawing Permafrost in Arctic Peatlands Leads to Changing Vegetation Composition, Decline in Plant Biodiversity, but Little Change in Biomass

    Science.gov (United States)

    Vining, S. R.; Hough, M.; McClure, A.; Saleska, S. R.; Rich, V. I.

    2016-12-01

    As permafrost thaws over the next century due to a rapidly changing climate, the shifting nature and amount of bioavailable soil organic matter (SOM) are causing ecosystem-level changes in carbon dioxide (CO2) and methane (CH4) fluxes. These greenhouse gases could drive a positive feedback to climate change, increasing the rate of permafrost thaw. The change in SOM is due to (a) new availability of previously frozen permafrost carbon (C), and (b) shifting plant communities. Appreciable study has focused on the former; we focus here on the latter, at a `natural' permafrost thaw gradient in Arctic Abisko, Sweden. As previously frozen soil destabilizes and collapses into a waterlogged habitat, dominant vegetation type shifts from smaller, woodier plants to moss-dominated sites, then to taller, leafier sedges. This plant community succession is associated with increased CO2 uptake, which could partially offset the thaw-associated C release from soils if it resulted in greater C storage. We tested the hypothesis that C stored in plant biomass increases spatially across the thaw gradient by sampling both above and belowground biomass. We also took time points from the early and peak-growing season (early June to late July) to test if differences in plant growth seasonality impacted our biomass measures. Surprisingly, we found that total above and belowground biomass together do not significantly change from the intact to the fully-thawed habitats, despite previous research showing that productivity appears to be higher in the fully water-logged fen. However, biodiversity significantly decreased from the intact to waterlogged sites. The lack of observed biomass increase despite the increase in NPP observed in other studies from this site could be explained if the C taken up by sedges in fen sites is deposited in SOM at increased rates either through root exudates or annual litter deposition. Since the shift in plant community composition is associated with the observed

  4. Interactions between plants, litter and microbes in cycling of nitrogen and phosphorus in the arctic

    DEFF Research Database (Denmark)

    Jonasson, Sven Evert; Castro, Jorge; Michelsen, Anders

    2006-01-01

    that had been pre-treated by 12 year of warming and fertilizer addition, we incubated soils together with litter and plants added and examined whether the absence of plants and litter in ‘traditional' incubations could explain the discrepancy. The pre-treatment had no effect on nitrogen (N) mineralization...... mineralization in soils without plants. Hence, the presence of plants stimulated mobilization of the growth-limiting N. The growth-sufficient P was not affected by the presence of plants, however. Furthermore, increased plant and microbial N uptake correlated positively, which speaks against competition......Estimated nutrient mineralization in northern nutrient-poor ecosystems, measured as differences in soil inorganic nutrients before and after a period of soil incubation in the absence of plants and litter, usually shows a discrepancy of much lower rates than plant nutrient uptake rates. In plots...

  5. Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic.

    Science.gov (United States)

    MacInnis, John J; French, Katherine; Muir, Derek C G; Spencer, Christine; Criscitiello, Alison; De Silva, Amila O; Young, Cora J

    2017-01-25

    To improve understanding of long-range transport of perfluoroalkyl substances to the High Arctic, samples were collected from a snow pit on the Devon Ice Cap in spring 2008. Snow was analyzed for perfluoroalkyl acids (PFAAs), including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), as well as perfluorooctane sulfonamide (FOSA). PFAAs were detected in all samples dated from 1993 to 2007. PFAA fluxes ranged from <1 to hundreds of ng per m(2) per year. Flux ratios of even-odd PFCA homologues were mostly between 0.5 and 2, corresponding to molar ratios expected from atmospheric oxidation of fluorotelomer compounds. Concentrations of perfluorobutanoic acid (PFBA) were much higher than other PFCAs, suggesting PFBA loading on the Devon Ice Cap is influenced by additional sources, such as the oxidation of heat transfer fluids. All PFCA fluxes increased with time, while PFSA fluxes generally decreased with time. No correlations were observed between PFAAs and the marine aerosol tracer, sodium. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected for the first time in an atmospherically - derived sample, and its presence may be attributed to aircraft hydraulic system leakage. Observations of PFAAs from these samples provide further evidence that atmospheric oxidation of volatile precursors is an important source of PFAAs to the Arctic environment.

  6. Methylmercury cycling in High Arctic wetland ponds: controls on sedimentary production.

    Science.gov (United States)

    Lehnherr, Igor; St Louis, Vincent L; Kirk, Jane L

    2012-10-01

    Methylmercury (MeHg) is a potent neurotoxin that has been demonstrated to biomagnify in Arctic freshwater foodwebs to levels that may be of concern to Inuit peoples subsisting on freshwater fish, for example. The key process initiating the bioaccumulation and biomagnification of MeHg in foodwebs is the methylation of inorganic Hg(II) to form MeHg, and ultimately how much MeHg enters foodwebs is controlled by the production and availability of MeHg in a particular water body. We used isotopically enriched Hg stable isotope tracers in sediment core incubations to measure potential rates of Hg(II) methylation and investigate the controls on MeHg production in High Arctic wetland ponds in the Lake Hazen region of northern Ellesmere Island (Nunavut, Canada). We show here that MeHg concentrations in sediments are primarily controlled by the sediment methylation potential and the quantity of Hg(II) available for methylation, but not by sediment demethylation potential. Furthermore, MeHg concentrations in pond waters are controlled by MeHg production in sediments, overall anaerobic microbial activity, and photodemethylation in the water column.

  7. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    Science.gov (United States)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  8. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Rysgaard, Søren; Blicher, Martin;

    2015-01-01

    and plasticity of blue mussels across latitudes spanning from 56 to 77ºN. This indicates that low ocean temperature per se does not constrain metabolic activity of Mytilus in the Arctic; rather, we speculate that maturation of reproductive tissues, larval supply and annual energy budgets are the most relevant......The blue mussel (Mytilus edulis) has recently expanded its northern distribution in the Arctic and is therefore considered to be a sensitive indicator of climate changes in this region. In this study, we compared aerobic performance of blue mussels from High Arctic, Subarctic and temperate...... populations at different temperatures. Standard metabolic rates (SMR) and active metabolic rates (AMR) were measured for each population, and absolute (AMR − SMR) and factorial (AMR/SMR) scopes were calculated. Blue mussels from the temperate population had the lowest Q10 (= 1.8) and the largest thermal...

  9. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Abu Al-Soud, Waleed; Sørensen, Søren J; Skov, Henrik; Kroer, Niels

    2011-03-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but Arctic food chains.

  10. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    Science.gov (United States)

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-10-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.

  11. Atmospheric mercury accumulation between 5900 and 800 calibrated years BP in the high arctic of Canada recorded by Peat Hummocks

    DEFF Research Database (Denmark)

    Givelet, N.; Roos-Barraclough, F.; Goodsite, Michael Evan

    2004-01-01

    In this paper, we present the first comprehensive long-term record of preanthropogenic rates of atmospheric mercury accumulation in dated peat deposits for the High Arctic of Canada. Geochemical studies of two peat hummocks from Bathurst Island, Nunavut reveal substantial inputs from soil dust....... 1 microgram per square meter per year from 5900 to 800 calibrated years BP. These values are well within the range of the mercury fluxes reported from other Arctic locations, but also by peat cores from southern Canada that provide a record of atmospheric Hg accumulation extending back 8000 years...

  12. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  13. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms.

    Science.gov (United States)

    Butinar, Lorena; Spencer-Martins, Isabel; Gunde-Cimerman, Nina

    2007-04-01

    Recently a new habitat for microbial life has been discovered at the base of polythermal glaciers. In ice from these subglacial environments so far only non-photosynthetic bacterial communities were discovered, but no eukaryotic microorganisms. We found high numbers of yeast cells, amounting to a maximum of 4,000 CFU ml(-1) of melt ice, in four different high Arctic glaciers. Twenty-two distinct species were isolated, including two new yeast species. Basidiomycetes predominated, among which Cryptococcus liquefaciens was the dominant species (ca. 90% of total). Other frequently occurring species were Cryptococcus albidus, Cryptococcus magnus, Cryptococcus saitoi and Rhodotorula mucilaginosa. The dominant yeast species were psychrotolerant, halotolerant, freeze-thaw resistant, unable to form mycelium, relatively small-sized and able to utilize a wide range of carbon and nitrogen sources. This is the first report on the presence of yeast populations in subglacial ice.

  14. Significant Impact of Glacial Meltwater on the Pelagic Carbon Cycle in a High Arctic Greenland Fjord

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Bruhn, Annette; Sejr, Mikael Kristian

    2014-01-01

    Global warming has accelerated the melting of the Greenland Ice Cap (GIC) resulting in increased loading of coastal waters with meltwater and associated inorganic particles and organic matter, a development that is projected to be enhanced in the future. In Young Sound, North Eastern Greenland......, Carbon cycling in the water column was greatly influenced by meltwater from the GIC in summer 2011. Young Sound is a high arctic fjord (ca. 74° N) ca. 80 km long and 1 – 7 km wide ice free conditions from mid July to mid October. Meltwater was mainly delivered to the inner parts of the fjord creating...... a gradient in salinity and turbidity along the length of the fjord. The mixed surface layer (ca. 5 m thick) varied in salinity from ca. 10 in the innermost part to 28 at the opening to the Greenland Sea. The depth of the photic zone was highly influenced by the turbidity leading to an increase from 4 m...

  15. Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland

    Directory of Open Access Journals (Sweden)

    Maria L. Paulsen

    2017-06-01

    Full Text Available The land-to-ocean flux of organic carbon is increasing in glacierized regions in response to increasing temperatures in the Arctic (Hood et al., 2015. In order to understand the response of the coastal ecosystem metabolism to the organic carbon input it is essential to determine the bioavailability of the different carbon sources in the system. We quantified the bacterial turnover of organic carbon in a high Arctic fjord system (Young Sound, NE Greenland during the ice-free period (July-October 2014 and assessed the quality and quantity of the 3 major organic carbon sources; (1 local phytoplankton production (2 runoff from land-terminating glaciers and a lowland river and (3 inflow from the ocean shelf. We found that despite relatively low concentrations of DOC in the rivers, the bioavailability of the river–DOC was significantly higher than in the fjord, and characterized by high cell-specific bacterial production and low C:N ratios. In contrast, the DOC source entering via inflow of coastal shelf waters had high DOC concentrations with high C:N and low specific bacterial production. The phytoplankton production in the fjord could not sustain the bacterial carbon demand, but was still the major source of organic carbon for bacterial growth. We assessed the bacterial community composition and found that communities were specific for the different water types i.e., the bacterial community of the coastal inflow water could be traced mainly in the subsurface water, while the glacial river community strongly dominated the surface water in the fjord.

  16. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    Science.gov (United States)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  17. Effects of Reducing the Ambient UV-B Radiation in the High Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian; Ro-Poulsen, Helge; Mikkelsen, Teis Nørgaard;

    2005-01-01

    Effects of reducing the ambient UV-B radiation on gas exchange and chlorophyll fluores-cence of two dwarf shrub species, Salix arctica and Vaccinium uliginosum, was studied in a high arctic heath in North East Greenland during two growing seasons. Films (Mylar, transmitting ¿ > 320 nm, and Lexan...

  18. Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, K.R.; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard;

    2005-01-01

    Effects of reducing the ambient UV-B radiation on gas exchange and chlorophyll fluores-cence of two dwarf shrub species, Salix arctica and Vaccinium uliginosum, was studied in a high arctic heath in North East Greenland during two growing seasons. Films (Mylar, transmitting λ > 320 nm, and Lexan...

  19. Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada

    Science.gov (United States)

    G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez

    2014-01-01

    In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...

  20. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen

    Science.gov (United States)

    Olofsson, Johan; Ericson, Lars; Torp, Mikaela; Stark, Sari; Baxter, Robert

    2011-07-01

    Climate change is affecting plant community composition and ecosystem structure, with consequences for ecosystem processes such as carbon storage. Climate can affect plants directly by altering growth rates, and indirectly by affecting predators and herbivores, which in turn influence plants. Diseases are also known to be important for the structure and function of food webs. However, the role of plant diseases in modulating ecosystem responses to a changing climate is poorly understood. This is partly because disease outbreaks are relatively rare and spatially variable, such that that their effects can only be captured in long-term experiments. Here we show that, although plant growth was favoured by the insulating effects of increased snow cover in experimental plots in Sweden, plant biomass decreased over the seven-year study. The decline in biomass was caused by an outbreak of a host-specific parasitic fungus, Arwidssonia empetri, which killed the majority of the shoots of the dominant plant species, Empetrum hermaphroditum, after six years of increased snow cover. After the outbreak of the disease, instantaneous measurements of gross photosynthesis and net ecosystem carbon exchange were significantly reduced at midday during the growing season. Our results show that plant diseases can alter and even reverse the effects of a changing climate on tundra carbon balance by altering plant composition.

  1. Distribution and abundance of Canadian High Arctic belugas, 1974-1979

    Directory of Open Access Journals (Sweden)

    William R Koski

    2002-07-01

    Full Text Available We conducted >236,000 km of aerial surveys and some supplementary studies of belugas (Delphinapterus leucas in the central and eastern Canadian High Arctic in 974-79. Belugas that wintered in the “North Water” in Baffin Bay moved southwest into Lancaster Sound in April and early May. The main westward migration into Lancaster Sound occurred over a 2 to 3 week period during late June to late July. Estuaries along Somerset Island were occupied for <3 weeks from mid-July to mid-August. Little feeding occurred in estuaries. From mid-August until fall migration began in mid-September belugas occupied estuaries and offshore waters in Peel Sound. Fall migration eastward through Lancaster Sound was exclusively along the south coast of Devon Island, highly co-ordinated, and rapid; most of the population passed through the sound in <1 week. The whales then moved north along the east coast of Devon Island; some entered Jones Sound while others crossed directly to SE Ellesmere Island. Most calving occurred in July and early August; calving was not seen in estuaries and probably occurred offshore. Excluding calves, adults and yearlings formed 77% and 8.4%, respectively, of the population. The proportion of calves during mid-August was consistent with a triennial calving cycle. During late summer, belugas fed on coastal concentrations of polar cod (Boreogadus saida, under pan ice offshore (probably on cod, and in deep offshore waters. The size of the Canadian High Arctic population in the late 1970s was estimated to be at least 10,250 to 12,000 animals without allowing for animals that may have passed between surveys or that were below the surface at the time of the counts.

  2. Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach

    Science.gov (United States)

    Bradley, James A.; Arndt, Sandra; Šabacká, Marie; Benning, Liane G.; Barker, Gary L.; Blacker, Joshua J.; Yallop, Marian L.; Wright, Katherine E.; Bellas, Christopher M.; Telling, Jonathan; Tranter, Martyn; Anesio, Alexandre M.

    2016-10-01

    Modelling the development of soils in glacier forefields is necessary in order to assess how microbial and geochemical processes interact and shape soil development in response to glacier retreat. Furthermore, such models can help us predict microbial growth and the fate of Arctic soils in an increasingly ice-free future. Here, for the first time, we combined field sampling with laboratory analyses and numerical modelling to investigate microbial community dynamics in oligotrophic proglacial soils in Svalbard. We measured low bacterial growth rates and growth efficiencies (relative to estimates from Alpine glacier forefields) and high sensitivity of bacterial growth rates to soil temperature (relative to temperate soils). We used these laboratory measurements to inform parameter values in a new numerical model and significantly refined predictions of microbial and biogeochemical dynamics of soil development over a period of roughly 120 years. The model predicted the observed accumulation of autotrophic and heterotrophic biomass. Genomic data indicated that initial microbial communities were dominated by bacteria derived from the glacial environment, whereas older soils hosted a mixed community of autotrophic and heterotrophic bacteria. This finding was simulated by the numerical model, which showed that active microbial communities play key roles in fixing and recycling carbon and nutrients. We also demonstrated the role of allochthonous carbon and microbial necromass in sustaining a pool of organic material, despite high heterotrophic activity in older soils. This combined field, laboratory, and modelling approach demonstrates the value of integrated model-data studies to understand and quantify the functioning of the microbial community in an emerging High Arctic soil ecosystem.

  3. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods.

    Science.gov (United States)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart; Abermann, Jakob; Skov, Kirstine; Elberling, Bo

    2017-02-15

    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m(3)y(-1). The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty(-1) and 61,000±16,000ty(-1). Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty(-1), which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies agreements were Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

  4. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  5. Remote Sensing of Arctic and Boreal Atmospheric Composition from a Highly Elliptical Orbit

    Science.gov (United States)

    Nassar, Ray; McElroy, C. Tom; Walker, Kaley A.; McLinden, Chris; Sioris, Chris E.; Jones, Dylan B. A.; Martin, Randall V.; Rochon, Yves; Garand, Louis; Trischencko, Alexander P.

    2016-04-01

    The Polar Communications and Weather (PCW) mission is a proposed Canadian mission that aims to provide continuous meteorological observations and communications capacity over the Arctic and northern latitudes from a pair of satellites in a highly elliptical orbit (HEO) configuration. The Weather, Climate and Air quality (WCA) concept is a mission enhancement that completed a Phase A study through the Polar Highly Elliptical Orbit Science (PHEOS) program. The PHEOS-WCA instrument suite would consist of a high resolution Fourier Transform Spectrometer (FTS) operating in the mid-, near- and shortwave infrared and a UV-Visible grating Spectrometer (UVS), both with 2-dimensional imaging capability. These instruments would enable dense measurements of numerous quantities important for understanding weather (H2O and temperature profiles), climate (column-averaged CO2 and CH4) and air quality (tropospheric O3, CO, NO2, SO2, NH3, HCN, CH3OH, BrO, aerosols, ….) with a pixel size of 10×10 km2 or better and repeat time targeted at 2 hours or less. Our studies have demonstrated that HEO observations of CO2 offer major advantages over those from low earth orbit (LEO) for constraining CO2 surface sources and sinks in the Arctic and boreal regions, especially in the summer when there is the potential for the release of CO2 from permafrost thaw and boreal forest disturbances. This presentation will give an overview of the PHEOS-WCA mission concept, discuss its complementarity with upcoming international missions and provide an update on recent progress and challenges in moving forward.

  6. Ocean Properties and Submarine Melt of Ice Shelves in a High-Arctic Fiord (Milne Fiord)

    Science.gov (United States)

    Hamilton, A.; Mueller, D.; Laval, B.

    2014-12-01

    The role of ambient stratification, the vertical distribution of heat, and fiord circulation on submarine melt rates in glacial fiords in the Canadian Arctic are largely unknown despite recent widespread collapse of ice shelves in this region. A 3-year field study was conducted to investigate ocean influence on ice loss from an ice shelf and glacier tongue in Milne Fiord (82oN), Ellesmere Island. Direct ocean observations of the sub-ice cavities from through-ice profiles showed a vertically stratified water column consisting of a perennial fresh ice-dammed epishelf lake at the surface, above cold relatively fresh Polar Water, and warm saline waters from the upper halocline of the Atlantic layer at depth. The broad continental shelf and a topographic sill prevented the warmest waters of the Atlantic layer from entering the 450 m deep fiord. Meltwater concentrations were highest near the glacier grounding line, with meltwater exported at depth due to the strong ambient stratification. There was little evidence of increased buoyancy-driven melt in summer from subglacial discharge as observed in sub-Arctic fiords (e.g. southern Greenland), suggesting that circulation in high-latitude fiords is largely melt-driven convection with less pronounced seasonality. Basal melt rates estimated using three methods, meltwater flux, divergence of ice flux, and an ocean thermodynamic model, were broadly consistent. Average melt rates of 0.75 ± 0.46 m a-1 and 1.14 ± 0.83 m a-1 were found for the Milne Ice Shelf and Milne Glacier Tongue, respectively, although showed high spatial variability. The highest melt rates (~4 m a-1) were found near the glacier grounding line and were driven by warm upper halocline waters. Similar melt rates occurred in near-surface waters driven by solar heating of the epishelf lake, enhancing melt along the margins of the glacier tongue and the landward edge of the ice shelf. The Milne Ice Shelf and Milne Glacier Tongue are in a state of negative mass

  7. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    Science.gov (United States)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that

  8. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  9. Observations of a bromine explosion event coincident with the arrival of Arctic haze in the Canadian high Arctic

    Science.gov (United States)

    Bognar, Kristof; Zhao, Xiaoyi; Strong, Kimberly; Hayes, Patrick L.; Tremblay, Samantha; Chang, Rachel Y.-W.

    2017-04-01

    Exponential build-up of bromine in the polar troposphere is linked to severe multi-day ozone depletion events in springtime. The exact origins of, and the meteorological conditions required for these 'bromine explosions' are, however, not well understood. On March 19-21, 2016, a bromine explosion was detected at Eureka, Nunavut, Canada (80.1°N, 86.4°W). BrO slant column densities were retrieved from measurements made by a Multi-Axis Differential Optical Absorption Spectroscopy spectrometer. Ozonesonde data indicate that a compete depletion of near-surface ozone also took place in the same period. The bromine explosion was initiated by strong winds and blowing snow, while a stable boundary layer returned for the last day of the event. It is likely that bromine release was localized near Eureka, and both the snowpack and aerosols contributed. Scanning Mobility Particle Sizer data show that the bromine enhancement coincided with the onset of an Arctic haze event. This work investigates whether acidification from the haze contributed to the local release of bromine.

  10. Snowpack fluxes of methane and carbon dioxidefrom high Arctic tundra

    DEFF Research Database (Denmark)

    Pirk, Norbert; Tamstorf, Mikkel P.; Lund, Magnus

    2016-01-01

    the expectedgas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4and 3800 ppm CO2by late winter. CH4to C O2ratios indicated distinctly different source characteristicsin the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due...... to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4fluxes resembledthe same spatial pattern, which was largely attributed to differences in soil wetness controlling substrateaccumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack...... togeomorphological soil cracks. Collectively, these findings suggest important ties between growing seasonand cold season greenhouse gas emissions from high Arctic tundra....

  11. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats.

    Science.gov (United States)

    Omelon, Christopher R; Pollard, Wayne H; Ferris, F Grant

    2007-11-01

    Cryptoendolithic habitats in the Canadian high Arctic are associated with a variety of microbial community assemblages, including cyanobacteria, algae, and fungi. These habitats were analyzed for the presence of metal ions by sequential extraction and evaluated for relationships between these and the various microorganisms found at each site using multivariate statistical methods. Cyanobacteria-dominated communities exist under higher pH conditions with elevated concentrations of calcium and magnesium, whereas communities dominated by fungi and algae are characterized by lower pH conditions and higher concentrations of iron, aluminum, and silicon in the overlying surfaces. These results suggest that the activity of the dominant microorganisms controls the pH of the surrounding environment, which in turn dictates rates of weathering or the possibility for surface crust formation, both ultimately deciding the structure of microbial diversity for each cryptoendolithic habitat.

  12. Effects of substrate differences on water availability for Arctic lichens during the snow-free summers in the High Arctic glacier foreland

    Science.gov (United States)

    Inoue, Takeshi; Kudoh, Sakae; Uchida, Masaki; Tanabe, Yukiko; Inoue, Masakane; Kanda, Hiroshi

    2014-12-01

    We used observational and experimental analyses to investigate the photosynthetic activity and water relationships of five lichen species attached to different substrates in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard (79°N) during the snow-free season in 2009 and 2010. After the rains ceased, lichens and their attached substrates quickly dried, whereas photosynthetic activity in the lichens decreased gradually. The in situ photosynthetic activity was estimated based on the relative electron transportation rate (rETR) in four fruticose lichens: Cetrariella delisei, Flavocetraria nivalis, Cladonia arbuscula ssp. mitis, and Cladonia pleurota. The rETR approached zero around noon, although the crustose lichen Ochrolechia frigida grown on biological soil crust (BSC) could acquire water from the BSC and retain its WC to perform positive photosynthesis. The light-rETR relationship curves of the five well-watered lichens were characterized into two types: shade-adapted with photoinhibition for the fruticose lichens, and light-adapted with no photoinhibition for O. frigida. The maximum rETR was expected to occur when they could acquire water from the surrounding air or from substrates during the desiccation period. Our results suggest that different species of Arctic lichens have different water availabilities due to their substrates and/or morphological characteristics, which affect their photosynthetic active periods during the summer.

  13. High epibenthic foraminiferal δ13C in the Recent deep Arctic Ocean: Implications for ventilation and brine release during stadials

    Science.gov (United States)

    Mackensen, Andreas

    2013-09-01

    Low planktic and benthic δ18O and δ13C values in sediments from the Nordic seas of cold stadials of the last glaciation have been attributed to brines, formed similar to modern ones in the Arctic Ocean. To expand on the carbon isotopes of this hypothesis, I investigated benthic δ13C from the modern Arctic Ocean. I show that mean δ13C values of live epibenthic foraminifera from the deep Arctic basins are higher than mean δ13C values of upper slope epibenthic foraminifera. This agrees with mean high δ13C values of dissolved inorganic carbon (DIC) in Arctic Bottom Water (ABW), which are higher than mean δ13CDIC values from shallower water masses of mainly Atlantic origin. However, adjustments for oceanic 13C Suess depletion raise subsurface and intermediate water δ13CDIC values over ABW δ13CDIC ones. Accordingly, during preindustrial Holocene times, the δ13CDIC of ABW was as high or even higher than today but lower than the δ13CDIC of younger subsurface and intermediate water. If brine-enriched water significantly ventilated ABW, brines should have had high δ13CDIC values. Analogously, high-δ13CDIC brines may have been formed in the Nordic seas during warm interstadials. During cold stadials, when most of the Arctic Ocean was perennially sea ice covered, a cessation of high-δ13CDIC brine rejection may have lowered δ13CDIC values of ABW, and ultimately the δ13CDIC in Nordic seas intermediate and deep water. So in contrast to the idea of enhanced brine formation during cold stadials, the results of this investigation imply that a cessation of brine rejection would be more likely.

  14. Reconstruction of a high-resolution late holocene arctic paleoclimate record from Colville River delta sediments.

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, Kathryn Melissa; Lowry, Thomas Stephen

    2013-10-01

    This work was partially supported by the Sandia National Laboratories, Laboratory Directed Research and Development (LDRD) fellowship program in conjunction with Texas A&M University (TAMU). The research described herein is the work of Kathryn M. Schreiner (Katie) and her advisor, Thomas S. Bianchi and represents a concise description of Katies dissertation that was submitted to the TAMU Office of Graduate Studies in May 2013 in partial fulfillment of her doctorate of philosophy degree. High Arctic permafrost soils contain a massive amount of organic carbon, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This project investigated long term, fine scale particulate organic carbon (POC) delivery by the high-Arctic Colville River into Simpsons Lagoon in the near-shore Beaufort Sea. Modern POC was determined to be a mixture of three sources (riverine soils, coastal erosion, and marine). Downcore POC measurements were performed in a core close to the Colville River output and a core close to intense coastal erosion. Inputs of the three major sources were found to vary throughout the last two millennia, and in the Colville River core covary significantly with Alaskan temperature reconstructions.

  15. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Bourgeois, Solveig; Kerhervé, Philippe; Calleja, Maria Ll.; Many, Gaël; Morata, Nathalie

    2016-12-01

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions such as supplies of organic matter (OM) from the water column. In the last decade, Kongsfjorden (79°N), a high Arctic fjord in Svalbard influenced by several glaciers and Atlantic water inflow, has been a site of great interest owing to its high sensitivity to climate change, evidenced by a reduction in ice cover and an increase in melting freshwater. To investigate how spatial and seasonal changes in vertical fluxes can impact the benthic compartment of Kongsfjorden, we studied the organic matter characteristics (in terms of quantity and quality) and prokaryotic distribution in sediments from 3 stations along a transect extending from the glacier into the outer fjord in 4 different seasons (spring, summer, autumn and winter) in 2012-2013. The biochemical parameters used to describe the sedimentary organic matter were organic carbon (OC), total nitrogen, bulk stable isotope ratios, pigments (chorophyll-a and phaeopigments) and biopolymeric carbon (BPC), which is the sum of the main macromolecules, i.e. lipids, proteins and carbohydrates. Prokaryotic abundance and distribution were estimated by 4‧,6-diamidino-2-phenylindole (DAPI) staining. This study identifies a well-marked quantitative gradient of biogenic compounds throughout all seasons and also highlights a discrepancy between the quantity and quality of sedimentary organic matter within the fjord. The sediments near the glacier were organic-poor (Bacterial total cell numbers in sediments of Kongsfjorden were < 2 × 108 cells ml- 1 and the prokaryotic community structure was strongly influenced by the marked environmental biogenic gradients. Overall, the spatial variability prevailed over the seasonal variability in sediments of Kongsfjorden suggesting that glacier inputs

  16. Persistent organic pollutant and mercury concentrations in eggs of ground-nesting marine birds in the Canadian high Arctic.

    Science.gov (United States)

    Peck, Liam E; Gilchrist, H Grant; Mallory, Conor D; Braune, Birgit M; Mallory, Mark L

    2016-06-15

    We collected eggs of eight marine bird species from several colony sites in the Canadian high Arctic located at approximately 76°N and analyzed them for concentrations of legacy persistent organic pollutants (POPs) and mercury. We provide the first report on concentrations of POPs in eggs of three Arctic species (Thayer's gull Larus thayeri, Sabine's gull Xema sabini, Ross's Gull Rhodostethia rosea), and we found significant differences in each of the POP profiles among the five species with sufficient data for statistical comparisons (Thayer's gull, black guillemot Cepphus grylle, Sabine's gull, Arctic tern Sterna paradisaea and common eider Somateria mollissima borealis). The Ross's Gull had unexpectedly high POP concentrations relative to the other species examined, although this was based on a single egg, while glaucous gull Larus hyperboreus eggs from our sampling location had very low POPs. Sabine's gulls had the lowest Hg of the eggs studied, consistent with their low trophic position, but concentrations of their legacy POPs were higher than expected. We also noted that total hexachlorocyclohexanes were higher than reported elsewhere in the circumpolar Arctic in three species.

  17. Resource utilisation by deep-sea megabenthos in the Canadian High Arctic (Baffin Bay and Parry Channel)

    Science.gov (United States)

    Bourgeois, Solveig; Witte, Ursula; Harrison, Ailish M.; Makela, Anni; Kazanidis, Georgios; Archambault, Philippe

    2016-04-01

    Ongoing climate change in the Arctic is causing drastic alteration of the Arctic marine ecosystem functioning, such as shifts in patterns of primary production, and modifying the present tight pelagic-benthic coupling. Subsequently benthic communities, which rely upon organic matter produced in the top layers of the Ocean, will also be affected by these changes. The benthic megafaunal communities play a significant role in ecological processes and ecosystem functioning (i.e. organic matter recycling, bioturbation, food source for the higher trophic levels…). Yet, information is scarce regarding the main food sources for dominant benthic organisms, and therefore the impact of the ongoing changes is difficult to assess. The goal of this study is to investigate the preferential feeding of different carbon sources by megabenthic organisms in the Canadian High Arctic and to identify environmental drivers which explain the observed trends. In summer 2013, benthic megafauna was collected at 9 stations spread along latitudinal (58 to 81°N) and longitudinal (62 to 114°W) transects in the Baffin Bay and Parry Channel, respectively. Carbon and nitrogen bulk stable isotope analyses (δ13C and δ15N) were performed on several species divided into groups according to their feeding type. This study highlights distinct trends in δ13C values of benthic organisms suggesting the importance of both phytoplankton and ice algae as carbon sources for megafauna in the Canadian High Arctic. The importance of physical and biological parameters as drivers of food web structure will be furthermore discussed.

  18. High Resolution Modelling of Aerosols-Meteorology Interactions over Northern Europe and Arctic regions

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Baklanov, Alexander

    2017-04-01

    Aerosols have influence on weather, air quality and climate. Multi-scale modelling, and especially long-range atmospheric transport, dispersion, and deposition of aerosols from remote sources is especially challenging in northern latitudes. It is due to complexity of meteorological, chemical and biological processes, their interactions and especially within and above the surface layer, linking to climate change, and influence on ecosystems. The online integrated meteorology-chemistry-aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of atmospheric aerosols and their interactions and effects on meteorology with a focus on the Northern Europe and Arctic regions. The model setup covers domain having 510 x 568 grids of latitude vs. longitude, horizontal resolution of 0.15 deg, 40 vertical hybrid levels, time step of 360 sec, 6 h meteorological surface data assimilation. The model was run for January and July-August 2010 at DMI's CRAY-XC30 supercomputer. Emissions used are anthropogenic (ECLIPSE v5), shipping (combined AU_RCP and FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. The boundary conditions were obtained from ECMWF: for meteorology (from IFS at 0.15 and 0.25 deg. for summer and winter, respectively) and atmospheric composition (from MACC Reanalysis at 1.125 deg. resolution). The Enviro-HIRLAM model was employed in 4 modes: the reference run (e.g. without aerosols influence on meteorology) and 3 modified runs (direct aerosol effect (DAE), indirect aerosol effect (IDAE), and both effects DAE and IDAE included). The differences between the reference run and the runs with mentioned aerosol effects were estimated on a day-by-day, monthly and diurnal cycle bases over the domain, Arctic areas, European and Nordic countries. The results of statistical analyses are summarized and presented.

  19. A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere

    Science.gov (United States)

    Cox, Christopher J.; Rowe, Penny M.; Neshyba, Steven P.; Walden, Von P.

    2016-05-01

    Cloud microphysical and macrophysical properties are critical for understanding the role of clouds in climate. These properties are commonly retrieved from ground-based and satellite-based infrared remote sensing instruments. However, retrieval uncertainties are difficult to quantify without a standard for comparison. This is particularly true over the polar regions, where surface-based data for a cloud climatology are sparse, yet clouds represent a major source of uncertainty in weather and climate models. We describe a synthetic high-spectral-resolution infrared data set that is designed to facilitate validation and development of cloud retrieval algorithms for surface- and satellite-based remote sensing instruments. Since the data set is calculated using pre-defined cloudy atmospheres, the properties of the cloud and atmospheric state are known a priori. The atmospheric state used for the simulations is drawn from radiosonde measurements made at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site at Barrow, Alaska (71.325° N, 156.615° W), a location that is generally representative of the western Arctic. The cloud properties for each simulation are selected from statistical distributions derived from past field measurements. Upwelling (at 60 km) and downwelling (at the surface) infrared spectra are simulated for 260 cloudy cases from 50 to 3000 cm-1 (3.3 to 200 µm) at monochromatic (line-by-line) resolution at a spacing of ˜ 0.01 cm-1 using the Line-by-line Radiative Transfer Model (LBLRTM) and the discrete-ordinate-method radiative transfer code (DISORT). These spectra are freely available for interested researchers from the NSF Arctic Data Center data repository (doi:10.5065/D61J97TT).

  20. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  1. DECOMPOSITION OF SUB-ARCTIC PLANTS WITH DIFFERING NITROGEN ECONOMIES: A FUNCTIONAL ROLE FOR HEMIPARASITES

    DEFF Research Database (Denmark)

    Quested, H.M.; Cornelissen, J.H.C.; Press, M.C.;

    2003-01-01

    Although hemiparasitic plants have a number of roles in shaping the structure and composition of plant communities, the impact of this group on ecosystem processes, such as decomposition and nutrient cycling, has been poorly studied. In order to better understand the potential role of hemiparasit...... the potential to greatly enhance the availability of nutrients within patches where they are abundant, with possible consequent effects on small-scale biodiversity....

  2. The Paleocene Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic

    Science.gov (United States)

    Schouten, Stefan; Woltering, Martijn; Rijpstra, W. Irene C.; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-06-01

    A study of upper Paleocene-lower Eocene (P-E) sediments deposited on the Lomonosov Ridge in the central Arctic Ocean reveals relatively high abundances of terrestrial biomarkers. These include dehydroabietane and simonellite derived from conifers (gymnosperms) and a tetra-aromatic triterpenoid derived from angiosperms. The relative percentage of the angiosperm biomarker of the summed angiosperm + conifer biomarkers was increased at the end of the Paleocene-Eocene thermal maximum (PETM), different when observed with pollen counts which showed a relative decrease in angiosperm pollen. Stable carbon isotopic analysis of these biomarkers shows that the negative carbon isotope excursion (CIE) during the PETM amounts to 3‰ for both conifer biomarkers, dehydroabietane and simonellite, comparable to the magnitude of the CIE inferred from marine carbonates, but significantly lower than the 4.5‰ of the terrestrial C 29n-alkane [M. Pagani, N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J.S. Sinninghe Damsté, G.R. Dickens, and the IODP Expedition 302 Expedition Scientists (2006), Arctic's hydrology during global warming at the Paleocene-Eocene thermal maximum. Nature, 442, 671-675.], which is a compound sourced by both conifers and angiosperms. Conspicuously, the angiosperm-sourced aromatic triterpane shows a much larger CIE of 6‰ and suggests that angiosperms increased in their carbon isotopic fractionation during the PETM. Our results thus indicate that the 4.5‰ C 29n-alkane CIE reported previously represents the average CIE of conifers and angiosperms at this site and suggest that the large and variable CIE observed in terrestrial records may be partly explained by the variable contributions of conifers and angiosperms. The differential response in isotopic fractionation of angiosperms and conifers points to different physiological responses of these vegetation types to the rise in temperature, humidity, and greenhouse gases during the PETM.

  3. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  4. Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways

    Science.gov (United States)

    Feng, Ran; Otto-Bliesner, Bette L.; Fletcher, Tamara L.; Tabor, Clay R.; Ballantyne, Ashley P.; Brady, Esther C.

    2017-05-01

    Proxy reconstructions of the mid-Piacenzian warm period (mPWP, between 3.264 and 3.025 Ma) suggest terrestrial temperatures were much warmer in the northern high latitudes (55°-90°N, referred to as NHL) than present-day. Climate models participating in the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) tend to underestimate this warmth. For instance, the underestimate is ∼10 °C on average across NHL and up to 17 °C in the Canadian Arctic region in the Community Climate System Model version 4 (CCSM4). Here, we explore potential mPWP climate forcings that might contribute to this mPWP mismatch. We carry out seven experiments to assess terrestrial temperature responses to Pliocene Arctic gateway closure, variations in CO2 level, and orbital forcing at millennial time scale. To better compare the full range of simulated terrestrial temperatures with sparse proxy data, we introduce a pattern recognition technique that simplifies the model surface temperatures to a few representative patterns that can be validate with the limited terrestrial proxy data. The pattern recognition technique reveals two prominent features of simulated Pliocene surface temperature responses. First, distinctive patterns of amplified warming occur in the NHL, which can be explained by lowered surface elevation of Greenland, pattern and amount of Arctic sea ice loss, and changing strength of Atlantic meridional overturning circulation. Second, patterns of surface temperature response are similar among experiments with different forcing mechanisms. This similarity is due to strong feedbacks from responses in surface albedo and troposphere water vapor content to sea ice changes, which overwhelm distinctions in forcings from changes in insolation, CO2 forcing, and Arctic gateway closure. By comparing CCSM4 simulations with proxy records, we demonstrate that both model and proxy records show similar patterns of mPWP NHL terrestrial warmth, but the model underestimates the magnitude

  5. Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2009-03-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon.

  6. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants.

    Science.gov (United States)

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V

    2015-05-08

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.

  7. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  8. Migration patterns of Western High Arctic (Grey-belly) Brant Branta bernicla

    Science.gov (United States)

    Boyd, W. Sean; Ward, David H.; Kraege, Donald K.; Gerick, Alyssa A.

    2014-01-01

    This study describes the seasonal migration patterns of Western High Arctic Brant (WHA, or Grey-belly Brent Geese), Branta bernicla, an admixed population that breeds in the Canadian High Arctic and winters along the Pacific coast of North America. Adult WHA Brant were captured in family groups on Melville Island (75°23'N, 110°50'W) in 2002 and 2005 and marked with satellite platform transmitting terminal (PTT) transmitters or very high frequency (VHF) transmitters. During autumn migration, all PTT-tagged Brant followed a coastal route around Alaska and staged for variable lengths of time at the following sites on the north and west coasts of Alaska: Kasegaluk Lagoon (69°56'N, 162°40'W), Ikpek Lagoon (65°55'N, 167°03'W), and Izembek Lagoon (55°19'N, 162°50'W). Izembek Lagoon was the most important staging area in terms of length of stay (two months on average) and the majority (67-93%) of PTT and VHF detections occurred in Moffet Bay (55°24'N, 162°34'W). After departing Izembek Lagoon, the PTT-tagged geese followed a c. 2,900 km trans-oceanic route to overwinter in the southern part of the Salish Sea (i.e. from north Puget Sound, Washington to south Strait of Georgia, British Columbia; centred at c. 48°45'N, 122°40'W). Most (c. 45%) PTT detections in the southern Salish Sea occurred in Samish Bay (48°36'N, 22°30'W) followed by Padilla Bay (48°30'N, 122°31'W; c. 26%). Brant migrated north from the Salish Sea along the coast to southeast Alaska and then followed either an interior route across the Yukon or a coastal route around Alaska. The "interior" birds staged for c. four days at Liverpool Bay (69°20'N, 133°55'W) in the Northwest Territories before flying on to Melville Island. They also departed the Salish Sea two weeks later than the coastal migrants and arrived at Melville Island two weeks earlier. This study and previous research suggest that WHA Brant use similar migration routes each year and are faithful to their breeding, staging, and

  9. Ecosystem Metabolism and Air-Water Fluxes of Greenhouse Gases in High Arctic Wetland Ponds

    Science.gov (United States)

    Lehnherr, I.; Venkiteswaran, J.; St. Louis, V. L.; Emmerton, C.; Schiff, S. L.

    2012-12-01

    Freshwater lakes and wetlands can be very productive systems on the Arctic landscape compared to terrestrial tundra ecosystems and provide valuable resources to many organisms, including waterfowl, fish and humans. Rates of ecosystem productivity dictate how much energy flows through food webs, impacting the abundance of higher-level organisms (e.g., fish), as well as the net carbon balance, which determines whether a particular ecosystem is a source or sink of carbon. Climate change is predicted to result in warmer temperatures, increased precipitation and permafrost melting in the Arctic and is already altering northern ecosystems at unprecedented rates; however, it is not known how freshwater systems are responding to these changes. To predict how freshwater systems will respond to complex environmental changes, it is necessary to understand the key processes, such as primary production and ecosystem respiration, that are driving these systems. We sampled wetland ponds (n=8) and lakes (n=2) on northern Ellesmere Island (81° N, Nunavut, Canada) during the open water season for a suite of biogeochemical parameters, including concentrations of dissolved gases (O2, CO2, CH4, N2O) as well as stable-isotope ratios of dissolved inorganic carbon (δ13C-DIC), dissolved oxygen (δ18O-DO), and water (δ18O-H2O). We will present rates of primary production and ecosystem respiration, modeled from the concentration and stable isotope ratios of DIC and DO, as well as air-water gas exchange of greenhouse gases in these high Arctic ponds and lakes. Preliminary results demonstrate that ecosystem metabolism in these ponds was high enough to result in significant deviations in the isotope ratios of DIC and DO from atmospheric equilibrium conditions. In other words ecosystem rates of primary production and respiration were faster than gas exchange even in these small, shallow, well-mixed ponds. Furthermore, primary production was elevated enough at all sites except Lake Hazen, a

  10. Importance of aerosol composition and mixing state for cloud droplet activation in the high Arctic

    Directory of Open Access Journals (Sweden)

    C. Leck

    2014-08-01

    Full Text Available Concentrations of cloud condensation nuclei (CCN were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season median daily CCN concentrations at 0.2% water vapor supersaturation were typically in the range of 15 to 30 cm−3, but concentrations varied by two to three orders of magnitude over the expedition and were occasionally below 1 cm−3. The CCN concentrations were highest near the ice edge and fell by a factor of three in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. By assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles we inferred the properties of the unexplained non-water soluble aerosol fraction that is necessary for reproducing the observed concentrations of CCN. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol sizes ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues for that the behavior of the high Arctic aerosol in CCN-counters operating at water vapor supersaturations > 0.4% (high relative

  11. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  12. Soil and Plant Mercury Concentrations and Pools in the Arctic Tundra of Northern Alaska by Hedge Christine, Obrist Daniel, Agnan Yannick, Moore Christopher, Biester Harald, Helmig Detlev

    Science.gov (United States)

    Hedge, C.; Agnan, Y.

    2015-12-01

    We present vegetation, soil and runoff mercury (Hg) concentrations and pool sizes in vegetation and soils at several arctic tundra sites, an area that represents <7 x 106 km2 of land surface globally. The primary measurement location is at Toolik Field Station (TFS, 68° 38' N) in northern Alaska, with additional samples collected along a transect from TFS to the Arctic Ocean, and in Noatak National Preserve to be collected in August 2015. Soil and vegetation samples from all sites will be analyzed for total Hg concentration, pH, soil texture, bulk density, soil moisture content, organic and total carbon (C), nitrogen, along with major and trace elements. Initial results already obtained from TFS (characterized as moist to wet tundra with Typic Aquiturbel soils) show Hg concentrations in tundra vegetation (112±15 μg kg-1) and organic soil (140±8 μg kg-1) similar to those found in temperate sites. Calculation of plant-based Hg deposition rates by litterfall of 17.3 μg kg-1 yr-1 were surprisingly high, exceeding all other Hg deposition fluxes at this site. Hg concentrations in mineral soils (95±3 μg kg-1) were 2-3 times higher than those found at temperate sites. Hg concentrations showed weak relationships to organic C concentrations contrasting patterns from temperate soils where concentrations typically decline with depth following lower organic carbon contents. In fact, vertical mass profiles of Hg showed a strong increase with depth, with mineral layers storing over 90% (200-500 g ha-1) of Hg within these soils. A principle component analysis including major and trace elements indicated that soil Hg was not of lithogenic origin but from atmospheric sources, possibly by long-range transport. Carbon-14 dating results showed over 7,000 years old organic carbon in mineral soils of the active layer where highest concentrations of soil Hg were observed, suggesting long term retention of atmospheric Hg. These patterns suggest vertical translocation of Hg from the

  13. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    Science.gov (United States)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  14. Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada

    Science.gov (United States)

    Galloway, Jennifer M.; Tullius, Dylan N.; Evenchick, Carol A.; Swindles, Graeme T.; Hadlari, Thomas; Embry, Ashton

    2015-04-01

    Understanding the behaviour of global climate during relatively warm periods in Earth's history, such as the Cretaceous Period, advances our overall understanding of the climate system and provides insight on drivers of climate change over geologic time. While it has been suggested that the Valanginian Age represents the first episode of Cretaceous greenhouse climate conditions with relatively equable warm temperatures, mounting evidence suggests that this time was relatively cool. A paucity of paleoclimate data currently exists for polar regions compared to mid- and low-latitudes and this is particularly true for the Canadian Arctic. There is also a lack of information about the terrestrial realm as most paleoclimate studies have been based on marine material. Here we present quantitative pollen and spore data obtained from the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, to better understand the long-term vegetation and climate history of polar regions during the warm but variable Early Cretaceous (Valanginian to Early Aptian). Detrended correspondence analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the

  15. 北极公海渔业管理制度初探%A Study on the Fisheries Management of the Arctic High Seas

    Institute of Scientific and Technical Information of China (English)

    邹磊磊; 张侠; 邓贝西

    2015-01-01

    气候变化下的北极渔业发展备受瞩目。由于缺乏针对性管理制度与管理组织,北极公海渔业管理面临着挑战,而北极5国在渔业管理制度构建中所表现的主导意愿使北极渔业管理更趋复杂化。虽然未来北极公海渔业管理有很多可能的模式,变幻的自然环境、复杂的北极地缘政治、北极与非北极国家之间的博弈使北极渔业管理的走向未明。但是,本着实现北极渔业资源可持续性发展的目标,北极与非北极国家之间的国际合作才是构建合理、合法北极公海渔业管理制度的前提。%The Arctic fisheries under climate change have been an international concern .For lack of tailored management system and organizations ,the Arctic high seas fisheries management encounters vari‐ous challenges .What makes it worse is the stewardship that five Arctic coastal states are trying to impose on the construction of Arctic high seas fisheries management system .Although there are various possible patterns for the future Arctic high seas fisheries management ,it still remains unpredictable due to the changing climate ,complicated geopolitics in the Arctic ,and intense political game between Arctic coastal states and non‐Arctic coastal states .However ,the international cooperation between two parties is the es‐sential prerequisite for the sustainable development of the Arctic fisheries resources .

  16. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  17. Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets

    Directory of Open Access Journals (Sweden)

    Zachary Langford

    2016-09-01

    Full Text Available Multi-scale modeling of Arctic tundra vegetation requires characterization of the heterogeneous tundra landscape, which includes representation of distinct plant functional types (PFTs. We combined high-resolution multi-spectral remote sensing imagery from the WorldView-2 satellite with light detecting and ranging (LiDAR-derived digital elevation models (DEM to characterize the tundra landscape in and around the Barrow Environmental Observatory (BEO, a 3021-hectare research reserve located at the northern edge of the Alaskan Arctic Coastal Plain. Vegetation surveys were conducted during the growing season (June–August of 2012 from 48 1 m × 1 m plots in the study region for estimating the percent cover of PFTs (i.e., sedges, grasses, forbs, shrubs, lichens and mosses. Statistical relationships were developed between spectral and topographic remote sensing characteristics and PFT fractions at the vegetation plots from field surveys. These derived relationships were employed to statistically upscale PFT fractions for our study region of 586 hectares at 0.25-m resolution around the sampling areas within the BEO, which was bounded by the LiDAR footprint. We employed an unsupervised clustering for stratification of this polygonal tundra landscape and used the clusters for segregating the field data for our upscaling algorithm over our study region, which was an inverse distance weighted (IDW interpolation. We describe two versions of PFT distribution maps upscaled by IDW from WorldView-2 imagery and LiDAR: (1 a version computed from a single image in the middle of the growing season; and (2 a version computed from multiple images through the growing season. This approach allowed us to quantify the value of phenology for improving PFT distribution estimates. We also evaluated the representativeness of the field surveys by measuring the Euclidean distance between every pixel. This guided the ground-truthing campaign in late July of 2014 for

  18. Inorganic carbon in a high latitude estuary-fjord system in Canada's eastern Arctic

    Science.gov (United States)

    Turk, D.; Bedard, J. M.; Burt, W. J.; Vagle, S.; Thomas, H.; Azetsu-Scott, K.; McGillis, W. R.; Iverson, S. J.; Wallace, D. W. R.

    2016-09-01

    Rapidly changing conditions in the Arctic can have a significant impact on biogeochemical cycles and can be particularly important in high latitude estuary-fjord systems with abundant and diverse freshwater sources. This study provides a first look into the inorganic carbon system and its relation to freshwater sources in Cumberland Sound in the east coast of Baffin Island, Nunavut, Canada. These data contribute to the very limited set of inorganic carbon measurements in high latitude estuary-fjord systems. During the ice-free conditions in August 2011, the meteoric freshwater fractions (MW) in the upper 40 m ranged from 11 to 21% and no sea ice melt (SIM) was present in the Sound. Surface waters were undersaturated with pCO2 (260 and 300 μatm), and DIC and TA ranged between 1779 and 1966 μmol DIC kg-1, and 1922 and 2140 μmol TA kg-1, respectively. Aragonite saturation (ΩAr) state ranged from 1.9 in the surface to 1.4 in the subsurface waters. Data show decreasing TA and ΩAr with increasing MW fraction and suggest that Cumberland Sound waters would become aragonite undersaturated (ΩAr melt. In August 2012, MW fractions at the surface were between 8 and 11.5%, and SIM between 7 and 23%. Significant interannual variability of summertime SIM could potentially result in ΩAr undersaturation.

  19. Nonlinear thermal and moisture dynamics of high Arctic wetland polygons following permafrost disturbance

    Directory of Open Access Journals (Sweden)

    E. Godin

    2015-07-01

    Full Text Available Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada, thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover, eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.

  20. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  1. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  2. Importance of open marine waters to the enrichment of total mercury and monomethylmercury in lichens in the Canadian High Arctic.

    Science.gov (United States)

    St Pierre, K A; St Louis, V L; Kirk, J L; Lehnherr, I; Wang, S; La Farge, C

    2015-05-19

    Caribou, which rely on lichens as forage, are a dietary source of monomethylmercury (MMHg) to many of Canada's Arctic Aboriginal people. However, little is understood about the sources of MMHg to lichens in the High Arctic. We quantified MMHg, total mercury (THg) and other chemical parameters (e.g., marine and crustal elements, δ(13)C, δ(15)N, organic carbon, calcium carbonate) in lichen and soil samples collected along transects extending from the coast on Bathurst and Devon islands, Nunavut, to determine factors driving lichen MMHg and THg concentrations in the High Arctic. Lichen MMHg and THg concentrations ranged from 1.41 to 17.1 ng g(-1) and from 36.0 to 361 ng g(-1), respectively. Both were highly enriched over concentrations in underlying soils, indicating a predominately atmospheric source of Hg in lichens. However, MMHg and THg enrichment at coastal sites on Bathurst Island was far greater than on Devon Island. We suggest that this variability can be explained by the proximity of the Bathurst Island transect to several polynyas, which promote enhanced Hg deposition to adjacent landscapes through various biogeochemical processes. This study is the first to clearly show a strong marine influence on MMHg inputs to coastal terrestrial food webs with implications for MMHg accumulation in caribou and the health of the people who depend on them as part of a traditional diet.

  3. Force balance and deformation characteristics of anisotropic Arctic sea ice (a high resolution study)

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.; Tsamados, M.

    2016-12-01

    The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.

  4. Use of High Resolution UAS Imagery to Classify Sub-Arctic Vegetation Types

    Science.gov (United States)

    Herrick, C.; Palace, M. W.; Finnell, D. R.; Garnello, A.; Sullivan, F.; Anderson, S. M.; Varner, R. K.

    2014-12-01

    Sub-arctic permafrost regions are now experiencing annual warming with a resulting thaw that induces changes to the vegetative landscape. This warming trend is directly correlated to increases in annual greenhouse gas emissions including methane (CH4). Vegetation species and composition are indirect indicators of CH4 flux, and may serve as a proxy for estimating changes in CH4emission over time. Three WorldView-2 images (2m2 spatial resolution, 8 multispectral bands) were acquired in Jul/Aug of 2012-2014 over the Abisko region in northern Sweden. Color infrared (CIR) sub-meter imagery was also collected over a 4km2 area in 2014 using both a multi-rotor helicopter and a fixed wing unmanned aircraft system (UAS). Fifty 1m2 ground sample plots were established; these plots cover 5 major ground cover vegetation classes and were used in classification efforts. Texture analysis was conducted on both UAS and WV-2 imagery. Both an unsupervised k-means clustering algorithm to predict vegetation classes and a supervised classification using both random forests and neural networks were conducted; similar texture analysis and clustering were also performed on the UAS imagery. Classifications of the two imagery types were compared with promising results, thus supporting the use of UAS and high resolution satellite image collection to provide landscape level characterization of vegetation.

  5. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    CERN Document Server

    Steinbring, Eric

    2016-01-01

    Nighttime zenith sky spectral brightness in the 3.3 to 20 micron wavelength region is reported for an observatory site nearby Eureka, on Ellesmere Island in the Canadian High Arctic. Measurements derive from an automated Fourier-transform spectrograph which operated continuously there over three consecutive winters. During that time the median through the most transparent portion of the Q window was 460 Jy/square-arcsec, falling below 32 Jy/square-arcsec in N band, and to sub-Jansky levels by M and shortwards; reaching only 36 mJy/square-arcsec within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model allows characterization of background stability and extrapolation into K band. This suggests the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 micro-Jy/square-arcsec at 2.4 microns. That background is comparable to South Pole, and more than an order of magnitude less than estim...

  6. Thermal Infrared Sky Background for a High-Arctic Mountain Observatory

    Science.gov (United States)

    Steinbring, Eric

    2017-01-01

    Nighttime zenith sky spectral brightness in the 3.3-20 μm wavelength region is reported for an observatory site nearby Eureka on Ellesmere Island in the Canadian High Arctic. Measurements are derived from an automated Fourier-transform spectrograph that operated there continuously over three consecutive winters. During that time, the median through the most transparent portion of the Q window was 460 {Jy} {{arcsec}}-2, falling below 32 {Jy} {{arcsec}}-2 in the N band, and to sub-Jansky levels by M and shortward, reaching only 36 {mJy} {{arcsec}}-2 within L. Nearly six decades of twice-daily balloonsonde launches from Eureka, together with contemporaneous meteorological data plus a simple model, allows characterization of background stability and extrapolation into K band. This suggests that the study location has dark skies across the whole thermal infrared spectrum, typically sub-200 μ {Jy} {{arcsec}}-2 at 2.4 μm. That background is comparable to South Pole and more than an order of magnitude less than estimates for the best temperate astronomical sites, all at much higher elevation. Considerations relevant to future facilities, including for polar transient surveys, are discussed.

  7. Reconstruction of Holocene patterns of change in a High Arctic coastal landscape, Southern Sassenfjorden, Svalbard

    Science.gov (United States)

    Sessford, Evangeline G.; Strzelecki, Mateusz C.; Hormes, Anne

    2015-04-01

    Abrupt shifts in sediment supply, relative sea level, permafrost regime, glacier state, snow cover and sea ice conditions associated with Holocene climate changes control processes operating on High Arctic coasts and make reconstructions of their past evolution a significant research challenge. This study attempts to describe the development of the coastal zone in southern Sassenfjorden, Svalbard, throughout the Holocene focusing on the styles of adjustment to major landscape changes. Five marine terraces (MT1-5) are identified and assessed. Spatial and chronological analysis suggests that the highest terrace, MT5, is pre-LGM (Last Glacial Maximum) and that MT4-3 underwent rapid uplift (151 and 11.4 mm/year, respectively) shortly prior to 11 061 ± 174 cal. yr BP and became fully terrestrial by 9100 years ago (as indicated by emergence rates) during the Holocene Thermal Maximum (HTM). Uplift rates for MT2-1 slowed to 5 and 2 mm/year, respectively, with suggested emergence between 7200 and 6800 cal. yr BP. A final 2 m uplift of the relict alluvial plain probably happened during the Medieval Warm Period (1200-950 cal. yr BP). Most recent coastal development (AD 1912-2012) is characterised by episodes of coastal erosion on the cliff and progradation of the Nøiselva delta. Interactions between sea ice, snow cover, permafrost, wind and wave regimes are assessed to understand their implications on future coastal development in a warming climate.

  8. Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos

    Science.gov (United States)

    Miao, X.; Xie, H.

    2015-12-01

    High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.

  9. Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic

    DEFF Research Database (Denmark)

    Møller, Annette; Barkay, Tamar; Abu Al-Soud, Waleed;

    2011-01-01

    It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial...... densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but...

  10. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    and precipitation. Concurrently, phenological change has been recorded in a wide range of plants and animals, with climate change seemingly being the primary driver of these changes. A major concern is whether species and biological systems embrace the plasticity in their phenological responses needed for tracking......The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures...... the predicted increase in climate variability. Whereas species may show relatively high phenological resilience to climate change per se, the resilience of systems may be more constrained by the inherent dependence through consumer-resource interactions across trophic levels. During the last 15 years...

  11. Highly sweet compounds of plant origin.

    Science.gov (United States)

    Kim, Nam-Cheol; Kinghorn, A Douglas

    2002-12-01

    The demand for new alternative "low calorie" sweeteners for dietetic and diabetic purposes has increased worldwide. Although the currently developed and commercially used highly sweet sucrose substitutes are mostly synthetic compounds, the search for such compounds from natural sources is continuing. As of mid-2002, over 100 plant-derived sweet compounds of 20 major structural types had been reported, and were isolated from more than 25 different families of green plants. Several of these highly sweet natural products are marketed as sweeteners or flavoring agents in some countries as pure compounds, compound mixtures, or refined extracts. These highly sweet natural substances are reviewed herein.

  12. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago

    DEFF Research Database (Denmark)

    Luërs, J.; Westermann, Signe; Piel, K.;

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in Arctic regions dominated by soil freeze/thaw processes, lo...

  13. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.

    2014-01-01

    and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately......The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent...... circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order...

  14. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  15. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.

    Science.gov (United States)

    Møller, Annette K; Barkay, Tamar; Hansen, Martin A; Norman, Anders; Hansen, Lars H; Sørensen, Søren J; Boyd, Eric S; Kroer, Niels

    2014-01-01

    Bacterial reduction in Hg(2+) to Hg(0) , mediated by the mercuric reductase (MerA), is important in the biogeochemical cycling of Hg in temperate environments. Little is known about the occurrence and diversity of merA in the Arctic. Seven merA determinants were identified among bacterial isolates from High Arctic snow, freshwater and sea-ice brine. Three determinants in Bacteriodetes, Firmicutes and Actinobacteria showed 99% similar to known merA's. Phylogenetic analysis showed the Bacteroidetes merA to be part of an early lineage in the mer phylogeny, whereas the Betaproteobacteria and Gammaproteobacteria merA appeared to have evolved recently. Several isolates, in which merA was not detected, were able to reduce Hg(2+) , suggesting presence of unidentified merA genes. About 25% of the isolates contained plasmids, two of which encoded mer operons. One plasmid was a broad host-range IncP-α plasmid. No known incompatibility group could be assigned to the others. The presence of conjugative plasmids, and an incongruent distribution of merA within the taxonomic groups, suggests horizontal transfer of merA as a likely mechanism for High Arctic microbial communities to adapt to changing mercury concentration.

  16. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  17. Long photoperiods sustain high pH in Arctic kelp forests.

    Science.gov (United States)

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  18. A comparison of annual and seasonal carbon dioxide effluxes between subarctic Sweden and high-arctic Svalbard

    DEFF Research Database (Denmark)

    Björkman, Mats P.; Morgner, Elke; Björk, Robert G.;

    2010-01-01

    effluxes between snow regimes or vegetation types, indicating that spatial variability in winter soil CO2 effluxes are not directly linked to snow cover thickness or soil temperatures. Total winter emissions (0.004– 0.248 kg CO2 m–2) were found to be in the lower range of those previously described......Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and quantity of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were...... in order to evaluate the effect of snow depth on winter CO2 effluxes. Total annual emissions of CO2 from the sub-Arctic site (0.662–1.487 kg CO2 m–2 yr–1) were found to be more than double the emissions from the High-Arctic site (0.369–0.591 kg CO2 m–2 yr–1). There were no significant differences in winter...

  19. The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment

    Science.gov (United States)

    Kędra, Monika; Kuliński, Karol; Walkusz, Wojciech; Legeżyńska, Joanna

    2012-12-01

    Seasonality, quality and quantity of food resources strongly affect fitness and survival of polar fauna. Most research conducted in polar areas has been carried out during the summer, rarely including aspects of seasonality; therefore, there are gaps in our knowledge of the structure of food webs in the Arctic, particularly information is lacking on the possible shifts in winter feeding strategies of organisms. This study is the first to compare potential shifts in benthic food-web structure between winter and summer in a shallow-water Arctic fjord (Kongsfjorden, Svalbard). Winter data were collected in March when conditions are representative of winter and when Arctic shallow benthic fauna is likely to be most affected by absence of fresh food supply as opposed to summer (August). Samples of particulate suspended organic matter (POM), settled organic matter, surface sediment and benthic organisms were taken and analyzed for stable isotopes signatures (δ13C and δ15N). Four relative trophic levels (TL) were distinguished in both winter and summer, and no differences in the structure of benthic food web were found between seasons. Our study shows that the shallow sublittoral benthos depends on primary production, fresh and reworked settled organic matter and, to a certain degree, on terrestrial input. We also demonstrate that shallow water polar benthic fauna is characterized by a high level of omnivory and feeds at multiple trophic levels showing strong resilience to changing seasonal conditions.

  20. Origin and temporal variability of unusually low δ13C-DOC values in two High Arctic catchments

    Science.gov (United States)

    Hindshaw, R. S.; Lang, S. Q.; Bernasconi, S. M.; Heaton, T. H. E.; Lindsay, M. R.; Boyd, E. S.

    2016-04-01

    The stable carbon isotopic composition of dissolved organic matter (δ13C-DOC) reveals information about its source and extent of biological processing. Here we report the lowest δ13C-DOC values (-43.8‰) measured to date in surface waters. The streams were located in the High Arctic, a region currently experiencing rapid changes in climate and carbon cycling. Based on the widespread occurrence of methane cycling in permafrost regions and the detection of the pmoA gene, a proxy for aerobic methanotrophs, we conclude that the low δ13C-DOC values are due to organic matter partially derived from methanotrophs consuming biologically produced, 13C-depleted methane. These findings demonstrate the significant impact that biological activity has on the stream water chemistry exported from permafrost and glaciated environments in the Arctic. Given that the catchments studied here are representative of larger areas of the Arctic, occurrences of low δ13C-DOC values may be more widespread than previously recognized, with implications for understanding C cycling in these environments.

  1. A Convective Cloud Feedback and Spring Arctic Sea Ice Forecasting at High CO2

    Science.gov (United States)

    Abbot, D. S.; Walker, C. C.; Tziperman, E.

    2008-12-01

    Winter and spring sea ice dramatically cool the Arctic climate during the the coldest seasons of the year and may have remote effects on global climate as well. Accurate forecasting of winter and spring sea ice has significant social and economic benefits. Such forecasting requires the identification and understanding of all the feedbacks that can affect sea ice. A novel convective cloud feedback has recently been proposed in the context of explaining equable climates, e.g., the climate of the Eocene, that might be important for determining future winter and spring sea ice. In this feedback CO2 -initiated warming leads to sea ice reduction, which which allows increased heat and moisture fluxes from the ocean surface, which destabilizes the atmosphere and leads to atmospheric convection. This atmospheric convection produces high and optically thick convective clouds and increases high-altitude moisture levels, both of which trap outgoing longwave radiation and therefore result in a further warming and sea ice loss. Here it is shown that this convective cloud feedback is active during winter in the coupled ocean-sea ice-land-atmosphere global climate models used for the 1%/year CO2 increase to quadrupling scenario of the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report. It is further shown that the convective cloud feedback plays an essential role in the elimination of maximum seasonal (spring) sea ice in NCAR's CCSM model, one of the IPCC models that nearly completely loses spring sea ice. This is done by performing a sensitivity analysis using the atmospheric component of CCSM, run at a CO2 concentration of 1120 ppm, by selectively disabling the convective cloud feedback and the ocean heat transport feedback. The result is that both feedbacks are necessary for the elimination of spring sea ice at this CO2 concentration.

  2. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    KAUST Repository

    Bourgeois, Solveig

    2016-08-23

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions such as supplies of organic matter (OM) from the water column. In the last decade, Kongsfjorden (79°N), a high Arctic fjord in Svalbard influenced by several glaciers and Atlantic water inflow, has been a site of great interest owing to its high sensitivity to climate change, evidenced by a reduction in ice cover and an increase in melting freshwater. To investigate how spatial and seasonal changes in vertical fluxes can impact the benthic compartment of Kongsfjorden, we studied the organic matter characteristics (in terms of quantity and quality) and prokaryotic distribution in sediments from 3 stations along a transect extending from the glacier into the outer fjord in 4 different seasons (spring, summer, autumn and winter) in 2012–2013. The biochemical parameters used to describe the sedimentary organic matter were organic carbon (OC), total nitrogen, bulk stable isotope ratios, pigments (chorophyll-a and phaeopigments) and biopolymeric carbon (BPC), which is the sum of the main macromolecules, i.e. lipids, proteins and carbohydrates. Prokaryotic abundance and distribution were estimated by 4′,6-diamidino-2-phenylindole (DAPI) staining. This study identifies a well-marked quantitative gradient of biogenic compounds throughout all seasons and also highlights a discrepancy between the quantity and quality of sedimentary organic matter within the fjord. The sediments near the glacier were organic-poor (< 0.3%OC), however the high primary productivity in the water column displayed during spring was reflected in summer sediments, and exhibited higher freshness of material at the inner station compared to the outer basin (means C-chlorophyll-a/OC ~ 5 and 1.5%, respectively). However, sediments at the glacier front were depleted

  3. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...

  4. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  5. Increased accumulation of sulfur in lake sediments of the high Arctic

    DEFF Research Database (Denmark)

    Drevnick, Paul E.; Muir, Derek C.G.; Lamborg, Carl H.;

    2010-01-01

    stimulates dissimilatory sulfate reduction. The sulfide produced is stored in sediment (as acid volatile sulfide), converted to other forms of sulfur, or reoxidized to sulfate and lost to the water column. An acceleration of the sulfur cycle in Arctic lakes could have profound effects on important...

  6. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard : Controls and processes

    NARCIS (Netherlands)

    De Haas, Tjalling; Kleinhans, Maarten G.; Carbonneau, Patrice E.; Rubensdotter, Lena; Hauber, Ernst

    2015-01-01

    Fan-shaped landforms occur in all climatic regions on Earth. They have been extensively studied in many of these regions, but there are few studies on fans in periglacial, Arctic and Antarctic regions. Fans in such regions are exposed to many site-specific environmental conditions in addition to the

  7. Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (Fulmarus glacialis)

    NARCIS (Netherlands)

    Trevail, A.M.; Gabrielsen, G.W.; Kuhn, S.; Franeker, van J.A.

    2015-01-01

    Plastic pollution is of worldwide concern; however, increases in international commercial activity in the Arctic are occurring without the knowledge of the existing threat posed to the local marine environment by plastic litter. Here, we quantify plastic ingestion by northern fulmars, Fulmarus glaci

  8. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    Science.gov (United States)

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  9. Elevated levels of ingested plastic in a high Arctic seabird, the northern fulmar (Fulmarus glacialis)

    NARCIS (Netherlands)

    Trevail, A.M.; Gabrielsen, G.W.; Kuhn, S.; Franeker, van J.A.

    2015-01-01

    Plastic pollution is of worldwide concern; however, increases in international commercial activity in the Arctic are occurring without the knowledge of the existing threat posed to the local marine environment by plastic litter. Here, we quantify plastic ingestion by northern fulmars, Fulmarus

  10. Carbon bioavailability in a high Arctic fjord influenced by glacial meltwater, NE Greenland

    DEFF Research Database (Denmark)

    Paulsen, Maria Lund; Nielsen, Sophia Elisabeth Bardram; Müller, Jens-Oliver

    2017-01-01

    The land-to-ocean flux of organic carbon is increasing in glacierized regions in response to increasing temperatures in the Arctic (Hood et al., 2015). In order to understand the response of the coastal ecosystem metabolism to the organic carbon input it is essential to determine the bioavailabil...

  11. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    Science.gov (United States)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  12. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    Science.gov (United States)

    Bulla, Martin; Valcu, Mihai; Rutten, Anne L; Kempenaers, Bart

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening-night to night-morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified.

  13. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia.

    Science.gov (United States)

    Forbes, Bruce C; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-12-29

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience.

  14. High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia

    Science.gov (United States)

    Forbes, Bruce C.; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-01-01

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience. PMID:20007776

  15. Surveys of belugas and narwhals in the Canadian High Arctic in 1996

    Directory of Open Access Journals (Sweden)

    Stuart Innes

    2002-07-01

    Full Text Available The summer range of belugas (Delphinapterus leucas and narwhals (Monodon monoceros in Prince Regent Inlet, Barrow Strait and Peel Sound in the Canadian High Arctic was surveyed from 31 July to 3 August 1996 with a visual aerial survey of offshore areas and photographic aerial surveys of concentration areas. The visual survey estimate based on the number of belugas visible to the observers using systematic line transect methods was 10,347 (cv = 0.28. This included corrections for whales that were missed by the observers, observations without distance measurements and an estimate of 1,949 (cv=0.22 belugas from a photographic survey in southern Peel Sound. Using data from belugas tagged with satellite-linked time-depth recorders, the estimate was adjusted for individuals that were diving during the survey which resulted in an estimate of 18,930 belugas (cv = 0.28. Finally, counts of belugas in estuaries, corrected for estuarine surface time, were added to provide a complete estimate of 21,213 belugas (95% CI 10,985 to 32,619. The estimated number of narwhals corrected for sightings that were missed by observers was 16,364 (cv = 0.24. Adjusting this for sightings without distance information and correcting for whales that were submerged produced an estimate of 45,358 narwhals (95% CI 23,397 to 87,932.

  16. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  17. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province-Results of new aeromagnetic data

    DEFF Research Database (Denmark)

    Døssing, Arne; Jackson, H.R.; Matzka, Jürgen

    2013-01-01

    of the Basin remain unaddressed. The difficulty lies in the geodynamic evolution and signature of the Basin being overprinted by excess volcanism of the Alpha-Mendeleev Ridge complex, part of the High Arctic Large Igneous Province (HALIP) and one of the largest (>1 million km2) and most intense magmatic...... as well as large parts of the area between the Lomonosov and southern Alpha Ridges are highly attenuated continental crust formed by poly-phase breakup with LIP volcanic addition. Significantly, our results are consistent with an early ( ~ pre-120 Ma) overall continental scale rotational opening...

  18. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...... number of biomass and refuse fired combined heat and power plant boilers, b) Laboratory exposures and metallurgical examinations of material specimens with ash deposits in well-defined gas environments with HCl and SO2 in a furnace....

  19. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    Science.gov (United States)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  20. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    Science.gov (United States)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  1. Landscape- and decadal-scale changes in the composition and structure of plant communities in the northern foothills of the Brooks Range of Arctic Alaska

    Science.gov (United States)

    Mercado-Díaz, J. A.; Gould, W. A.

    2010-12-01

    Scientists have predicted an increase in vascular plant cover in some tundra ecosystems as a result of global climate change. In Arctic Alaska, observational studies have documented increases in shrub cover for some regions; however, only a few studies have provided detailed quantitative evidence supporting the existence such changes. To address these shortcomings, we analyzed plant community data from 156 1m2 vegetation plots located at two 1km2 grids in Toolik Lake, Alaska. This data covered the time period from 1989-2008. After 18 years, we found that the relative abundance of vascular vegetation have increased by 16%, while the relative abundance of nonvascular vegetation decreased by 19%. Mean plant canopy height has experienced an increase from 4.4 cm in 1990 to 6.5 cm in 2008 and the extent and complexity of the canopy have increased over time from about 60% to 80%. Species diversity was also significantly reduced. While major vegetation changes in other tundra regions have been attributed to gradual increases in surface air temperature, changes documented in this study were apparently promoted by increasing soil moisture conditions that resulted from increased summer rainfall in our region. These results support the idea that tundra ecosystems in this region of the Alaskan Arctic are experiencing significant increases in aboveground standing crop and a shift in carbon allocation to vascular plants vs. bryophytes. These changes will likely affect important ecosystem processes like snow re-deposition, winter biological activities, nutrient cycling and could ultimately result in significant feedbacks to climate.

  2. The little auk population at the North Water Polynya. How palaeohistory, archaeology and anthropology adds new dimensions to the ecology of a high arctic seabird

    DEFF Research Database (Denmark)

    Mosbech, Anders; Johansen, Kasper Lambert; Lyngs, Peter;

    The little auk is the most numerous seabird in the north Atlantic and it has its most important breeding area on the eastern shores of the high arctic North Water Polynya in Northwest Greenland. Here an estimated population of 30 mill. pairs breeds in huge colonies. The little auk is a high arctic...... specialist feeding its chicks with large lipid-rich high arctic copepods. With warming of the sea the copepod species assemblage is expected to change to smaller less fatty copepod species with energetic and potentially population consequences for little auks. This presentation takes a broad...... interdisciplinary approach to the analysis of little auk ecology in times of change. Recent and ongoing little auk studies at the North Water Polynya have shown the high densities of little auks (about 2 pairs/m2) breeding under the stones in the vast scree slopes, the highly specialized chick diet (80 % Calanus...

  3. Geophysical analysis of the Alpha-Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province

    Science.gov (United States)

    Oakey, G. N.; Saltus, R. W.

    2016-11-01

    The Alpha-Mendeleev ridge complex is a first-order physiographic and geological feature of the Arctic Amerasia Basin. High amplitude "chaotic" magnetic anomalies (the High Arctic Magnetic High Domain or HAMH) are associated with the complex and extend beyond the bathymetric high beneath the sediment cover of the adjacent Canada and Makarov-Podvodnikov basins. Residual marine Bouguer gravity anomalies over the ridge complex have low amplitudes implying that the structure has minimal lateral density variability. A closed pseudogravity (magnetic potential) contour around the ridge complex quantifies the aerial extent of the HAMH at 1.3 × 106 km2. We present 2D gravity/magnetic models for transects across the Alpha Ridge portion of the complex constrained with recently acquired seismic reflection and refraction data. The crustal structure is modeled with a simple three-layer geometry. Large induced and remanent magnetization components were required to fit the observed magnetic anomalies. Density values for the models were based on available seismic refraction P-wave velocities. The 3000 kg/m3 lower crustal layer is interpreted as a composite of the original crustal protolith and deep (ultramafic) plutonic intrusions related to a plume sourced (High Arctic) LIP. The 2900 kg/m3 mid-crustal and 2600 kg/m3 upper-crustal layers are interpreted as the combined effect of sills, dikes, and flows. Volumetric estimates of the volcanic composition include (at least) 6 × 106 km3 for the mid- and upper-crust and between 13 × 106 and 17 × 106 km3 within the lower crust - for a total of 20 × 106 km3. We compare the magnetic structure, pseudogravity, and volumetric estimates for the HAMH portion of the HALIP with global large igneous province analogs and discuss implications for Arctic tectonics. Our results show that the closest analog to the HAMH/HALIP is the Kerguelen Plateau, which is considered a continental plateau intensively modified by plume-related volcanism.

  4. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been

  5. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  6. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  7. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008

    Science.gov (United States)

    Hamacher-Barth, Evelyne; Leck, Caroline; Jansson, Kjell

    2016-05-01

    The representation of aerosol properties and processes in climate models is fraught with large uncertainties. Especially at high northern latitudes a strong underprediction of aerosol concentrations and nucleation events is observed and can only be constrained by in situ observations based on the analysis of individual aerosol particles. To further reduce the uncertainties surrounding aerosol properties and their potential role as cloud condensation nuclei this study provides observational data resolved over size on morphological and chemical properties of aerosol particles collected in the summer high Arctic, north of 80° N. Aerosol particles were imaged with scanning and transmission electron microscopy and further evaluated with digital image analysis. In total, 3909 aerosol particles were imaged and categorized according to morphological similarities into three gross morphological groups: single particles, gel particles, and halo particles. Single particles were observed between 15 and 800 nm in diameter and represent the dominating type of particles (82 %). The majority of particles appeared to be marine gels with a broad Aitken mode peaking at 70 nm and accompanied by a minor fraction of ammonium (bi)sulfate with a maximum at 170 nm in number concentration. Gel particles (11 % of all particles) were observed between 45 and 800 nm with a maximum at 154 nm in diameter. Imaging with transmission electron microscopy allowed further morphological discrimination of gel particles in "aggregate" particles, "aggregate with film" particles, and "mucus-like" particles. Halo particles were observed above 75 nm and appeared to be ammonium (bi)sulfate (59 % of halo particles), gel matter (19 %), or decomposed gel matter (22 %), which were internally mixed with sulfuric acid, methane sulfonic acid, or ammonium (bi)sulfate with a maximum at 161 nm in diameter. Elemental dispersive X-ray spectroscopy analysis of individual particles revealed a prevalence of the monovalent

  8. Synchronous starphotometry and lidar measurements at Eureka in High Canadian Arctic

    Directory of Open Access Journals (Sweden)

    K. Baibakov

    2015-02-01

    Full Text Available We present recent progress related to the night-time retrievals of aerosol and cloud optical depth using starphotometry over the PEARL (Polar Environmental Atmospheric Research Laboratory station at Eureka (Nunavut, Canada in the High Arctic (80° N, 86° W. In the spring of 2011 and 2012, the SPSTAR starphotometer was employed to acquire aerosol optical depth (AOD measurements while vertical aerosol and cloud backscatter coefficient profiles were acquired using the CANDAC Raman Lidar (CRL. Several events were detected and characterized using starphotometry-lidar synergy: aerosols (short term aerosol events on 9 and 10 March 2011; a potential multi-night aerosol event across three polar nights (13–15 March 2012, a thin cloud event (21 February 2011 and a very low altitude ice crystals (10 March 2011. Using a simple backscatter coefficient threshold criterion we calculated fine and coarse (sub and super-micron mode AODs from the vertically integrated CRL profiles. These were compared with their starphotometry analogues produced from a spectral deconvolution algorithm. The process-level analysis showed, in general, good agreement in terms of the physical coherence between high frequency starphotometry and lidar data. We argue that R2 (coefficient of determination is the most robust means of comparing lidar and starphotometer data since it is sensitive to significant optico-physical variations associated with these two independent data sources while being minimally dependent on retrieval and calibration artifacts. Differences between the fine and course mode components of the starphotometry and lidar data is clearly also useful but is more dependent on such artifacts. Studying climatological seasonal aerosol trends necessitates effective cloud-screening procedures: temporal and spectral cloud screening of starphotometry data was found to agree moderately well with temporal cloud screening results except in the presence of thin homogeneous cloud

  9. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    Directory of Open Access Journals (Sweden)

    Z. Tan

    2015-11-01

    Full Text Available Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr−1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr−1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr−1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr−1 and from 5.4 to 7.9 Tg yr−1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.

  10. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity from 2000-2013 tracked with cameras

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund;

    2016-01-01

    The changes in vegetation seasonality at northern latitudes, resulting from changes in atmospheric temperatures and precipitation, are still not well understood. In this study we used 13 years of time lapse camera data and climate data from high-Arctic Northeast Greenland to assess the seasonal...... response of three vegetation types (dwarf shrub heath, grassland, and fen) to changes in snow cover, soil moisture, and air and soil temperatures. Based on the camera data, we computed a greenness index, which was subsequently used to analyze transition dates in vegetation seasonality. Snow cover...

  11. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fen, to inter-annual variation in snow-cover, soil moisture, and air and soil temperatures. A late snow melt and start of growing season is counterbalanced by a fast greenup and a tendency to higher peak greenness values. Snow...

  12. Low host specificity of root-associated fungi at an Arctic site.

    Science.gov (United States)

    Botnen, Synnøve; Vik, Unni; Carlsen, Tor; Eidesen, Pernille B; Davey, Marie L; Kauserud, Håvard

    2014-02-01

    In High Arctic ecosystems, plant growth and reproduction are limited by low soil moisture and nutrient availability, low soil and air temperatures, and a short growing season. Mycorrhizal associations facilitate plant nutrient acquisition and water uptake and may therefore be particularly ecologically important in nutrition-poor and dry environments, such as parts of the Arctic. Similarly, endophytic root associates are thought to play a protective role, increasing plants' stress tolerance, and likely have an important ecosystem function. Despite the importance of these root-associated fungi, little is known about their host specificity in the Arctic. We investigated the host specificity of root-associated fungi in the common, widely distributed arctic plant species Bistorta vivipara, Salix polaris and Dryas octopetala in the High Arctic archipelago Svalbard. High-throughput sequencing of the internal transcribed spacer 1 (ITS1) amplified from whole root systems generated no evidence of host specificity and no spatial autocorrelation within two 3 m × 3 m sample plots. The lack of spatial structure at small spatial scales indicates that Common Mycelial Networks (CMNs) are rare in marginal arctic environments. Moreover, no significant differences in fungal OTU richness were observed across the three plant species, although their root system characteristics (size, biomass) differed considerably. Reasons for lack of host specificity could be that association with generalist fungi may allow arctic plants to more rapidly and easily colonize newly available habitats, and it may be favourable to establish symbiotic relationships with fungi possessing different physiological attributes. © 2013 John Wiley & Sons Ltd.

  13. A green supply chain network design model for enhancing competitiveness and sustainability of companies in high north arctic regions

    Directory of Open Access Journals (Sweden)

    Hao Yu, Wei Deng Solvang, Chen Chen

    2014-01-01

    Full Text Available To survive in today’s competitive and ever-changing marketplace, companies need not only to engage in their products and/or services, but also to focus on the management of the whole supply chain. Effectively managing and balancing the profitability and interconnection of each player in the supply chain will improve the overall supply chain surplus as well as individual profit. However, it is extremely difficult to simultaneously optimize several objectives in design and planning of a supply chain, i.e., cost-minimization, risk-minimization, responsiveness-maximization, etc., which are somehow conflict with one another. Furthermore, the natural and infrastructural challenges in high north arctic regions make it become much more difficult and complicated to design and develop cost-efficient, highly responsive, environmentally friendly, and sustainable supply chain network. In order to provide companies in high north arctic regions with decision support tool for the design and planning of theirs supply chain networks, a green supply chain network design (GrSCND model is formulated in this study based on multi-objective mixed integer programming (MIP. The optimal trade-off among several conflicting objectives is the focus of this GrSCND model aiming to enhance both competitive competence and sustainability of companies and supply chains operated in high north regions. In addition, a numerical experiment is also given to present a deep insight of the GrSCND model.

  14. Measurements of an Intrusion of Water Vapor into the High Arctic and its Effect on Wintertime Radiation

    Science.gov (United States)

    Nott, G. J.; Doyle, J. G.; Lesins, G. B.; Thackray, C. P.; Perro, C. W.; Duck, T. J.; Drummond, J. R.

    2010-12-01

    Water vapor is the most important greenhouse gas, yet little is known about it in the High Arctic during winter due to a historic lack of measurements and difficulties associated with satellite retrievals. With cold temperatures and a very stable boundary layer, the water vapor mixing ratio peaks around only 0.3 g kg-1. Any influxes of moist air from more moderate latitudes are thus likely to have a significant impact on Arctic tropospheric processes and the radiation budget. With lidar and accompanying radiometer measurements at Eureka (79°59'N, 85°56'W) we present one highly dynamic instance of such an intrusion from the winter of 2009/10. Measurements with the Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh/Mie/Raman lidar, shown in the figure, display distinct and seperate wet and dry air parcels during the case study. Two significant influxes of moist air (mixing ratio peaking at 1.2 g kg-1) are observed while aerosol profiles show associated cloud and precipitation. An animated map of precipitable water measured by the Microwave Humidity Sounder will be presented that shows the moist air originating over the Bering Sea and sweeping north-east into the Arctic, reaching Eureka on Feburary 9. Radiometer measurements of downwelling radiation during this time period show that the influx of water vapor alone caused a 13% increase in longwave radiation at the surface. A radiative transfer model (SBDART) has been used to isolate the effect of the water vapor, temperature, and cloud cover variations associated with this intrusion, on the overall radiation flux. Only the single event will be presented in detail however longer term data sets of water vapor indicate that such intrusions happen once or twice a month each winter. With such significant influxes of water vapor it is possible that these intrusions significantly affect the average wintertime radiation budget. Lidar measurements of water vapor mixing ratio over Eureka showing two

  15. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    OpenAIRE

    2012-01-01

    One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of ‘‘extreme’’ weather events. Heavy rain-on-snow (ROS) is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rang...

  16. Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery

    Science.gov (United States)

    2014-09-01

    must be focused on the observed drastic changes in the region (from U.S. Navy 2014)........................................6 Figure 5. Photograph...just one of the many consequences of the increase in open water in the Arctic, and why the Navy must be focused on the observed drastic changes in...the ITP Program website, the underwater package houses a low power CTD as well as mechanical wire crawler mechanism to traverse the profiler up and

  17. Decadal changes of phenological patterns over Arctic tundra biome

    Science.gov (United States)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  18. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    Directory of Open Access Journals (Sweden)

    Effenhauser Rainer

    2007-05-01

    Full Text Available Abstract Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts

  19. Persistent observations of the Arctic from highly elliptical orbits using multispectral, wide field of view day-night imagers

    Science.gov (United States)

    Puschell, Jeffery J.; Johnson, David; Miller, Steven

    2014-09-01

    Persistent satellite observations are essential for monitoring and understanding Earth's environmentally sensitive and rapidly changing Arctic region. Compact wide-field-of-view imagers aboard satellites in Highly Elliptical Orbit (HEO) could stare at the Arctic and collect multispectral, high dynamic range visible and near-infrared imagery with sensitivity similar to that of the Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) in sun synchronous polar orbit. These HEO Day/Night Imagers (HDNIs) provide high contrast visible wavelength imagery through the long polar night. Their dynamic range -- extending from the brightest sunlit clouds, ice and snow to reflected moonlight from open water -- enables cloud, ice and sea surface discrimination even under very low light and low thermal contrast conditions. Rapidly refreshed HDNI data results in frequent updates to key environmental products such as cloud imagery and microphysical properties, ice and open water distribution (including real-time maps of where leads are opening and new ice is forming), vector ice motion and vector polar winds from cloud motion. The relatively small size of HDNIs makes them ideal for deployment as a hosted payload or as the primary payload onboard a small satellite.

  20. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  1. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  2. High Falls Hydroelectric Plant feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Diezemann, Gustav A.

    1979-07-01

    This study was made in order to determine if re-activating the retired High Falls Hydro Station in New York would result in a more economical generation of some of the power required in the Central Hudson System than is being obtained with the oil-burning thermal plants. The findings show that the construction of a new plant is more economical than rehabilitation of the existing station. All new construction schemes are marginally unattractive at today's costs but are found to become profitable within a short period as alternative energy sources escalate in price. A new powerhouse with an installed capacity of 2390 kW proved most economical, and its construction is recommended.

  3. Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2011-05-01

    Full Text Available Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.

  4. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Kim; Scheepstra, Annette; Gille, Johan; Stępień, Adam; Koivurova, Timo

    2014-01-01

    The European Arctic is currently experiencing an upsurge in mining activities, but future developments will be highly sensitive to mineral price fluctuations. The EU is a major consumer and importer of Arctic raw materials. As the EU is concerned about the security of supply, it encourages domestic

  5. Composition and meteorological changes associated with a strong stratospheric intrusion event in the Canadian High Arctic

    Science.gov (United States)

    Zhao, Xiaoyi; Strong, Kimberly; Conway, Stephanie; Tarasick, David; Osman, Mohammed; Richter, Andreas; Blechschmidt, Anne; Manney, Gloria

    2015-04-01

    Stratosphere-troposphere exchange (STE) provides a mechanism for trace gas transport between the lower stratosphere and the troposphere. Intense downward stratospheric intrusions may significantly affect the oxidizing capacity of the troposphere. Most STE events occur in tropical and mid-latitude regions, with less known about STE in the polar regions. In this work, we present an observation and modelling study of a strong stratospheric intrusion in the high Arctic (Eureka, 80°N) in March 2013, which led to an increase of total ozone and BrO columns observed by both ground-based and satellite instruments. The meteorological conditions for this event were similar to those observed for STEs associated with cold fronts. Before the cold front arrived at Eureka, the surface temperature first increased from -25.3°C (25 March 13:00 UTC) to -14.5°C (27 March 20:00 UTC) and then dropped to -36.4°C (29 March 6:00 UTC) after the front passed by. Meanwhile, the ground-level pressure decreased from 103.8 kPa to 101.8 kPa, then rose back to 102.6 kPa. Ozonesonde data (27 March 23:15 UTC) showed unusually high ozone (>100 ppbv) above ~3 km altitude, while the relative humidity profile indicated that the airmass was of stratospheric origin (very low relative humidity). The thermal tropopause height was ~9 km, based on a uniform lapse rate of 3.9 K/km from surface to 9 km. From ECMWF Interim data, the airmass with high relative potential vorticity (4 pvu) extended down to 3 km. In addition, HYSPLIT model ensemble back-trajectories show a clear Rossby wave signature in the upper troposphere during this event, which could explain the intrusion. However, there are no strong downwelling layers along the trajectories, which indicates that the intrusion may have occurred close to Eureka. Trace gas composition data from three ground-based spectrometers and the GOME-2 satellite instrument are presented in this work. Ozone vertical column densities (VCDs) measured by two Zenith

  6. Communicating climate science to high school students in the Arctic: Adventure Learning @ Greenland

    Science.gov (United States)

    Hougham, R. J.; Miller, B.; Cox, C. J.

    2012-12-01

    Adventure Learning @ Greenland (AL@GL) engaged high school students in atmospheric research in the Arctic and in local environments to enhance climate literacy. The overarching objective for this project was to support climate literacy in high school students, specifically the concept of energy exchange between the Earth, atmosphere, and space. The goal then is to produce a model of education and outreach for remote STEM research that can be used to meaningfully engage K-12 and public communities. Over the course of the program experience, students conducted scientific inquiry associated with their place that supported a more focused science content at a field location. Approximately 45 students participated in the hybrid learning environments as part of this project at multiple locations in Idaho, USA, and Greenland. In Greenland, the Summit Camp research station located on the Greenland Ice Sheet was the primary location. The AL@GL project provided a compelling opportunity to engage students in an inquiry-based curriculum alongside a cutting-edge geophysical experiment at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) experiment. ICECAPS measures parameters that are closely tied to those identified in student misconceptions. Thus, ICECAPS science and the AL@ approach combined to create a learning environment that was practical, rich, and engaging. Students participating in this project were diverse, rural, and traditionally underrepresented. Groups included: students participating in a field school at Kangerlussuaq, Greenland and Summit Station as members of the JSEP; students at MOSS will were part of the Upward Bound Math Science (UBMS) and HOIST (Helping Orient Indian Students and Teachers) project. These project serve high school students who are first college generation and from low-income families. JSEP is an international group of students from the United States, Greenland, and Denmark

  7. The Caledonian suture in the high Arctic? New data from the Chukchi Borderland, Amerasia Basin

    Science.gov (United States)

    O'Brien, T.; Brumley, K. J.; Miller, E. L.; Mayer, L. A.

    2013-12-01

    The Chukchi Borderland (CB) is a bathymetric high in the Arctic Ocean that is extended by N-S and E-W striking faults. Based on sediment cores of talus slope fragments at the base of the Northwind Ridge (NWR), basement of the CB was previously interpreted as a Paleozoic platform sequence comparable to passive margin strata of western Laurentia (Grantz et al., 1998). The discovery of Silurian (~430 Ma) orthogneiss dredged from a fault scarp in the central CB suggests instead that the CB is a displaced fragment of the Caledonian orogen (Brumley et al., 2008). U-Pb geochronology of zircon suites from rocks dredged from the NWR and central CB fault scarps help resolve the make-up of the CB basement. Samples from the central CB are believed to represent the country rocks of the previously dated Silurian orthogneiss. They consist mostly of paragneiss and lesser orthogneiss intruded by leucosomal segregations, all deformed and metamorphosed to amphibolite facies with assemblages Qtz + Kfs + Plag + Bt + Grt × Ms × Chl (retrograde) with accessory zircon, sphene and apatite. The abundance of Kfs + Plag + Bt in paragneiss samples suggest a volcanogenic sediment protolith. Dynamic recrystallization of quartz by grain-boundary migration and recrystallization/myrmekite development along the edges of feldspar crystals suggest final deformation at temperatures of ~450 C. U-Pb geochronology of zircon from an orthogneiss sample from the central CB yields an age of 499.2 × 0.9 Ma with late Neoproterozoic (600 Ma) and Mesoproterozoic - early Paleoproterozoic (1100-1700 Ma) grains. Detrital zircon geochronology from four paragneiss samples show a broad range of ages between 480-650 Ma with a dominant age peak ~500 Ma. Lesser, mostly discordant, Mesoproterozoic and Paleoproterozoic zircons are also present. The paragneiss sampled represent an arc-proximal sediment intruded by Silurian granitoids. Dredge samples from the NWR consist of deformed and metamorphosed calcareous sandstones

  8. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  9. The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna

    Directory of Open Access Journals (Sweden)

    Stephen J. Coulson

    2015-09-01

    Full Text Available Experience from the Antarctic indicates that the establishment of alien species may have significant negative effects on native flora and fauna in polar regions and is considered to be amongst the greatest threats to biodiversity. But, there have been few similar studies from the Arctic. Although the terrestrial invertebrate inventory of the Svalbard Archipelago is amongst the most complete for any region of the Arctic, no consideration has yet been made of alien terrestrial invertebrate species, their invasiveness tendencies, threat to the native biology or their route of entry. Such baseline information is critical for appropriate management strategies. Fifteen alien invertebrate species have established in the Svalbard environment, many of which have been introduced via imported soils. Biosecurity legislation now prohibits such activities. None of the recorded established aliens yet show invasive tendencies but some may have locally negative effects. Ten species are considered to be vagrants and a further seven are classified as observations. Vagrants and the observations are not believed to be able to establish in the current tundra environment. The high connectivity of Svalbard has facilitated natural dispersal processes and may explain why few alien species are recorded compared to isolated islands in the maritime Antarctic. The vagrant species observed are conspicuous Lepidoptera, implying that less evident vagrant species are also arriving regularly. Projected climate change may enable vagrant species to establish, with results that are difficult to foresee.

  10. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    Science.gov (United States)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  11. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    Science.gov (United States)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  12. Mercury and methylmercury concentrations in high altitude lakes and fish (Arctic charr) from the French Alps related to watershed characteristics.

    Science.gov (United States)

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Paquet, Serge; Beaulne, Jean-Sébastien; Maury-Brachet, Régine; Lucotte, Marc; Nedjai, Rachid; Ferrari, Christophe P

    2011-04-15

    Total mercury (THg) and methylmercury (MeHg) concentrations were measured in the muscle of Arctic charr (Salvelinus alpinus) and in the water column of 4 lakes that are located in the French Alps. Watershed characteristics were determined (6 coverage classes) for each lake in order to evaluate the influence of watershed composition on mercury and methylmercury concentrations in fish muscle and in the water column. THg and MeHg concentrations in surface water were relatively low and similar among lakes and watershed characteristics play a major role in determining water column Hg and MeHg levels. THg muscle concentrations for fish with either a standardized length of 220mm, a standardized age of 5 years or for individualuals did not exceed the 0.5mg kg(-1) fish consumption advisory limit established for Hg by the World Health Organization (WHO, 1990). These relatively low THg concentrations can be explained by watershed characteristics, which lead to short Hg residence time in the water column, and also by the short trophic chain that is characteristic of mountain lakes. Growth rate did not seem to influence THg concentrations in fish muscles of these lakes and we observed no relationship between fish Hg concentrations and altitude. This study shows that in the French Alps, high altitude lakes have relatively low THg and MeHg concentrations in both the water column and in Arctic charr populations. Therefore, Hg does not appear to present a danger for local populations and the fishermen of these lakes.

  13. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  14. Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae on Spitsbergen?

    Directory of Open Access Journals (Sweden)

    Ávila-Jiménez María L

    2011-10-01

    Full Text Available Abstract Background The Svalbard endemic aphid Acyrthosiphon svalbardicum (Heikinheimo, 1968 is host specific to Dryas octopetala L. ssp octopetala (Rosaceae. It has been hypothesized that the aphid is present on those areas with a thin winter snow cover and which therefore clear of snow earlier in the season. This early snow clearance results in a longer growing period and allows the aphid to experience at least the minimum number of degree days required to complete its life cycle. However, this hypothesis lacked a detailed field validation. We aimed to test the relationship between the aphid distribution and time of snow clearance at landscape scale, mapping snow depth at peak of snow accumulation for the two succeeding years 2009 and 2010 and examining site occupancy and plant phenology the following summers. Additionally, the distribution range mapped by Strathdee & Bale (1995 was revisited to address possible changes in range along the coast of the fjord. Results A linear relation between snow depth and timing of snow melt was found but with strong inter-annual and landscape variation. Both snow depth and plant phenology were found to affect patch occupancy. In August, the aphid, at the three life stages scored (viviparae, oviparae/males and eggs, was present most frequently in those D. octopetala patches with the most advanced plant phenology and which showed shallower snow depths in spring. However, many patches predicted to contain aphids were empty. The aphid distribution range has expanded 4.7 km towards the fjord mouth from 1995. Conclusions Snow depth alone, and hence date of snow clearance, cannot precisely define species distribution at landscape scale, as this cannot explain why are they unoccupied patches under shallow snow depths with advanced plant phenology. We nonetheless present a model Arctic system that could form the basis for long term monitoring for climate- driven species shifts.

  15. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  16. Comparison of publically available Moho depth and crustal thickness grids with newly derived grids by 3D gravity inversion for the High Arctic region.

    Science.gov (United States)

    Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey

    2016-04-01

    We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the

  17. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    Directory of Open Access Journals (Sweden)

    Brage Bremset Hansen

    2012-03-01

    Full Text Available One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of “extreme” weather events. Heavy rain-on-snow (ROS is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rangifer tarandus platyrhynchus to use marine habitat in late winter 2010. A thick coat of ground ice covered 98% of the lowland ranges, almost completely blocking access to terrestrial forage. Accordingly, a population census revealed that 13% of the total population (n=26 of 206 individuals and 21% of one sub-population were feeding on washed-up kelp and seaweed on the sea-ice foot. Calves were overrepresented among the individuals that applied this foraging strategy, which probably represents a last attempt to avoid starvation under particularly severe foraging conditions. The study adds to the impression that extreme weather events such as heavy ROS and associated icing can trigger large changes in the realized foraging niche of Arctic herbivores.

  18. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    Role of Dynamics in the Diminishing Arctic Sea Ice Cover ” Dr. Sinead L. Farrell University of Maryland, ESSIC, 5825 University Research Court...day Arctic ice cover , enabling the improvement of models used to forecast ice drift. APPROACH Our research is centered on the application of...resolution visible band imagery for deriving geophysical information on the sea ice pack of the Arctic Ocean , and improve understanding of key

  19. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover

    Science.gov (United States)

    2014-09-30

    melt and freeze onset dates. REFERENCES Hutchings, J. K., et al. (2014), Sea Ice Deformation in the Arctic from 2000-2010, Geophys. Res. Lett., under...Eos, Vol. 92, No. 7, pp. 53-54. Richter-Menge, J., and S. L. Farrell (2013), Arctic Sea Ice Conditions in Spring 2009 - 2013 Prior to Melt ...refereed] Richter-Menge, J., and S. L. Farrell (2013), Arctic Sea Ice Conditions in Spring 2009 - 2013 Prior to Melt , Geophys. Res. Lett., 40, 5888

  20. Characterizing Low Molecular Weight Organic Matter in Arctic Polygonal Tundra Soils to Identify Biogeochemical Hotspots Using a Dual-Separation, High-Resolution Mass Spectrometry Approach

    Science.gov (United States)

    Ladd, M.; Wullschleger, S. D.; Iversen, C. M.; Hettich, R.

    2016-12-01

    Reliably modeling biogeochemical processes (e.g. decomposition, plant-microbial competition for nutrients) across spatial or temporal scales requires elucidating the chemical composition of low molecular weight (LMW) dissolved soil organic matter (DOM). Our understanding is limited, however, by the wide-ranging physicochemical properties and high fluxes of these compounds, posing major challenges in detection, isolation, and quantification. Here, we developed and evaluated a sensitive, non-targeted approach to characterize LMW DOM in the Arctic, a unique system that is warming at a rate twice that of the global average and may have significant feedbacks to global C and N cycles. Soil cores were collected from a continuous permafrost, polygonal tundra landscape near Barrow, Alaska (71° 16' N) and sectioned into 5 cm increments. Water and salt extracts from each section were filtered and injected onto C18 reversed-phase or zwitterionic-type hydrophilic interaction chromatography (ZIC-pHILIC) columns for separation. LMW DOM profiles were obtained using high-resolution mass spectrometry (HRMS), and unique features, known and unknown, were characterized by LC retention time, accurate mass (m/z), and molecular fragmentation pattern. Coupling two orthogonal chromatographic separations with HRMS enabled the characterization of hundreds of analytes in a single measurement providing enhanced, high-throughput coverage of LMW DOM from soil extracts. The complexity and relative/absolute intensities of LMW DOM features (e.g. organic acids, amino sugars, peptides) varied across polygon type (high- or low-centered), extract condition, and with depth, providing an information-rich, molecular signal of LMW DOM availability across scales. Comprehensively profiling this complex mixture of small molecules of both biotic and abiotic origin provides a chemical signature of biological function, allowing for more reliable predictions of how discrete, molecular-scale processes may control

  1. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    Science.gov (United States)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  2. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus and Coexisting Fishes in a High-Elevation Lake System.

    Directory of Open Access Journals (Sweden)

    Kyle A Cutting

    Full Text Available Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days and long-term (few months changes in trophic niches. We incorporate these short-term (gut contents data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss and brook trout (Salvelinus fontinalis. In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota, and suckers (Catostomus spp. largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts.

  3. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Schmidt, Niels Martin; Hoye, Toke T.

    2016-01-01

    -Arctic tri-trophic system of flowers, insects and waders (Charadriiformes), with latent factors representing phenology (timing of life history events) and performance (abundance or reproduction success) for each trophic level. The effects derived from the model demonstrated that the time of snowmelt directly...... from the tri-trophic community presented here emphasise that effects of climate on species in consumer-resource systems may propagate through trophic levels...

  4. Gullies on Mars: Origin by snow and ice melting and potential for life based on possible analogs from Devon Island, High Arctic

    OpenAIRE

    Lee, P; Cockell, C. S.; McKay, C. P.

    2004-01-01

    Gullies on Devon Island, High Arctic, which form by melting of transient surface ice and snow covers and offer morphologic and contextual analogs for gullies reported on Mars are reported to display enhancements in biological activity in contrast to surrounding polar desert terrain.

  5. Gullies on Mars: Origin by Snow and Ice Melting and Potential for Life Based on Possible Analogs from Devon Island, High Arctic

    Science.gov (United States)

    Lee, Pascal; Cockell, Charles S.; McKay, Christopher P.

    2004-01-01

    Gullies on Devon Island, High Arctic, which form by melting of transient surface ice and snow covers and offer morphologic and contextual analogs for gullies reported on Mars are reported to display enhancements in biological activity in contrast to surrounding polar desert terrain.

  6. Quantifying the Mass Balance of Ice Caps on Severnaya Zemlya, Russian High Arctic. I: Climate and Mass Balance of the Vavilov Ice Cap

    NARCIS (Netherlands)

    Bassford, R.P.; Siegert, M.J.; Dowdeswell, J.A.; Oerlemans, J.; Glazovsky, A.F.; Macheret, Y.Y.

    2006-01-01

    Due to their remote location within the Russian High Arctic, little is known about the mass balance of ice caps on Severnaya Zemlya now and in the past. Such information is critical, however, to building a global picture of the cryospheric response to climate change. This paper provides a numerical

  7. Signal and distribution of volatile Mercury (Hg0) in the Marine High Arctic During Polar Summer in the Sequel of Enhanced Atmospheric Deposition of HgⅡ

    Institute of Scientific and Technical Information of China (English)

    Jonas O. Sommar; Maria E. Andersson

    2008-01-01

    @@ 1 Introduction It has been elucidated that high levels of neurotoxic mercury (Hg) in the Arctic is related to a rapid, near-compete depletion of Hg0 (MDE) in the atmospheric boundary-layer occurring episodically during the Polar spring[1].

  8. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    DEFF Research Database (Denmark)

    Møller, Annette K.; Søborg, Ditte A.; Abu Al-Soud, Waleed;

    2013-01-01

    The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition...

  9. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    DEFF Research Database (Denmark)

    Møller, Annette; Søborg, Ditte Andreasen; Al-Soud, Waleed Abu

    2013-01-01

    The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition...

  10. FRAM-2012: Norwegians return to the High Arctic with a Hovercraft for Marine Geophysical Research

    Science.gov (United States)

    Hall, J. K.; Kristoffersen, Y.; Brekke, H.; Hope, G.

    2012-12-01

    After four years of testing methods, craft reliability, and innovative equipment, the R/H SABVABAA has embarked on its first FRAM-201x expedition to the highest Arctic. Named after the Inupiaq word for 'flows swiftly over it', the 12m by 6m hovercraft has been home-based in Longyearbyen, Svalbard since June 2008. In this, its fifth summer of work on the ice pack north of 81N, the craft is supported by the Norwegian Petroleum Directorate (NPD) via the Nansen Environmental and Remote Sensing Center (NERSC) in Bergen, and the Norwegian Scientific Academy for Polar Research. FRAM-2012 represents renewed Norwegian interest in returning to the highest Arctic some 116 years after the 1893-96 drift of Fridtjof Nansen's ship FRAM, the first serious scientific investigation of the Arctic. When replenished by air or icebreaker, the hovercraft Sabvabaa offers a hospitable scientific platform with crew of two, capable of marine geophysical, geological and oceanographic observations over long periods with relative mobility on the ice pack. FRAM-2012 is the first step towards this goal, accompanying the Swedish icebreaker ODEN to the Lomonosov Ridge, north of Greenland, as part of the LOMROG III expedition. The science plan called for an initial drive from the ice edge to Gakkel Ridge at 85N where micro-earthquakes would be monitored, and then to continue north to a geological sampling area on the Lomonosov Ridge at about 88N, 65W. The micro-earthquake monitoring is part of Gaute Hope's MSc thesis and entails five hydrophones in a WiFi-connected hydrophone array deployed over the Gakkel Rift Valley, drifting with the ice at up to 0.4 knots. On August 3 the hovercraft was refueled from icebreaker ODEN at 84-21'N and both vessels proceeded north. The progress of the hovercraft was hampered by insufficient visibility for safe driving and time consuming maneuvering in and around larger fields of rubble ice impassable by the hovercraft, but of little concern to the icebreaker. It

  11. Landscape and Hydrological Transformation in the Canadian High Arctic: Climate Change and Permafrost Degradation As Drivers of Change

    Science.gov (United States)

    Lamoureux, S. F.; Lafreniere, M. J.

    2014-12-01

    Recent climate warming and landscape instability arising from permafrost degradation in the Canadian High Arctic have resulted in significant changes to the hydrological system. We have undertaken an integrated watershed and permafrost research program at the Cape Bounty Arctic Watershed Observatory (75°N, 109°W) in paired watershed-lake systems to assess the impact of these changes. Research has captured hydrological changes resulting from exceptional warmth, and permafrost degradation and disturbance. Results highlight the contrasting effect of thermal (deeper soil thaw) versus physical perturbation (slope failures and permafrost degradation). Thermal perturbation applies to most of the landscape, and results indicate that ground ice melt alters flow and mobilizes solutes for a number of years following a single warm year. These effects are measureable at the slope-catchment scale, especially during baseflow. By contrast, physical disturbance is highly localized and produces high sediment and particulate carbon erosion from slopes, but downstream particulate delivery is dependent on surface connectivity. Recovery from disturbances appears to occur rapidly, and continued geomorphic change and new slope channels result in sustained delivery of particulates to channels. The result is increased long term landscape heterogeneity with respect to erosion compared to the pre-disturbance condition. Downstream channel response to particulate loading further dampens the response to physical disturbance through channel storage of material. Hence, at the larger watershed scale, the effect of physical perturbation is minimal in the initial years of recovery. These results point to a landscape that has been substantially impacted by recent hydrological and permafrost changes. Understanding and distinguishing these impacts provides a basis for systematically evaluating biogeochemical cycling and ecosystem responses in aquatic settings.

  12. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    controlling the internal build up of heat leading to potential self-incineration. However, site specific measurements of temperature-dependent heat production as well as simulation results show that the heat produced from pyrite oxidation alone cannot cause such a temperature increase and that processes......Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  13. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  14. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  15. Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2007-01-01

    Full Text Available In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD and AIRS retrievals of carbon monoxide (CO total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near Ny Ålesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3 and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also elevated. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing – black carbon concentrations were the highest ever recorded at Zeppelin – and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at Ny Ålesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly elevated levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the

  16. Arctic smoke - record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006

    Science.gov (United States)

    Stohl, A.; Berg, T.; Burkhart, J. F.; Fjæraa, A. M.; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W. W.; Oltmans, S.; Shiobara, M.; Simpson, D.; Solberg, S.; Stebel, K.; Ström, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.

    2007-01-01

    In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations taken during the episode. Fire detections from the MODIS instruments aboard the Aqua and Terra satellites were used to estimate the BB emissions. The FLEXPART particle dispersion model was used to show that the smoke was transported to Spitsbergen and Iceland, which was confirmed by MODIS retrievals of the aerosol optical depth (AOD) and AIRS retrievals of carbon monoxide (CO) total columns. Concentrations of halocarbons, carbon dioxide and CO, as well as levoglucosan and potassium, measured at Zeppelin mountain near Ny Ålesund, were used to further corroborate the BB source of the smoke at Spitsbergen. The ozone (O3) and CO concentrations were the highest ever observed at the Zeppelin station, and gaseous elemental mercury was also elevated. A new O3 record was also set at a station on Iceland. The smoke was strongly absorbing - black carbon concentrations were the highest ever recorded at Zeppelin - and strongly perturbed the radiation transmission in the atmosphere: aerosol optical depths were the highest ever measured at Ny Ålesund. We furthermore discuss the aerosol chemical composition, obtained from filter samples, as well as the aerosol size distribution during the smoke event. Photographs show that the snow at a glacier on Spitsbergen became discolored during the episode and, thus, the snow albedo was reduced. Samples of this polluted snow contained strongly elevated levels of potassium, sulphate, nitrate and ammonium ions, thus relating the discoloration to the deposition of the smoke

  17. Breeding on the extreme edge : Modulation of the adrenocortical response to acute stress in two High Arctic passerines

    NARCIS (Netherlands)

    Walker, Brian G; Meddle, Simone L; Romero, L Michael; Landys, MM; Reneerkens, Jeroen; Wingfield, John C.

    2015-01-01

    Arctic weather in spring is unpredictable and can also be extreme, so Arctic-breeding birds must be flexible in their breeding to deal with such variability. Unpredictability in weather conditions will only intensify with climate change and this in turn could affect reproductive capability of migrat

  18. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    Science.gov (United States)

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-03

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.

  19. Early Holocene variability in the Arctic Gateway - High-resolution records reflecting Atlantic Water advection and ice coverage

    Science.gov (United States)

    Spielhagen, Robert F.; Bauch, Henning A.; Maudrich, Martin; Not, Christelle; Telesinski, Maciej M.; Werner, Kirstin

    2015-04-01

    The Arctic Gateway between Greenland and Svalbard is the main passage for the advection of Atlantic Water to the Arctic Ocean. Water temperature and intensity of this advection largely determine the degree of ice coverage which is fed by sea ice export from the north. Supported by a maximum in insolation, the Early Holocene was a period of extraordinarily strong advection and relatively high near-surface water temperatures in the eastern Nordic Seas (cf. Risebrobakken et al., 2011, Paleoceanography v. 26). Here we present a synthesis of radiocarbon-dated records from the northern and western part of this area, reaching from the SW Greenland Sea (73°N) to the Yermak Plateau (81°N) and revealing temporal and spatial differences in the development of the so-called Holocene Thermal Maximum (HTM). In the northern part of this region, the HTM started ca. 11-10.5 ka as indicated by rapidly increasing amounts of subpolar planktic foraminifers in the sediments. In the eastern Fram Strait and on the Yermak Plateau, our records of (sub)millennial scale resolution show that the maximum influx terminated already 2,000 years later (9-8 ka). Most likely, this development went along with a N-S relocation of the sea ice margin. According to the current stratigraphic model for a core with submillennial-scale resolution from Vesterisbanken seamount (73°N) in the Greenland Sea, the timing was different there. Increasing total amounts of planktic foraminifers in the sediment indicate an early (11-10 ka) reduction in sea ice coverage also in this region. However, evidence from subpolar planktic foraminifers for maximum Atlantic Water advection is younger (9-6 ka) than in the north. Apparently, the site in the SW Greenland Sea was affected by Atlantic Water in the Greenland Gyre that decoupled from the northward flowing Norwegian Atlantic Current/Westspitsbergen Current south of the Fram Strait. Thus, in a suite of events, strong Atlantic Water advection first affected the

  20. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  1. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    Science.gov (United States)

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, J.; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  2. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Directory of Open Access Journals (Sweden)

    C. M. Surdu

    2015-11-01

    Full Text Available Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA, many of which are ice covered more than ten months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions – polar oases – with longer growing seasons, greater biological production and diversity, are confined from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997–2011 of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath and Landsat acquisitions were analysed. Results show that melt onset (MO occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer-ice minimum and water-clear-of-ice dates (WCI, with greater changes being observed for polar-oasis lakes (9–24 days earlier WCI dates for lakes located in polar oases and 2–20 days earlier WCI dates for polar-desert lakes. Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes that preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  3. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  4. Benthic cyanobacterial mats in the high Arctic: multi-layer structure and fluorescence responses to osmotic stress

    Directory of Open Access Journals (Sweden)

    Marie eLionard

    2012-04-01

    Full Text Available Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100 % saturation at the mat surface to 0 %, at the bottom, accompanied by an increase of 0.6 pH units down the profile. 16S rRNA gene clone libraries revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. HPLC analyses showed a parallel gradient in pigments, from high concentrations of scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by increased evaporation and osmotic stress of the littoral mat communities. To assess their capacity to adjust to rising osmolarities, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the absence of major biological perturbations, these vertically structured communities will continue to be a prominent feature of polar aquatic ecosystems.

  5. PCW/PHEOS-WCA: quasi-geostationary Arctic measurements for weather, climate, and air quality from highly eccentric orbits

    Science.gov (United States)

    Lachance, Richard L.; McConnell, John C.; McElroy, C. Tom; O'Neill, Norm; Nassar, Ray; Buijs, Henry; Rahnama, Peyman; Walker, Kaley; Martin, Randall; Sioris, Chris; Garand, Louis; Trichtchenko, Alexander; Bergeron, Martin

    2012-09-01

    The PCW (Polar Communications and Weather) mission is a dual satellite mission with each satellite in a highly eccentric orbit with apogee ~42,000 km and a period (to be decided) in the 12-24 hour range to deliver continuous communications and meteorological data over the Arctic and environs. Such as satellite duo can give 24×7 coverage over the Arctic. The operational meteorological instrument is a 21-channel spectral imager similar to the Advanced Baseline Imager (ABI). The PHEOS-WCA (weather, climate and air quality) mission is intended as an atmospheric science complement to the operational PCW mission. The target PHEOS-WCA instrument package considered optimal to meet the full suite of science team objectives consists of FTS and UVS imaging sounders with viewing range of ~4.5° or a Field of Regard (FoR) ~ 3400×3400 km2 from near apogee. The goal for the spatial resolution at apogee of each imaging sounder is 10×10 km2 or better and the goal for the image repeat time is targeted at ~2 hours or better. The FTS has 4 bands that span the MIR and NIR with a spectral resolution of 0.25 cm-1. They should provide vertical tropospheric profiles of temperature and water vapour in addition to partial columns of many other gases of interest for air quality. The two NIR bands target columns of CO2, CH4 and aerosol optical depth (OD). The UVS is an imaging spectrometer that covers the spectral range of 280-650 nm with 0.9 nm resolution and targets the tropospheric column densities of O3 and NO2 and several other Air Quality (AQ) gases as well the Aerosol Index (AI).

  6. Large surface radiative forcing from surface-based ice crystal events measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2008-09-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006–2007 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for visible optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events and points to a new source of boundary layer ice crystal events distinct from the classical diamond dust phenomenon.

  7. Assessing slope dynamics in a climate-sensitive high arctic region with Sentinel-1 dataset

    Science.gov (United States)

    Mantovani, Matteo; Pasuto, Alessandro; Soldati, Mauro; Popovic, Radmil; Berthling, Ivar

    2017-04-01

    As witnessed by an increasing number of studies, the evidence of ongoing climate change and its geomorphological effects is unquestionable. In the Svalbard archipelago, the Arctic amplification of global warming trends currently has a significant effect on permafrost temperatures and active layer thickness. Combined with altered intensity and variability of precipitation, slopes are likely to become more active in terms of both rapid and slow (creep) processes - at least as a temporary effect where the ice-rich transient layer of soils or jointed permafrost rock walls are starting to thaw. The slopes of the Kongsfjorden area aroundNy-Ålesund, NW Spitzbergen comprise a variable set of slopes systems on which to evaluate current modifications of slope sediment transfer; from low-angle fined-grained vegetated slopes to steep rock walls, talus slopes and rock glaciers. In addition, systems influenced by currently retreating glaciers and thermokarst processes are also found, in some settings interfering with the rock wall and talus slope systems. Within the framework of the SLOPES project, we provide baseline data on slope geometry from detailed terrestrial laser scanning and drone aerial image acquisition. Further, in order to document current dynamics, we employ interferometric analysis of data gathered by the new ESA mission SENTINEL. This presentation will report on data from the interferometric analysis.

  8. Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent.

    Science.gov (United States)

    Männistö, Minna K; Tiirola, Marja; Häggblom, Max M

    2007-02-01

    The seasonal and spatial variations of microbial communities in Arctic fjelds of Finnish Lapland were studied. Phospholipid fatty acid analysis (PLFA) and terminal restriction fragment analysis (T-RFLP) of amplified 16S rRNA genes were used to assess the effect of soil conditions and vegetation on microbial community structures along different altitudes of two fjelds, Saana and Jehkas. Terminal restriction fragments were additionally analysed from c. 160 cloned sequences and isolated bacterial strains and matched with those of soil DNA samples. T-RFLP and PLFA analyses indicated relatively similar microbial communities at various altitudes and under different vegetation of the two fjelds. However, soil pH had a major influence on microbial community composition. Members of the phylum Acidobacteria dominated especially in the low pH soils (pH 4.6-5.2), but above pH 5.5, the relative amount of terminal restriction fragments corresponding to acidobacterial clones was substantially lower. Both T-RFLP and PLFA analysis indicated stable microbial communities as the DNA and fatty acid profiles were similar in spring and late summer samples sampled over 3 years. These results indicate that differences in microbial community composition could be explained primarily by variation in the bedrock materials that cause variation in the soil pH.

  9. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  10. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    Directory of Open Access Journals (Sweden)

    M. Stibal

    2009-02-01

    Full Text Available Arctic glacier surfaces harbor abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with very low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P is deficient and limiting in the supraglacial environment on a Svalbard glacier, we show how the microbial community responds to the P stress and we quantify the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19–67 nmol MUP g−1 h−1, which was controlled by the concentration of inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity rates measured at near-in situ temperature and substrate concentration imply that the available dissolved organic P can be turned over by microbes within ~3–11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes.

  11. High North, Low Politics—Maritime Cooperation with Russia in the Arctic

    Directory of Open Access Journals (Sweden)

    Andreas Østhagen

    2016-05-01

    Full Text Available Maritime activity is increasing in the Arctic. So is bilateral cooperation across maritime borders between coast guards intent on protecting natural resources, saving lives and assisting navigation. As tensions rose between Russia and the West in 2014, due to the conflict in Ukraine, coast guard cooperation in the Bering and Barents Seas was unaffected. Why? How did the respective bilateral cooperative structures between Norway/the United States and Russia develop, and why were they deemed “too vital to cancel” in the aftermath of events in Ukraine? This article examines how the respective states have developed cooperative regimes since the 1970s, and subsequently how these regimes have come to constitute the backbone of bilateral management of these vast and invaluable maritime domains. The argument made is that the specific character of coast guards and their role as stewards of the sea separate them from other military structures, making bilateral cooperation not only valuable, but indispensable, to the management of the states’ maritime sovereignty.

  12. Adverse foraging conditions may impact body mass and survival of a high Arctic seabird

    Science.gov (United States)

    Harding, A.M.A.; Welcker, J.; Steen, H.; Hamer, K.C.; Kitaysky, A.S.; Fort, J.; Talbot, S.L.; Cornick, L.A.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.

    2011-01-01

    Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005-2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species. ?? 2011 Springer-Verlag.

  13. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    Directory of Open Access Journals (Sweden)

    M. Stibal

    2009-05-01

    Full Text Available Arctic glacier surfaces harbour abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P is deficient in the supraglacial environment on a Svalbard glacier, we quantify the enzymatic activity of phosphatases in the system and we estimate the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19–67 nmol MUP g−1 h−1. It was inhibited by inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity measured at near-in situ temperature and substrate concentration suggests that the available dissolved organic P can be turned over by microbes within ~3–11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes.

  14. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2010-07-01

    Full Text Available Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region.

    The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification biogeochemical model, with a particular focus on the Arctic Basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field.

    Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production these two factors, highlighting the importance of physical processes in the Arctic Ocean.

  15. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian

    , the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean...

  16. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This is the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II, while Volume III (this volume) describes the high sulfur coal plant. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in this volume. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas-desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  17. Rock weathering creates oases of life in a high Arctic desert.

    Science.gov (United States)

    Borin, Sara; Ventura, Stefano; Tambone, Fulvia; Mapelli, Francesca; Schubotz, Florence; Brusetti, Lorenzo; Scaglia, Barbara; D'Acqui, Luigi P; Solheim, Bjørn; Turicchia, Silvia; Marasco, Ramona; Hinrichs, Kai-Uwe; Baldi, Franco; Adani, Fabrizio; Daffonchio, Daniele

    2010-02-01

    During primary colonization of rock substrates by plants, mineral weathering is strongly accelerated under plant roots, but little is known on how it affects soil ecosystem development before plant establishment. Here we show that rock mineral weathering mediated by chemolithoautotrophic bacteria is associated to plant community formation in sites recently released by permanent glacier ice cover in the Midtre Lovénbreen glacier moraine (78 degrees 53'N), Svalbard. Increased soil fertility fosters growth of prokaryotes and plants at the boundary between sites of intense bacterial mediated chemolithotrophic iron-sulfur oxidation and pH decrease, and the common moraine substrate where carbon and nitrogen are fixed by cyanobacteria. Microbial iron oxidizing activity determines acidity and corresponding fertility gradients, where water retention, cation exchange capacity and nutrient availability are increased. This fertilization is enabled by abundant mineral nutrients and reduced forms of iron and sulfur in pyrite minerals within a conglomerate type of moraine rock. Such an interaction between microorganisms and moraine minerals determines a peculiar, not yet described model for soil genesis and plant ecosystem formation with potential past and present analogues in other harsh environments with similar geochemical settings.

  18. Density and climate influence seasonal population dynamics in an Arctic ungulate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Moshøj, Charlotte; Forchhammer, Mads C.

    2016-01-01

    The locally migratory behavior of the high arctic muskox (Ovibos muschatus) is a central component of the breeding and winter survival strategies applied to cope with the highly seasonal arctic climate. However, altered climate regimes affecting plant growth are likely to affect local migration...... of muskox in the valley. Additionally, a longer growth season was found to increase the seasonal abundance of muskox in the Zackenberg Valley. In contrast, changes in spring snow cover displayed no direct relation to the seasonal immigration rate. Our study suggests that access to high-quality forage...

  19. Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment

    Science.gov (United States)

    Brigham, L. W.

    2016-12-01

    The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.

  20. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  1. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high...

  2. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes

    Science.gov (United States)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy

    2016-12-01

    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  3. Benthic cyanobacterial mats in the high arctic: multi-layer structure and fluorescence responses to osmotic stress.

    Science.gov (United States)

    Lionard, Marie; Péquin, Bérangère; Lovejoy, Connie; Vincent, Warwick F

    2012-01-01

    Cyanobacterial mats are often a major biological component of extreme aquatic ecosystems, and in polar lakes and streams they may account for the dominant fraction of total ecosystem biomass and productivity. In this study we examined the vertical structure and physiology of Arctic microbial mats relative to the question of how these communities may respond to ongoing environmental change. The mats were sampled from Ward Hunt Lake (83°5.297'N, 74°9.985'W) at the northern coast of Arctic Canada, and were composed of three visibly distinct layers. Microsensor profiling showed that there were strong gradients in oxygen within each layer, with an overall decrease from 100% saturation at the mat surface to 0%, at the bottom, accompanied by an increase of 0.6 pH units down the profile. Gene clone libraries (16S rRNA) revealed the presence of Oscillatorian sequences throughout the mat, while Nostoc related species dominated the two upper layers, and Nostocales and Synechococcales sequences were common in the bottom layer. High performance liquid chromatography analyses showed a parallel gradient in pigments, from high concentrations of UV-screening scytonemin in the upper layer to increasing zeaxanthin and myxoxanthin in the bottom layer, and an overall shift from photoprotective to photosynthetic carotenoids down the profile. Climate change is likely to be accompanied by lake level fluctuations and evaporative concentration of salts, and thus increased osmotic stress of the littoral mat communities. To assess the cellular capacity to tolerate increasing osmolarity on physiology and cell membrane integrity, mat sections were exposed to a gradient of increasing salinities, and PAM measurements of in vivo chlorophyll fluorescence were made to assess changes in maximum quantum yield. The results showed that the mats were tolerant of up to a 46-fold increase in salinity. These features imply that cyanobacterial mats are resilient to ongoing climate change, and that in the

  4. Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord

    KAUST Repository

    Calleja, Maria Ll.

    2017-07-26

    Arctic fjords experience extremely pronounced seasonal variability and spatial heterogeneity associated with changes in ice cover, glacial retreat and the intrusion of continental shelf’s adjacent water masses. Global warming intensifies natural environmental variability on these important systems, yet the regional and global effects of these processes are still poorly understood. In the present study, we examine seasonal and spatial variability in Kongsfjorden, on the western coast of Spitsbergen, Svalbard. We report hydrological, biological, and biogeochemical data collected during spring, summer, and fall 2012. Our results show a strong phytoplankton bloom with the highest chlorophyll a (Chla) levels ever reported in this area, peaking 15.5 µg/L during late May and completely dominated by large diatoms at the inner fjord, that may sustain both pelagic and benthic production under weakly stratified conditions at the glacier front. A progressively stronger stratification of the water column during summer and fall was shaped by the intrusion of warm Atlantic water (T > 3°C and Sal > 34.65) into the fjord at around 100 m depth, and by turbid freshwater plumes (T < 1°C and Sal < 34.65) at the surface due to glacier meltwater input. Biopolymeric carbon fractions and isotopic signatures of the particulate organic material (POM) revealed very fresh and labile material produced during the spring bloom (13C enriched, with values up to -22.7‰ at the highest Chl a peak, and high in carbohydrates and proteins content -up to 167 and 148 µg/L, respectively-), and a clear and strong continental signature of the POM present during late summer and fall (13C depleted, with values averaging -26.5 ‰, and high in lipid content –up to 92 µg/L-) when freshwater melting is accentuated. Our data evidence the importance of combining both physical (i.e. water mass dominance) and geochemical (i.e. characteristics of material released by glacier runoff) data in order to

  5. Comparison of Freshwater Diatom Assemblages from a High Arctic Oasis to Nearby Polar Desert Sites and Their Application to Environmental Inference Models.

    Science.gov (United States)

    Michelutti, Neal; McCleary, Kathryn; Douglas, Marianne S V; Smol, John P

    2013-02-01

    Arctic oases are regions of atypical warmth and relatively high biological production and diversity. They are small in area (Achnanthes sensu lato, Fragilaria sensu lato, and Nitzschia dominating the assemblages. A correspondence analysis (CA) ordination showed that oasis sites generally plotted separately from the northern sites, although the sites also appear to plot separately based on whether they were lakes or ponds. Canonical correspondence analysis (CCA) identified specific conductivity, DOC, and SiO2 as explaining significant (P < 0.05) and additional amounts of variation in the diatom data set. The most robust diatom-based inference model was generated for DOC, which will provide useful reconstructions on long-term changes in paleo-optics of high Arctic lakes.

  6. Nutritive Equilibrium in Rice Plant Populations for High Yield

    Institute of Scientific and Technical Information of China (English)

    WANGBOLUN; LIUXINAN; 等

    1999-01-01

    The effects of nitrogen,phosphorus and potassium application level,seed rate and transplanting density on the growth and development of rice plants were studied to find out nutrient status in high-yielding rice plants and to increase grain yield by adequate fertilization.There was an equilibrium relationship among nutrient elements for high-yielding rice plant populations.The equilibrium index of nutrient amount ,content and distribution in high-yielding rice plants should be generally greater than-2 but less than 2.The optimum nutritive proportion of nitrogen:phosphorus:potassium assimilated by the plants was about 10:2:9 at the ripening stage.But the content and the proportion varied with the growth stages,Therefore,the nutrient in rice plant populations should be in a dynamic equilibrium.So as to achieve high yield.

  7. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  8. Arctic Sea Ice

    Science.gov (United States)

    Stroeve, J. C.; Fetterer, F.; Knowles, K.; Meier, W.; Serreze, M.; Arbetter, T.

    2004-12-01

    Of all the recent observed changes in the Arctic environment, the reduction of sea ice cover stands out most prominantly. Several independent analysis have established a trend in Arctic ice extent of -3% per decade from the late 1970s to the late 1990s, with a more pronounced trend in summer. The overall downward trend in ice cover is characterized by strong interannual variability, with a low September ice extent in one year typically followed by recovery the next September. Having two extreme minimum years, such as what was observed in 2002 and 2003 is unusual. 2004 marks the third year in a row of substantially below normal sea ice cover in the Arctic. Early summer 2004 appeared unusual in terms of ice extent, with May a record low for the satellite period (1979-present) and June also exhibiting below normal ice extent. August 2004 extent is below that of 2003 and large reductions in ice cover are observed once again off the coasts of Siberia and Alaska and the Greenland Sea. Neither the 2002 or 2003 anomaly appeared to be strongly linked to the positive phase of the Arctic Oscillation (AO) during the preceding winter. Similarly, the AO was negative during winter 2003/2004. In the previous AO framework of Rigor et al (2002), a positive winter AO implied preconditioning of the ice cover to extensive summer decay. In this hypothesis, the AO does not explain all aspects of the recent decline in Arctic ice cover, such as the extreme minima of 2002, 2003 and 2004. New analysis by Rigor and Wallace (2004) suggest that the very positive AO state from 1989-1995 can explain the recent sea ice minima in terms of changes in the Arctic surface wind field associated with the previous high AO state. However, it is also reasonable to expect that a general decrease in ice thickness accompanying warming would manifest itself as greater sensitivity of the ice pack to wind forcings and albedo feedbacks. The decrease in multiyear ice and attendant changes in ice thickness

  9. Arctic Diatoms

    DEFF Research Database (Denmark)

    Tammilehto, Anna

    are often dominated by diatoms. They are single-celled, eukaryotic algae, which play an essential role in ocean carbon and silica cycles. Many species of the diatom genus Pseudo-nitzschia Peragallo produce a neurotoxin, domoic acid (DA), which can be transferred to higher levels in food webs causing amnesic...... as vectors for DA to higher levels in the arctic marine food web, posing a possible risk also to humans. DA production in P. seriata was, for the first time, found to be induced by chemical cues from C. finmarchicus, C. hyperboreus and copepodite stages C3 and C4, suggesting that DA may be related to defense...... against grazing. This thesis also quantified population genetic composition and changes of the diatom Fragilariopsis cylindrus spring bloom using microsatellite markers. Diatom-dominated spring blooms in the Arctic are the key event of the year, providing the food web with fundamental pulses of organic...

  10. Migration and breeding biology of arctic terns in Greenland

    DEFF Research Database (Denmark)

    Egevang, Carsten

    (Sandøen) in high-Arctic Northeast Greenland. The level of knowledge of the Arctic tern in Greenland before 2002 was to a large extent poor, with aspects of its biology being completely unknown in the Greenland population. This thesis presents novel findings for the Arctic tern, both on an international...... by the distribution of breeding Arctic terns as suggested by Egevang et al. (2004). Included in the thesis are furthermore results with an appeal to the Greenland management agencies. Along with estimates of the Arctic tern population size at the two most important Arctic tern colonies in West Greenland and East...

  11. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte Katrine; Kristensen, Erik; Forchhammer, Mads C.;

    2011-01-01

    plant groups was compared with those of muskox faeces and shed wool, as this is a noninvasive approach to obtain dietary information on different temporal scales. Plants with different root mycorrhizal status were found to have different d15N values, whereas differences in d13C, as expected, were less...... distinct. As a result, our examination mainly relied on stable nitrogen isotopes. The interpretation of stable isotopes from faeces was difficult because of the large uncertainty in diet–faeces fractionation, whereas isotope signatures from wool suggested that the muskox summer diet consists of around 80...

  12. The Effect of Temperature and Increased Rainfall on Carbon Dioxide Exchange in a High Arctic Ecosystem: Improving Models and Testing Linearity of Response

    Science.gov (United States)

    Steltzer, H.; Welker, J.; Sullivan, P.

    2006-12-01

    Ecosystem carbon dioxide exchange determines the terrestrial flux of carbon dioxide to the atmosphere through the two component processes of photosynthesis and respiration. Temperature and water availability are dominant factors that regulate carbon dioxide exchange and ecosystem productivity across the globe. Yet, in many ecosystems, the complex interaction of temperature and water availability and their individual and combined effects on photosynthesis and respiration make it difficult to predict how climate change will affect carbon dioxide exchange. For example, climate warming can increase carbon dioxide uptake in wetter Arctic ecosystems, but leads to the loss of carbon dioxide to the atmosphere in drier Arctic ecosystems. Characterizing how temperature and water availability affect ecosystem carbon exchange in the Arctic is essential to determine whether the rate of climate warming could accelerate due to carbon dioxide losses from Arctic ecosystems. We conducted a multi-level warming experiment that included control plots and two- levels of warming in a widespread High Arctic ecosystem. Infrared lamps were used to warm the tundra during the growing season and rainfall was increased by 50 percent in control plots and the higher level warming treatment. Carbon dioxide exchange was measured using chamber techniques over several 24-hour periods during the growing season for three years and was resolved into the component fluxes. Climate and biophysical variables that affect carbon dioxide exchange rates were measured in coordination with these flux measurements. We chose to analyze the data from this experiment by fitting the data to light and temperature response functions for gross ecosystem photosynthesis and ecosystem respiration, respectively. Based on our sample size of 30 experimental plots (5 treatments x 6 replicates), we selected relatively simple models of carbon dioxide exchange to minimize overfitting, but considered linear and nonlinear models

  13. Long Term Thawing Experiment on High Arctic Polygonal Tundra: Spring Thaw Gas Flux Dynamics and Soil Properties

    Science.gov (United States)

    Stackhouse, B. T.; Mykytczuk, N. C.; Lamarche-Gagnon, G.; Layton, A. C.; Pfiffner, S. M.; Vishnivetskaya, T. A.; Saad, N.; Whyte, L.; Onstott, T. C.

    2012-12-01

    Global climate models predict that over the coming century increasing Arctic temperature will lead to increases in the release of greenhouse gases, CO2 and CH4, from thawing the permafrost, which is a major repository of soil carbon. The magnitude and rate of this positive feedback is highly uncertain due to lack of detailed field observations and long-term experimental simulations. To this end long-term core thawing experiments are being carried out to examine gas flux from the Arctic active layer and permafrost under various environmental conditions. Eighteen 1-m long cores were collected before seasonal thaw from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station (MARS) at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). The cores contained ~5% organic carbon in the top 15 cm and decreased to ~1% for the remainder of the core, with a solid phase organic carbon δ13C of -26.5‰. The cores were progressively thawed from the top down to the permafrost table over six weeks and held at 4° C under the following conditions: maintenance of an in situ permafrost table depth at 70 cm below surface versus fully thawed permafrost layer, in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, and surface light versus no surface light. Core headspaces were monitored on a weekly basis for concentration of CO2, CH4, and δ13C-CO2. Over the thawing period, the CH4 flux out of the soil decreased from the initial rate of 2.2 μmol CH4/m2/day to 0.12 μmol CH4/m2/day, indicating that CH4 trapped in the soil outgassed as temperatures rose above freezing but the flux rapidly diminished. Introduction of 2 PPMV CH4 into the headspace of under-saturated core treatments revealed net depletion of CH4 was taking place at -3.6 μmol CH4/m2/day, an observation consistent with field measurements of methanotrophy at Axel Heiberg Island during spring and summer and with laboratory microcosm experiments

  14. The importance of freshwater systems to the net atmospheric exchange of carbon dioxide and methane with a rapidly changing high Arctic watershed

    Science.gov (United States)

    Emmerton, Craig A.; St. Louis, Vincent L.; Lehnherr, Igor; Graydon, Jennifer A.; Kirk, Jane L.; Rondeau, Kimberly J.

    2016-10-01

    A warming climate is rapidly changing the distribution and exchanges of carbon within high Arctic ecosystems. Few data exist, however, which quantify exchange of both carbon dioxide (CO2) and methane (CH4) between the atmosphere and freshwater systems, or estimate freshwater contributions to total catchment exchange of these gases, in the high Arctic. During the summers of 2005 and 2007-2012, we quantified CO2 and CH4 concentrations in, and atmospheric exchange with, common freshwater systems in the high Arctic watershed of Lake Hazen, Nunavut, Canada. We identified four types of biogeochemically distinct freshwater systems in the watershed; however mean CO2 concentrations (21-28 µmol L-1) and atmospheric exchange (-0.013 to +0.046 g C-CO2 m-2 day-1) were similar between these systems. Seasonal flooding of ponds bordering Lake Hazen generated considerable CH4 emissions to the atmosphere (+0.008 g C-CH4 m-2 day-1), while all other freshwater systems were minimal emitters of this gas (climates than in the past, which may have implications for moisture availability, landscape cover, and the exchange of CO2 and CH4 of underproductive but expansive polar semidesert ecosystems.

  15. Floral miniaturisation and autogamy in boreal-arctic plants are epitomised by Iceland’s most frequent orchid, Platanthera hyperborea

    Directory of Open Access Journals (Sweden)

    Richard M. Bateman

    2015-04-01

    Full Text Available Background and Aims. This paper concludes our series of publications comparing island and mainland speciation in European butterfly-orchids, by studying the morphology, phylogenetics and reproductive biology of the controversial circum-arctic species Platanthera (Limnorchis hyperborea—the most frequent of seven Icelandic orchids. We draw particular attention to its phylogenetic placement, remarkable reproductive biology and morphological convergence on other Platanthera lineages through floral miniaturisation.Methods. Five populations of P. hyperborea in southwest Iceland were measured for 33 morphological characters and subjected to detailed multivariate and univariate analyses, supported by light and scanning electron microscopy of selected flowers. Representative samples from six populations were sequenced for nrITS and placed in a taxonomically broader phylogenetic matrix derived from previous studies.Key Results . Section Limnorchis consists of three distinct ITS-delimited clades based on P. stricta, P. sparsifolia–limosa–aquilonis and P. dilatata–hyperborea. Within the latter group, supposed species boundaries overlap; instead, the data indicate a crude stepwise series of ribotypic transitions extending eastward from North America to Iceland. Morphometric data failed to identify any taxonomically meaningful partitions among Icelandic P. hyperborea populations, despite the presence of a distinct and apparently plesiomorphic ribotype at the most glacially influenced habitat sampled. Microscopic study of the flowers revealed several distinguishing features (some not previously reported, including resupinate lateral sepals, toothed bract margins, club-shaped papillae shared by both the interior of the labellar spur and the stigmatic surface, and an exceptionally adhesive stigma that is reliably covered in disaggregated pollen masses prior to anthesis; auricles are absent.Conclusions. Ribotypes suggest that Icelandic P. hyperborea

  16. Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2013-07-01

    Full Text Available Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and ecological assessment. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, an Arctic region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping.

  17. Accumulation of carbon and nitrogen in vegetation and soils of deglaciated area in Ellesmere Island, high-Arctic Canada

    Science.gov (United States)

    Osono, Takashi; Mori, Akira S.; Uchida, Masaki; Kanda, Hiroshi

    2016-09-01

    The amount of biomass, carbon (C), and nitrogen (N) in vegetation and soil were measured at two spatial scales in the high Arctic. At the scale of proglacial landscape, the amount of C and N in aboveground and belowground parts of vegetation, surface litter, and soil were significantly affected by the habitat (moraines vs hummocks), the relative age of the terrain after the deglaciation, and/or the vegetation. At another scale, we focused on mudboils as an agent of local disturbance in the vegetation and soil of the glacier foreland. The biomass and the amount of C and N in aboveground vegetation, surface litter, biological soil crust, and soil were generally increased with the stage of mudboils' inactivation. Biomass, C, and N in aboveground vegetation and surface litter were generally greater at moraine than at hummock, whereas those in biological soil crust and soil were greater at hummock. Principal component analysis identified two pathways, xeric and mesic ones on moraines and hummocks, respectively, of C and N accumulation both at the two spatial scales. These results suggested that the C and N accumulation was not linearly related to the time since deglaciation and that moisture condition, vegetation, and mudboil activity were locally important.

  18. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv Mohan; Roy, Utpal

    2016-03-01

    Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7)  cells ml(-1) (mean 3.12 × 10(6)  cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research.

  19. Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota).

    Science.gov (United States)

    Agnew, Austin; Wang, Juan; Fanning, Séamus; Bearhop, Stuart; McMahon, Barry J

    2015-01-01

    Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk.

  20. Turbulent fluxes of momentum and heat over land in the High-Arctic summer: the influence of observation techniques

    Directory of Open Access Journals (Sweden)

    Anna Sjöblom

    2014-06-01

    Full Text Available Different observation techniques for atmospheric turbulent fluxes of momentum and sensible heat were tested in a High-Arctic valley in Svalbard during two consecutive summers (June–August in 2010 and 2011. The gradient method (GM and the bulk method (BM have been compared to the more direct eddy covariance method (ECM in order to evaluate if relatively robust and cheap instrumentation with low power consumption can be used as a means to increase the number of observations, especially at remote locations where instruments need to be left unattended for extended periods. Such campaigns increase knowledge about the snow-free surface exchange processes, an area which is relatively little investigated compared to snow-covered ground. The GM agreed closely to the ECM, especially for momentum flux where the two methods agree within 5%. For sensible heat flux, the GM produces, on average, approximately 40% lower values for unstable stratification and 67% lower for stable stratification. However, this corresponds to only 20 and 12 W m−2, respectively. The BM, however, shows a greater scatter and larger differences for both parameters. In addition to testing these methods, radiation properties were measured and the surface albedo was found to increase through the summer, from approximately 0.1 to 0.2. The surface energy budget shows that the sensible heat flux is usually directed upwards for the whole summer, while the latent heat flux is upwards in June, but becomes downward in July and August.

  1. Strategic metal deposits of the Arctic Zone

    Science.gov (United States)

    Bortnikov, N. S.; Lobanov, K. V.; Volkov, A. V.; Galyamov, A. L.; Vikent'ev, I. V.; Tarasov, N. N.; Distler, V. V.; Lalomov, A. V.; Aristov, V. V.; Murashov, K. Yu.; Chizhova, I. A.; Chefranov, R. M.

    2015-11-01

    Mineral commodities rank high in the economies of Arctic countries, and the status of mineral resources and the dynamics of their development are of great importance. The growing tendency to develop strategic metal resources in the Circumarctic Zone is outlined in a global perspective. The Russian Arctic Zone is the leading purveyor of these metals to domestic and foreign markets. The comparative analysis of tendencies in development of strategic metal resources of the Arctic Zone in Russia and other countries is crucial for the elaboration of trends of geological exploration and research engineering. This paper provides insight into the development of Arctic strategic metal resources in global perspective. It is shown that the mineral resource potential of the Arctic circumpolar metallogenic belt is primarily controlled by large and unique deposits of nonferrous, noble, and rare metals. The prospective types of economic strategic metal deposits in the Russian Arctic Zone are shown.

  2. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience

    Science.gov (United States)

    Carey, Michael P.; Sethi, Suresh A; Larsen, Sabrina J; Rich, Cecil F

    2016-01-01

    Invasive species introductions in Arctic and Subarctic ecosystems are growing as climate change manifests and human activity increases in high latitudes. The aquatic plants of the genus Elodea are potential invaders to Arctic and Subarctic ecosystems circumpolar and at least one species is already established in Alaska, USA. To illustrate the problems of preventing, eradicating, containing, and mitigating aquatic, invasive plants in Arctic and Subarctic ecosystems, we review the invasion dynamics of Elodea and provide recommendations for research and management efforts in Alaska. Foremost, we conclude the remoteness of Arctic and Subarctic systems such as Alaska is no longer a protective attribute against invasions, as transportation pathways now reach throughout these regions. Rather, high costs of operating in remote Arctic and Subarctic systems hinders detection of infestations and limits eradication or mitigation, emphasizing management priorities of prevention and containment of aquatic plant invaders in Alaska and other Arctic and Subarctic systems.

  3. Arctic Social Sciences: Opportunities in Arctic Research.

    Science.gov (United States)

    Arctic Research Consortium of the United States, Fairbanks, AK.

    The U.S. Congress passed the Arctic Research and Policy Act in 1984 and designated the National Science Foundation (NSF) the lead agency in implementing arctic research policy. In 1989, the parameters of arctic social science research were outlined, emphasizing three themes: human-environment interactions, community viability, and rapid social…

  4. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  5. In Brief: Arctic Report Card

    Science.gov (United States)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  6. Climate Change in the North American Arctic: A One Health Perspective.

    Science.gov (United States)

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  7. Date of Snowmelt at High Latitudes as Determined from Visible Satellite Data and Relationship with the Arctic Oscillation

    Science.gov (United States)

    Foster, James; Robinson, Dave; Estilow, Tom; Hall, Dorothy

    2012-01-01

    Spring snow cover across Arctic lands has, on average, retreated approximately five days earlier since the late 1980s compared to the previous twenty years. However, it appears that since about 1990, the date the snowline first retreats north during the spring has remained nearly unchanged--in the last twenty years, the date of snow disappearance has not been occurring noticeably earlier. Snowmelt changes observed in the 1980s was step-like in nature, unlike a more continuous downward trend seen in Arctic sea ice extent. At latitude 70 deg N, several latitudinal segments (of 10 degrees) show significant (negative) trends. However, only two latitudinal segments at 60 deg N show significant trends, one positive and one negative. These variations appear to be related to variations in the Arctic Oscillation (AO). Additional observations and modeling investigations are needed to better explain past and present spring melt characteristics and peculiarities.

  8. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  9. Carbon flows through the microbial food web of first-year ice in resolute passage (Canadian High Arctic)

    Science.gov (United States)

    Vézina, Alain F.; Demers, Serge; Laurion, Isabelle; Sime-Ngando, Télesphore; Kim Juniper, S.; Devine, Laure

    1997-02-01

    Ice algal communities are host to thriving populations of microheterotrophs whose trophic role remains poorly understood. We report here an inverse modelling analysis of the microbial food web associated with the spring bloom of ice algae at Resolute Passage in the High Arctic. Carbon flows among microbial components (ice algae, autotrophic and heterotrophic nanoflagellates, microflagellates and ciliates) and their exchanges with particulate and dissolved organic carbon (POC and DOC) were inferred from the observed changes in standing stocks of these compartments between 13 April and 22 May 1992. Calculations were made for three phases of the bloom's development and for two sites under thin and thick snow cover. Observed DOC accumulations within the bottom ice originated largely from the ice algae. However, calculated production rates were too high to result strictly from normal physiological exudation. Mechanical or physiological stresses that disrupt the integrity of the cells and grazing by zooplankton at the ice-water interface may well be involved in this process. Inverse modelling confirmed field and experimental evidence that nanoflagellates may directly assimilate DOC to support their growth. Patterns in trophic flows between sites with thin and thick snow cover were similar. In contrast, trophic interactions changed as the bloom progressed: production of DOC and detritus from the ice algae were the only significant carbon flows during the early phase; bacterivory developed and peaked during the middle phase and was superseded by DOC utilization and herbivory by flagellates and ciliates during the late phase. Only ca. 20% of the DOC produced was utilized by the microheterotrophs. Direct links from DOC and ice algae to protists potentially increase the efficiency of C transfers within the ice-associated microbial food web; on the other hand, low recovery efficiency limits the role of the microbial loop in recycling DOC.

  10. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    ). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...... on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B....

  11. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II (this volume), while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low-sulfur coal plant is presented in Volume I and the drawings, equipment list, and site description are contained in this document. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  12. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza.

    Science.gov (United States)

    Schweiger, Rabea; Baier, Markus C; Persicke, Marcus; Müller, Caroline

    2014-05-22

    The chemical composition of plants (phytometabolome) is dynamic and modified by environmental factors. Understanding its modulation allows to improve crop quality and decode mechanisms underlying plant-pest interactions. Many studies that investigate metabolic responses to the environment focus on single model species and/or few target metabolites. However, comparative studies using environmental metabolomics are needed to evaluate commonalities of chemical responses to certain challenges. We assessed the specificity of foliar metabolic responses of five plant species to the widespread, ancient symbiosis with a generalist arbuscular mycorrhizal fungus. Here we show that plant species share a large 'core metabolome' but nevertheless the phytometabolomes are modulated highly species/taxon-specifically. Such a low conservation of responses across species highlights the importance to consider plant metabolic prerequisites and the long time of specific plant-fungus coevolution. Thus, the transferability of findings regarding phytometabolome modulation by an identical AM symbiont is severely limited even between closely related species.

  13. Simulated Annual and Seasonal Arctic Ocean and Sea-Ice Variability From a High Resolution, Coupled Ice-Ocean Model

    Science.gov (United States)

    2001-09-01

    influence heat transfer to the surface, impacting polynya formation, ice melt, and ice growth. 13 Wang et al. (1994) presented results from a sigma level...Longmans, Green and Co., 1902. Nansen, F., Northern water: Captain Roald Amundsen’s oceanographic observations in the Arctic Seas in 1901...

  14. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard

    Directory of Open Access Journals (Sweden)

    T. R. Vonnahme

    2015-07-01

    Full Text Available Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered as hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae and relations to their potential grazers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances, but a positive correlation with eukaryotic microalgae. Most microalgae found in this study form large colonies ( 25 μm, which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in RDA and PCA analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients is the main factor driving variation in the community structure of microalgae and grazers.

  15. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard

    Science.gov (United States)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2015-07-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered as hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances, but a positive correlation with eukaryotic microalgae. Most microalgae found in this study form large colonies (cells, or > 25 μm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in RDA and PCA analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients is the main factor driving variation in the community structure of microalgae and grazers.

  16. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    Science.gov (United States)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2016-02-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances but rather a positive correlation with eukaryotic microalgae. Shared environmental preferences and a positive effect of grazing are the proposed mechanisms to explain these correlations. Most microalgae found in this study form colonies (cells, or > 25 µm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in redundancy (RDA) and principal component (PCA) analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of nutrient input by bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting

  17. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    Science.gov (United States)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  18. Reconstruction of climate dynamics in an Arctic fjord environment: evidence from a multi-proxy high resolution marine record.

    Science.gov (United States)

    MacLachlan, S. E.; Howe, J.

    2012-12-01

    The cryosphere is a crucial component of the Earth's climate system, and comprises sea ice, snow, glaciers, ice cap, ice shelves, river and lake ice, ice sheets and frozen ground. The cryosphere has shown ice growth and decay on many timescales associated both with 100,000 year ice age cycles and with shorter-term (Ice Age. Crucially the cyosphere acts as a barometer for climate change because it provides a visible means of assessing the impacts of recent climate warming. Coastal Arctic regions are particularly sensitive to climate change, and records of glacier fluctuations can be used to infer past climate. The western Svalbard margin is a climatically sensitive region presently influenced by the warm and saline Atlantic water of the West Spitsbergen Current. This current is the northernmost extension of the Norwegian Atlantic Current that transports significant quantities of heat northward, maintaining the seas west of the Svalbard shelf increasingly ice free. For the Svalbard area there are currently a number of low-resolution (centennial to multi-decadal) marine records that span the Holocene. Despite their low resolution, several studies have highlighted abrupt environmental shifts and fluctuating glacial conditions during the Holocene. A few low-resolution lake records and other sporadic terrestrial datasets also exist providing a limited insight into the terrestrial environmental changes over the last two millennia. We have generated the first sub-decadal resolution late Holocene climatic record, in order to determine the nature and timing of environmental changes across transient climate events at an unprecedented temporal scale for this region. XRF analyses provides the high-resolution data series, which has been integrated with sedimentological data to better define the environmental processes; thus providing the basis for the reconstruction of climate change in this glaciated fjordic environment.

  19. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost.

    Science.gov (United States)

    Steven, Blaire; Chen, Min Qun; Greer, Charles W; Whyte, Lyle G; Niederberger, Thomas D

    2008-06-01

    A Gram-positive, aerobic, rod-shaped bacterium (strain Eur1 9.5(T)) was isolated from a 9-m-deep permafrost sample from the Canadian high Arctic. Strain Eur1 9.5(T) could not be cultivated in liquid medium and grew over the temperature range 5-37 degrees C; no growth was observed at 42 degrees C and only slow growth was observed at 5 degrees C following 1 month of incubation. Eur1 9.5(T) grew over the pH range 5.5-8.9 and tolerated NaCl concentrations of 0-0.5 % (w/v). Eur1 9.5(T) grew heterotrophically on complex carbon substrates and chemolithoautotrophically on inorganic sulfur compounds, as demonstrated by growth on sodium thiosulfate and sulfite as sole electron donors. Eur1 9.5(T) contained iso-C(15 : 0) as the major cellular fatty acid and menaquinone 7 (MK-7) as the major respiratory quinone. The cell-wall peptidoglycan was of type A1gamma. The DNA G+C content was 53.1 mol%. The 16S rRNA gene sequence of strain Eur1 9.5(T) was only distantly related (

  20. Genomics in a changing arctic: critical questions await the molecular ecologist.

    Science.gov (United States)

    Wullschleger, Stan D; Breen, Amy L; Iversen, Colleen M; Olson, Matthew S; Näsholm, Torgny; Ganeteg, Ulrika; Wallenstein, Matthew D; Weston, David J

    2015-05-01

    Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate. © 2015 John Wiley & Sons Ltd.

  1. Carboniferous-Permian sedimentology and stratigraphy of the Nordfjorden High and Loppa Spur, Arctic Norway

    DEFF Research Database (Denmark)

    Ahlborn, Morten

    Abstract (shortened) Facies analysis of Late Paleozoic warm-water carbonates, were conducted in order to investigate the depositional evolution, cyclicity, internal architecture and sequence stratigraphy of the upper Gipsdalen Group carbonate platform on the Nordfjorden High in central Spitsberge...

  2. Selling Energy to China: Chinese Energy Politics in the Arctic

    OpenAIRE

    Nguyen, Ly Kieu Le

    2015-01-01

    Abstract Until recently, the Arctic including the Arctic Ocean was only mentioned in the context of global warming. However, global warming has led to a thawing of ice that unveiled great findings of natural resources. The Arctic is now in the middle of a rapid environmental, geopolitical and economic transformation. The planting of the Russian flag by Russian researchers in 2007 on the bottom of the Artic Ocean triggered an overwhelming attention from other actors and states outside the regi...

  3. Solar UV-B effects on PSII performance in Betula nana are influenced by PAR level and reduced by EDU: results of a 3-year experiment in the High Arctic.

    Science.gov (United States)

    Albert, Kristian R; Mikkelsen, Teis N; Ro-Poulsen, Helge; Arndal, Marie F; Boesgaard, Kristine; Michelsen, Anders; Bruhn, Dan; Schmidt, Niels M

    2012-07-01

    The long-term and diurnal responses of photosystem II (PSII) performance to near-ambient UV-B radiation were investigated in High Arctic Betula nana. We conducted an UV exclusion experiment with five replicated blocks consisting of open control (no filter), photosynthetic active radiation and UV-B transparent filter control (Teflon), UV-B-absorbing filter (Mylar) and UV-AB-absorbing filter (Lexan). Ethylenediurea (EDU), a chemical normally used to protect plants against ozone injury, was sprayed on the leaves both in the field and in an additional laboratory study to investigate if EDU mitigated the effects of UV-B. Chlorophyll-a fluorescence induction curves were used for analysis of OJIP test parameters. Near-ambient UV-B radiation reduced across season maximum quantum yield (TR(o) /ABS = F(v) /F(m)), approximated number of active PSII reaction center (RC/ABS) and the performance index (PI(ABS)), despite improved leaf screening against UV-B with higher content of UV-B-absorbing compounds and a lower specific leaf area. EDU application counteracted the negative impact of UV-B on TR(o) /ABS, RC/ABS and PI(ABS) . This indicates that the mechanisms behind UV-B and ozone damage share some common features. The midday depression was present in all treatments, but TR(o) /ABS and PI(ABS) were persistently lower in near-ambient UV-B compared to UV-B reduction. The recovery phase was particularly impaired in near-ambient UV-B and interactive effects between treatment × hour raised TR(o) /ABS, RC/ABS and PI(ABS) higher in reduced UV-B compared to near-ambient UV-B. This demonstrates current solar UV-B to reduce the PSII performance both on a daily as well as a seasonal basis in this High Arctic species.

  4. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost.

    Science.gov (United States)

    Bellemain, Eva; Davey, Marie L; Kauserud, Håvard; Epp, Laura S; Boessenkool, Sanne; Coissac, Eric; Geml, Jozsef; Edwards, Mary; Willerslev, Eske; Gussarova, Galina; Taberlet, Pierre; Haile, James; Brochmann, Christian

    2013-04-01

    The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty-six sediment samples dated 16 000-32 000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS. We detected 75 fungal OTUs from 21 orders representing three phyla, although rarefaction analyses suggested that the full diversity was not recovered despite generating an average of 6677 ± 3811 (mean ± SD) sequences per sample and that preservation bias likely has considerable effect on the recovered DNA. Most OTUs (75.4%) represented ascomycetes. Due to insufficient sequencing depth, DNA degradation and putative preservation biases in our samples, the recovered taxa probably do not represent the complete historic fungal community, and it is difficult to determine whether the fungal communities varied geographically or experienced a composition shift within the period of 16 000-32 000 bp. However, annotation of OTUs to functional ecological groups provided a wealth of information on the historic communities. About one-third of the OTUs are presumed plant-associates (pathogens, saprotrophs and endophytes) typical of graminoid- and forb-rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community.

  5. Summer Arctic sea fog

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synchronous or quasi-synchronous sea-land-air observations were conducted using advanced sea ice, atmospheric and marine instruments during China' s First Arctic Expedition. Based on the Precious data from the expedition, it was found that in the Arctic Ocean, most part of which is covered with ice or is mixed with ice, various kinds of sea fog formed such as advection fog, radiation fog and vapor fog. Each kind has its own characteristic and mechanics of creation. In the southern part of the Arctic Ocean, due to the sufficient warm and wet flow there, it is favorable for advection fog to form,which is dense and lasts a long time. On ice cap or vast floating ice, due to the strong radiation cooling effect, stable radiating fog is likely to form. In floating ice area there forms vapor fog with the appearance of masses of vapor from a boiling pot, which is different from short-lasting land fog. The study indicates that the reason why there are many kinds of sea fog form in the Arctic Ocean is because of the complicated cushion and the consequent sea-air interaction caused by the sea ice distribution and its unique physical characteristics. Sea fog is the atmospheric phenomenon of sea-air heat exchange. Especially, due to the high albedo of ice and snow surface, it is diffcult to absorb great amount of solar radiation during the polar days. Besides, ice is a poor conductor of heat; it blocks the sea-air heat exchange.The sea-air exchange is active in floating ice area where the ice is broken. The sea sends heat to the atmosphere in form of latent heat; vapor fog is a way of sea-air heat exchange influencing the climate and an indicator of the extent of the exchange. The study also indicates that the sea also transports heat to the atmosphere in form of sensible heat when vapor fog occurs.

  6. A comparison between Zecomix High Efficiency Zero Emission Plant and modern Hydrogen and Power IGCC Plants

    Energy Technology Data Exchange (ETDEWEB)

    Deiana, P.; Calabro, A.; Fiorini, P.; Stendardo, S.; Girardi, G.

    2005-07-01

    The paper reports the analysis and the comparison of two different plant concepts in the field of high efficiency and zero emissions hydrogen and power production plant. The study has been made as a part of a larger research project, named Zecomix, leaded by ENEA (Italian Research Agency for New Technologies, Energy and Environment), and aimed at studying an integrated process that produces both hydrogen and electricity from coal. A thermodynamic model of the two different plants has been set using the industrial software ChemCAD. The Zecomix plant is based on coal hydrogasification and simultaneous steam reforming and carbon dioxide sequestration. Other crucial characteristics involve high temperature sorbent regeneration. The combustion occurs with pure oxygen and high temperature steam evolves in a nonconventional advanced gas-steam turbine cycle. The considered IGCC plant is capable of producing hydrogen and power adopting current technology solutions. The plant configuration includes a pressurized oxygen blown entrained flow gasifier, syngas cleanup and decarbonization based on high pressure physical absorption, the adoption of class H gas turbine and three pressure level recovery boiler. Moreover a pressure swing adsorption unit has been considered for further hydrogen purification. The comparative analysis, based on the same coal input, underlines the differences between the two plants in terms of efficiency and performance of the single component. Moreover a simple environmental impact analysis has been considered to compare specific CO2 emissions of each alternative. (Author)

  7. Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms

    NARCIS (Netherlands)

    Galindo, Virginie; Levasseur, Maurice; Mundy, Christopher John; Gosselin, Michel; Scarratt, Michael; Papakyriakou, Tim; Stefels, Jacqueline; Gale, Matthew A.; Tremblay, Jean-Eric; Lizotte, Martine

    In polar regions, low-light acclimated phytoplankton thriving under sea ice may be suddenly exposed to high irradiance when ice pack breaks or surface currents carry them into adjacent ice-free areas. Here we experimentally determined how rapid shifts in light regime affect the phytoplankton and the

  8. Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms

    NARCIS (Netherlands)

    Galindo, Virginie; Levasseur, Maurice; Mundy, Christopher John; Gosselin, Michel; Scarratt, Michael; Papakyriakou, Tim; Stefels, Jacqueline; Gale, Matthew A.; Tremblay, Jean-Eric; Lizotte, Martine

    2016-01-01

    In polar regions, low-light acclimated phytoplankton thriving under sea ice may be suddenly exposed to high irradiance when ice pack breaks or surface currents carry them into adjacent ice-free areas. Here we experimentally determined how rapid shifts in light regime affect the phytoplankton and the

  9. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008

    OpenAIRE

    Hamacher-Barth, Evelyne; Leck, Caroline; Jansson, Kjell

    2016-01-01

    The representation of aerosol properties and processes in climate models is fraught with large uncertainties. Especially at high northern latitudes a strong underprediction of aerosol concentrations and nucleation events is observed and can only be constrained by in situ observations based on the analysis of individual aerosol particles. To further reduce the uncertainties surrounding aerosol properties and their potential role as cloud condensation nuclei this study provide...

  10. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  11. Arctic Change Information for a Broad Audience

    Science.gov (United States)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2002-12-01

    Demonstrable environmental changes have occurred in the Arctic over the past three decades. NOAA's Arctic Theme Page is a rich resource web site focused on high latitude studies and the Arctic, with links to widely distributed data and information focused on the Arctic. Included is a collection of essays on relevant topics by experts in Arctic research. The website has proven useful to a wide audience, including scientists, students, teachers, decision makers and the general public, as indicated through recognition by USA Today, Science magazine, etc. (http://www.arctic.noaa.gov) Working jointly with NSF and the University of Washington's Polar Science Center as part of the Study of Environmental Arctic Change (SEARCH) program, NOAA has developed a website for access to pan-Arctic time series spanning diverse data types including climate indices, atmospheric, oceanic, sea ice, terrestrial, biological and fisheries. Modest analysis functions and more detailed analysis results are provided. (http://www.unaami.noaa.gov/). This paper will describe development of an Artic Change Detection status website to provide a direct and comprehensive view of previous and ongoing change in the Arctic for a broad climate community. For example, composite metrics are developed using principal component analysis based on 86 multivariate pan-Arctic time series for seven data types. Two of these metrics can be interpreted as a regime change/trend component and an interdecadal component. Changes can also be visually observed through tracking of 28 separate biophysical indicators. Results will be presented in the form of a web site with relevant, easily understood, value-added knowledge backed by peer review from Arctic scientists and scientific journals.

  12. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  13. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  14. Use of Declassified High-Resolution Imagery and Coincident Data Sets for Characterizing the Changing Arctic Ice Cover, and Collaboration with SIZRS

    Science.gov (United States)

    2015-09-30

    Arctic Ocean sea ice cover . OBJECTIVES Literal Image Derived...imagery for understanding of sea ice processes of the Arctic Ocean sea ice cover . RELATED PROJECTS Developing Remote Sensing Capabilities for...Coincident Data Sets for Characterizing the Changing Arctic Ice Cover , and Collaboration with SIZRS” R. Kwok Jet Propulsion Laboratory

  15. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic.

    Science.gov (United States)

    Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D

    2017-09-06

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (Vc,max.25 and Jmax.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower than commonly used values. When scaled to 25°C, Vc,max.25 and Jmax.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.

  16. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    Science.gov (United States)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reprodu