WorldWideScience

Sample records for high arctic permafrost

  1. Petroleum contamination movement into permafrost in the high Arctic

    International Nuclear Information System (INIS)

    Biggar, K.W.

    1997-01-01

    The extent of petroleum hydrocarbon contamination that has penetrated the active layer into the permafrost at sites where spills have occurred in Canada's Arctic was discussed. There was evidence to suggest that hydrocarbon contamination may enter the permafrost layer through gravity drainage and cap suction through fissures in the frozen soil, and perhaps by diffusion through the unfrozen water of fine-grained soils. Core samples were taken in frozen silty clay to be sectioned and analyzed for total petroleum hydrocarbons, using ultrasonic solvent extraction and gas chromatography and mass spectrometry analysis. It was concluded that it is possible for petroleum contamination in permafrost to migrate by gravity drainage down soil fissures and then diffuse into surrounding soil. 2 figs

  2. Elevation-based upscaling of organic carbon stocks in High-Arctic permafrost terrain

    DEFF Research Database (Denmark)

    Weiss, Niels; Faucherre, Samuel; Lampiris, Nikos

    2017-01-01

    Accurate quantity and distribution estimates of permafrost soil organic carbon (SOC) stocks are needed to project potential feedbacks to climate, following warming. Still, upscaling from local field observations to regional estimates to circumarctic assessments remains a challenge. Here we explore...... elevation-based upscaling techniques for High-Arctic permafrost SOC stocks. We combine two detailed, high-resolution SOC inventories on Spitsbergen (Svalbard) with regional validation data. We find a clear relationship between elevation and SOC content, and use this observed exponential correlation, as well...... as discrete elevation classes, as upscaling models for Spitsbergen. We estimate the total amount of permafrost SOC currently present in soils on Spitsbergen to be 105.36 Tg (0.11 Pg), with a mean SOC content of 2.84 ± 0.74 kg C m−2 (mean ± 95% confidence interval). Excluding glaciers and permanent snowfields...

  3. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    Science.gov (United States)

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment

    Science.gov (United States)

    Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul; Short, Naomi; Brisco, Brian

    2018-02-01

    Arctic landscapes undergo seasonal and long-term changes as the active layer thaws and freezes, which can result in localized or irregular subsidence leading to the formation of thermokarst terrain. Differential Interferometric Synthetic Aperture Radar (DInSAR) is a technique capable of measuring ground surface displacements resulting from thawing permafrost at centimetre precision and is quickly gaining acceptance as a means of measuring ground displacement in permafrost regions. Using RADARSAT-2 stacked DInSAR data from 2013 and 2015 we determined the magnitude and patterns of land surface change in a continuous permafrost environment. At our study site situated in the Canadian High Arctic, DInSAR seasonal ground displacement patterns were consistent with field observations of permafrost degradation. As expected, many DInSAR values are close to the detection threshold (i.e., 1 cm) and therefore do not indicate significant change; however, DInSAR seasonal ground displacement patterns aligned well with climatological and soil conditions and offer geomorphological insight into subsurface processes in permafrost environments. While our dataset is limited to two years of data representing a three-year time period, the displacements derived from DInSAR provide insight into permafrost change in a High Arctic environment and demonstrate that DInSAR is an applicable tool for understanding environmental change in remote permafrost regions.

  5. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  6. A 20-year record (1998-2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen)

    Science.gov (United States)

    Boike, Julia; Juszak, Inge; Lange, Stephan; Chadburn, Sarah; Burke, Eleanor; Overduin, Pier Paul; Roth, Kurt; Ippisch, Olaf; Bornemann, Niko; Stern, Lielle; Gouttevin, Isabelle; Hauber, Ernst; Westermann, Sebastian

    2018-03-01

    Most permafrost is located in the Arctic, where frozen organic carbon makes it an important component of the global climate system. Despite the fact that the Arctic climate changes more rapidly than the rest of the globe, observational data density in the region is low. Permafrost thaw and carbon release to the atmosphere are a positive feedback mechanism that can exacerbate global warming. This positive feedback functions via changing land-atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual timescales, and permafrost, which changes slowly over long time periods. This understanding thus mandates long-term observational data sets. Such a data set is available from the Bayelva site at Ny-Ålesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high-resolution digital elevation model (DEM) that can be used together with the snow physical information for snowpack modeling and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves as a baseline for future studies. The mean permafrost temperature is -2.8 °C, with a zero-amplitude depth at 5.5 m (2009-2017). Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in earth system models.The presented data are available in the Supplement for this paper (time series) and through the PANGAEA and Zenodo data portals: time series (https://doi.org/10.1594/PANGAEA.880120, https://zenodo.org/record/1139714) and

  7. A 20-year record (1998–2017 of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen

    Directory of Open Access Journals (Sweden)

    J. Boike

    2018-03-01

    Full Text Available Most permafrost is located in the Arctic, where frozen organic carbon makes it an important component of the global climate system. Despite the fact that the Arctic climate changes more rapidly than the rest of the globe, observational data density in the region is low. Permafrost thaw and carbon release to the atmosphere are a positive feedback mechanism that can exacerbate global warming. This positive feedback functions via changing land–atmosphere energy and mass exchanges. There is thus a great need to understand links between the energy balance, which can vary rapidly over hourly to annual timescales, and permafrost, which changes slowly over long time periods. This understanding thus mandates long-term observational data sets. Such a data set is available from the Bayelva site at Ny-Ålesund, Svalbard, where meteorology, energy balance components and subsurface observations have been made for the last 20 years. Additional data include a high-resolution digital elevation model (DEM that can be used together with the snow physical information for snowpack modeling and a panchromatic image. This paper presents the data set produced so far, explains instrumentation, calibration, processing and data quality control, as well as the sources for various resulting data sets. The resulting data set is unique in the Arctic and serves as a baseline for future studies. The mean permafrost temperature is −2.8 °C, with a zero-amplitude depth at 5.5 m (2009–2017. Since the data provide observations of temporally variable parameters that mitigate energy fluxes between permafrost and atmosphere, such as snow depth and soil moisture content, they are suitable for use in integrating, calibrating and testing permafrost as a component in earth system models.The presented data are available in the Supplement for this paper (time series and through the PANGAEA and Zenodo data portals: time series (https://doi.org/10.1594/PANGAEA.880120, https

  8. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  9. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost

    DEFF Research Database (Denmark)

    Bellemain, Eva; Davey, Marie L.; Kauserud, Håvard

    2013-01-01

    The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty-six sediment samples dated 16000-32000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS...

  10. Demequina lutea sp. nov., isolated from a high Arctic permafrost soil

    DEFF Research Database (Denmark)

    Finster, Kai; Herbert, Rodney Andrew; Kjeldsen, Kasper Urup

    2009-01-01

    Two Gram-stain-positive, pigmented, non-motile, non-spore-forming, pleomorphic, rod-shaped bacteria (strains SV45T and SV47), isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway, have been characterized taxonomically using a polyphasic approach...

  11. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  12. Demequina lutea sp. nov., isolated from a high Arctic permafrost soil.

    Science.gov (United States)

    Finster, Kai Waldemar; Herbert, Rodney Andrew; Kjeldsen, Kasper Urup; Schumann, Peter; Lomstein, Bente Aagaard

    2009-04-01

    Two Gram-stain-positive, pigmented, non-motile, non-spore-forming, pleomorphic, rod-shaped bacteria (strains SV45(T) and SV47), isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway, have been characterized taxonomically using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two permafrost isolates formed a distinct phyletic line within the suborder Micrococcineae of the order Actinomycetales. DNA-DNA hybridization analyses indicate that strains SV45(T) and SV47 are closely related (60-69 % relatedness) and belong to the same species, although they show slightly different colony pigmentation. The closest phylogenetic neighbour was Demequina aestuarii JC2054(T), with 96 % 16S rRNA gene sequence similarity. Optimum growth of SV45(T) and SV47 occurred aerobically in the absence of NaCl, but both isolates tolerated up to 2 % NaCl (w/v) in the growth medium. Growth under anaerobic conditions was slow and weak. The peptidoglycan of both isolates was of the A4beta type with l-ornithine as the diamino acid and serine as a component of the interpeptide bridge with either d-aspartate (SV45(T)) or d-glutamate (SV47) as the N-terminal amino acid. The major fatty acids present in both isolates were C(15 : 0) (3.2-8.6 %), iso-C(16 : 0) (5.0-8.9 %), anteiso-C(15 : 0) (59.4-61.5 %), anteiso-C(17 : 0) (4.1-8.8 %) and anteiso-C(15 : 1) (4.4-6.4 %). Isoprenoid quinones were present at exceptionally low levels in both isolates, and only demethylmenaquinone DMK-9(H(4)) could be identified with any degree of confidence. Phylogenetic analysis and differences in physiological and biochemical characteristics between the strains and Demequina aestuarii JC2054(T) indicate that these isolates belong to a novel species within the genus Demequina, for which the name Demequina lutea sp. nov. is proposed. The type strain is SV45(T) (=LMG 24795(T) =DSM 19970(T)).

  13. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    Science.gov (United States)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  14. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Science.gov (United States)

    Siewert, Matthias B.

    2018-03-01

    Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 ± 8.0 kg C m-2 and the SOC stored in the top meter (0-100 cm) to be 7.7 ± 6.2 kg C m-2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.

  15. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Directory of Open Access Journals (Sweden)

    M. B. Siewert

    2018-03-01

    Full Text Available Soil organic carbon (SOC stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m. A high-resolution (1 m land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0–150 cm is estimated to be 8.3 ± 8.0 kg C m−2 and the SOC stored in the top meter (0–100 cm to be 7.7 ± 6.2 kg C m−2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions  >  30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of

  16. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    NARCIS (Netherlands)

    Mann, Paul J.; Eglinton, Timothy I.; McIntyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G M

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14 C and 13 C

  17. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( pangaea.de/10.1594/PANGAEA.868349" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.868349.

  18. Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago

    DEFF Research Database (Denmark)

    Luërs, J.; Westermann, Signe; Piel, K.

    2014-01-01

    -lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a high Arctic tundra area at the west coast of Svalbard based on eddy covariance flux measurements. The annual cumulative CO2 budget is close to 0 g C m-2 yr-1...

  19. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    Science.gov (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  20. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Singh, Ram N; Naik, Simantini; Roy, Utpal; Srivastava, Alok; Bölter, Manfred

    2017-12-01

    Permafrost soils are unique habitats in polar environment and are of great ecological relevance. The present study focuses on the characterization of bacterial communities from permafrost profiles of Svalbard, Arctic. Counts of culturable bacteria range from 1.50 × 10 3 to 2.22 × 10 5 CFU g -1 , total bacterial numbers range from 1.14 × 10 5 to 5.52 × 10 5 cells g -1 soil. Bacterial isolates are identified through 16S rRNA gene sequencing. Arthrobacter and Pseudomonas are the most dominant genera, and A. sulfonivorans, A. bergeri, P. mandelii, and P. jessenii as the dominant species. Other species belong to genera Acinetobacter, Bacillus, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Rhodococcus, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus. To the best of our knowledge, genera Acinetobacter, Enterobacter, Nesterenkonia, Psychrobacter, Rhizobium, Sphingobacterium, Sphingopyxis, Stenotrophomonas, and Virgibacillus are the first northernmost records from Arctic permafrost. The present study fills the knowledge gap of culturable bacterial communities and their chronological characterization from permafrost soils of Ny-Ålesund (79°N), Arctic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area

  2. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  3. In Situ Field Sequencing and Life Detection in Remote (79°26′N Canadian High Arctic Permafrost Ice Wedge Microbial Communities

    Directory of Open Access Journals (Sweden)

    J. Goordial

    2017-12-01

    Full Text Available Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26′N, an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1 the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2 a Microbial Activity Microassay (MAM plate (BIOLOG Ecoplate for detecting viable extant microorganisms through a colourimetric assay, and (3 the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus

  4. Scaling Laws in Arctic Permafrost River Basins: Statistical Signature in Transition

    Science.gov (United States)

    Rowland, J. C.; Gangodagamage, C.; Wilson, C. J.; Prancevic, J. P.; Brumby, S. P.; Marsh, P.; Crosby, B. T.

    2011-12-01

    The Arctic landscape has been shown to be fundamentally different from the temperate landscape in many ways. Long winters and cold temperatures have led to the development of permafrost, perennially frozen ground, that controls geomorphic processes and the structure of the Arctic landscape. Climate warming is causing changes in permafrost and the active layer (the seasonally thawed surface layer) that is driving an increase in thermal erosion including thermokarst (collapsed soil), retrogressive thaw slumps, and gullies. These geomorphic anomalies in the arctic landscapes have not been well quantified, even though some of the landscape geomorphic and hydrologic characteristics and changes are detectable by our existing sensor networks. We currently lack understanding of the fundamental fluvio-thermal-erosional processes that underpin Arctic landscape structure and form, which limits our ability to develop models to predict the landscape response to current and future climate change. In this work, we seek a unified framework that can explain why permafrost landscapes are different from temperate landscapes. We use high resolution LIDAR data to analyze arctic geomorphic processes at a scale of less than a 1 m and demonstrate our ability to quantify the fundamental difference in the arctic landscape. We first simulate the arctic hillslopes from a stochastic space-filling network and demonstrate that the flow-path convergent properties of arctic landscape can be effectively captured from this simple model, where the simple model represents a landscape flowpath arrangement on a relatively impervious frozen soil layer. Further, we use a novel data processing algorithm to analyze landscape attributes such as slope, curvature, flow-accumulation, elevation-drops and other geomorphic properties, and show that the pattern of diffusion and advection dominated soil transport processes (diffusion/advection regime transition) in the arctic landscape is substantially different

  5. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  6. Reviews and syntheses : Effects of permafrost thaw on Arctic aquatic ecosystems

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Bowden, W.B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; Macmillan, G.; Rautio, M.; Walter Anthony, K. M.; Wickland, K.P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current

  7. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  8. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, J.E.; Mann, P.J.; Davydov, S.; Davydova, A.; Spencer, R.G.M.; Schade, J.; Sobczak, W.V.; Zimov, S.; Bulygina, E.; Eglinton, T.I.; Holmes, R.M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and

  9. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, Jorien E.; Mann, Paul J.; Davydov, Sergey; Davydova, Anna; Spencer, Robert G. M.; Schade, John; Sobczak, William V.; Zimov, Nikita; Zimov, Sergei; Bulygina, Ekaterina; Eglinton, Timothy I.; Holmes, Robert M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of

  10. International student Arctic Field School on Permafrost and urban areas study

    Science.gov (United States)

    Suter, L.; Tolmanov, V. A.; Grebenets, V. I.; Streletskiy, D. A.; Shiklomanov, N. I.

    2017-12-01

    Arctic regions are experiencing drastic climatic and environmental changes. These changes are exacerbated in the Russian Arctic, where active resource development resulted in further land cover transformations, especially near large settlements. There is a growing need in multidisciplinary studies of climate and human- induced changes in the Arctic cities. In order to fill this gap, International Arctic Field Course on Permafrostand Northern Studies was organized in July 2017 to the Russian Arctic. The course was organized under the umbrella of the Arctic PIRE project in cooperation between the George Washington University, Moscow State University, and the Russian Center for Arctic Development. The course attracted twenty undergraduate and graduate students from Russia, USA, and EU countries and involved instructors specializing in Arctic system science, geocryology, permafrost engineering, and urban sustainability. The field course was focused on studying typical natural Arctic landscapes of tundra and forest tundra; transformations of natural landscapes in urban and industrial areas around Vorkuta and Salekhard; construction and planning on permafrost and field methods and techniques, including permafrost and soil temperature monitoring, active layer thickness (ALT) measurements, studying of cryogenic processes, stratigraphic and soil investigations, vegetation and microclimate studies. The students were also engaged in a discussion of climatic change and historical development of urban areas on permafrost,and were exposed to examples of both active and passive construction principles while conducting a field survey of permafrost related building deformations. During the course, students collected more than 800 ALT and soil temperature measurements in typical landscapes around Vorkuta and Salekhard to determine effects of soil and vegetation factors on ground thermal regime; surveyed several hundreds of buildings to determine locations with most deformation

  11. Nitrate and Moisture Content of Broad Permafrost Landscape Features in the Barrow Peninsula: Predicting Evolving NO3 Concentrations in a Changing Arctic

    Science.gov (United States)

    Arendt, C. A.; Heikoop, J. M.; Newman, B. D.; Wales, N. A.; McCaully, R. E.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    The geochemical evolution of Arctic regions as permafrost degrades, significantly impacts nutrient availability. The release of nitrogen compounds from permafrost degradation fertilizes both microbial decomposition and plant productivity. Arctic warming promotes permafrost degradation, causing geomorphic and hydrologic transitions that have the potential to convert saturated zones to unsaturated zones and subsequently alter the nitrate production capacity of permafrost regions. Changes in Nitrate (NO3-) content associated with shifting moisture regimes are a primary factor determining Arctic fertilization and subsequent primary productivity, and have direct feedbacks to carbon cycling. We have documented a broad survey of co-located soil moisture and nitrate concentration measurements in shallow active layer regions across a variety of topographic features in the expansive continuous permafrost region encompassing the Barrow Peninsula of Alaska. Topographic features of interest are slightly higher relative to surrounding landscapes with drier soils and elevated nitrate, including the rims of low centered polygons, the centers of flat and high centered polygons, the rims of young, old and ancient drain thaw lake basins and drainage slopes that exist across the landscape. With this information, we model the nitrate inventory of the Barrow Peninsula using multiple geospatial approaches to estimate total area cover by unsaturated features of interest and further predict how various drying scenarios increase the magnitude of nitrate produced in degrading permafrost regions across the Arctic. This work is supported by the US Department of Energy Next Generation Ecosystem Experiment, NGEE-Arctic.

  12. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2009-05-01

    Full Text Available Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.

  13. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Directory of Open Access Journals (Sweden)

    S. Muster

    2017-06-01

    Full Text Available Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013 high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l. land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands

  14. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium

    Science.gov (United States)

    Zhang, Hui; Piilo, Sanna R.; Amesbury, Matthew J.; Charman, Dan J.; Gallego-Sala, Angela V.; Väliranta, Minna M.

    2018-02-01

    Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry-hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additional eco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms.

  15. The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska

    Science.gov (United States)

    Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.

    2017-12-01

    Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in

  16. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait

    International Nuclear Information System (INIS)

    Nicolsky, D; Shakhova, N

    2010-01-01

    The present state of sub-sea permafrost modeling does not agree with certain observational data on the permafrost state within the East Siberian Arctic Shelf. This suggests a need to consider other mechanisms of permafrost destabilization after the recent ocean transgression. We propose development of open taliks wherever thaw lakes and river paleo-valleys were submerged shelf-wide as a possible mechanism for the degradation of sub-sea permafrost. To test the hypothesis we performed numerical modeling of permafrost dynamics in the Dmitry Laptev Strait area. We achieved sufficient agreement with the observed distribution of thawed and frozen layers to suggest that the proposed mechanism of permafrost destabilization is plausible.

  17. Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry [Marine Biological Lab., Woods Hole, MA (United States)

    2017-12-12

    uncertainties. Based on our study results along with a review of observed and projected climate changes in Northern Eurasia by others, we have also outlined a more integrated modelling approach that may be developed and applied in future studies to better capture the influence of earth system feedbacks and human activities on the evolution of climate change effects over time. Specifically, we have examined: 1) how evapotranspiration and water availability have been changing in Northern Eurasia and may change in the future including the impact of forcing uncertainties (Liu et al., 2013, 2014, 2015); 2) how soil consumption of atmospheric methane across the globe have been influenced and may be influenced by climate change and nitrogen deposition during the 20th and 21st centuries (Zhuang et al., 2013); 3) how wetland inundation extent influences net CO2 and CH4 fluxes from northern high latitudes (Zhuang et al., 2015); 4) the relative effects of various environmental factors (including permafrost degradation) on terrestrial dissolved organic carbon (DOC) loading of river networks across the pan-Arctic and how they have changed over the 20th century (Kicklighter et al., 2013); 5) the impacts of recent and future permafrost thaw on land-atmosphere greenhouse gas exchange across the pan-Arctic (Gao et al., 2012, 2013; Hayes et al., 2014; Kicklighter et al. 2015a, 2018); 6) how climate-induced vegetation shifts may affect carbon fluxes and future land use in Northern Eurasia (Jiang et al., 2012, 2016; Kicklighter et al., 2014a) and the globe (Zhuang et al. 2015b); 7) the relative importance of legacies from past land use, future land-use change and climate change on projections of terrestrial carbon fluxes (Monier et al., 2015; Kicklighter et al., 2016); and 8) how the effects of earth system feedbacks and human activities can be better incorporated in assessments of climate change impacts (Monier et al., 2017; Groisman et al., 2018).

  18. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  19. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic

    Science.gov (United States)

    Lutz Schirrmeister; Guido Grosse; Sebastian Wetterich; Pier Paul Overduin; Jens Straub; Edward A.G. Schuur; Hans-Wolfgang. Hubberton

    2011-01-01

    Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and...

  20. Quantifying Permafrost Extent, Condition, and Degradation at Department of Defense Installations in the Arctic

    Science.gov (United States)

    Edlund, C. A.

    2017-12-01

    The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the

  1. Ice-Rich Yedoma Permafrost: A Synthesis of Circum-Arctic Distribution and Thickness

    Science.gov (United States)

    Strauss, J.; Fedorov, A. N.; Fortier, D.; Froese, D. G.; Fuchs, M.; Grosse, G.; Günther, F.; Harden, J. W.; Hugelius, G.; Kanevskiy, M. Z.; Kholodov, A. L.; Kunitsky, V.; Laboor, S.; Lapointe Elmrabti, L.; Rivkina, E.; Robinson, J. E.; Schirrmeister, L.; Shmelev, D.; Shur, Y.; Spektor, V.; Ulrich, M.; Veremeeva, A.; Walter Anthony, K. M.; Zimov, S. A.

    2015-12-01

    Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silts that are penetrated by large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma permafrost deposits up to 50 meter thick. Because of fast incorporation of organic material into permafrost during formation, Yedoma deposits include low-decomposed organic matter. Moreover, ice-rich permafrost deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for the climate warming, as increased permafrost thaw is likely to cause a positive feedback loop. Therefore, a detailed assessment of the Yedoma deposit volume is of importance to estimate its potential future climate response. Moreover, as a step beyond the objectives of this synthesis study, our coverage (see figure for the Yedoma domain) and thickness estimation will provide critical data to refine the Yedoma permafrost organic carbon inventory, which is assumed to have freeze-locked between 83±12 and 129±30 gigatonnes (Gt) of organic carbon. Hence, we here synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma permafrost (see figure for the Yedoma domain) in the framework of an Action Group funded by the International Permafrost Association (IPA). The quantification of the Yedoma coverage is conducted by the digitization of geomorphological and Quaternary geological maps. Further data on Yedoma thickness is contributed from boreholes and exposures reported in the scientific literature.

  2. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    NARCIS (Netherlands)

    Kolk, van der Henk-Jan; Heijmans, M.M.P.D.; Huissteden, van J.; Pullens, J.W.M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated

  3. The Role of Arctic Soils in the Permafrost – Climate Feedback

    International Nuclear Information System (INIS)

    Richter, A.

    2016-01-01

    The total organic carbon pool in arctic and boreal permafrost soils has been estimated to be about 1,760 Petagram (10"1"5 g) C, more than twice today’s atmospheric C pool and about half of the global soil carbon. A significant proportion of this C pool may be vulnerable to climate warming through permafrost thawing and subsequent decomposition by microorganisms. Thus, it has been suggested that permafrost soils may become a future source of CO_2 and CH_4 to the atmosphere and lead to a strong positive feedback to global warming (up to + 0.5 °C until 2200). I will present results from several projects that aimed at understanding the mechanisms behind the permafrost-climate feedback, by identifying the major soil organic matter (SOM) stabilization mechanisms of permafrost SOM. I will address a range of different mechanisms by which SOM can be protected from decomposition, such as unfavourable temperature and moisture regimes, physical protection by formation of organo-mineral associations and chemical recalcitrance of SOM. I will focus, however, on energy and nutrient constraints of heterotrophic microbial communities and their role in SOM decomposition. I will then show that the physiology of the tiniest organisms on Earth will ultimately determine the vulnerability of the global permafrost carbon pool and thus the global permafrost-climate feedback. (author)

  4. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    Science.gov (United States)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular

  5. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    Science.gov (United States)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Surface Waves (MASW) suggests the existence of pronounced low shear wave velocity zones that span the depth range of 2 - 30 meters; this zone has shear velocity values comparable to partially thawed soils. Such features coincide with previous findings of very low electrical resistivity structure (as low as ~10 Ohm*m at some locations) from measurements obtained in the first NGEE-Arctic geophysical field campaign (conducted in the week of September 24 - October 1, 2011). These low shear velocity zones are likely representative of regions with high unfrozen water content and thus have important implications on the rate of microbial activity and the vulnerability of deep permafrost carbon pools. Analysis of this dataset required development of a novel inversion approach based on waveform inversion. The existence of multiple closely spaced Rayleigh wave modes made traditional inversion based on mode picking virtually impossible; As a result, we selected a direct misfit evaluation based on comparing dispersion images in the phase velocity/frequency domain. The misfit function was optimized using a global search algorithm, in this case Huyer and Neumaier's Multi Coordinate Search algorithm (MCS). This combination of MCS and waveform misfit allowed recovery of the low velocity region despite the existence of closely spaced modes.

  6. Viable Species of Flamella (Amoebozoa: Variosea) Isolated from Ancient Arctic Permafrost Sediments.

    Science.gov (United States)

    Shmakova, Lyubov; Bondarenko, Natalya; Smirnov, Alexey

    2016-02-01

    Six viable strains of amoebae belonging to the genus Flamella (Amoebozoa, Variosea) were isolated from permafrost sediments sampled in the Russian Arctic region. Two of them are from late Pleistocene permafrost in North-East Siberia, and four--from Holocene and late Pleistocene in North-West Siberia. Light- and electron-microscopic study and molecular phylogeny show that these isolates represent two new species belonging to the genus Flamella. Both species are cyst-forming. This is a remarkable case of high resistance of protozoan cysts, allowing them to survive and recover an amoebae population after a very long, geologically significant period of rest; a "snapshot" of evolution in time. This study directly shows for the first time that amoeba cysts can be conserved not only for years and decades but for many thousand years and then recover, contributing to the formation of an active microbial community. We propose to name the new species as Flamella pleistocenica n.sp. and Flamella beringiania n.sp. Phylogenetic analysis shows that the genus Flamella is a robust and potentially species-rich group of Variosea. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  8. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    Science.gov (United States)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  9. On the use of mulching to mitigate permafrost thaw due to linear disturbances in sub-arctic peatlands

    Science.gov (United States)

    The presence or absence of permafrost significantly influences the hydrology and ecology of northern watersheds. Resource exploration activities are currently having noticeable effects on hydrological and ecological processes in sub-arctic peatlands. Disturbances such as seismic cutlines can result ...

  10. Cryostratigraphy and sedimentology of high-Arctic fjord-valleys

    OpenAIRE

    Gilbert, Graham Lewis

    2018-01-01

    Fjord-valleys, as sediment-filled palaeofjords, are characteristic of formerly glaciated mountainous coastal areas. High-Arctic fjord-valleys commonly host permafrost, but are poorly accessible and hence have drawn relatively little research. The research presented in this thesis combines the methods of cryostratigraphy, clastic sedimentology, sequence stratigraphy, geomorphology and geochronology to investigate the sedimentary infilling, permafrost formation and late Quaternary landscape dev...

  11. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia.

    Science.gov (United States)

    Vonk, J E; Sánchez-García, L; van Dongen, B E; Alling, V; Kosmach, D; Charkin, A; Semiletov, I P; Dudarev, O V; Shakhova, N; Roos, P; Eglinton, T I; Andersson, A; Gustafsson, O

    2012-09-06

    The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.

  12. The Ecological Situation in the Russian Arctic Permafrost Zone

    Directory of Open Access Journals (Sweden)

    Petrov Sergei

    2016-01-01

    Full Text Available The paper describes innovative approaches to ensure environmental safety in the production of hydrocarbon material in a permafrost zone. Studies the anthropogenic environmental factors, climatic and geographical and geological conditions of Purovskiy district of Yamalo-Nenets Autonomous Area (YaNAO. We consider the chemical characteristics of wastewater discharged into surface water objects, polluting emissions into the atmosphere. The conclusions of the environmental situation in Purovskiy and Ustpurovsk-Tazovskiy permafrost areas. Calculate the concentration of pollutants in the control section of the water object and the maximum ground-level concentrations of pollutants in the atmospheric air. The conclusions about the exceeding the maximum permissible concentration (MPC in the atmospheric air for solids, carbon monoxide, nitrogen dioxide. Was examined the climatic conditions of the Far North. Correlational analysis was performed between human factors and temperature conditions of the northern territories, as well as between the climate and natural features cryological and disturbed permafrost soils.

  13. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements

    International Nuclear Information System (INIS)

    Muskett, Reginald R; Romanovsky, Vladimir E

    2009-01-01

    The Arctic permafrost regions make up the largest area component of the cryosphere. Observations from the Gravity Recovery and Climate Experiment (GRACE) mission offer to provide a greater understanding of changes in water mass within permafrost regions. We investigate a GRACE monthly time series, snow water equivalent from the special scanning microwave imager (SSM/I), vegetation water content and soil moisture from the advanced microwave scanning radiometer for the Earth observation system (AMSR-E) and in situ discharge of the Lena, Yenisei, Ob', and Mackenzie watersheds. The GRACE water equivalent mass change responded to mass loading by snow accumulation in winter and mass unloading by runoff in spring-summer. Comparison of secular trends from GRACE to runoff suggests groundwater storage increased in the Lena and Yenisei watersheds, decreased in the Mackenzie watershed, and was unchanged in the Ob' watershed. We hypothesize that the groundwater storage changes are linked to the development of closed- and open-talik in the continuous permafrost zone and the decrease of permafrost lateral extent in the discontinuous permafrost zone of the watersheds.

  14. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.

    Science.gov (United States)

    Lamarche-Gagnon, Guillaume; Comery, Raven; Greer, Charles W; Whyte, Lyle G

    2015-01-01

    The lost hammer (LH) spring perennially discharges subzero hypersaline reducing brines through thick layers of permafrost and is the only known terrestrial methane seep in frozen settings on Earth. The present study aimed to identify active microbial communities that populate the sediments of the spring outlet, and verify whether such communities vary seasonally and spatially. Microcosm experiments revealed that the biological reduction of sulfur compounds (SR) with hydrogen (e.g., sulfate reduction) was potentially carried out under combined hypersaline and subzero conditions, down to -20 °C, the coldest temperature ever recorded for SR. Pyrosequencing analyses of both 16S rRNA (i.e., cDNA) and 16S rRNA genes (i.e., DNA) of sediments retrieved in late winter and summer indicated fairly stable bacterial and archaeal communities at the phylum level. Potentially active bacterial and archaeal communities were dominated by clades related to the T78 Chloroflexi group and Halobacteria species, respectively. The present study indicated that SR, hydrogenotrophy (possibly coupled to autotrophy), and short-chain alkane degradation (other than methane), most likely represent important, previously unaccounted for, metabolic processes carried out by LH microbial communities. Overall, the obtained findings provided additional evidence that the LH system hosts active communities of anaerobic, halophilic, and cryophilic microorganisms despite the extreme conditions in situ.

  15. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma.

    Science.gov (United States)

    Finster, Kai Waldemar; Herbert, Rodney Andrew; Lomstein, Bente Aagaard

    2009-04-01

    Two pigmented, Gram-negative, non-motile, pleomorphic rod-shaped bacteria (strains SPM-9(T) and SPM-10(T)) were isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway. A third isolate (strain M5-H2) was recovered from the same soil sample after the sample had been exposed to simulated Martian environmental conditions. The three strains were characterized taxonomically by using a polyphasic approach. Phylogenetic, chemotaxonomic, physiological and morphological analyses demonstrated that the three isolates were most closely related to members of the genus Spirosoma. 16S rRNA gene sequence data indicated that the three isolates could be divided into two clusters: (i) strain SPM-9(T) and (ii) strains SPM-10(T) and M5-H2. This grouping was confirmed by DNA-DNA hybridization experiments. Strains SPM-9(T) and SPM-10(T) exhibited 92 % 16S rRNA gene sequence similarity to both Spirosoma linguale LMG 10896(T) and Spirosoma rigui WPCB 118(T). The major fatty acids present in all three isolates were summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16 : 1)omega7c; 43.0-48.2 % of the total), C(16 : 1)omega5c (19.1-21.3 %), C(16 : 0) (6.7-7.3 %), iso-C(17 : 0) 3-OH (4.7-6.0 %) and iso-C(15 : 0) (2.6-5.7 %). On the basis of their phenotypic and genotypic characteristics, the new strains are assigned to two novel species of the genus Spirosoma, for which the names Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov. are proposed. The type strain of Spirosoma spitsbergense is SPM-9(T) (=NCIMB 14407(T)=DSM 19989(T)) and the type strain of Spirosoma luteum is SPM-10(T) (=NCIMB 14406(T)=DSM 19990(T)). An emended description of the genus Spirosoma is also proposed.

  16. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    Science.gov (United States)

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, Julie; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  17. Archaeal communities of Arctic methane-containing permafrost.

    Science.gov (United States)

    Shcherbakova, Victoria; Yoshimura, Yoshitaka; Ryzhmanova, Yana; Taguchi, Yukihiro; Segawa, Takahiro; Oshurkova, Victoria; Rivkina, Elizaveta

    2016-10-01

    In the present study, we used culture-independent methods to investigate the diversity of methanogenic archaea and their distribution in five permafrost samples collected from a borehole in the Kolyma River Lowland (north-east of Russia). Total DNA was extracted from methane-containing permafrost samples of different age and amplified by PCR. The resulting DNA fragments were cloned. Phylogenetic analysis of the sequences showed the presence of archaea in all studied samples; 60%-95% of sequences belonged to the Euryarchaeota. Methanogenic archaea were novel representatives of Methanosarcinales, Methanomicrobiales, Methanobacteriales and Methanocellales orders. Bathyarchaeota (Miscellaneous Crenarchaeota Group) representatives were found among nonmethanogenic archaea in all the samples studied. The Thaumarchaeota representatives were not found in the upper sample, whereas Woesearchaeota (formerly DHVEG-6) were found in the three deepest samples. Unexpectedly, the greatest diversity of archaea was observed at a depth of 22.3 m, probably due to the availability of the labile organic carbon and/or due to the migration of the microbial cells during the freezing front towards the bottom. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    Science.gov (United States)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  19. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, Courtney [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Walter, Katey [Univ. of Alaska, Fairbanks, AK (United States)

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  20. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Science.gov (United States)

    Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, Y.; Billet, M.F.; Canario, J.; Cory, R.M.; Deshpande, B.N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, Milla; Walter Anthony, K.M.; Wickland, Kimberly P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  1. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    International Nuclear Information System (INIS)

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V

    2013-01-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  2. Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming

    Science.gov (United States)

    Mu, Cuicui; Wu, Xiaodong; Zhao, Qian; Smoak, Joseph M.; Yang, Yulong; Hu, Lian; Zhong, Wen; Liu, Guimin; Xu, Haiyan; Zhang, Tingjun

    2017-10-01

    Relict permafrost regions are characterized by thin permafrost and relatively high temperatures. Understanding the ecosystem respiration rate (ERR) and its relationship with soil hydrothermal conditions in these areas can provide knowledge regarding the permafrost carbon cycle in a warming world. In this study, we examined a permafrost area, a boundary area, and a seasonally frozen ground area within a relict permafrost region on the east edge of the Qinghai-Tibetan Plateau, China. Measurements from July 2015 to September 2016 showed that the mean annual ecosystem CO2 emissions for the boundary area were greater than the permafrost area. The Q10 value of the ERRs in the seasonally frozen ground area was greater than the permafrost area, indicating that the carbon emissions in the nonpermafrost areas were more sensitive to warming. The 1 year open-top chamber (OTC) warming increased soil temperatures in both the permafrost and seasonally frozen ground areas throughout the year, and the warming increased the ERRs by 1.18 (0.99-1.38, with interquartile range) and 1.13 (0.75-1.54, with interquartile range) μmol CO2 m-2 s-1 in permafrost and seasonally frozen ground areas, respectively. The OTC warming increased annual ERRs by approximately 50% for both permafrost and seasonally frozen ground areas with half the increase occurring during the nongrowing seasons. These results suggest that the ERRs in relict permafrost are high in comparison with arctic regions, and the carbon balance in relict permafrost areas could be greatly changed by climate warming.

  3. High Arctic Nitrous Oxide Emissions Found on Large Spatial Scales

    Science.gov (United States)

    Wilkerson, J. P.; Sayres, D. S.; Dobosy, R.; Anderson, J. G.

    2017-12-01

    As the planet warms, greenhouse gas emissions from thawing permafrost can potentially increase the net radiative forcing in our climate structure. However, knowledge about Arctic N2O emissions is particularly sparse. Increasing evidence suggests emissions from permafrost thaw may be a significant natural source of N2O. This evidence, though, is either based on lab experiments or in situ chamber studies, which have extremely limited spatial coverage. Consequently, it has not been confirmed to what extent these high emissions are representative of broader arctic regions. Using an airborne eddy covariance flux technique, we measured N2O fluxes over large regions of Alaska in August 2013. From these measurements, we directly show that large areas of this Arctic region have high N2O emissions.

  4. Morphology, biology and phylogeny of Phalansterium arcticum sp. n. (Amoebozoa, Variosea), isolated from ancient Arctic permafrost.

    Science.gov (United States)

    Shmakova, Lyubov A; Karpov, Sergey A; Malavin, Stanislav A; Smirnov, Alexey V

    2018-04-01

    A new species, Phalansterium arcticum sp. n., was isolated from an 8580-year-old Arctic permafrost layer. This organism typically lives as a sedentary uniflagellated cell enclosed in a thin flexible mucilaginous sheath, but can form naked swimming cells and amoeboid cells with eruptive pseudopodia accompanied with the formation of short, filopodia-like projections. In an SSU rDNA phylogenetic tree, it robustly groups with other species of this genus. Along with a description of the species, we also add new details to the description of the cell division of Phalansterium and the feeding process in this organism. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  6. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming

    International Nuclear Information System (INIS)

    Lawrence, David M; Swenson, Sean C

    2011-01-01

    Deciduous shrub abundance is increasing across the Arctic in response to climatic warming. In a recent field manipulation experiment in which shrubs were removed from a plot and compared to a control plot with shrubs, Blok et al (2010 Glob. Change Biol. 16 1296–305) found that shrubs protect the ground through shading, resulting in a ∼ 9% shallower active layer thickness (ALT) under shrubs compared to grassy-tundra, which led them to argue that continued Arctic shrub expansion could mitigate future permafrost thaw. We utilize the Community Land Model (CLM4) coupled to the Community Atmosphere Model (CAM4) to evaluate this hypothesis. CLM4 simulates shallower ALT (∼− 11 cm) under shrubs, consistent with the field manipulation study. However, in an idealized pan-Arctic + 20% shrub area experiment, atmospheric heating, driven mainly by surface albedo changes related to protrusion of shrub stems above the spring snowpack, leads to soil warming and deeper ALT (∼+ 10 cm). Therefore, if climate feedbacks are considered, shrub expansion may actually increase rather than decrease permafrost vulnerability. When we account for blowing-snow redistribution from grassy-tundra to shrubs, shifts in snowpack distribution in low versus high shrub area simulations counter the climate warming impact, resulting in a grid cell mean ALT that is unchanged. These results reinforce the need to consider vegetation dynamics and blowing-snow processes in the permafrost thaw model projections.

  7. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    , allows us a unique opportunity to study the response of methane hydrate deposits to warming. Gas hydrate stability in the Arctic and the permeability of the shelf sediments to gas migration is thought to be closely linked with relict submarine permafrost. Submarine permafrost extent depends on several environmental factors, such as the shelf lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, groundwater hydrology, and the salinity of the pore water. Effects of submarine groundwater discharge, which introduces fresh terrestrial groundwater off-shore, can freshen deep marine sediments and is an important control on the freezing point depression of ice and methane hydrate. While several thermal modeling studies suggest the permafrost layer should still be largely intact near-shore, many recent field studies have reported elevated methane levels in Arctic coastal waters. The permafrost layer is thought to create an impermeable barrier to fluid and gas flow, however, talik formation (unfrozen regions within otherwise continuous permafrost) below paleo-river channels can create permeable pathways for gas migration from depth. This is the first study of its kind to make predictions of the methane gas flux to the water column from the Arctic shelf sediments using a 2D multi-phase fluid flow model. Model results show that the dissociation of methane hydrate deposits through taliks can supersaturate the overlying water column at present-day relative to equilibrium with the atmosphere when taliks are large (> 1 km width) or hydrate saturation is high within hydrate layers (> 50% pore volume). Supersaturated waters likely drive a net flux of methane into the atmosphere, a potent greenhouse gas. Effects of anthropogenic global warming will certainly increase gas venting rates if ocean bottom water temperatures increase, but likely won't have immediately observable impacts due to the long response times.

  8. Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system

    Science.gov (United States)

    Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang

    2013-04-01

    The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on

  9. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  10. Modeling the Space-Time Destiny of Pan-Arctic Permafrost DOC in a Global Land Surface Model: Feedback Implications

    Science.gov (United States)

    Bowring, S.; Lauerwald, R.; Guenet, B.; Zhu, D.; Ciais, P.

    2017-12-01

    Most global climate models do not represent the unique permafrost soil environment and its respective processes. This significantly contributes to uncertainty in estimating their responses, and that of the planet at large, to warming. Here, the production, transport and atmospheric release of dissolved organic carbon (DOC) from high-latitude permafrost soils into inland waters and the ocean is explicitly represented for the first time in the land surface component (ORCHIDEE-MICT) of a CMIP6 global climate model (IPSL). This work merges two models that are able to mechanistically simulate complex processes for 1) snow, ice and soil phenomena in high latitude environments, and 2) DOC production and lateral transport through soils and the river network, respectively, at 0.5° to 2° resolution. The resulting model is subjected to a wide range of input forcing data, parameter testing and contentious feedback phenomena, including microbial heat generation as the active layer deepens. We present results for the present and future Pan-Arctic and Eurasia, with a focus on the Lena and Mackenzie River basins, and show that soil DOC concentrations, their riverine transport and atmospheric evasion are reasonably well represented as compared to observed stocks, fluxes and seasonality. We show that most basins exhibit large increases in DOC transport and riverine CO2 evasion across the suite of RCP scenarios to 2100. We also show that model output is strongly influenced by choice of input forcing data. The riverine component of what is known as the `boundless carbon cycle' is little-recognized in global climate modeling. Hydrological mobilization to the river network results either in sedimentary settling or atmospheric `evasion', presently amounting to 0.5-1.8 PgC yr-1. Our work aims at filling in these knowledge gaps, and the response of these DOC-related processes to thermal forcing. Potential feedbacks owing to such a response are of particular relevance, given the magnitude

  11. Deglacial remobilization of permafrost carbon to sediments along the East Siberian Arctic Seas

    Science.gov (United States)

    Martens, J.; Wild, B.; Bröder, L.; Andersson, A.; Pearce, C.; O'Regan, M.; Jakobsson, M.; Tesi, T.; Muschitiello, F.; Sköld, M.; Semiletov, I. P.; Dudarev, O.; Gustafsson, O.

    2017-12-01

    Current climate change is expected to thaw large quantities of permafrost carbon (PF-C) and expose it to degradation which emits greenhouse gases (i.e. CO2 and CH4). Warming causes a gradual deepening of the seasonally thawed active layer surface of permafrost soils, but also the abrupt collapse of deeper Ice Complex Deposits (ICD), especially along Siberian coastlines. It was recently hypothesized that past warming already induced large-scale permafrost degradation after the last glacial, which ultimately amplified climate forcing. We here assess the mobilization of PF-C to East Siberian Arctic Sea sediments during these warming periods. We perform source apportionment using bulk carbon isotopes (ΔΔ14C, δ13C) together with terrestrial biomarkers (CuO-derived lignin phenols) as indicators for PF-C transfer. We apply these techniques to sediment cores (SWERUS-L2) from the Chukchi Sea (4-PC1) and the southern Lomonosov Ridge (31-PC1). We found that PF-C fluxes during the Bølling-Allerød warming (14.7 to 12.7 cal ka BP), the Younger Dryas cooling (12.7 to 11.7 cal ka BP) and the early Holocene warming (until 11 cal ka BP) were overall higher than mid and late Holocene fluxes. In the Chukchi Sea, PF-C burial was 2x higher during the deglaciation (7.2 g m-2 a-1) than in the mid and late Holocene (3.6 g m-2 a-1), and ICD were the dominant source of PF-C (79.1%). Smaller fractions originated from the active layer (9.1%) and marine sources (11.7%). We conclude that thermo-erosion of ICD released large amounts of PF-C to the Chukchi Sea, likely driven by climate warming and the deglacial sea level rise. This contrasts to earlier analyses of Laptev Sea sediments where active layer material from river transport dominated the carbon flux. Preliminary data on lignin phenol concentrations of Lomonosov Ridge sediments suggest that the postglacial remobilization of PF-C was one order of magnitude higher (10x) than during both the preceding glacial and the subsequent Holocene

  12. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  13. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback

    Science.gov (United States)

    Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.

    2018-03-01

    Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.

  14. Evaluating climate variables, indexes and thresholds governing Arctic urban sustainability: case study of Russian permafrost regions

    Science.gov (United States)

    Anisimov, O. A.; Kokorev, V.

    2013-12-01

    Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy

  15. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    Science.gov (United States)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  16. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  17. Carbon monoxide photoproduction: implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter.

    Science.gov (United States)

    Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng

    2014-08-19

    Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.

  18. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, C. Adam [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry M. [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Anthony, Katey Walter [Univ. of Alaska, Fairbanks, AK (United States); Kicklighter, David [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Gao, Xiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  19. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma

    DEFF Research Database (Denmark)

    Finster, Kai; Herbert, Rodney Andrew; Lomstein, Bente Aagaard

    2009-01-01

    Two pigmented, Gram-negative, non-motile, pleomorphic rod-shaped bacteria (strains SPM-9T and SPM-10T) were isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway. A third isolate (strain M5-H2) was recovered from the same soil sample after the sample ...

  20. Assessment of climate and land use change impacts on surface water runoff and connectivity in a continuous permafrost catchment on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Gaedeke, A.; Arp, C. D.; Liljedahl, A. K.; Daanen, R. P.; Whitman, M. S.

    2016-12-01

    A changing climate is leading to rapid transformations of hydrological processes in low-gradient Arctic terrestrial ecosystems which are dominated by lakes and ponds, wetlands, polygonised tundra, and connecting stream and river networks. The aim of this study is to gain a deeper understanding of the impacts of climate and land use change on surface water availability and connectivity by utilizing the process-based, spatially distributed hydrological model WaSiM. Crea Creek Watershed (30 km2), which is located in the National Petroleum Reserve-Alaska (NPR-A) was chosen as study area because of its permafrost landforms (bedfast and floating ice lakes, high and low centered polygons), existing observational data (discharge, snow depth, and meteorological variables since 2009), and resource management issues related to permafrost degradation and aquatic habitat dynamics. Foremost of concern is oil development scheduled to begin starting in 2017 with the construction of a permanent road and drilling pad directly within the Crea Watershed. An interdisciplinary team consisting of scientists and regional stakeholders defined the following scenarios to be simulated using WaSiM: (1) industrial development (impact of water removal from lakes (winter) for ice road construction on downstream (summer) runoff), (2) permanent road construction to allow oil companies access to develop and extract petroleum, and (3) potential modes of climate change including warmer, snowier winters and prolonged drought during summers. Downscaled meteorological output from the Weather Research & Forecasting Model (WRF) will be used as the forcing for analysis of climate scenarios alone and for assessment of land-use responses under varying climate scenarios. Our results will provide regional stakeholders with information on the impacts of climate and land use change on surface water connectivity that affects aquatic habitat, as well as lake hydrologic interactions with permafrost. These finding

  1. Ice-Wedge Polygon Formation Impacts Permafrost Carbon Storage and Vulnerability to Top-Down Thaw in Arctic Coastal Plain Soils

    Science.gov (United States)

    Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.

    2017-12-01

    Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons

  2. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    Science.gov (United States)

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  3. Simulation of long-term influence from technical systems on permafrost with various short-scale and hourly operation modes in Arctic region

    Science.gov (United States)

    Vaganova, N. A.

    2017-12-01

    Technogenic and climatic influences have a significant impact on the degradation of permafrost. Long-term forecasts of such changes during long-time periods have to be taken into account in the oil and gas and construction industries in view to development the Arctic and Subarctic regions. There are considered constantly operating technical systems (for example, oil and gas wells) that affect changes in permafrost, as well as the technical systems that have a short-term impact on permafrost (for example, flare systems for emergency flaring of associated gas). The second type of technical systems is rather complex for simulation, since it is required to reserve both short and long-scales in computations with variable time steps describing the complex technological processes. The main attention is paid to the simulation of long-term influence on the permafrost from the second type of the technical systems.

  4. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia

    Science.gov (United States)

    Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf

    2018-02-01

    Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m-2 and 1.8 kg N m-2 and for Bykovsky Peninsula 25.9 kg C m-2 and 2.2 kg N m-2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr-1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ˜ 5.8 Tg (13.2 kg C m-2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.

  5. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  6. Examining Environmental Gradients with satellite data in permafrost regions - the current state of the ESA GlobPermafrost initative

    Science.gov (United States)

    Grosse, G.; Bartsch, A.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C. R.; Seifert, F. M.; Obu, J.; Nitze, I.; Heim, B.; Haas, A.; Widhalm, B.

    2017-12-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with spaceborne Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014, hdl:10013/epic.45648.d001). These transects have been revised and adjusted within the DUE GlobPermafrost initiative of the European Space Agency. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The status of the Permafrost Information System and first results will be presented. Prototypes of GlobPermafrost datasets include: Modelled mean annual ground temperature by use of land surface temperature and snow water equivalent from satellites Land surface characterization including shrub height, land cover and parameters related to surface roughness Trends from

  7. EXPERIMENT ON LONG-STORAGE OF FOOD PRODUCTS FOODSTUFFS IN CODITION OF PERMAFROST CONTINUED, ARCTIC, 2016

    Directory of Open Access Journals (Sweden)

    S. E. Ulanin

    2016-01-01

    Full Text Available In 1973 the crew of polar expedition, investigating the Middendorff Bay at the messdeck Zarya, discovered the depot of food products hidden in permafrost by head of Russian polar expedition E. Toll in 1900. There were oat flakes ‘Gerkules’ and croutons in the depot. Then the study carried out in Research Institute of Vegetable Drying and Can Industry had shown that all products discovered had preserved all their food qualities. That result leaded to launch up the experimental work on the possibility of preservation of food products and foodstuffs in permafrost till 2050. Quality of product found out in Taymyr Peninsula was analyzed. The results of study on qualities after long preservation in permafrost of such food products and foodstuffs as meat, milk, fish, confectionery, concentrated food, plant seeds were given. As a result of expedition in 2016, 20 samples were taken out and new samples of two types of products were placed into repository. Overall products placed consisted of 23 items, including foodstuffs and plant seeds with account of taking them out in 2025, 2035 and 2050. On the basis of research carried out, it is proved that most of modern and casual food products can be preserved without losing their quality values.

  8. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands

    DEFF Research Database (Denmark)

    Swindles, Graeme T.; Amesbury, Matthew J.; Turner, T. Edward

    2015-01-01

    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (similar to 200 km north of the Arctic Circle). Multivariate statistical ...

  9. THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS

    Directory of Open Access Journals (Sweden)

    O. A. Anisimov

    2012-01-01

    Full Text Available We study the methane emission over the East Siberian Arctic Shelf (ESAS under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime of soil. Our results indicate that the current elevated methane emission from ESAS is responsible for 0.01 ºС global air temperature rise. Even under the hypothetic climate scenario that overestimates the range of near-bottom water temperature rise, projected by the end of the millennium thawing of the bottom sediments is likely to be about90 mand will thus not reach the upper limit of the methane hydrate stability zone that is located 100–140 munderneath the sea bottom. The results of the study do not support the so called «methane bomb» hypothesis that is widely discussed in the scientific literature and in the media.

  10. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    Full Text Available Most applications of land cover maps that have been derived from satellite data over the Arctic require higher thematic detail than available in current global maps. A range of application studies has been reviewed, including up-scaling of carbon fluxes and pools, permafrost feature mapping and transition monitoring. Early land cover mapping studies were driven by the demand to characterize wildlife habitats. Later, in the 1990s, up-scaling of in situ measurements became central to the discipline of land cover mapping on local to regional scales at several sites across the Arctic. This includes the Kuparuk basin in Alaska, the Usa basin and the Lena Delta in Russia. All of these multi-purpose land cover maps have been derived from Landsat data. High resolution maps (from optical satellite data serve frequently as input for the characterization of periglacial features and also flux tower footprints in recent studies. The most used map to address circumpolar issues is the CAVM (Circum Arctic Vegetation Map based on AVHRR (1 km and has been manually derived. It provides the required thematic detail for many applications, but is confined to areas north of the treeline, and it is limited in spatial detail. A higher spatial resolution circumpolar land cover map with sufficient thematic content would be beneficial for a range of applications. Such a land cover classification should be compatible with existing global maps and applicable for multiple purposes. The thematic content of existing global maps has been assessed by comparison to the CAVM and regional maps. None of the maps provides the required thematic detail. Spatial resolution has been compared to used classes for local to regional applications. The required thematic detail increases with spatial resolution since coarser datasets are usually applied over larger areas covering more relevant landscape units. This is especially of concern when the entire Arctic is addressed. A spatial

  11. Tundra permafrost thaw causes significant shifts in energy partitioning

    Directory of Open Access Journals (Sweden)

    Christian Stiegler

    2016-04-01

    Full Text Available Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.

  12. Influences of Moisture Regimes and Functional Plant Types on Nutrient Cycling in Permafrost Regions

    Science.gov (United States)

    McCaully, R. E.; Arendt, C. A.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.; Sevanto, S.; Wales, N. A.; Wullschleger, S.

    2017-12-01

    In the permafrost-dominated Arctic, climatic feedbacks exist between permafrost, soil moisture, functional plant type and presence of nutrients. Functional plant types present within the Arctic regulate and respond to changes in hydrologic regimes and nutrient cycling. Specifically, alders are a member of the birch family that use root nodules to fix nitrogen, which is a limiting nutrient strongly linked to fertilizing Arctic ecosystems. Previous investigations in the Seward Peninsula, AK show elevated presence of nitrate within and downslope of alder patches in degraded permafrost systems, with concentrations an order of magnitude greater than that of nitrate measured above these patches. Further observations within these degraded permafrost systems are crucial to assess whether alders are drivers of, or merely respond to, nitrate fluxes. In addition to vegetative feedbacks with nitrate supply, previous studies have also linked low moisture content to high nitrate production. Within discontinuous permafrost regions, the absence of permafrost creates well-drained regions with unsaturated soils whereas the presence of permafrost limits vertical drainage of soil-pore water creating elevated soil moisture content, which likely corresponds to lower nitrate concentrations. We investigate these feedbacks further in the Seward Peninsula, AK, through research supported by the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic. Using soil moisture and thaw depth as proxies to determine the extent of permafrost degradation, we identify areas of discontinuous permafrost over a heterogeneous landscape and collect co-located soilwater chemistry samples to highlight the complex relationships that exist between alder patches, soil moisture regimes, the presence of permafrost and available nitrate supply. Understanding the role of nitrogen in degrading permafrost systems, in the context of both vegetation present and soil moisture, is crucial

  13. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    Science.gov (United States)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    western Beringia than today enabled dense boreal forests to grow around Lake El'gygytgyn and, in combination with a higher nutrient flux into the lake, promoted primary production. The exceptional warmth during the mid-Pliocene is in accordance with other marine and terrestrial records from the Arctic and indicates a period of enhanced "Arctic amplification". The favourable conditions during the mid-Pliocene were repeatedly interrupted by climate deteriorations, e.g., during Marine Isotope Stage (MIS) M2, when pollen data and sediment proxies indicate a major cooling and the onset of local permafrost around the lake. A gradual vegetation change after c. 3.0 Ma points to the onset of a long-term cooling trend during the Late Pliocene that culminated in major temperature drops, first during MIS G6, and later during MIS 104. These cold events coincide with the onset of an intensified Northern Hemisphere (NH) glaciation and the largest extent of the Cordilleran Ice Sheet, respectively. After the Pliocene/Pleistocene transition, local vegetation and primary production in Lake El'gygtygyn experienced a major change from relatively uniform conditions to a high-amplitude glacial-to-interglacial cyclicity that fluctuated on a dominant 41 kyr obliquity band, but changed to a 100 kyr eccentricity dominance during the Middle Pleistocene transition (MPT) at c. 1.2-0.6 Ma. Periods of exceptional warming in the Pleistocene record of Lake El'gygytgyn with dense boreal forests around and peaks of primary production in the lake are assigned to so-called "super-interglacial" periods. The occurrence of these super-interglacials well corresponds to collapses of the West Antarctic Ice Sheet (WAIS) recorded in ice-free periods in the ANDRILL core, which suggests strong intrahemispheric teleconnections presumably driven by changes in the thermocline ocean circulation.

  14. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  15. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study

    Energy Technology Data Exchange (ETDEWEB)

    Onstott, Tullis C [Princeton University; Pffifner, Susan M; Chourey, Karuna [Oak Ridge National Laboratory

    2014-11-07

    Our results to date indicate that CO2 and CH4 fluxes from organic poor, Arctic cryosols on Axel Heiberg Island are net CH4 sinks and CO2 emitters in contrast to organic-rich peat deposits at sub-Arctic latitudes. This is based upon field observations and a 1.5 year long thawing experiment performed upon one meter long intact cores. The results of the core thawing experiments are in good agreement with field measurements. Metagenomic, metatranscriptomic and metaproteomic analyses indicate that high affinity aerobic methanotrophs belong to the uncultivated USCalpha are present in <1% abundance in these cryosols are are active in the field during the summer and in the core thawing experiments. The methanotrophs are 100 times more abundant than the methanogens. As a result mineral cryosols, which comprise 87% of Arctic tundra, are net methane sinks. Their presence and activity may account for the discrepancies observed between the atmospheric methane concentrations observed in the Arctic predicted by climate models and the observed seasonal fluctuations and decadal trends. This has not been done yet.

  16. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  17. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Manasypov, R.; Lim, A.; Krickov, I.; Kolesnichenko, L. G.; Laudon, H.; Tetzlaff, D.

    2018-03-01

    The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.

  18. Derivation and analysis of a high-resolution estimate of global permafrost zonation

    Directory of Open Access Journals (Sweden)

    S. Gruber

    2012-02-01

    Full Text Available Permafrost underlies much of Earth's surface and interacts with climate, eco-systems and human systems. It is a complex phenomenon controlled by climate and (sub- surface properties and reacts to change with variable delay. Heterogeneity and sparse data challenge the modeling of its spatial distribution. Currently, there is no data set to adequately inform global studies of permafrost. The available data set for the Northern Hemisphere is frequently used for model evaluation, but its quality and consistency are difficult to assess. Here, a global model of permafrost extent and dataset of permafrost zonation are presented and discussed, extending earlier studies by including the Southern Hemisphere, by consistent data and methods, by attention to uncertainty and scaling. Established relationships between air temperature and the occurrence of permafrost are re-formulated into a model that is parametrized using published estimates. It is run with a high-resolution (<1 km global elevation data and air temperatures based on the NCAR-NCEP reanalysis and CRU TS 2.0. The resulting data provide more spatial detail and a consistent extrapolation to remote regions, while aggregated values resemble previous studies. The estimated uncertainties affect regional patterns and aggregate number, and provide interesting insight. The permafrost area, i.e. the actual surface area underlain by permafrost, north of 60° S is estimated to be 13–18 × 106 km2 or 9–14 % of the exposed land surface. The global permafrost area including Antarctic and sub-sea permafrost is estimated to be 16–21 × 106 km2. The global permafrost region, i.e. the exposed land surface below which some permafrost can be expected, is estimated to be 22 ± 3 × 106 km2. A large proportion of this exhibits considerable topography and spatially-discontinuous permafrost, underscoring the importance of attention to scaling issues

  19. Coupled thermo-geophysical inversion for high-latitude permafrost monitoring - assessment of the method and practical considerations

    Science.gov (United States)

    Tomaskovicova, Sonia; Paamand, Eskild; Ingeman-Nielsen, Thomas; Bauer-Gottwein, Peter

    2013-04-01

    difference between the synthetic and the measured apparent resistivities is minimized in a least-squares inversion procedure by adjusting the thermal parameters of the heat model. A site-specific calibration is required since the relation between unfrozen water content and temperature is strongly dependent on the grain size of the soil. We present details of an automated permanent field measurement setup that has been established to collect the calibration data in Ilulissat, West Greenland. Considering the station location in high latitude environment, this setup is unique of its kind since the installation of automated geophysical stations in the Arctic conditions is a challenging task. The main issues are related to availability of adapted equipment, high demand on robustness of the equipment and method due to the harsh environment, remoteness of the field sites and related powering issues of such systems. By showing the results from the new-established geoelectrical station over the freezing period in autumn 2012, we prove the 2D time lapse resistivity tomography to be an effective method for permafrost monitoring in high latitudes. We demonstrate the effectivity of time lapse geoelectrical signal for petrophysical relationship calibration, which is enhanced comparing to sparse measurements.

  20. A New Wave of Permafrost Warming in the Alaskan Interior?

    Science.gov (United States)

    Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.

    2017-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In

  1. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    Science.gov (United States)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  2. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  3. Permafrost Thaw increases Emissions of Nitrous Oxide from Subarctic Peatlands

    Science.gov (United States)

    Voigt, C.; Marushchak, M. E.; Lamprecht, R. E.; Jackowicz-Korczynski, M.; Lindgren, A.; Mastepanov, M.; Christensen, T. R.; Granlund, L.; Tahvanainen, T.; Martikainen, P. J.; Biasi, C.

    2017-12-01

    Permafrost soils in the Arctic are thawing, exposing not only carbon but also large nitrogen stocks. The decomposition of this vast pool of long-term immobile C and N stocks results in the release of greenhouse gases to the atmosphere. Among these, carbon dioxide (CO2) and methane (CH4) are being studied extensively, and gaseous C release from thawing permafrost is known to be substantial. Most recent studies, however, show that Arctic soils may further be a relevant source of the strong greenhouse gas nitrous oxide (N2O). As N2O is almost 300 times more powerful in warming the climate than CO2 based on a 100-yr time horizon, the release of N2O from thawing permafrost could create a significant non-carbon permafrost-climate feedback. To study the effect of permafrost thaw on N2O fluxes, we collected peat mesocosms from a Subarctic permafrost peatland, and subjected these intact soil-plant systems to sequential thawing from the top of the active layer down to the upper permafrost layer. Measurements of N2O fluxes were coupled with detailed soil analyses and process studies. Since N2O fluxes are highly dependent on moisture conditions and vegetation cover, we applied two distinct moisture treatments (dry vs. wet) and simulated permafrost thaw in vegetated as well as in naturally bare mesocosms. Under dry conditions, permafrost thaw clearly increased N2O emissions. We observed the largest post-thaw emissions from bare peat surfaces, a typical landform in subarctic peatlands previously identified as hot spots for Arctic N2O emissions. There, permafrost thaw caused a five-fold increase in emissions (0.56 vs. 2.81 mg N2O m-2 d-1). While water-logged conditions suppressed N2O emissions, the presence of vegetation lowered, but did not prevent post-thaw N2O release. Based on these findings, we show that one fourth of the Arctic land area could be vulnerable for N2O emissions when permafrost thaws. Our results demonstrate that Arctic N2O emissions may be larger than

  4. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  5. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  6. Isolation of dissolved organic matter from permafrost soil and freshwater environments of the Kolyma River basin, east Siberia, for high resolution structural analysis

    Science.gov (United States)

    Dubinenkov, I. V.; Perminova, I. V.; Bulygina, E. B.; Holmes, R. M.; Davydov, S.; Mann, P. J.; Vonk, J.; Zimov, S. A.

    2010-12-01

    The Arctic and Subarctic ecosystems are known to be the most vulnerable with respect to climate change. Hence, research on carbon cycling in the Arctic region is very important for understanding the current climatic trends and their consequences. The Kolyma River watershed is one of the Arctic Ocean’s largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The thaw of permafrost enhanced due to global warming might provide additional large source of organic carbon to the Kolyma River and to the Arctic Ocean as a whole. For estimating the contribution of this source to the total pool of organic carbon, specific structural features of permafrost dissolved organic matter (DOM) as opposed to the waterborne DOM of the Kolyma River should be identified and monitored. The objective of this work was to isolate a representive set of the DOM samples from permafrost soil and freshwater environments of the Kolyma River basin suitable for further structural analysis using high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICR-MS) and 1H NMR spectroscopy. The isolation protocol of DOM used in this study has been developed by Dittmar et al, 2008 for sampling marine DOM for NMR studies. It is based on the solid phase extraction of DOM from seawater using PPL Varian Bond Elute cartridges Those cartridges were shown to possess the highest efficiency in DOM isolation from marine water. Prior to discharge through the cartridge, a water sample was filtered through 0.45 μm filter for separation of particulate matter and acidified to pH 2 using HCl. About 50mg of DOM could be sequestered from aqueous phase using one cartridge. Sorption extent was monitored by measurements of DOC concentration and UV-vis spectra at the inlet and outlet of the cartridge. It was determined that from 60 to 65% of the total DOC could be extracted from the tested samples of freshwater. As a result

  7. LONG TERM SEED PRESERVATION IN PERMAFROST OF ARCTIC; THE HISTORY OF EXPERIMENT AND NEW CHALENGES

    Directory of Open Access Journals (Sweden)

    V. F. Pivovarov

    2016-01-01

    Full Text Available Preservation of biodiverse genetic resources of crops and cultured plants live is the important state task. Plant seeds are suitable object regarded as genetic material to be long termstored, since the each accession is a small package, not demanding a special care. There is a large plant collection over 322 accessions in N.I. Vavilov Institute of Plant Genetic Recourses (VIR, Russia. Genetically determined longevity of seeds can be prolonged by organization of optimized condition of storage. The necessary condition should be created to extend the germination power of seed for long time. There are the seed banks in the world with modern highly technological maintenance, but in case highly extremely situation, the natural seed repository can be more preferable. This sort of seed repository has been launched in the Taymyr Peninsula. Since 1974 the experiment on study of preservation qualities of different products in different packaging has been performed in many research institutes. All-Russian Research Institute of Vegetable Breeding and Seed Production is a partner in the whole experiment. Researchers of breeding laboratories have proved seeds of 27 accessions of main vegetable group, which have been placed in three replications with account of taking the accessions out in 2025, 2035 and 2050.

  8. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    Science.gov (United States)

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  9. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    Czech Academy of Sciences Publication Activity Database

    Majorowicz, J.; Šafanda, Jan; Osadetz, K.

    2012-01-01

    Roč. 8, č. 2 (2012), s. 667-682 ISSN 1814-9324 Institutional research plan: CEZ:AV0Z30120515 Institutional support: RVO:67985530 Keywords : climate change * Beaufort-Mackenzie Basin * permafrost Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.556, year: 2012

  10. Permafrost and urban Development in Norilsk Russia.

    Science.gov (United States)

    Shiklomanov, N. I.; Streletskiy, D. A.; Grebenets, V. I.

    2017-12-01

    The city of Norilsk was established in 1935 as a GULAG mining and metallurgy work camp to explore the rich deposits of non-ferrous metals. By the 1989, the population of Norilsk reached 179,757 people. Two additional cities were developed in proximity to Norilsk in the 1960s-1980s: Talnakh (1989 population 65,710); and Kaerkan (1989 population 29,824) making the Norilsk region a major Arctic metropolis. While such rapid growth is not unusual for developing industrial cities, the geographic location makes Norilsk rather unique among world urban centers. It was built in Central Siberia at 69°51' N latitude (above the Arctic Circle), in region characterized by harsh subarctic climate (mean annual temperature around -10 oC), over forest tundra/tundra transitional landscapes underlined by perennially frozen ground (permafrost). Throughout its existence, the Norilsk region was highly isolated: it is not connected to Russian road and railroad systems. The harsh environmental conditions provided significant and rather unique challenges to Norilsk development. Specifically, the presence of ice-rich permafrost imposed restrictions on application of standard urban planning and engineering practices. This presentation analyzes the history of permafrost construction in Norilsk. It shows how though initial trial and errors, a set of guiding principles and engineering methods of construction on permafrost were developed allowing a rapid urbanization of the area during the 1960-1980s. However, despite significant advances in permafrost engineering, the pronounced permafrost degradation has become evident in Norilsk by the mid 1980s and has accelerated rapidly since the mid 1990s resulting in widespread deformation of buildings. Climatic changes are frequently identified as a major cause of accelerated deterioration of infrastructure build on permafrost. However, we argue that other factors, including the complexity of interactions between deferent components of urban

  11. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  12. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    Science.gov (United States)

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2017-12-13

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  13. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview

    Directory of Open Access Journals (Sweden)

    A. Kääb

    2005-01-01

    Full Text Available Process interactions and chain reactions, the present shift of cryospheric hazard zones due to atmospheric warming, and the potential far reach of glacier disasters make it necessary to apply modern remote sensing techniques for the assessment of glacier and permafrost hazards in high-mountains. Typically, related hazard source areas are situated in remote regions, often difficult to access for physical and/or political reasons. In this contribution we provide an overview of air- and spaceborne remote sensing methods suitable for glacier and permafrost hazard assessment and disaster management. A number of image classification and change detection techniques support high-mountain hazard studies. Digital terrain models (DTMs, derived from optical stereo data, synthetic aperture radar or laserscanning, represent one of the most important data sets for investigating high-mountain processes. Fusion of satellite stereo-derived DTMs with the DTM from the Shuttle Radar Topography Mission (SRTM is a promising way to combine the advantages of both technologies. Large changes in terrain volume such as from avalanche deposits can indeed be measured even by repeat satellite DTMs. Multitemporal data can be used to derive surface displacements on glaciers, permafrost and landslides. Combining DTMs, results from spectral image classification, and multitemporal data from change detection and displacement measurements significantly improves the detection of hazard potentials. Modelling of hazardous processes based on geographic information systems (GIS complements the remote sensing analyses towards an integrated assessment of glacier and permafrost hazards in mountains. Major present limitations in the application of remote sensing to glacier and permafrost hazards in mountains are, on the one hand, of technical nature (e.g. combination and fusion of different methods and data; improved understanding of microwave backscatter. On the other hand, better

  14. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands

    OpenAIRE

    Swindles, Graeme T.; Amesbury, Matthew J.; Turner, T. Edward; Carrivick, Jonathan L.; Woulds, Clare; Raby, Cassandra; Mullan, Donal; Roland, Thomas P.; Galloway, Jennifer M.; Parry, Lauren; Kokfelt, Ulla; Garneau, Michelle; Charman, Dan J.; Holden, Joseph

    2015-01-01

    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a ne...

  15. Subsea Permafrost Mapped Across the U.S. Beaufort Sea Using Multichannel Seismic Data

    Science.gov (United States)

    Brothers, L.; Hart, P. E.; Ruppel, C. D.

    2011-12-01

    Circum-Arctic continental shelves at water depths less than ~100 m were subaerial permafrost prior to the onset of sea-level rise starting in the late Pleistocene. Rapid transgression and the resulting temperature increase at the sediment surface have led to thawing of the inundated permafrost, landward retreat of the leading edge of the permafrost, and dissociation of permafrost-associated gas hydrates. Past numerical modeling has shown that gas hydrate dissociation is particularly pronounced at the permafrost-to-no permafrost transition offshore. On the U.S. Beaufort margin, subsea permafrost has never been systematically mapped, and the best insights about permafrost and associated gas hydrate have been based on a limited number of offshore boreholes and numerical studies, with sometimes contrasting predictions of the permafrost's seaward extent. We bring together 5370 km of multichannel seismic (MCS) data acquired during various proprietary exploration industry and public domain government surveys between 1977 and 1992 to map a velocity anomaly diagnostic of submerged permafrost along 500 km of the US Beaufort coastline. These high-velocity (>~2.8 km/s) refractions (HVR), which are evident in prestack MCS shot records, reveal laterally continuous layers of shallow, ice-bonded, coarse-grained sediments beneath the inner continental shelf. The HVR occur in less than 5% of the tracklines, and calculated HVR depths range from 60 to 350 m below seafloor. The velocity anomaly is not observed seaward of the 20 m isobath, and is only found within 30 km of the current shoreline. These results can be used to: 1) create a map of the minimum distribution of remaining US Beaufort shelf subsea permafrost; 2) reconcile discrepancies between model-predicted and borehole-verified offshore permafrost distribution; and 3) constrain where to expect hydrate dissociation.

  16. The International Permafrost Association: current initiatives for cryospheric research

    Science.gov (United States)

    Schollaen, Karina; Lewkowicz, Antoni G.; Christiansen, Hanne H.; Romanovsky, Vladimir E.; Lantuit, Hugues; Schrott, Lothar; Sergeev, Dimitry; Wei, Ma

    2015-04-01

    The International Permafrost Association (IPA), founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organizations engaged in scientific investigation and engineering work on permafrost. The IPA's primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international field programs and networks. Membership is through adhering national or multinational organizations or as individuals in countries where no Adhering Body exists. The IPA is governed by its Executive Committee and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artificial freezing and periglacial phenomena. This presentation details the IPA core products, achievements and activities as well as current projects in cryospheric research. One of the most important core products is the circumpolar permafrost map. The IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA are the biannually competitively-funded Action Groups which work towards the production of well-defined products over a period of two years. Current IPA Action Groups are working on highly topical and interdisciplinary issues, such as the development of a regional Palaeo-map of Permafrost in Eurasia, the integration of multidisciplinary knowledge about the use of thermokarst and permafrost

  17. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2012-03-01

    Full Text Available Atmospheric methane from episodic gas hydrate (GH destabilization, the "clathrate gun" hypothesis, is proposed to affect past climates, possibly since the Phanerozoic began or earlier. In the terrestrial Beaufort-Mackenzie Basin (BMB, GHs occur commonly below thick ice-bearing permafrost (IBP, but they are rare within it. Two end-member GH models, where gas is either trapped conventionally (Case 1 or where it is trapped dynamically by GH formation (Case 2, were simulated using profile (1-D models and a 14 Myr ground surface temperature (GST history based on marine isotopic data, adjusted to the study setting, constrained by deep heat flow, sedimentary succession conductivity, and observed IBP and Type I GH contacts in Mallik wells. Models consider latent heat effects throughout the IBP and GH intervals. Case 1 GHs formed at ~0.9 km depth only ~1 Myr ago by in situ transformation of conventionally trapped natural gas. Case 2 GHs begin to form at ~290–300 m ~6 Myr ago in the absence of lithological migration barriers. During glacial intervals Case 2 GH layers expand both downward and upward as the permafrost grows downward through and intercalated with GHs. The distinctive model results suggest that most BMB GHs resemble Case 1 models, based on the observed distinct and separate occurrences of GHs and IBP and the lack of observed GH intercalations in IBP. Case 2 GHs formed >255 m, below a persistent ice-filled permafrost layer that is as effective a seal to upward methane migration as are Case 1 lithological seals. All models respond to GST variations, but in a delayed and muted manner such that GH layers continue to grow even as the GST begins to increase. The models show that the GH stability zone history is buffered strongly by IBP during the interglacials. Thick IBP and GHs could have persisted since ~1.0 Myr ago and ~4.0 Myr ago for Cases 1 and 2, respectively. Offshore BMB IBP and GHs formed terrestrially during Pleistocene sea level low

  18. Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior

    NARCIS (Netherlands)

    Bröder, Lisa; Tesi, Tommaso; Salvadó, Joan A.; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Orjan

    2016-01-01

    Ongoing global warming in high latitudes may cause an increasing supply of permafrost-derived organic carbon through both river discharge and coastal erosion to the Arctic shelves. Mobilized permafrost carbon can be either buried in sediments, transported to the deep sea or degraded to CO2 and

  19. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  20. The microbial ecology of permafrost

    DEFF Research Database (Denmark)

    Jansson, Janet; Tas, Neslihan

    2014-01-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost......-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles....

  1. High-Arctic butterflies become smaller with rising temperatures

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Eskildsen, Anne; Hansen, Rikke Reisner

    2015-01-01

    size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500...... individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic...

  2. Permafrost degradation in West Greenland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Ingeman-Nielsen, Thomas

    2012-01-01

    Important aspects of civil engineering in West Greenland relate to the presence of permafrost and mapping of the annual and future changes in the active layer due to the ongoing climatically changes in the Arctic. The Arctic Technology Centre (ARTEK) has worked more than 10 years on this topic...... and the first author has been involved since 1970 in engineering geology, geotechnical engineering and permafrost related studies for foundation construction and infrastructures in towns and communities mainly in West Greenland. We have since 2006 together with the Danish Meteorological Institute, Greenland...... Survey (ASIAQ) and the University of Alaska Fairbanks carried out the US NSF funded project ARC-0612533: Recent and future permafrost variability, retreat and degradation in Greenland and Alaska: An integrated approach. This contribution will present data and observations from the towns Ilulissat...

  3. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena

    2008-01-01

    Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed...... for analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared...

  4. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    Science.gov (United States)

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along sea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  5. Forest decline caused by high soil water conditions in a permafrost region

    Directory of Open Access Journals (Sweden)

    H. Iwasaki

    2010-02-01

    Full Text Available In the permafrost region near Yakutsk, eastern Siberia, Russia, annual precipitation (June–May in 2005–2006 and 2006–2007 exceeded the 26-year (1982–2008 mean of 222±68 mm by 185 mm and 128 mm, respectively, whereas in 2007–2008 the excedent was only 48 mm, well within the range of variability. Yellowing and browning of larch (Larix cajanderi Mayr. trees occurred in an undisturbed forest near Yakutsk in the 2007 summer growing season. Soil water content at a depth of 0.20 m was measured along a roughly 400 m long line transect running through areas of yellowing and browning larch trees (YBL and of normal larch trees (NL. In the two years of supranormal precipitation, soil water content was very high compared to values recorded for the same area in previous studies. For both wet years, the mean degree of saturation (s was significantly greater in YBL than NL areas, whereas the converse was the case for the gas diffusivity in soil. This implies that rather than mitigating water stress suffered during normal precipitation years, elevated soil water conditions adversely affected the growth of larch trees. Eastern Siberia's taiga forest extends widely into the permafrost region. Was such supranormal annual precipitation to extend for more than two years, as might be expected under impending global climate changes, forest recovery may not be expected and emission of greenhouse gas might continue in future.

  6. The long-term fate of permafrost peatlands under rapid climate warming

    Science.gov (United States)

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  7. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    Science.gov (United States)

    Gilichinsky, D.

    2011-12-01

    The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of

  8. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  9. (Arbo)viruses in high European Arctic

    OpenAIRE

    ELSTEROVÁ, Jana

    2016-01-01

    Since an ongoing climate change covers strongly the polar areas. Higher temperatures and related climate parameters bring the emergence of new parasites and their pathogens to higher latitudes. This may influence zoonotic diseases including arthropod-transmitted diseases. The tick species Ixodes uriae, parasitizing seabirds in the Arctic, may transmit many pathogens including various arboviruses, Borrelia spirochetes and Babesia apicomplexans. In the study we diagnosed 89 individuals of seabi...

  10. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Fujun Niu

    2018-02-01

    Full Text Available Permafrost distribution in the Qinghai-Tibet Engineering Corridor (QTEC is of growing interest due to the increase in infrastructure development in this remote area. Empirical models of mountain permafrost distribution have been established based on field sampled data, as a tool for regional-scale assessments of its distribution. This kind of model approach has never been applied for a large portion of this engineering corridor. In the present study, this methodology is applied to map permafrost distribution throughout the QTEC. After spatial modelling of the mean annual air temperature distribution from MODIS-LST and DEM, using high-resolution satellite image to interpret land surface type, a permafrost probability index was obtained. The evaluation results indicate that the model has an acceptable performance. Conditions highly favorable to permafrost presence (≥70% are predicted for 60.3% of the study area, declaring a discontinuous permafrost distribution in the QTEC. This map is useful for the infrastructure development along the QTEC. In the future, local ground-truth observations will be required to confirm permafrost presence in favorable areas and to monitor permafrost evolution under the influence of climate change.

  11. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Mu, C.

    2017-12-01

    Important unknowns remain about how abrupt permafrost collapse (thermokarst) affects carbon balance and greenhouse gas flux, limiting our ability to predict the magnitude and timing of the permafrost carbon feedback. We measured monthly, growing-season fluxes of CO2, CH4, and N2O at a large thermokarst feature in alpine tundra on the northern Qinghai-Tibetan Plateau (QTP). Thermokarst formation disrupted plant growth and soil hydrology, shifting the ecosystem from a growing-season carbon sink to a weak source, but decreasing feature-level CH4 and N2O flux. Temperature-corrected ecosystem respiration from decomposing permafrost soil was 2.7 to 9.5-fold higher than in similar features from Arctic and Boreal regions, suggesting that warmer and dryer conditions on the northern QTP could accelerate carbon decomposition following permafrost collapse. N2O flux was similar to the highest values reported for Arctic ecosystems, and was 60% higher from exposed mineral soil on the feature floor, confirming Arctic observations of coupled nitrification and denitrification in collapsed soils. Q10 values for respiration were typically over 4, suggesting high temperature sensitivity of thawed carbon. Taken together, these results suggest that QTP permafrost carbon in alpine tundra is highly vulnerable to mineralization following thaw, and that N2O production could be an important non-carbon permafrost climate feedback.

  12. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  13. Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-06-01

    As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including

  14. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  15. New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco

    Directory of Open Access Journals (Sweden)

    G. Vieira

    2017-07-01

    Full Text Available Relict and present-day periglacial features have been reported in the literature for the upper reaches of the High Atlas mountains, which is the highest range in North Africa (Djebel Toubkal – 4167 m a.s.l.. A lobate feature in the Irhzer Ikhibi south at 3800 m a.s.l. has been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess the possible presence of permafrost, we analyse data from June 2015 to June 2016 from two air temperature measurement sites at 2370 and 3210 m a.s.l. and from four ground surface temperature (GST sites at 3220, 3815, 3980 and 4160 m a.s.l. to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GSTs were collected at 1 h intervals, and the presence of snow cover at the monitoring sites was validated using Landsat 8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3220 m had a thermal regime characterized by frequent freeze–thaw cycles during the cold season but with few days of snow. When snow settled, the ground surface remained isothermal at 0 °C , indicating the absence of permafrost. The highest sites at 3980 and 4160 m a.s.l. showed very frequent freeze–thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the wind-exposed settings on a ridge and on the summit plateau. The site located at 3815 m in the Irhzer Ikhibi south valley had a cold, stable thermal regime with GST varying from −4.5 to −6 °C from December to March, under a continuous snow cover. The site's location in a concave setting favours wind

  16. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada.

    Science.gov (United States)

    Kohnert, Katrin; Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Sachs, Torsten

    2017-07-19

    Arctic permafrost caps vast amounts of old, geologic methane (CH 4 ) in subsurface reservoirs. Thawing permafrost opens pathways for this CH 4 to migrate to the surface. However, the occurrence of geologic emissions and their contribution to the CH 4 budget in addition to recent, biogenic CH 4 is uncertain. Here we present a high-resolution (100 m × 100 m) regional (10,000 km²) CH 4 flux map of the Mackenzie Delta, Canada, based on airborne CH 4 flux data from July 2012 and 2013. We identify strong, likely geologic emissions solely where the permafrost is discontinuous. These peaks are 13 times larger than typical biogenic emissions. Whereas microbial CH 4 production largely depends on recent air and soil temperature, geologic CH 4 was produced over millions of years and can be released year-round provided open pathways exist. Therefore, even though they only occur on about 1% of the area, geologic hotspots contribute 17% to the annual CH 4 emission estimate of our study area. We suggest that this share may increase if ongoing permafrost thaw opens new pathways. We conclude that, due to permafrost thaw, hydrocarbon-rich areas, prevalent in the Arctic, may see increased emission of geologic CH 4 in the future, in addition to enhanced microbial CH 4 production.

  17. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...... and the previous year's density of musk oxen had a negative effect on the present year's production of arctic willow. Previous year's primary production of arctic willow, in turn, significantly affected the present year's density of musk oxen positively. Climatic factors that affect primary production of plants...

  18. Arctic Solutions The Frozen (Thawing) Relations of the High North

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Ch.

    2010-07-01

    It's cold, inhospitable and deadly. The image of the Arctic in years past is one of bewilderment, ignorance and awe. How the image of the Arctic has changed in recent years can be directly linked to our recognition that the Arctic has a great deal to offer in meeting the basic needs of future generations. Although we are still in awe of the Arctic's cruel beauty, new technologies are making it easier to explore the once unmanageable environment. The Arctic has moved into the mainstream with a host of suitors jockeying for position in the race to possess the Arctic and all that it contains. To highlight this increased interest, Russia's 'National Security Until 2020' initiative, has upgraded the High North to one of Russia's main priorities and identifies the Arctic as liable to produce military conflict in the future linked to competition for the Arctic's abundant raw materials.1 Even Canada, a peaceful and respectful country, has stepped outside the box of traditional Canadian rhetoric by giving Canada's Northern Strategy a tag line: 'Our North, our heritage, our future'. The Arctic is increasingly viewed as central to meeting the challenges of an ever changing world where climate change and economic benefit drive international agreements and policies. However Canada and Russia are not the only actors here. The other Arctic Five states: Denmark, Norway, and the United States of America all lay claims to some area or activity within the Arctic region. The Arctic is a unique part of this world, one that has been left largely untouched by human hands, and one that is on the brink of being changed forever. To fully understand Arctic issues, resource figures must be taken into account. Every nation involved in the Arctic debate has considered and based its policies on its set of numbers and resource estimates. A U.S. Geological Survey (USGS) in 2009 put Arctic resource figures in the range of thirty percent of the

  19. Arctic Solutions The Frozen (Thawing) Relations of the High North

    International Nuclear Information System (INIS)

    Summers, Ch.

    2010-01-01

    It's cold, inhospitable and deadly. The image of the Arctic in years past is one of bewilderment, ignorance and awe. How the image of the Arctic has changed in recent years can be directly linked to our recognition that the Arctic has a great deal to offer in meeting the basic needs of future generations. Although we are still in awe of the Arctic's cruel beauty, new technologies are making it easier to explore the once unmanageable environment. The Arctic has moved into the mainstream with a host of suitors jockeying for position in the race to possess the Arctic and all that it contains. To highlight this increased interest, Russia's 'National Security Until 2020' initiative, has upgraded the High North to one of Russia's main priorities and identifies the Arctic as liable to produce military conflict in the future linked to competition for the Arctic's abundant raw materials.1 Even Canada, a peaceful and respectful country, has stepped outside the box of traditional Canadian rhetoric by giving Canada's Northern Strategy a tag line: 'Our North, our heritage, our future'. The Arctic is increasingly viewed as central to meeting the challenges of an ever changing world where climate change and economic benefit drive international agreements and policies. However Canada and Russia are not the only actors here. The other Arctic Five states: Denmark, Norway, and the United States of America all lay claims to some area or activity within the Arctic region. The Arctic is a unique part of this world, one that has been left largely untouched by human hands, and one that is on the brink of being changed forever. To fully understand Arctic issues, resource figures must be taken into account. Every nation involved in the Arctic debate has considered and based its policies on its set of numbers and resource estimates. A U.S. Geological Survey (USGS) in 2009 put Arctic resource figures in the range of thirty percent of the remaining world reserves of natural gas and ten percent

  20. Improved Understanding of Permafrost Controls on Hydrology in Interior Alaska by Integration of Ground-Based Geophysical Permafrost Characterization and Numerical Modeling

    Science.gov (United States)

    2015-05-01

    freeze/thaw dynamics, geophysics, ground ice, groundwater modeling, hydrologic impacts , interior Alaska, lakes, permafrost, sub-arctic, taliks, Yukon...21  Figure 4.1.1 Location map of Beaver Meadow and Twelvemile study areas...modeling, hydrologic impacts , interior Alaska, lakes, permafrost, sub-arctic, taliks, Yukon Flats Acknowledgements We would like to

  1. Is climate change affecting wolf populations in the high Arctic?

    Science.gov (United States)

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  2. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  3. Using High Spatio-Temporal Optical Remote Sensing to Monitor Dissolved Organic Carbon in the Arctic River Yenisei

    Directory of Open Access Journals (Sweden)

    Pierre-Alexis Herrault

    2016-09-01

    Full Text Available In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM. It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May. The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5 and Landsat 8 (OLI images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM. Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8

  4. Reconstruction of a high-resolution late holocene arctic paleoclimate record from Colville River delta sediments.

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, Kathryn Melissa; Lowry, Thomas Stephen

    2013-10-01

    This work was partially supported by the Sandia National Laboratories, Laboratory Directed Research and Development (LDRD) fellowship program in conjunction with Texas A&M University (TAMU). The research described herein is the work of Kathryn M. Schreiner (Katie) and her advisor, Thomas S. Bianchi and represents a concise description of Katies dissertation that was submitted to the TAMU Office of Graduate Studies in May 2013 in partial fulfillment of her doctorate of philosophy degree. High Arctic permafrost soils contain a massive amount of organic carbon, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This project investigated long term, fine scale particulate organic carbon (POC) delivery by the high-Arctic Colville River into Simpsons Lagoon in the near-shore Beaufort Sea. Modern POC was determined to be a mixture of three sources (riverine soils, coastal erosion, and marine). Downcore POC measurements were performed in a core close to the Colville River output and a core close to intense coastal erosion. Inputs of the three major sources were found to vary throughout the last two millennia, and in the Colville River core covary significantly with Alaskan temperature reconstructions.

  5. Changes to the Carbon and Energy fluxes in a Northern Peatland with Thawing Permafrost

    Science.gov (United States)

    Harder, S. R.; Roulet, N. T.; Crill, P. M.; Strachan, I. B.

    2017-12-01

    The maintenance of thaw of high carbon density landscapes in the permafrost region ultimately depends of how the energy balance is partitioned as temperatures and precipitation change, yet there are comparatively few energy balance studies, especially in peatlands that contain permafrost. While permafrost peatlands are currently net sinks of carbon, as Arctic temperatures rise and permafrost thaws, the future of these ecosystems and their capacity for carbon uptake is in question. Since 2012 we have been measuring the spatially integrated CO2, energy and water vapour fluxes from the Stordalen peatland (68°22'N, 19°03'E) using eddy covariance (EC). The Stordalen peatland is a heterogeneous peatland in the discontinuous permafrost zone where permafrost thaw is actively occurring, resulting in large changes to the landscape from year to year. Areas where permafrost is present are elevated by up to 1.5 m compared to the areas where permafrost has thawed causing differences in water table depth, peat temperatures, snow distribution, vegetation community and therefore in the carbon and energy fluxes. Our EC tower is located on the edge of a permafrost peat plateau (or palsa) where one fetch measures fluxes from an area underlain by permafrost and the other fetch sees the portion of the peatland where the permafrost has thawed. Within each sector, we have an array of soil temperature and water content sensors to determine the physical characteristics of each fetch. Extensive vegetation surveys (based on plant functional types or PFTs) have also been conducted to run a footprint analysis on the flux data to complete a comparative analysis of the magnitude and variability of the carbon and energy exchanges from PFT. The footprint analysis allows us to explain the difference in energy and carbon fluxes by examining the ecological, biogeochemical and physical characteristics within each footprint. We see distinctly different energy partitioning between the fetches

  6. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, Charlotte; Tagesson, Håkan Torbern

    2013-01-01

    The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those...

  7. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  8. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects...... of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing...

  9. The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange

    International Nuclear Information System (INIS)

    Hayes, Daniel J; Yuan, Fengming; Wullschleger, Stan D; Kicklighter, David W; Melillo, Jerry M; McGuire, A David; Chen, Min; Zhuang, Qianlai

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed ‘active layer’ above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this ‘permafrost carbon feedback’ in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO 2 (4.0 Pg C) and CH 4 (0.03 Pg C), but is partially compensated by CO 2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period. (paper)

  10. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    Science.gov (United States)

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  11. Climate change and the permafrost carbon feedback.

    Science.gov (United States)

    Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E

    2015-04-09

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  12. Quantifying Permafrost Characteristics with DCR-ERT

    Science.gov (United States)

    Schnabel, W.; Trochim, E.; Munk, J.; Kanevskiy, M. Z.; Shur, Y.; Fortier, R.

    2012-12-01

    Geophysical methods are an efficient method for quantifying permafrost characteristics for Arctic road design and engineering. In the Alaskan Arctic construction and maintenance of roads requires integration of permafrost; ground that is below 0 degrees C for two or more years. Features such as ice content and temperature are critical for understanding current and future ground conditions for planning, design and evaluation of engineering applications. This study focused on the proposed Foothills West Transportation Access project corridor where the purpose is to construct a new all-season road connecting the Dalton Highway to Umiat. Four major areas were chosen that represented a range of conditions including gravel bars, alluvial plains, tussock tundra (both unburned and burned conditions), high and low centered ice-wedge polygons and an active thermokarst feature. Direct-current resistivity using galvanic contact (DCR-ERT) was applied over transects. In conjunction complimentary site data including boreholes, active layer depths, vegetation descriptions and site photographs was obtained. The boreholes provided information on soil morphology, ice texture and gravimetric moisture content. Horizontal and vertical resolutions in the DCR-ERT were varied to determine the presence or absence of ground ice; subsurface heterogeneity; and the depth to groundwater (if present). The four main DCR-ERT methods used were: 84 electrodes with 2 m spacing; 42 electrodes with 0.5 m spacing; 42 electrodes with 2 m spacing; and 84 electrodes with 1 m spacing. In terms of identifying the ground ice characteristics the higher horizontal resolution DCR-ERT transects with either 42 or 84 electrodes and 0.5 or 1 m spacing were best able to differentiate wedge-ice. This evaluation is based on a combination of both borehole stratigraphy and surface characteristics. Simulated apparent resistivity values for permafrost areas varied from a low of 4582 Ω m to a high of 10034 Ω m. Previous

  13. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  14. Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway)

    Science.gov (United States)

    Frauenfelder, Regula; Isaksen, Ketil; Lato, Matthew J.; Noetzli, Jeannette

    2018-04-01

    On 26 June 2008, a rock avalanche detached in the northeast facing slope of Polvartinden, a high-alpine mountain in Signaldalen, northern Norway. Here, we report on the observed and modelled past and present near-surface temperature regime close to the failure zone, as well as on a subsequent simulation of the subsurface temperature regime, and on initial geomechanical mapping based on laser scanning. The volume of the rock avalanche was estimated to be approximately 500 000 m3. The depth to the actual failure surface was found to range from 40 m at the back of the failure zone to 0 m at its toe. Visible in situ ice was observed in the failure zone just after the rock avalanche. Between September 2009 and August 2013, ground surface temperatures were measured with miniature temperature data loggers at 14 different localities, close to the original failure zone along the northern ridge of Polvartinden and on the valley floor. The results from these measurements and from a basic three-dimensional heat conduction model suggest that the lower altitudinal limit of permafrost at present is at 600-650 m a.s.l., which corresponds to the upper limit of the failure zone. A coupling of our in situ data with regional climate data since 1958 suggests a general gradual warming and that the period with highest mean near surface temperatures on record ended four months before the Signaldalen rock avalanche detached. A comparison with a transient permafrost model run at 10 m depth, representative for areas where snow accumulates, strengthen these findings, which are also in congruence with measurements in nearby permafrost boreholes. It is likely that permafrost in and near the failure zone is presently subject to degradation. This degradation, in combination with the extreme warm year antecedent to the rock failure, is seen to have played an important role in the detaching of the Signaldalen rock avalanche.

  15. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  16. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...

  17. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord....... Seabed gross primary production (GPP) within the 40 m deep photic zone was highest at 10 m (29 mmol O2 m−2 d−1) and decreased to 5 mmol O2 m−2 d−1 at 40 m, while nighttime community respiration (CR) ranged from 11 to 25 mmol O2m−2 d−1. CR decreased to ~2.5 mmol O2m−2 d−1 at 80 m and remained constant...... with further depth. Fauna activity accounted for ~50% of the CR at depths ≤60 m but was primary production...

  18. Impacts of Permafrost on Infrastructure and Ecosystem Services

    Science.gov (United States)

    Trochim, E.; Schuur, E.; Schaedel, C.; Kelly, B. P.

    2017-12-01

    The Study of Environmental Arctic Change (SEARCH) program developed knowledge pyramids as a tool for advancing scientific understanding and making this information accessible for decision makers. Knowledge pyramids are being used to synthesize, curate and disseminate knowledge of changing land ice, sea ice, and permafrost in the Arctic. Each pyramid consists of a one-two page summary brief in broadly accessible language and literature organized by levels of detail including synthesizes and scientific building blocks. Three knowledge pyramids have been produced related to permafrost on carbon, infrastructure, and ecosystem services. Each brief answers key questions with high societal relevance framed in policy-relevant terms. The knowledge pyramids concerning infrastructure and ecosystem services were developed in collaboration with researchers specializing in the specific topic areas in order to identify the most pertinent issues and accurately communicate information for integration into policy and planning. For infrastructure, the main issue was the need to build consensus in the engineering and science communities for developing improved methods for incorporating data applicable to building infrastructure on permafrost. In ecosystem services, permafrost provides critical landscape properties which affect basic human needs including fuel and drinking water availability, access to hunting and harvest, and fish and wildlife habitat. Translating these broad and complex topics necessitated a systematic and iterative approach to identifying key issues and relating them succinctly to the best state of the art research. The development of the knowledge pyramids provoked collaboration and synthesis across distinct research and engineering communities. The knowledge pyramids also provide a solid basis for policy development and the format allows the content to be regularly updated as the research community advances.

  19. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  20. Widespread release of old carbon across the Siberian Arctic echoed by its large rivers

    Directory of Open Access Journals (Sweden)

    Ö. Gustafsson

    2011-06-01

    Full Text Available Over decadal-centennial timescales, only a few mechanisms in the carbon-climate system could cause a massive net redistribution of carbon from land and ocean systems to the atmosphere in response to climate warming. The largest such climate-vulnerable carbon pool is the old organic carbon (OC stored in Arctic permafrost (perennially frozen soils. Climate warming, both predicted and now observed to be the strongest globally in the Eurasian Arctic and Alaska, causes thaw-release of old permafrost carbon from local tundra sites. However, a central challenge for the assessment of the general vulnerability of this old OC pool is to deduce any signal integrating its release over larger scales. Here we examine radiocarbon measurements of molecular soil markers exported by the five Great Russian-Arctic Rivers (Ob, Yenisey, Lena, Indigirka and Kolyma, employed as natural integrators of carbon release processes in their watersheds. The signals held in estuarine surface sediments revealed that average radiocarbon ages of n-alkanes increased east-to-west from 6400 yr BP in Kolyma to 11 400 yr BP in Ob. This is consistent with westwards trends of both warmer climate and more degraded organic matter as indicated by the ratio of high molecular weight (HMW n-alkanoic acids to HMW n-alkanes. The dynamics of Siberian permafrost can thus be probed via the molecular-radiocarbon signal as carried by Arctic rivers. Old permafrost carbon is at present vulnerable to mobilization over continental scales. Climate-induced changes in the radiocarbon fingerprint of released permafrost carbon will likely depend on changes in both permafrost coverage and Arctic soil hydraulics.

  1. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  2. Permafrost-An alternative target material for ultra-high energy neutrino detection?

    International Nuclear Information System (INIS)

    Nahnhauer, R.; Rostovtsev, A.A.; Tosi, D.

    2008-01-01

    The interest in the detection of cosmic neutrinos with energies above 10 17 eV has increased considerably in recent years. Possible target materials for in-matter arrays of ∼100 km 3 size under discussion are water, ice and rock salt. Here we propose to investigate permafrost as an additional alternative, covering ∼20% of Earth land surface and reaching down to more than 1000 m depth at certain locations. If sufficiently large attenuation lengths for radio and acoustic signals can be demonstrated by in-situ measurements, the construction of a large hybrid array within this material may be possible in the Northern Hemisphere. Properties and problems of a possible location in Siberia are discussed below. Some acoustic data are compared with laboratory measurements using 'artificial' permafrost

  3. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.

    Science.gov (United States)

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-02-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH(4) and CO(2) in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH(4)-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO(2) sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH(4) emissions will critically depend on the response of the methanotrophic bacteria.

  4. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses

    Science.gov (United States)

    Harris, Charles; Arenson, Lukas U.; Christiansen, Hanne H.; Etzelmüller, Bernd; Frauenfelder, Regula; Gruber, Stephan; Haeberli, Wilfried; Hauck, Christian; Hölzle, Martin; Humlum, Ole; Isaksen, Ketil; Kääb, Andreas; Kern-Lütschg, Martina A.; Lehning, Michael; Matsuoka, Norikazu; Murton, Julian B.; Nötzli, Jeanette; Phillips, Marcia; Ross, Neil; Seppälä, Matti; Springman, Sarah M.; Vonder Mühll, Daniel

    2009-02-01

    We present a review of the changing state of European permafrost within a spatial zone that includes the continuous high latitude arctic permafrost of Svalbard and the discontinuous high altitude mountain permafrost of Iceland, Fennoscandia and the Alps. The paper focuses on methodological developments and data collection over the last decade or so, including research associated with the continent-scale network of instrumented permafrost boreholes established between 1998 and 2001 under the European Union PACE project. Data indicate recent warming trends, with greatest warming at higher latitudes. Equally important are the impacts of shorter-term extreme climatic events, most immediately reflected in changes in active layer thickness. A large number of complex variables, including altitude, topography, insolation and snow distribution, determine permafrost temperatures. The development of regionally calibrated empirical-statistical models, and physically based process-oriented models, is described, and it is shown that, though more complex and data dependent, process-oriented approaches are better suited to estimating transient effects of climate change in complex mountain topography. Mapping and characterisation of permafrost depth and distribution requires integrated multiple geophysical approaches and recent advances are discussed. We report on recent research into ground ice formation, including ice segregation within bedrock and vein ice formation within ice wedge systems. The potential impacts of climate change on rock weathering, permafrost creep, landslides, rock falls, debris flows and slow mass movements are also discussed. Recent engineering responses to the potentially damaging effects of climate warming are outlined, and risk assessment strategies to minimise geological hazards are described. We conclude that forecasting changes in hazard occurrence, magnitude and frequency is likely to depend on process-based modelling, demanding improved

  5. Semiautomatic mapping of permafrost in the Yukon Flats, Alaska

    Science.gov (United States)

    Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer

    2016-01-01

    Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.

  6. Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Mann, Benjamin F; Chen, Hongmei; Herndon, Elizabeth M; Chu, Rosalie K; Tolic, Nikola; Portier, Evan F; Roy Chowdhury, Taniya; Robinson, Errol W; Callister, Stephen J; Wullschleger, Stan D; Graham, David E; Liang, Liyuan; Gu, Baohua

    2015-01-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observed degradation potentials. Compounds with a CHO index score between -1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.

  7. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    Science.gov (United States)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  8. InSAR observation of seasonal ground surface deformation in permafrost area near Batagay, Siberia

    Science.gov (United States)

    Yanagiya, K.; Furuya, M.

    2017-12-01

    Thawing of permafrost can lead to ground deformation. Ground deformation has been studied as a serious problem in the Arctic Ocean coastal area such as Russia for a long time, because the deformation causes damage to architectures at these areas. However, there have been no quantitative observation data, and the spatial and temporal distributions have hardly been investigated. On the other hand, by the recently global warming influence, the importance of organic carbon stored in permafrost is pointed out. Although the release of methane gas is confirmed in some thermokarst lakes, it is very difficult to observe the permafrost in a wide area by field study. Instead, it is technically possible to monitor the subsidence and uplift of the ground over the permafrost area, which could potentially make a significant contribution to the monitoring thawing process of permafrost. In this study, we attempted to detect ground deformation signal in permafrost area by remote sensing using interferometric synthetic aperture radar (InSAR). Using the data of two SAR satellites ALOS and ALOS2 launched by JAXA, we observed recent ground deformation from 2007 to 2016. Particularly recent observations of ALOS2 from 2014 to 2016 discovered distant displacements towards the LOS direction in the northeast region from the town of Batagay,Siberia. The diameter of the displacements area covers about 7.7 km. In this study, we considered that this signal is likely to be due to permafrost thawing, we also investigated the seasonal characteristics and looked back ALOS data of this area. In addition, since the high latitude area, observation results include noise due to the ionosphere, so we tried to remove the noise.

  9. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    Science.gov (United States)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  10. Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway

    Directory of Open Access Journals (Sweden)

    R. Frauenfelder

    2018-04-01

    Full Text Available On 26 June 2008, a rock avalanche detached in the northeast facing slope of Polvartinden, a high-alpine mountain in Signaldalen, northern Norway. Here, we report on the observed and modelled past and present near-surface temperature regime close to the failure zone, as well as on a subsequent simulation of the subsurface temperature regime, and on initial geomechanical mapping based on laser scanning. The volume of the rock avalanche was estimated to be approximately 500 000 m3. The depth to the actual failure surface was found to range from 40 m at the back of the failure zone to 0 m at its toe. Visible in situ ice was observed in the failure zone just after the rock avalanche. Between September 2009 and August 2013, ground surface temperatures were measured with miniature temperature data loggers at 14 different localities, close to the original failure zone along the northern ridge of Polvartinden and on the valley floor. The results from these measurements and from a basic three-dimensional heat conduction model suggest that the lower altitudinal limit of permafrost at present is at 600–650 m a.s.l., which corresponds to the upper limit of the failure zone. A coupling of our in situ data with regional climate data since 1958 suggests a general gradual warming and that the period with highest mean near surface temperatures on record ended four months before the Signaldalen rock avalanche detached. A comparison with a transient permafrost model run at 10 m depth, representative for areas where snow accumulates, strengthen these findings, which are also in congruence with measurements in nearby permafrost boreholes. It is likely that permafrost in and near the failure zone is presently subject to degradation. This degradation, in combination with the extreme warm year antecedent to the rock failure, is seen to have played an important role in the detaching of the Signaldalen rock avalanche.

  11. Paleoclimate records at high latitude in Arctic during the Paleogene

    Science.gov (United States)

    Salpin, Marie; Schnyder, Johann; Baudin, François; Suan, Guillaume; Labrousse, Loïc; Popescu, Speranta; Suc, Jean-Pierre

    2015-04-01

    Paleoclimate records at high latitude in Arctic during the Paleogene SALPIN Marie1,2, SCHNYDER Johann1,2, BAUDIN François1,2, SUAN Guillaume3, LABROUSSE Loïc1,2, POPESCU Speranta4, SUC Jean-Pierre1,4 1: Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005, Paris, France 2: CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F 75005 Paris, France 3: UCB Lyon 1, UMR 5276, LGLTPE, 69622 Villeurbanne Cedex, France 4: GEOBIOSTRATDATA.CONSULTING, 385 Route du Mas Rillier 69140 Rillieux la Pape, France The Paleogene is a period of important variations of the Earth climate system either in warming or cooling. The climatic optima of the Paleogene have been recognized both in continental and marine environment. This study focus on high latitudes of the northern hemisphere, in the Arctic Basin. The basin has had an influence on the Cenozoic global climate change according to its polar position. Is there a specific behaviour of the Arctic Basin with respect to global climatic stimuli? Are there possible mechanisms of coupling/decoupling of its dynamics with respect to the global ocean? To answer these questions a unique collection of sedimentary series of Paleogene age interval has been assembled from the Laurentian margin in Northern Yukon (Canada) and from the Siberian margin (New Siberian Islands). Selected continental successions of Paleocene-Eocene age were used to study the response of the Arctic system to known global events, e.g. the climatic optima of the Paleogene (the so-called PETM, ETM2 or the Azolla events). Two sections of Paleocene-Eocene age were sampled near the Mackenzie delta, the so-called Coal Mine (CoMi) and Caribou Hills (CaH) sections. The aim of the study is to precise the climatic fluctuations and to characterise the source rock potential of the basin, eventually linked to the warming events. This study is based on data of multi-proxy analyses: mineralogy on bulk and clay

  12. High bicarbonate assimilation in the dark by Arctic bacteria.

    Science.gov (United States)

    Alonso-Sáez, Laura; Galand, Pierre E; Casamayor, Emilio O; Pedrós-Alió, Carlos; Bertilsson, Stefan

    2010-12-01

    Although both autotrophic and heterotrophic microorganisms incorporate CO₂ in the dark through different metabolic pathways, this process has usually been disregarded in oxic marine environments. We studied the significance and mediators of dark bicarbonate assimilation in dilution cultures inoculated with winter Arctic seawater. At stationary phase, bicarbonate incorporation rates were high (0.5-2.5 μg C L⁻¹ d⁻¹) and correlated with rates of bacterial heterotrophic production, suggesting that most of the incorporation was due to heterotrophs. Accordingly, very few typically chemoautotrophic bacteria were detected by 16S rRNA gene cloning. The genetic analysis of the biotin carboxylase gene accC putatively involved in archaeal CO₂ fixation did not yield any archaeal sequence, but amplified a variety of bacterial carboxylases involved in fatty acids biosynthesis, anaplerotic pathways and leucine catabolism. Gammaproteobacteria dominated the seawater cultures (40-70% of cell counts), followed by Betaproteobacteria and Flavobacteria as shown by catalyzed reporter deposition fluorescence in situ hybridization (CARDFISH). Both Beta- and Gammaproteobacteria were active in leucine and bicarbonate uptake, while Flavobacteria did not take up bicarbonate, as measured by microautoradiography combined with CARDFISH. Within Gammaproteobacteria, Pseudoalteromonas-Colwellia and Oleispira were very active in bicarbonate uptake (ca. 30 and 70% of active cells, respectively), while the group Arctic96B-16 did not take up bicarbonate. Our results suggest that, potentially, the incorporation of CO₂ can be relevant for the metabolism of specific Arctic heterotrophic phylotypes, promoting the maintenance of their cell activity and/or longer survival under resource depleted conditions.

  13. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  14. Evolution of high-Arctic glacial landforms during deglaciation

    Science.gov (United States)

    Midgley, N. G.; Tonkin, T. N.; Graham, D. J.; Cook, S. J.

    2018-06-01

    Glacial landsystems in the high-Arctic have been reported to undergo geomorphological transformation during deglaciation. This research evaluates moraine evolution over a decadal timescale at Midtre Lovénbreen, Svalbard. This work is of interest because glacial landforms developed in Svalbard have been used as an analogue for landforms developed during Pleistocene mid-latitude glaciation. Ground penetrating radar was used to investigate the subsurface characteristics of moraines. To determine surface change, a LiDAR topographic data set (obtained 2003) and a UAV-derived (obtained 2014) digital surface model processed using structure-from-motion (SfM) are also compared. Evaluation of these data sets together enables subsurface character and landform response to climatic amelioration to be linked. Ground penetrating radar evidence shows that the moraine substrate at Midtre Lovénbreen includes ice-rich (radar velocities of 0.17 m ns-1) and debris-rich (radar velocities of 0.1-0.13 m ns-1) zones. The ice-rich zones are demonstrated to exhibit relatively high rates of surface change (mean thresholded rate of -4.39 m over the 11-year observation period). However, the debris-rich zones show a relatively low rate of surface change (mean thresholded rate of -0.98 m over the 11-year observation period), and the morphology of the debris-rich landforms appear stable over the observation period. A complex response of proglacial landforms to climatic warming is shown to occur within and between glacier forelands as indicated by spatially variable surface lowering rates. Landform response is controlled by the ice-debris balance of the moraine substrate, along with the topographic context (such as the influence of meltwater). Site-specific characteristics such as surface debris thickness and glaciofluvial drainage are, therefore, argued to be a highly important control on surface evolution in ice-cored terrain, resulting in a diverse response of high-Arctic glacial landsystems

  15. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    Science.gov (United States)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  16. Assessment of three mitigation techniques for permafrost protection

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr

    The presence of permafrost is an important aspect in civil engineering in arctic regions. The construction of engineering structures, such as road and airfield embankments, will change the thermal regime of the ground, and may lead to permafrost degradation under or adjacent to such structures....... This problem, has in the last decades, been amplified by the climate warming, which has been most evident in the arctic regions. The construction of a road embankment usually results in an increased mean annual surface temperature, which will increase the thawing of permafrost and expose the road embankment...... objective has been to study the three above-mentioned techniques and evaluate their potential for minimizing the problems with thaw settlements in permafrost areas. The air convection embankment and heat drain techniques have been tested for the implementation in the shoulders of road and airfield...

  17. Metabolic rate and thermal conductance of lemmings from high-arctic Canada and Siberia

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Agrell, J.; Lindström, A.

    2002-01-01

    The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada,

  18. The effect of permafrost thaw on short- and long-term carbon accumulation in permafrost mires

    Science.gov (United States)

    Olid, Carolina; Klaminder, Jonatan; Monteux, Sylvain; Johansson, Margareta; Dorrepaal, Ellen

    2017-04-01

    Permafrost stores twice as much carbon (C) as is currently present in the atmosphere. During recent years, warmer temperatures in the Arctic has caused rapid thawing of permafrost, which have dramatically altered permafrost C storage by increasing both microbial decomposition and plant productivity. Although current research focuses on the effects of climate change on these two processes, there are still no scientific consensus about the magnitude or even the direction of future C feedbacks from permafrost ecosystems. Field manipulation experiments have been widely used during the last decade to improve our knowledge about the net effects of permafrost thaw in the permafrost C storage. However, due to the slow response (decades) of permafrost ecosystems to environmental changes and the short-time nature of these experiments (usually shorter than 5-9 years), there are still concerns when attempting to extrapolate the results to predict long term effects. In addition, measurements are mostly taken exclusively during the summer season, without taking into account inter-annual variability in C fluxes and underestimating microbial activity throughout the cold season. The need to develop a comprehensive understanding of C fluxes over the entire year and at long temporal scales sets the basis of this study. This study aims to quantify the effects of permafrost thawing in permafrost C fluxes using a 12 years permafrost thaw experiment in northern Sweden. Our aims were to quantify the effect of permafrost thaw in both decomposition and primary production in active layer and newly thawed permafrost, and its implications for the C balance. Based on previous observations, we hypothesized that 1) soil decomposition rates were higher in manipulated thaw plots. However, 2) the observed increase in nutrients availability and the higher presence of vascular plants after thawing stimulate primary production, which compensates to some extent the increased C losses by respiration. To

  19. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  20. Seasonal narwhal habitat associations in the high Arctic

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Logdson, M.L.

    2004-01-01

    Movements and behavior of top marine predators are often closely linked with productive oceanic fronts or regional prey aggregations. Consequently, it is of interest to quantify habitat needs and preferences, which can facilitate predictions of conditions favoring persistence and success....... Multivariate habitat models of movements and dive behavior of narwhals (Monodon monoceros, Linnaeus) in the eastern Canadian high Arctic and West Greenland were developed using data collected from satellite telemetry studies on three separate sub-populations. Twenty-six narwhals were captured between 1993...... and 2000 and fitted with satellite-linked time-depth recorders. Geographic positions of whales at 24-h time steps were linked to dive behavior variables compressed on a daily scale, including numbers of dives to different target depths or durations, time near the surface, daily dive rate, and travel speed...

  1. From the Canadian High Arctic to Mars by Analogue

    Science.gov (United States)

    Soare, R. J.; Pollard, W. H.

    2002-12-01

    Planetary scientists are limited in their understanding of physical bodies in the solar system by the lack of primary data or knowledge. Analogue science is science practised in absentia, precisely in those instances when a non-terrestrial physical environment lies beyond one's direct, empirical grasp. Recognising that some environments on Earth may mirror present or past conditions on Mars, planetary scientists have invoked terrestrial analogues with increasing regularity over the last thirty years as fonts of putative understanding. Notwithstanding its ubiquity in planetary science, analogical reasoning has stood, by and large, unconstrained by rules or guidelines of usage. In order to redress this imbalance we propose to take two steps: 1. introduce primary data on newly discovered pingos at Axel Heiberg Island in the Canadian High Arctic, and 2. coalesce these and related data on Martian glacial, peri-glacial and fluvio-glacial landforms as a model with which to evaluate the meaningfulness of analogical reasoning in planetary science.

  2. Uptake of radionuclides by vegetation at a High Arctic location

    International Nuclear Information System (INIS)

    Dowdall, M.; Gwynn, J.P.; Moran, C.; O'Dea, J.; Davids, C.; Lind, B.

    2005-01-01

    Radionuclide levels in vegetation from a High Arctic location were studied and compared to in situ soil concentrations. Levels of the anthropogenic radionuclide 137 Cs and the natural radionuclides 40 K, 238 U, 226 Ra and 232 Th are discussed and transfer factor (TF) values and aggregated transfer (Tag) values are calculated for vascular plants. Levels of 137 Cs in vegetation generally followed the order mosses > lichen > vascular plants. The uptake of 137 Cs in vascular plants showed an inverse relationship with the uptake of 40 K, with 137 Cs TF and Tag values generally higher than 40 K TF and Tag values. 40 K activity concentrations in all vegetation showed little correlation to associated soil concentrations, while the uptake of 238 U, 226 Ra and 232 Th by vascular and non-vascular plants was generally low. - Uptake of the anthropogenic radionuclide 137 Cs is highest for moss species

  3. Aerosol Size and Chemical Composition in the Canadian High Arctic

    Science.gov (United States)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  4. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  5. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  6. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  7. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  8. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    Science.gov (United States)

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  10. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    NARCIS (Netherlands)

    Vonk, J.E.; Mann, P.J.; Dowdy, K.L.; Davydova, A.; Davydov, S.P.; Zimov, N.; Spencer, R.G.M.; Bulygina, E.B.; Eglinton, T.I.; Holmes, R.M.

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved

  11. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  12. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    Science.gov (United States)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  13. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    International Nuclear Information System (INIS)

    Vonk, J E; Mann, P J; Spencer, R G M; Bulygina, E B; Holmes, R M; Dowdy, K L; Davydova, A; Davydov, S P; Zimov, N; Eglinton, T I

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved and highly biologically available (biolabile) upon thaw. A better understanding of the processes regulating Yedoma degradation is important to improve estimates of the response and magnitude of permafrost carbon feedbacks to climate warming. In this study, we examine the composition of ice wedges and the influence of ice wedge thaw on the biolability of Yedoma OM. Incubation assays were used to assess OM biolability, fluorescence spectroscopy to characterize the OM composition, and potential enzyme activity rates to examine the controls and regulation of OM degradation. We show that increasing amounts of ice wedge melt water in Yedoma-leached incubations enhanced the loss of dissolved OM over time. This may be attributed to the presence of low-molecular weight compounds and low initial phenolic content in the OM of ice wedges, providing a readily available substrate that promotes the degradation of Yedoma OC. The physical vulnerability of ice wedges upon thaw (causing irreversible collapse), combined with the composition of ice wedge-engrained OM (co-metabolizing old OM), underlines the particularly strong potential of Yedoma to generate a positive feedback to climate warming relative to other forms of non-ice wedge permafrost. (letter)

  14. High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae).

    Science.gov (United States)

    Tkach, Natalia; Ree, Richard H; Kuss, Patrick; Röser, Martin; Hoffmann, Matthias H

    2014-07-01

    The origin of the arctic flora covering the northernmost treeless areas is still poorly understood. Arctic plants may have evolved in situ or immigrated from the adjacent ecosystems. Frequently arctic species have disjunctive distributions between the Arctic and high mountain systems of the temperate zone. This pattern may result from long distance dispersal or from glacial plant migrations and extinctions of intermediate populations. The hemiparasitic genus Pedicularis is represented in the Arctic by c. 28 taxa and ranks among the six most species-rich vascular plant genera of this region. In this study, we test the hypothesis that these lineages evolved from predecessors occurring in northern temperate mountain ranges, many of which are current centers of diversity for the genus. We generated a nuclear ribosomal and chloroplast DNA phylogeny including almost all of the arctic taxa and nearly half of the genus as a whole. The arctic taxa of Pedicularis evolved 12-14 times independently and are mostly nested in lineages that otherwise occur in the high mountains of Eurasia and North America. It appears that only three arctic lineages arose from the present-day center of diversity of the genus, in the Hengduan Mountains and Himalayas. Two lineages are probably of lowland origin. Arctic taxa of Pedicularis show considerable niche conservatism with respect to soil moisture and grow predominantly in moist to wet soils. The studied characteristics of ecology, morphology, and chromosome numbers of arctic Pedicularis show a heterogeneous pattern of evolution. The directions of morphological changes among the arctic lineages show opposing trends. Arctic taxa are chiefly diploid, the few tetraploid chromosome numbers of the genus were recorded only for arctic taxa. Five arctic Pedicularis are annuals or biennials, life forms otherwise rare in the Arctic. Other genera of the Orobanchaceae consist also of an elevated number of short-lived species, thus hemiparasitism may

  15. Size resolved airborne particulate polysaccharides in summer high Arctic

    Science.gov (United States)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that

  16. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Arctic and Subarctic Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in arctic and subarctic climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  17. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  18. A high arctic experience of uniting research and monitoring

    Science.gov (United States)

    Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas

    2017-07-01

    Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.

  19. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  20. Four years of UAS Imagery Reveals Vegetation Change Due to Permafrost Thaw

    Science.gov (United States)

    DelGreco, J. L.; Herrick, C.; Varner, R. K.; McArthur, K. J.; McCalley, C. K.; Garnello, A.; Finnell, D.; Anderson, S. M.; Crill, P. M.; Palace, M. W.

    2017-12-01

    Warming trends in sub-arctic regions have resulted in thawing of permafrost which in turn induces change in vegetation across peatlands. Collapse of palsas (i.e. permafrost plateaus) has also been correlated to increases in methane (CH4) emissions to the atmosphere. Vegetation change provides new microenvironments that promote CH4 production and emission, specifically through plant interactions and structure. By quantifying the changes in vegetation at the landscape scale, we will be able to understand the impact of thaw on CH4 emissions in these complex and climate sensitive northern ecosystems. We combine field-based measurements of vegetation composition and high resolution Unmanned Aerial Systems (UAS) imagery to characterize vegetation change in a sub-arctic mire. At Stordalen Mire (1 km x 0.5 km), Abisko, Sweden, we flew a fixed-wing UAS in July of each year between 2014 and 2017. High precision GPS ground control points were used to georeference the imagery. Seventy-five randomized square-meter plots were measured for vegetation composition and individually classified into one of five cover types, each representing a different stage of permafrost degradation. With this training data, each year of imagery was classified by cover type. The developed cover type maps were also used to estimate CH4 emissions across the mire based on average flux CH4 rates from each cover type obtained from flux chamber measurements collected at the mire. This four year comparison of vegetation cover and methane emissions has indicated a rapid response to permafrost thaw and changes in emissions. Estimation of vegetation cover types is vital in our understanding of the evolution of northern peatlands and its future role in the global carbon cycle.

  1. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...

  2. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  3. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  4. What can high frequency data tell us about hydrological and biogeochemical processes in a permafrost-underlain watershed that we do not already know?

    Science.gov (United States)

    Carey, S. K.; Shatilla, N. J.; Tang, W.

    2017-12-01

    Permafrost and frozen ground play a key role in the delivery of water and solutes from the landscape to the stream, and in biogeochemical cycling by acting as a cold season or semi-permanent aquitard. Conceptual models of permafrost hydrology have been well defined for over 40 years, yet renewed interest in the face of global climate change and rapid degradation of frozen ground has provided an opportunity to revisit previous paradigms. At the same time, new instruments and techniques to understand coupled hydrological and biogeochemical processes have emerged, providing a more nuanced view of northern systems. High-frequency sub-hourly measures of flows, water quality and biogeochemical parameters such as salinity and chromophoric dissolved organic matter (CDOM), along with eddy covariance systems provide considerable data, yet using this data to reveal new process information remains challenging. In this presentation, multi-year high frequency data sets of water, solute and carbon fluxes from Granger Creek, an instrumented alpine watershed with discontinuous permafrost within the Wolf Creek Research Basin, Yukon Territory, Canada, will be shown. While several decades of hydrometric and geochemical data exist for Granger Creek, inter-annual variability is considerable and makes evaluating long-term trends difficult. Insights derived from high-frequency sub-hourly salinity, CDOM and flow over recent years reveal that hysteresis loops among variables can be used to assess changing connectivity and flow paths as both magnitude and direction of loops can be used to infer landscape-scale linkages. These patterns highlight spatial connections among landscape units not previously observed, and identify periods when hydrological and biogeochemical cycles are coupled. Evaluation of these patterns at the headwater scale provides alternate hypotheses for how permafrost landscapes will respond to a changing climate.

  5. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  6. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; Huissteden, van J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2, 3. In recent decades, Arctic tundra ecosystems have changed

  7. Permafrost collapse after shrub removal shifts tundra ecosystem into methane source

    NARCIS (Netherlands)

    Nauta, A.L.; Heijmans, M.M.P.D.; Blok, D.; Limpens, J.; Elberling, B.; Gallagher, A.; Li, B.; Petrov, R.E.; Maximov, T.C.; van Huissteden, J.; Berendse, F.

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming. In recent decades, Arctic tundra ecosystems have changed rapidly,

  8. The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Arctic Canada.

    Science.gov (United States)

    Stidham, Thomas A; Eberle, Jaelyn J

    2016-02-12

    Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52-53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle.

  9. Organic Carbon Delivery from a High-Arctic North American Watershed: Implications for Beaufort Sea Carbon Cycling in a Changing Climate

    Science.gov (United States)

    Schreiner, K. M.; Bruner, V. J.; Kessler, J. D.

    2016-12-01

    Riverine delivery of terrestrial organic carbon (OC) and subsequent burial in coastal margins is a significant sink for OC on Earth. The amount of fresh OC compared to old OC buried in coastal margins affects the long-term ratio of O2 to CO2 in the atmosphere. And yet, the fate of OC on marine shelves is not well known. Analysis of the fate of terrestrial OC from Arctic rivers are especially important, as half of the global soil carbon pool resides in the top few meters of Arctic permafrost soils, and much of this OC, more than twice the amount of carbon currently residing in the atmospheric CO2 pool, is thousands of years old and under threat of disturbance from a warming Arctic climate. Flux of this old, deeply-buried permafrost OC to coastal sediments has already been noted in both the Russian and Alaskan Arctic. This study focuses on OC delivered by the Colville River, a medium-sized North American Arctic river that drains the North Slope of Alaska, and has been previously shown to be an important source of extremely old OC to coastal Beaufort Sea sediments. Here we report stable carbon isotopes and radiocarbon ages of particulate OC (POC), dissolved OC (DOC), and surface sediments from the Beaufort Sea near the Colville River outflow and nearby Simpson Lagoon from samples collected in August 2015. In general, DOC ages are younger than POC ages, and both have stable isotope signatures indicative of terrestrial C3 sources. Waters with higher concentrations of DOC tend to have younger radiocarbon ages and more enriched stable isotope signatures, indicating the presence of aquatic primary production. These data represent some of the first water column radiocarbon signatures to be reported from an Arctic river the size of the Colville; while the six largest Arctic rivers have been well studied over the past few decades, much less data is available for small and medium sized Arctic rivers.

  10. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production

    Science.gov (United States)

    Stapel, Janina G.; Schwamborn, Georg; Schirrmeister, Lutz; Horsfield, Brian; Mangelsdorf, Kai

    2018-04-01

    In this study the organic matter (OM) in several permafrost cores from Bol'shoy Lyakhovsky Island in NE Siberia was investigated. In the context of the observed global warming the aim was to evaluate the potential of freeze-locked OM from different depositional ages to act as a substrate provider for microbial production of greenhouse gases from thawing permafrost. To assess this potential, the concentrations of free and bound acetate, which form an appropriate substrate for methanogenesis, were determined. The largest free-acetate (in pore water) and bound-acetate (organic-matrix-linked) substrate pools were present in interstadial marine isotope stage (MIS) 3 and stadial MIS 4 Yedoma permafrost deposits. In contrast, deposits from the last interglacial MIS 5e (Eemian) contained only a small pool of substrates. The Holocene (MIS 1) deposits revealed a significant bound-acetate pool, representing a future substrate potential upon release during OM degradation. Additionally, pyrolysis experiments on the OM allocated an increased aliphatic character to the MIS 3 and 4 Late Pleistocene deposits, which might indicate less decomposed and presumably more easily degradable OM. Biomarkers for past microbial communities, including those for methanogenic archaea, also showed the highest abundance during MIS 3 and 4, which indicated OM-stimulated microbial degradation and presumably greenhouse gas production during time of deposition. On a broader perspective, Arctic warming will increase and deepen permafrost thaw and favor substrate availability from older freeze-locked permafrost deposits. Thus, the Yedoma deposits especially showed a high potential for providing substrates relevant for microbial greenhouse gas production.

  11. Quality and Distribution of Frozen Organic Matter (Old, Deep, Fossil Carbon) in Siberian Permafrost

    Science.gov (United States)

    Schirrmeister, Lutz; Strauss, Jens; Wetterich, Sebastian; Grosse, Guido; Overduin, Pier Paul

    2013-04-01

    Holocene peaty deposits. Thus, we present one of the first in-depth studies of the complexity of OM distribution for the upper permafrost (to 100 m depth) in the northeastern Siberian Arctic, indicating that considerable variability of OM distribution between different stratigraphical units, between the same stratigraphical unit at different study sites, and even within stratigraphic units at the same site, are important factors that need to be taken into account in future inventories. Based on our own data and scarce published data on stratigraphical differences and the spatial variation of OC sequestered in late Quaternary permafrost deposits, we believe that knowledge about the quantities and qualities of this potentially significant OM pool is still too limited for extrapolating to larger spatial scales. However, combining TOC and ice content measurements with new bulk density estimates suggests that current carbon inventory values are too high.

  12. Permafrost Stores a Globally Significant Amount of Mercury

    Science.gov (United States)

    Schuster, Paul F.; Schaefer, Kevin M.; Aiken, George R.; Antweiler, Ronald C.; Dewild, John F.; Gryziec, Joshua D.; Gusmeroli, Alessio; Hugelius, Gustaf; Jafarov, Elchin; Krabbenhoft, David P.; Liu, Lin; Herman-Mercer, Nicole; Mu, Cuicui; Roth, David A.; Schaefer, Tim; Striegl, Robert G.; Wickland, Kimberly P.; Zhang, Tingjun

    2018-02-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil-1 and a median RHgC of 1.6 ± 0.9 μg Hg g C-1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.

  13. Permafrost stores a globally significant amount of mercury

    Science.gov (United States)

    Schaefer, K. M.; Schuster, P. F.; Antweiler, R.; Aiken, G.; DeWild, J.; Gryziec, J. D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D. P.; Liu, L.; Herman-Mercer, N. M.; Mu, C.; Roth, D. A.; Schaefer, T.; Striegl, R. G.; Wickland, K.; Zhang, T.

    2017-12-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the cycling of mercury in arctic and subarctic ecosystems. Permafrost occurs in nearly one quarter of the Earth's Northern Hemisphere. We measured total soil mercury concentration in 588 samples from 13 soil permafrost cores from the interior and the North Slope of Alaska. The median concentration was 47.7±23.4 ng Hg g soil-1 and the median ratio of Hg to carbon was 1.56±0.86 µg Hg g C-1. We estimate Alaskan permafrost stores 56±32 kilotons of mercury and the entire northern hemisphere permafrost land mass stores 773±441 kilotons of mercury. This increases estimates of mercury stored in soils by 60%, making permafrost the second largest reservoir of mercury on the planet. Climate projections indicate extensive permafrost thawing, releasing mercury into the environment through a variety of mechanisms, for example, terrestrial transport via dissolved organic carbon (DOC), gaseous elemental mercury (GEM) evasion, forest fires, atmospheric mixing processes with ozone, and Springtime atmospheric Hg depletion after the polar sunrise. These findings have major implications for terrestrial and aquatic life, the world's fisheries, and ultimately human health.

  14. Permafrost stores a globally significant amount of mercury

    Science.gov (United States)

    Schuster, Paul F.; Schaefer, Kevin; Aiken, George R.; Antweiler, Ronald C.; DeWild, John F.; Gryziec, Joshua D.; Gusmeroli, Alessio; Hugelius, Gustaf; Jafarov, Elchin E.; Krabbenhoft, David P.; Liu, Lin; Herman-Mercer, Nicole M.; Mu, Cuicui; Roth, David A.; Schaefer, Tim; Striegl, Robert G.; Wickland, Kimberly P.; Zhang, Tingjun

    2018-01-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil−1 and a median RHgC of 1.6 ± 0.9 μg Hg g C−1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  16. Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost

    Science.gov (United States)

    Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.

    2016-12-01

    The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the

  17. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely......, the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...

  18. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  19. Three recent ice entrapments of Arctic cetaceans in West Greenland and the eastern Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    MP Heide-Jørgensen

    2002-07-01

    Full Text Available Three ice entrapments of Monodontids have been reported in the western North Atlantic since 1993. Hunters in Disko Bay, West Greenland, discovered one in March 1994 that included about 150 narwhals (Monodon monoceros. The entrapment occurred during a sudden cold period which caused ice to form rapidly. The trapped whales were subject to hunting, but about 50 of the killed whales could not be retrieved in the ice. The whales were trapped in a small opening in the ice and because of that they would probably have succumbed even if not discovered by hunters. Two entrapments involving white whales or belugas (Delphinapterus leucas occurred in the eastern Canadian Arctic in May 1999; one in Lancaster Sound discovered by polar bear (Ursus maritimus researchers and one in Jones Sound discovered by hunters. The first included one bowhead whale (Balaena mysticetus and about 40 belugas that were being preyed upon by polar bears. The second involved at least 170 belugas, of which about 100 were killed by polar bears and 17 were taken by hunters. The entrapments in Disko Bay and Jones Sound both occurred in areas where entrapments have previously been reported, whereas the one in Lancaster Sound was in a new area.

  20. Exploring the mobility of cryoconite on High-Arctic glaciers

    Science.gov (United States)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  1. Using high resolution ortho-imagery and elevation data to assess resilience along the southern Chukchi Coast between 2003 and 2016

    Science.gov (United States)

    Farquharson, L. M.; Jones, B. M.

    2017-12-01

    Permafrost affected coastlines in Arctic Alaska are highly vulnerable to climate change's effects on coastal processes. A unique suite of factors set Arctic coastlines apart from those at lower latitudes. Sea ice, Arctic Ocean storm tracks, tides, and constantly changing wave regimes interact with and influence ice-rich permafrost lowlands, seasonally sea ice covered lagoons, and ice-cemented barrier islands. This creates a dynamic system with a diverse morphology that is in constant flux. Rapid changes in the extent and seasonality of sea ice cover and rising temperatures threaten to trigger rapid and possibly drastic changes in coastal erosion and accretion along Arctic coastlines over the coming century. To explore how coastlines in Arctic Alaska are responding to ongoing climate change, we analyzed ortho-imagery from 2003 (50 cm) and 2016 (30 cm) in combination with digital elevation models derived from 2003 LiDAR data (100 cm) and 2016 Structure-from-Motion data (20 cm) for a 30 km stretch of permafrost affected coastline on the northern Seward Peninsula in Alaska. The coastal system at this study site is characterized by 5 m to 15 m high ice-rich permafrost bluffs and 1 m to 5 m high barrier islands. Over the 13-year study period, 1.0 m/yr of retreat occurred on average along the study coast primarily through thermoerosion and thermodenudation. Over the study period, volumetric loss per meter of coastline reached up to 130 m3 along permafrost bluffs and 21 m3 along barrier island foredune systems. Accretion was limited to the far end of Cape Espenburg spit. In addition to erosion of the coastal permafrost bluffs, we also quantified thermokarst gully formation, storm overwash events, and coastal dune deflation. The formation of thermoerosion gullies along bluff tops appears to exacerbate permafrost bluff erosion rates. Results from this study will contribute new understanding to the relatively poorly understood field of arctic coastal geomorphology.

  2. Permafrost slowly exhales methane

    Science.gov (United States)

    Herndon, Elizabeth M.

    2018-04-01

    Permafrost soils store vast quantities of organic matter that are vulnerable to decomposition under a warming climate. Recent research finds that methane release from thawing permafrost may outpace carbon dioxide as a major contributor to global warming over the next century.

  3. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  4. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  6. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?

    Science.gov (United States)

    Ruppel, Carolyn

    2015-01-01

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

  7. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Science.gov (United States)

    Parazoo, Nicholas C.; Koven, Charles D.; Lawrence, David M.; Romanovsky, Vladimir; Miller, Charles E.

    2018-01-01

    Thaw and release of permafrost carbon (C) due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL) terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM) version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( > 55° N) from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2) by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration), but sink-to-source transition dates are delayed by 20-200 years by high ecosystem productivity, such that talik peaks early ( ˜ 2050s, although borehole data suggest sooner) and C source transition peaks late ( ˜ 2150-2200). The remaining C source region in cold northern Arctic permafrost, which shifts to a net

  8. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Directory of Open Access Journals (Sweden)

    N. C. Parazoo

    2018-01-01

    Full Text Available Thaw and release of permafrost carbon (C due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( >  55° N from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2 by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration, but sink-to-source transition dates are delayed by 20–200 years by high ecosystem productivity, such that talik peaks early ( ∼  2050s, although borehole data suggest sooner and C source transition peaks late ( ∼  2150–2200. The

  9. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    Science.gov (United States)

    Ward, Collin P; Cory, Rose M

    2016-04-05

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.

  10. Permafrost Meta-Omics and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-29

    Permafrost (i.e., soil that has been frozen for at least 2 consecutive years) represents a habitat for microbial life at subzero temperatures (Gilichinsky et al. 2008). Approximately one quarter of the Earth’s surface is underlain by permafrost, which contains 25-50% of the total global soil carbon pool (Schuur et al. 2008, Tarnocai et al. 2009). This carbon is largely protected from microbial decomposition by reduced microbial activity in frozen conditions, but climate change is threatening to induce large-scale permafrost thaw thus exposing it to degradation. The resulting emissions of greenhouse gasses (GHGs) can produce a positive feedback loop and significantly amplify the effects of global warming. Increasing temperatures at high latitudes, changes in precipitation patterns, and frequent fire events have already initiated a widespread degradation of permafrost (Schuur et al. 2015).

  11. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  12. Biomarkers of Canadian High Arctic Litoral Sediments for Assessment of Organic Matter Sources and Degradation

    Science.gov (United States)

    Pautler, B. G.; Austin, J.; Otto, A.; Stewart, K.; Lamoureux, S. F.; Simpson, M. J.

    2009-05-01

    Carbon stocks in the High Arctic are particularly sensitive to global climate change, and investigation of variations in organic matter (OM) composition is beneficial for the understanding of the alteration of organic carbon under anticipated future elevated temperatures. Molecular-level characterization of solvent extractable compounds and CuO oxidation products of litoral sedimentary OM at the Cape Bounty Arctic Watershed Observatory in the Canadian Arctic Archipelago was conducted to determine the OM sources and decomposition patterns. The solvent extracts contained a series of aliphatic lipids, steroids and one triterpenoid primarily of higher plant origin and new biomarkers, iso- and anteiso-alkanes originating from cerastium arcticum (Arctic mouse-ear chickweed, a native angiosperm) were discovered. Carbon preference index (CPI) values for the n-alkanes, n-alkanols and n-alkanoic acids suggests that the OM biomarkers result from fresh material input in early stage of degradation. The CuO oxidation products were comprised of benzyls, lignin phenols and short-chain diacids and hydroxyacids. High abundance of terrestrial OM biomarkers observed at sites close to the river inlet suggests fluvial inputs as an important pathway to deliver OM into the lake. The lignin phenol vegetation index (LPVI) also suggests that the OM origin is mostly from non-woody angiosperms. A relatively high degree of lignin alteration in the litoral sediments is evident from the abundant ratio of acids and aldehydes of the vanillyl and syringyl monomers. This suggests that the lignin contents have been diagenetically altered as the result of a long residence time in this ecosystem. The molecular-level characterization of litoral sedimentary OM in Canadian High Arctic region provides insight into current OM composition,potential responses to future disturbances and the biogeochemical cycling of carbon in the Arctic.

  13. High interannual variability of sea ice thickness in the Arctic region.

    Science.gov (United States)

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  14. Natural Radioactivity Accumulated in the Arctic from Long-range Atmospheric Transport - Observations in Canadian Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhang, Weihua [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2014-07-01

    In the environment, the main sources of naturally occurring radionuclides come from radionuclides in the uranium decay series. Activity concentrations of uranium decay series radionuclides may vary considerably from place to place depending on the geological characteristics at the location. Their releases to the atmosphere are mainly through radon ({sup 222}Rn), a radioactive noble gas occurring naturally as an indirect decay product of uranium in soils and rocks. Due to the abundance of uranium, radon continuously emanates from continental land masses. With radon as the main source of naturally occurring radioactivity in the environment, one would think that the Arctic should be an area of low background radiation, because a considerable area of the Arctic is covered by glaciers and permafrost, and radon emanation rate has been reported to be negligible from those glacier and permafrost areas. However, available data have shown the opposite. The elevated level of naturally occurring radioactivity in the Arctic is due to natural sources outside of the Arctic, mainly through long-range atmospheric transport of radon and radon progeny. In some cases, natural radioactivity can accumulate to relatively high levels and become a health concern or a limiting factor of country food consumption. By definition, contaminants are undesirable substances which can cause harm to the environment, the biota, and humans. We can call these naturally accumulating radiological burdens to the Arctic 'natural contaminants' to distinguish them from the traditional meaning of contamination, the 'artificial contaminants' which are attributable to industrial or man-made sources. This paper reviews information available in the literature, analyses long-term atmospheric monitoring data in the Canadian high Arctic, sub-Arctic and mid-latitude sites, and provides discussion on research needed to address questions, such as how heavily the Arctic has been impacted by the

  15. High-Affinity Methanotrophy Informed by Genome-Wide Analysis of Upland Soil Cluster Alpha (USCα) from Axel Heiberg Island, Canadian High Arctic

    Science.gov (United States)

    Rusley, C.; Onstott, T. C.; Lau, M.

    2017-12-01

    Methane (CH4) is a potent greenhouse gas whose proper budgeting is vital to climate predictions. Recent studies have identified upland Arctic mineral cryosols as consistent CH4 sinks, drawing CH4 from both the atmosphere and underlying anaerobic soil layers. Global atmospheric CH4 uptake is proposed to be mediated by high-affinity methanotrophs based on the detection of the marker gene pmoA (particulate methane monooxygenase beta subunit). However, a lack of pure cultures and scarcity of genomic information have hindered our understanding of their metabolic capabilities and versatility. Together with the missing genetic linkage between its pmoA and 16S ribosomal RNA (rRNA) gene, the factors that control the distribution and magnitude of high-affinity methanotrophy in the Arctic permafrost-affected region have remained elusive. Using 21 metagenomic datasets of surface soils obtained from long-term core incubation experiments,1 this bioinformatics study aimed to reconstruct the draft genome of the Upland Soil Cluster α-proteobacteria (USCα), the high-affinity methanotroph previously detected in the samples,2 and to determine its phylogeny and metabolic requirements. We obtained a genome bin containing the high-affinity form of the USCα-like pmoA gene. The 3.03 Mbp assembly is 91.6% complete with a unique set of single-copy marker genes. The 16S rRNA gene fragment of USCα belongs to the α-proteobacterial family Beijerinckiaceae. Genome annotation indicates possible formaldehyde oxidation via tetrahydromethanopterin-linked C1 transfer pathways, acetate utilization, carbon fixation via the Calvin-Benson-Bassham cycle, and glycogen production. Notably, the key enzymes for formaldehyde assimilation via the serine and ribulose monophosphate pathways are missing. The presence of genes encoding nitrate reductase and hemoglobin suggests adaptation to low O2 under water-logged conditions. Since USCα has versatile carbon metabolisms, it may not be an obligate methanotroph

  16. A Possible Link Between Winter Arctic Sea Ice Decline and a Collapse of the Beaufort High?

    Science.gov (United States)

    Petty, Alek A.

    2018-03-01

    A new study by Moore et al. (2018, https://doi.org/10.1002/2017GL076446) highlights a collapse of the anticyclonic "Beaufort High" atmospheric circulation over the western Arctic Ocean in the winter of 2017 and an associated reversal of the sea ice drift through the southern Beaufort Sea (eastward instead of the predominantly westward circulation). The authors linked this to the loss of sea ice in the Barents Sea, anomalous warming over the region, and the intrusion of low-pressure cyclones along the eastern Arctic. In this commentary we discuss the significance of this observation, the challenges associated with understanding these possible linkages, and some of the alternative hypotheses surrounding the impacts of winter Arctic sea ice loss.

  17. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models....

  18. Diving behavior of the Atlantic walrus in high Arctic Greenland and Canada

    DEFF Research Database (Denmark)

    Garde, Eva; Jung-Madsen, Signe; Ditlevsen, Susanne

    2018-01-01

    Investigations of diving behavior of the Atlantic walrus (Odobenus rosmarus rosmarus) in the high Arctic Greenland and Canada are important for understanding behavioral adaptations and area utilization of this Arctic benthic feeder. Furthermore, such information along with estimations of annual......% CI: 1.0–2.6). Based on dive rates, time at depth, haul-out and percentage of feeding dives Alexandra Fjord and Princess Mary Bay in NE Canada and Carey Island in NW Greenland were identified as the most important areas for walrus feeding during summer. Walrus predation on the standing bivalve biomass...

  19. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  20. Quantifying shallow and deep permafrost changes using radar remote sensing

    Science.gov (United States)

    Teshebaeva, K.; van Huissteden, K. J.

    2017-12-01

    Widespread thawing of permafrost in the northern Eurasian continent cause severe problems for infrastructure and global climate. Permafrost thaw by climate warming creates land surface instability, resulting in severe problems for infrastructure, and release of organic matter to the atmosphere as CO2 and CH4. Recent discoveries of CH4 seeps in lakes, in the Arctic Ocean, and CH4 emitting craters in the permafrost. These features indicate that permafrost destabilization might no longer be a surface feature only, but that also deeper layers of the permafrost, up to tens of meters, may be affected by warming. We study two potential areas in Siberian arctic; one of the test site is the Kytalyk research station near Chokurdagh town affected with a recent inundation of the Indigirka river in July 2017, which resulted in standing surface water for the period over a month. The wet soil and standing water may cause changes in active layer thickness and influence the thermal regime of the permafrost for the next decades in the region. The second test site is Yamal peninsula with recently CH4 emitting craters, which may start to contribute to emission hotspots. We hypothesize that these deeper subsurface processes also can be detected by mapping surface elevation changes using advanced SAR techniques. We test the potential of SAR imagery to enhance detection of these features, including surface movement related to permafrost active layer changes using InSAR time-series analysis. We also apply radar backscatter signal to detect seasonal changes related to the freeze-thaw cycles. The PRISM elevation data are used to estimate elevation changes in the region along with ground-based geophysical and geodetical fieldwork.

  1. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    Science.gov (United States)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  2. Geophysical Investigations of Saline Permafrost at Ilulissat, Greenland

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Foged, Niels Nielsen; Butzbach, Rune

    2008-01-01

    The technical properties and general state of permafrost in Greenland is not well documented. A new coordinated investigation has been initiated, for ground temperature measurements and permafrost mapping in Greenlandic towns in sporadic, discontinuous and continuous permafrost zones. We present...... investigation results from one of the sites, located at Ilulissat, in an area of discontinuous saline permafrost. We have established ground temperature measurement stations and conducted a shallow geoelectrical study. Our results show that the sediments in the studied area mainly consist of very frost...... susceptible silty clays. The area has permafrost with a maximum active layer thickness between 0.9 and 1 m. In spite of low permafrost temperatures a considerable part of the pore water is unfrozen, due to high residual salt concentrations. Consequently, the unfrozen water content dominates the technical...

  3. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    Science.gov (United States)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  4. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Czech Academy of Sciences Publication Activity Database

    Kotas, P.; Šantrůčková, H.; Elster, Josef; Kaštovská, E.

    2018-01-01

    Roč. 15, č. 6 (2018), s. 1879-1894 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) LM2015075 Grant - others:GA MŠk LM2010009 Institutional support: RVO:67985939 Keywords : ecosystem * High Arctic * soil microbial biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.851, year: 2016

  5. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  6. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Gillespie, Mark A K; Rumpf, Sabine B.

    2016-01-01

    The duration of specific periods within a plant's life cycle are critical for plant growth and performance. In the High Arctic, the start of many of these phenological periods is determined by snowmelt date, which may change in a changing climate. It has been suggested that the end of these periods...

  7. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    Czech Academy of Sciences Publication Activity Database

    Vonnahme, T.R.; Devetter, Miloslav; Žárský, J.D.; Šabacká, M.; Elster, Josef

    2016-01-01

    Roč. 13, č. 3 (2016), s. 659-674 ISSN 1726-4170 Institutional support: RVO:60077344 ; RVO:67985939 Keywords : microalgal communities * cryoconite holes * high-Arctic glaciers * Svalbard Subject RIV: EH - Ecology, Behaviour Impact factor: 3.851, year: 2016

  8. The reliance on distant resources for egg formation in high Arctic breeding barnacle geese Branta leucopsis

    NARCIS (Netherlands)

    Hahn, S.M.; Loonen, M.J.J.E.; Klaassen, M.R.J.

    2011-01-01

    Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs

  9. The reliance on distant resources for egg formation in high Arctic breeding barnacle geese Branta leucopsis

    NARCIS (Netherlands)

    Hahn, Steffen; Loonen, Maarten J. J. E.; Klaassen, Marcel

    Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs

  10. How Rapid Change Affects Deltas in the Arctic Region

    Science.gov (United States)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  11. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  12. Data-driven mapping of the potential mountain permafrost distribution.

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-07-15

    Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km 2 area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  14. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  15. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    The arctic shoreline is, according to the CIA World Factbook, 45,389 km long. However, a more realistic length from the standpoint of detailed research is the 200,000 km proposed at the 1999 Arctic Coastal Dynamics Workshop. Highly varied in form and material it is dominated by a variety of processes, is relatively remote, is ice-bound much of the year, and has generally been neglected by the scientific community. Before the 20th century, most of the information about its geology, hydrology, geomorphology, and biology was recorded in ship's logs or in explorer's books and was for the most part incidental to the narrative being related. The paucity of specific research is indicated by the relatively few relevant papers included in the more than 100,000 annotated entries published in the 15 volumes of the Arctic Bibliography (1953-1971) and in the nearly as extensive 27 volume bibliography prepared by the Cold Regions Research and Engineering Laboratory (CRREL) between 1952 and 1973. Nonetheless, there were some distinctive research endeavors during the early part of the 20th century; e.g., Leffingwell's 1919 Alaskan Arctic Coast observations, Nansen's 1921 strandflat studies, and Zenkovich's 1937 Murmansk research. During that period some organizations devoted to polar research, especially the USSR's Arctic and Antarctic Research Institute and the Scott Polar Research Institute (both in 1920) were established, although the amount of their research that could be considered coastal and arctic was limited. Specific research of the arctic's shoreline was mainly academic until after World War II when military, economic, industrial, and archaeological interests began demanding reliable, contemporary data. At the time numerous organizations with a primary focus on the Arctic were formed. Included are the Arctic Institute of North America (1945), the Snow, Ice, and Permafrost Research Establishment (latter to become CRREL) and the Office of Naval Research's Arctic Research

  16. Review of technology for Arctic offshore oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  17. Svalbard as a study model of future High Arctic coastal environments in a warming world

    Directory of Open Access Journals (Sweden)

    Jacek Piskozub

    2017-10-01

    Full Text Available Svalbard archipelago, a high latitude area in a region undergoing rapid climate change, is relatively easily accessible for field research. This makes the fjords of Spitsbergen, its largest island, some of the best studied Arctic coastal areas. This paper aims at answering the question of how climatically diverse the fjords are, and how representative they are for the expected future Arctic diminishing range of seasonal sea-ice. This study uses a meteorological reanalysis, sea surface temperature climatology, and the results of a recent one-year meteorological campaign in Spitsbergen to determine the seasonal differences between different Spitsbergen fjords, as well as the sea water temperature and ice ranges around Svalbard in recent years. The results show that Spitsbergen fjords have diverse seasonal patterns of air temperature due to differences in the SST of the adjacent ocean, and different cloudiness. The sea water temperatures and ice concentrations around Svalbard in recent years are similar to what is expected most of the Arctic coastal areas in the second half of this century. This makes Spitsbergen a unique field study model of the conditions expected in future warmer High Arctic.

  18. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  20. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2013-02-01

    Full Text Available Global emissions of mercury continue to change at the same time as the Arctic is experiencing ongoing climatic changes. Continuous monitoring of atmospheric mercury provides important information about long-term trends in the balance between transport, chemistry, and deposition of this pollutant in the Arctic atmosphere. Ten-year records of total gaseous mercury (TGM from 2000 to 2009 were analyzed from two high Arctic sites at Alert (Nunavut, Canada and Zeppelin Station (Svalbard, Norway; one sub-Arctic site at Kuujjuarapik (Nunavik, Québec, Canada; and three temperate Canadian sites at St. Anicet (Québec, Kejimkujik (Nova Scotia and Egbert (Ontario. Five of the six sites examined showed a decreasing trend over this time period. Overall trend estimates at high latitude sites were: −0.9% yr−1 (95% confidence limits: −1.4, 0 at Alert and no trend (−0.5, +0.7 at Zeppelin Station. Faster decreases were observed at the remainder of the sites: −2.1% yr−1 (−3.1, −1.1 at Kuujjuarapik, −1.9% yr−1 (−2.1, −1.8 at St. Anicet, −1.6% yr−1 (−2.4, −1.0 at Kejimkujik and −2.2% yr−1 (−2.8, −1.7 at Egbert. Trends at the sub-Arctic and mid-latitude sites agree with reported decreases in background TGM concentration since 1996 at Mace Head, Ireland, and Cape Point, South Africa, but conflict with estimates showing an increase in global anthropogenic emissions over a similar period. Trends in TGM at the two high Arctic sites were not only less negative (or neutral overall but much more variable by season. Possible reasons for differences in seasonal and overall trends at the Arctic sites compared to those at lower latitudes are discussed, as well as implications for the Arctic mercury cycle. The first calculations of multi-year trends in reactive gaseous mercury (RGM and total particulate mercury (TPM at Alert were also performed, indicating increases from 2002 to 2009

  1. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  2. Methane Release and Pingo-Like Feature Across the South kara Sea Shels, an Area of Thawing Offshore Permafrost

    Science.gov (United States)

    Serov, P.; Portnov, A.; Mienert, J.

    2015-12-01

    Thawing subsea permafrost controls methane release from the Russian Arctic shelf having a considerable impact on the climate-sensitive Arctic environment. Our recent studies revealed extensive gas release over an area of at least 7500 km2and presence of pingo-like features (PLFs), showing severe methane leakage, in the South Kara Sea in water depths >20m (Serov et al., 2015). Specifically, we detected shallow methane ebullition sites expressed in water column acoustic anomalies (gas flares and gas fronts) and areas of increased dissolved methane concentrations in bottom water, which might be sufficient sources of carbon for seawater-atmosphere exchange. A study of nature and source of leaking gas was focused on two PLFs, which are acoustically transparent circular mounds towering 5-9 m above the surrounding seafloor. One PLF (PLF 2) connects to biogenic gas from deeper sources, which is reflected in δ13CCH4 values ranging from -55,1‰ to -88,0‰ and δDCH4values varied from -175‰ to -246‰. Low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. The formation of PLF 2 is directly linked to the thawing of subsea permafrost and, possibly, decomposition of permafrost related gas hydrates. High accumulations of biogenic methane create the necessary forces to push the remaining frozen layers upwards and, therefore, form a topographic feature. We speculate that PLF 1, which shows ubiquitously low methane concentrations, is either a relict submerged terrestrial pingo, or a PLF lacking the necessary underlying methane accumulations. Our model of glacial-interglacial permafrost evolution supports a scenario in which subsea permafrost tapers seaward and pinches out at 20m isobaths, controlling observed methane emissions and development of PLFs. Serov. P., A. Portnov, J. Mienert, P. Semenov, and P. Ilatovskaya (2015), Methane release from pingo-like features across the South Kara Sea shelf, an area of thawnig

  3. Mapping ice-bonded permafrost with electrical methods in Sisimiut, West Greenland

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    Permafrost delineation and thickness determination is of great importance in engineering related projects in arctic areas. In this paper, 2D geoelectrical measurements are applied and evaluated for permafrost mapping in an area in West Greenland. Multi-electrode resistivity profiles (MEP) have been...... collected and are compared with borehole information. It is shown that the permafrost thickness in this case is grossly overestimated by a factor of two to three. The difference between the inverted 2D resistivity sections and the borehole information is explained by macro-anisotropy due to the presence...... of horizontal ice-lenses in the frozen clay deposits. It is concluded that where the resistivity method perform well for lateral permafrost mapping, great care should be taken in evaluating permafrost thickness based on 2D resistivity profiles alone. Additional information from boreholes or other geophysical...

  4. Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia

    Directory of Open Access Journals (Sweden)

    Johanna Mård Karlsson

    2014-01-01

    Full Text Available Arctic warming alters regional hydrological systems, as permafrost thaw increases active layer thickness and in turn alters the pathways of water flow through the landscape. Further, permafrost thaw may change the connectivity between deeper and shallower groundwater and surface water altering the terrestrial water balance and distribution. Thermokarst lakes and wetlands in the Arctic offer a window into such changes as these landscape elements depend on permafrost and are some of the most dynamic and widespread features in Arctic lowland regions. In this study we used Landsat remotely sensed imagery to investigate potential shifts in thermokarst lake size-distributions, which may be brought about by permafrost thaw, over three distinct time periods (1973, 1987–1988, and 2007–2009 in three hydrological basins in northwestern Siberia. Results revealed fluctuations in total area and number of lakes over time, with both appearing and disappearing lakes alongside stable lakes. On the whole basin scales, there is no indication of any sustained long-term change in thermokarst lake area or lake size abundance over time. This statistical temporal consistency indicates that spatially variable change effects on local permafrost conditions have driven the individual lake changes that have indeed occurred over time. The results highlight the importance of using multi-temporal remote sensing data that can reveal complex spatiotemporal variations distinguishing fluctuations from sustained change trends, for accurate interpretation of thermokarst lake changes and their possible drivers in periods of climate and permafrost change.

  5. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge

    Science.gov (United States)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Butler, Kenna D.

    2012-01-01

    Groundwater discharge to rivers has increased in recent decades across the circumpolar region and has been attributed to thawing permafrost in arctic and subarctic watersheds. Permafrost-driven changes in groundwater discharge will alter the flux of dissolved organic carbon (DOC) in rivers, yet little is known about the chemical composition and reactivity of dissolved organic matter (DOM) of groundwater in permafrost settings. Here, we characterize DOM composition of winter flow in 60 rivers and streams of the Yukon River basin to evaluate the biogeochemical consequences of enhanced groundwater discharge associated with permafrost thaw. DOC concentration of winter flow averaged 3.9 ± 0.5 mg C L−1, yet was highly variable across basins (ranging from 20 mg C L−1). In comparison to the summer-autumn period, DOM composition of winter flow had lower aromaticity (as indicated by specific ultraviolet absorbance at 254 nm, or SUVA254), lower hydrophobic acid content, and a higher proportion of hydrophilic compounds (HPI). Fluorescence spectroscopy and parallel factor analysis indicated enrichment of protein-like fluorophores in some, but not all, winter flow samples. The ratio of DOC to dissolved organic nitrogen, an indicator of DOM biodegradability, was positively correlated with SUVA254 and negatively correlated with the percentage of protein-like compounds. Using a simple two-pool mixing model, we evaluate possible changes in DOM during the summer-autumn period across a range of conditions reflecting possible increases in groundwater discharge. Across three watersheds, we consistently observed decreases in DOC concentration and SUVA254 and increases in HPI with increasing groundwater discharge. Spatial patterns in DOM composition of winter flow appear to reflect differences in the relative contributions of groundwater from suprapermafrost and subpermafrost aquifers across watersheds. Our findings call for more explicit consideration of DOC loss and stabilization

  6. State of the Arctic Coast 2010: Scientific Review and Outlook

    Science.gov (United States)

    Rachold, V.; Forbes, D. L.; Kremer, H.; Lantuit, H.

    2010-12-01

    The coast is a key interface in the Arctic environment. It is a locus of human activity, a rich band of biodiversity, critical habitat, and high productivity, and among the most dynamic components of the circumpolar landscape. The Arctic coastal interface is a sensitive and important zone of interaction between land and sea, a region that provides essential ecosystem services and supports indigenous human lifestyles; a zone of expanding infrastructure investment and growing security concerns; and an area in which climate warming is expected to trigger landscape instability, rapid responses to change, and increased hazard exposure. Starting with a collaborative workshop in October 2007, the International Arctic Science Committee (IASC), the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project and the International Permafrost Association (IPA) decided to jointly initiate an assessment of the state of the Arctic coast. The goal of this report is to draw on initial findings regarding climate change and human dimensions for the Arctic as a whole provided by the Arctic Climate Impact Assessment (ACIA) and Arctic Human Development Report (AHDR) to develop a comprehensive picture of status and current and anticipated change in the most sensitive Arctic coastal areas. Underlying is the concept of a social ecological system perspective that explores the implications of change for the interaction of humans with nature. The report is aimed to be a first step towards a continuously updated coastal assessment and to identify key issues seeking future scientific concern in an international Earth system research agenda. The report titled “State of the Arctic Coast 2010: Scientific Review and Outlook” is the outcome of this collaborative effort. It is organized in three parts: the first provides an assessment of the state of Arctic coastal systems under three broad disciplinary themes - physical systems, ecological systems, and human concerns in the coastal zone; the

  7. The joint Russia-US-Sweden studies in the near-shore zone of the East-Siberian Arctic seas: (1999-2008)

    Science.gov (United States)

    Sergienko, V. I.; Shakhova, N.; Dudarev, O.; Gustafsson, O.; Anderson, L.; Semiletov, I.

    2009-04-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on poorly explored areas located west from the U.S.-Russia boundary, Warming causes thawing of the permafrost underlying a substantial fraction of the Arctic; this process could accelerate coastal erosion, river discharge and carbon losses from soils. Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. Rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed. Thus studying carbon cycling in the East Siberian Arctic marginal seas has a high scientific priority in order to establish the carbon budget and evaluate the role of the Arctic region in global carbon cycling, especially in the coastal zone where the redistribution of carbon between terrestrial and marine environments occurs and the characteristics of carbon exchange with atmosphere are unknown. In this report we overview the main field activities and present

  8. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  9. Using in-field and remote sensing techniques for the monitoring of small-scale permafrost decline in Northern Quebec

    Science.gov (United States)

    May, Inga; Kim, Jun Su; Spannraft, Kati; Ludwig, Ralf; Hajnsek, Irena; Bernier, Monique; Allard, Michel

    2010-05-01

    Permafrost-affected soils represent about 45% of Canadian arctic and subarctic regions. Under the recently recorded changed climate conditions, the areas located in the discontinuous permafrost zones are likely to belong to the most impacted environments. Degradations of Palsas and lithalsas as being the most distinct permafrost landforms as well as an extension of wetlands have been observe during the past decades by several research teams all over the northern Arctic. These alterations, caused by longer an warmer thawing periods, are expected to become more and more frequent in the future. The effects on human beings and on the surrounding sensitive ecosystems are presumed to be momentous and of high relevance. Hence, there is a high demand for new techniques that are able to detect, and possibly even predict, the behavior of the permafrost within a changing environment. The presented study is part of an international research collaboration between LMU, INRS and UL within the framework of ArcticNet. The project intends to develop a monitoring system strongly based on remote sensing imagery and GIS-based data analysis, using a test site located in northern Quebec (Umiujaq, 56°33' N, 76°33' W). It shall be investigated to which extent the interpretation of satellite imagery is feasible to partially substitute costly and difficult geophysical point measurements, and to provide spatial knowledge about the major factors that control permafrost dynamics and ecosystem change. In a first step, these factors, mainly expected to be determined from changes in topography, vegetation cover and snow cover, are identified and validated by means of several consecutive ground truthing initiatives supporting the analysis of multi-sensoral time series of remotely sensed information. Both sources are used to generate and feed different concepts for modeling permafrost dynamics by ways of parameter retrieval and data assimilation. On this poster, the outcomes of the first project

  10. Mid-Wisconsin to Holocene permafrost and landscape dynamics based on a drained lake basin core from the northern Seward Peninsula, northwest Alaska

    Science.gov (United States)

    Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian

    2016-01-01

    Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.

  11. Resilience and vulnerability of permafrost to climate change

    Science.gov (United States)

    M.Torre Jorgenson; Vladimir Romanovsky; Jennifer Harden; Yuri Shur; Jonathan O' Donnell; Edward A.G. Schuur; Mikhail Kanevskiy; Sergei. Marchenko

    2010-01-01

    The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as -20°C. To assess these interactions, we compiled existing data and tested effects of varying...

  12. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  13. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  14. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    Science.gov (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  15. Evidence for nonuniform permafrost degradation after fire in boreal landscapes

    Science.gov (United States)

    Minsley, Burke J.; Pastick, Neal J.; Wylie, Bruce K.; Brown, Dana R.N.; Kass, M. Andy

    2016-01-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface electrical resistivity and nuclear magnetic resonance data indicate locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also areas where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Results show that postfire impacts on permafrost can be variable and depend on multiple factors such as fire severity, soil texture, soil moisture, and time since fire.

  16. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords......, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also...

  17. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  18. Improving the Characterization of Arctic Coastline Ecosystem Change near Utqiagvik, Alaska Utilizing Multiyear Terrestrial Laser Scanning

    Science.gov (United States)

    Escarzaga, S. M.; Cody, R. P.; Vargas, S. A., Jr.; Fuson, T.; Hodge, B. E.; Tweedie, C. E.

    2017-12-01

    The Arctic Ocean comprises the largest coastline on Earth and is undergoing environmental change on a level disproportionate to those in lower-latitudes. In the US Arctic, coastal erosion rates along the North Slope of Alaska show that they are among highest in the nation at an average rate of 1.4 meters per year. Despite their importance to biogeochemical cycling, Native village infrastructure and providing pristine species habitat, Arctic coastlines and near shore environments are relatively understudied due to logistical challenges of conducting fieldwork in these locations. This study expands on past efforts which showed dGPS foot surveys work well at describing planar erosion on less complex permafrost bluff types like those seen on the higher-energy coasts east of Utqiagvik, Alaska along the Beaufort Sea where the main mechanism of erosion happens by block failure caused by wave action. However, coastal bluffs along the Chukchi Sea to the west are more complex and variable in terms of form and mechanisms of erosion. Here, where wide beaches tend to buffer wave action, thermal erosion and permafrost slumping produce slower erosion rates. Terrestrial Laser Scanning (TLS) has been applied across a multitude of terrain types, including coastlines spanning various ecosystems. Additionally, this approach allows 3D modeling of fine scale geomorphological features which can facilitate modeling of erosion rates in these areas. This study utilizes a six year time series of TLS on a section of coastal permafrost bluff along the Chukchi Sea south of Utqiagvik. The aim of the work presented is to better understand spatio-temporal trends of coastal bluff face erosion, bluff top subsidence and how these landscape microtopographic changes are coupled to ecosystem changes and land cover types. Preliminary analysis suggests a high rate of stability of the bluff face over the TLS record with most of the detectable permafrost subsidence happening closer to the coastal bluff edge.

  19. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon

  1. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    OpenAIRE

    Albert, Kristian; Ro-Poulsen, Helge; N. Mikkelsen, Teis

    2008-01-01

    UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a...

  2. Determining the terrain characteristics related to the surface expression of subsurface water pressurization in permafrost landscapes using susceptibility modelling

    Directory of Open Access Journals (Sweden)

    J. E. Holloway

    2017-06-01

    Full Text Available Warming of the Arctic in recent years has led to changes in the active layer and uppermost permafrost. In particular, thick active layer formation results in more frequent thaw of the ice-rich transient layer. This addition of moisture, as well as infiltration from late season precipitation, results in high pore-water pressures (PWPs at the base of the active layer and can potentially result in landscape degradation. To predict areas that have the potential for subsurface pressurization, we use susceptibility maps generated using a generalized additive model (GAM. As model response variables, we used active layer detachments (ALDs and mud ejections (MEs, both formed by high PWP conditions at the Cape Bounty Arctic Watershed Observatory, Melville Island, Canada. As explanatory variables, we used the terrain characteristics elevation, slope, distance to water, topographic position index (TPI, potential incoming solar radiation (PISR, distance to water, normalized difference vegetation index (NDVI; ME model only, geology, and topographic wetness index (TWI. ALDs and MEs were accurately modelled in terms of susceptibility to disturbance across the study area. The susceptibility models demonstrate that ALDs are most probable on hill slopes with gradual to steep slopes and relatively low PISR, whereas MEs are associated with higher elevation areas, lower slope angles, and areas relatively far from water. Based on these results, this method identifies areas that may be sensitive to high PWPs and helps improve our understanding of geomorphic sensitivity to permafrost degradation.

  3. The Need and Opportunity for an Integrated Research, Development and Testing Center in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Lucero, D. A.; Cahill, C. F.; Roesler, E. L.

    2017-12-01

    This presentation will make the case for development of a permanent integrated High Arctic research and testing center at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a US High Arctic Center (USHARC) with an approach to partner stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Center at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: access via land, sea and air; coastal and terrestrial ecologies; controlled airspaces across land and ocean; medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and

  4. 50 Myr of pulsed mafic magmatism in the High Arctic Large Igneous Province

    Science.gov (United States)

    Pearson, D. G.; Dockman, D. M.; Heaman, L. M.; Gibson, S. A.; Sarkar, C.

    2017-12-01

    Extensive and voluminous Cretaceous mafic magmatism in the Sverdrup Basin of Arctic Canada forms the circum-Arctic High Arctic Large Igneous Province (HALIP). The small number of published high-precision ages for this LIP indicate its eruption over a considerable timespan raising concerns over whether the HALIP can be strictly defined as a single LIP and questioning the role of a single or multiple plumes in its genesis. Here we present an integrated geochemical and geochronological study to better constrain the timing and cause of mafic magma genesis in the Canadian HALIP. Six new U-Pb and four 40Ar/39Ar ages of mafic lavas and intrusive sheets range from 121 Ma to 78 Ma. The U-Pb ages are the first analyzed from the mafic intrusions of Axel Heiberg and Ellesmere Islands. The new geochronology, combined with other published high-precision ages, reveal a > 50 Myr duration of mafic magmatism in the HALIP defined by three main pulses. Tholeiites dominate the initial 25 Myr of magmatism, transitioning to coeval emplacement of alkali and tholeiitic basalts. Whole-rock Sr-Nd isotope ratios indicate that both magma types are derived from a similar source dominated by convecting mantle. Rare-earth-element inversion models reveal that the alkalic and tholeiitic magmas were generated beneath a bimodal lithospheric `lid' thickness of 65 ± 5 and 45 ± 4 km, respectively. We suggest that the early 128 - 122 Ma tholeiitic event is primarily plume-generated and correlates across the circum-Arctic with the other HALIP tholeiites. Younger HALIP magmatism, with coeval alkalic and tholeiitic magmas erupting over 25 Myr, may be explained by alternating modes of edge-driven mantle convection as the primary control on magma genesis. A distal plume may have intensified magma production by edge-driven convection.

  5. Application of a Bayesian belief network for assessing the vulnerability of permafrost to thaw and implications for greenhouse gas production and climate feedback

    International Nuclear Information System (INIS)

    Webster, K.L.; McLaughlin, J.W.

    2014-01-01

    Highlights: • Permafrost areas are subject to accelerated rates of climate change leading to thaw. • Thaw will increase decomposition rates, exacerbating climate feedback. • We present a Bayesian belief network as a tool to examine interacting factors. • Organic soil (Hudson Plain region) and mineral soil (Arctic region) are contrasted. • Hudson Plain has contributed more to climate feedback than Arctic, but gap closing. - Abstract: Permafrost affected soils are an important component of the Boreal, Subarctic, and Arctic ecosystems of Canada. These areas are undergoing accelerated rates of climate change and have been identified as being at high risk for thaw. Thaw will expose soil to warmer conditions that support increased decomposition rates, which in turn will affect short- and long-term carbon storage capacity and result in feedback to global climate. We present a tool in the form of a Bayesian belief network influence diagram that will allow policymakers and managers to understand how interacting factors contribute to permafrost thaw and resulting effects on greenhouse gas (GHG) production and climate feedback. A theoretical example of expected responses from an organic soil typical of the Hudson Plain region and a mineral soil typical in the Arctic region demonstrate variability in responses across different combinations of climate and soil conditions within Canada. Based on the network results, the Arctic has historically had higher probability of thaw, but the Hudson Plain has had higher probability of producing carbon dioxide (CO 2 ) and methane (CH 4 ). Under past and current climate conditions, the Hudson Plain has, on a per unit area basis, contributed more to climate feedback than the Arctic. However, the gap in contribution between the two regions is likely to decrease as thaw progresses more rapidly in the Arctic than Hudson Plain region, resulting in strong positive feedback to climate warming from both regions. The flexible framework

  6. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena

    2017-04-21

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton respiration may be stimulated in the light is particularly relevant for the high Arctic where plankton communities experience continuous daylight in spring and summer. Here we demonstrate that plankton community respiration evaluated under the continuous daylight conditions present in situ, tends to be higher than that evaluated in the dark. The ratio between community respiration measured in the light (Rlight) and in the dark (Rdark) increased as the 2/3 power of Rlight so that the Rlight:Rdark ratio increased from an average value of 1.37 at the median Rlight measured here (3.62 µmol O2 L-1 d-1) to an average value of 17.56 at the highest Rlight measured here (15.8 µmol O2 L-1 d-1). The role of respiratory processes as a source of CO2 in the Arctic has, therefore, been underestimated and is far more important than previously believed, particularly in the late spring, with 24 h photoperiods, when community respiration rates are highest.

  7. Low Density of Top Predators (Seabirds and Marine Mammals in the High Arctic Pack Ice

    Directory of Open Access Journals (Sweden)

    Claude R. Joiris

    2016-01-01

    Full Text Available The at-sea distribution of top predators, seabirds and marine mammals, was determined in the high Arctic pack ice on board the icebreaker RV Polarstern in July to September 2014. In total, 1,620 transect counts were realised, lasting 30 min each. The five most numerous seabird species represented 74% of the total of 15,150 individuals registered: kittiwake Rissa tridactyla, fulmar Fulmarus glacialis, puffin Fratercula arctica, Ross’s gull Rhodostethia rosea, and little auk Alle alle. Eight cetacean species were tallied for a total of 330 individuals, mainly white-beaked dolphin Lagenorhynchus albirostris and fin whale Balaenoptera physalus. Five pinniped species were represented by a total of 55 individuals and the polar bear Ursus maritimus was represented by 12 individuals. Four main geographical zones were identified: from Tromsø to the outer marginal ice zone (OMIZ, the Arctic pack ice (close pack ice, CPI, the end of Lomonosov Ridge off Siberia, and the route off Siberia and northern Norway. Important differences were detected between zones, both in species composition and in individual abundance. Low numbers of species and high proportion of individuals for some of them can be considered to reflect very low biodiversity. Numbers encountered in zones 2 to 4 were very low in comparison with other European Arctic seas. The observed differences showed strong patterns.

  8. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  9. On the gate of Arctic footsteps: Doors open to foreign high schools

    Science.gov (United States)

    Manno, C.; Pecchiar, I.

    2012-12-01

    With the increased attention on the changing Arctic Region effective science education, outreach and communication need to be higher priorities within the scientific communities. In order to encourage the dissemination of polar research at educational levels foreign high school students and teachers were visiting Tromso University for a week. The project highlights the role of the universities as link between research and outreach. The first aim of this project was to increase awareness of foreign schools on major topics concerning the Arctic issues (from the economic/social to the environmental/climatic point of view). Forty three Italian high school students were involved in the laboratory activities running at the UiT and participated in seminars. Topics of focus were Ocean Acidification, Global Warming and the combined effects with other anthropogenic stressors. During their stay, students interviewed several scientists in order to allow them to edit a "visiting report" and to elaborate all the material collected. Back in Italy they performed an itinerant exhibition (presentation of a short movie, posters, and pictures) in various Italian schools in order to pass on their Arctic education experience. The project highlights the role of University as communicator of "climate related issues" in the international frame of the "new generation" of students.

  10. Local variability in growth and reproduction of Salix arctica in the High Arctic

    Directory of Open Access Journals (Sweden)

    Noémie Boulanger-Lapointe

    2016-06-01

    Full Text Available Arctic terrestrial ecosystems are heterogeneous because of the strong influences of microtopography, soil moisture and snow accumulation on vegetation distribution. The interaction between local biotic and abiotic factors and global climate patterns will influence species responses to climate change. Salix arctica (Arctic willow is a structuring species, ubiquitous and widespread, and as such is one of the most important shrub species in the High Arctic. In this study, we measured S. arctica reproductive effort, early establishment, survival and growth in the Zackenberg valley, north-east Greenland. We sampled four plant communities that varied with respect to snow conditions, soil moisture, nutrient content and plant composition. We found large variability in reproductive effort and success with total catkin density ranging from 0.6 to 66 catkins/m2 and seedling density from <1 to 101 seedlings/m2. There were also major differences in crown area increment (4–23 cm2/year and stem radial growth (40–74 µm/year. The snowbed community, which experienced a recent reduction in snow cover, supported young populations with high reproductive effort, establishment and growth. Soil nutrient content and herbivore activity apparently did not strongly constrain plant reproduction and growth, but competition by Cassiope tetragona and low soil moisture may inhibit performance. Our results show that local environmental factors, such as snow accumulation, have a significant impact on tundra plant response to climate change and will affect the understanding of regional vegetation response to climate change.

  11. Changes in Hydrologic Conditions and Greenhouse Gas Emissions in Circumpolar Regions due to Climate Change Induced Permafrost Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Whiticar, M. J. [School of Earth and Ocean Sciences, University of Victoria, Victoria (Canada); Bhatti, J.; Startsev, N. [Northern Forestry Centre, St Edmonton, AB (Canada)

    2013-07-15

    Thawing permafrost peatlands substantially influence Canadian northern ecosystems by changing the regional hydrology and mobilizing the vast carbon (C) reserves that results in increased greenhouse gas (GHGs) emissions to the atmosphere. With permafrost distribution controlled largely by topography and climate, our International polar y ear (IPY) study intensively monitored the local C cycling processes and GHG fluxes associated with different hydrologic and permafrost environments at 4 sites along a climatic gradient extending from the Isolated patches permafrost Zone (northern alberta), to the continuous permafrost Zone (Inuvik, NWT). Each site encompasses a local gradient from upland forest and peat plateau to collapse scar. Our multi-year measurements of peatland profiles and flux chambers for CH{sub 4} and CO{sub 2} concentrations and stable isotope ratios indicate processes, including methanogenesis, methanotrophy, transport and emission that control the distribution of these GHGs. These relationships are modulated by fluctuating local soil water and corresponding ecosystem conditions. The gas geochemistry shows that significant surface CH{sub 4} production occurs by both hydrogenotrophic and acetoclastic methanogenesis in submerged, anaerobic peats, e.g., collapse scars, whereas methane oxidation is restricted to aerobic, drier environments, e.g., upland sites and peat-atmosphere interface. The most active methanogenesis and emissions are in areas of actively thawing permafrost contrasting with sites under continuous permafrost. This degree of methanogenesis is being amplified by the increased rate of Arctic warming and the rapid retreat of permafrost in canada's arctic (approximately. 2.5 km/a). (author)

  12. Characterizing aerosol transport into the Canadian High Arctic using aerosol mass spectrometry and Lagrangian modelling

    Science.gov (United States)

    Kuhn, T.; Damoah, R.; Bacak, A.; Sloan, J. J.

    2010-05-01

    We report the analysis of measurements made using an aerosol mass spectrometer (AMS; Aerodyne Research Inc.) that was installed in the Polar Environment Atmospheric Research Laboratory (PEARL) in summer 2006. PEARL is located in the Canadian high Arctic at 610 m above sea level on Ellesmere Island (80° N 86° W). PEARL is unique for its remote location in the Arctic and because most of the time it is situated within the free troposphere. It is therefore well suited as a receptor site to study the long range tropospheric transport of pollutants into the Arctic. Some information about the successful year-round operation of an AMS at a high Arctic site such as PEARL will be reported here, together with design considerations for reliable sampling under harsh low-temperature conditions. Computational fluid dynamics calculations were made to ensure that sample integrity was maintained while sampling air at temperatures that average -40 °C in the winter and can be as low as -55 °C. Selected AMS measurements of aerosol mass concentration, size, and chemical composition recorded during the months of August, September and October 2006 will be reported. During this period, sulfate was at most times the predominant aerosol component with on average 0.115 μg m-3 (detection limit 0.003 μg m-3). The second most abundant component was undifferentiated organic aerosol, with on average 0.11 μg m-3 detection limit (0.04 μg m-3). The nitrate component, which averaged 0.007 μg m-3, was above its detection limit (0.002 μg m-3), whereas the ammonium ion had an apparent average concentration of 0.02 μg m-3, which was approximately equal to its detection limit. A few episodes having increased mass concentrations and lasting from several hours to several days are apparent in the data. These were investigated further using a statistical analysis to determine their common characteristics. High correlations among some of the components arriving during the short term episodes provide

  13. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  14. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  15. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  16. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  17. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  18. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Winterfeld, Maria

    2014-08-01

    consistent with inputs of OM from non-woody angiosperm sources mixed with organic matter derived from woody gymnosperm sources. A simple linear mixing model based on the lignin phenol distributions indicates organic matter in TSM samples from the delta and Buor Khaya Bay surface sediments contain comparable contributions from gymnosperm sources, which are primarily from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small area covered by tundra (∝12% of total catchment), the input of tundra-derived OM input is substantial and likely to increase in a warming Arctic. Radiocarbon compositions (Δ 14 C) of bulk OM in Lena River TSM samples varied from -55 to -391 permille, translating into 14 C ages of 395 to 3920 years BP. Using δ 13 C compositions to estimate the fraction of phytoplankton-derived OM and assuming that this material has a modern 14 C signature, we inferred the Δ 14 C compositions of terrigenous OM in TSM exported by the Lena River to range between -190 and -700 permille. Such variability in the ages of terrigenous OM (i.e. 1640 to 9720 14 C years BP) reflects the heterogeneous composition and residence time of OM in the Lena River catchment soils (Holocene to Pleistocene ages). Lignin phenol and Δ 14 C compositions of surface sediments from the adjacent Buor Khaya Bay suggest that terrestrial OM deposited there is older and more degraded than materials present in river particles and catchment soils. Stronger diagenetic alteration in Lena Delta TSM and marine sediments relative to soils may reflect degradation of more labile components during permafrost thawing and transport. Despite the high natural heterogeneity in catchment soils, the lignin biomarker compositions and radiocarbon ages of terrestrial OM exported by the Lena River reflect catchment characteristics such as vegetation and soil type. Climate warming related changes in the Lena River catchment may be detectable in changing lignin

  19. Permafrost: An International Approach to 21th Century Challenges

    Science.gov (United States)

    Brown, J.

    2003-12-01

    . Cryosol (Antarctic soil map, soil database). 4. Glacier and Permafrost Hazards in High Mountains (interaction of ice and permafrost on slopes). 5. Isotopes and Geochemistry of Permafrost (paleo-reconstruction, modern processes). 6. Mapping and Modelling of Mountain Permafrost (standardize map legends and maps, multi-dimensional models). 7. Periglacial Processes and Environments (past and present processes, field manual of measurements). 8. Permafrost and Climate (monitoring, impact assessments, inter-comparisons of models). 9. Permafrost Astrobiology (survivability of life on planets and analogous Earth environments). 10. Permafrost Engineering (case studies, climate impacts on infrastructure). The Data Committee facilitates recovery of data, web access, and CD data production. These activities will provide added insight into past, present and future occurrences and responses of permafrost to climate change. They can contribute to activities of the International Polar Year. Results will be reported at the Ninth ICOP in Fairbanks, Alaska, in summer 2008. Current information is available on the IPA web site and in annual issues of Frozen Ground.

  20. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  1. Seasonal variability in physicochemical characteristics of small water bodies across a High Arctic wetland, Polar Bear Pass, Bathurst Island, Nunavut, Canada

    Science.gov (United States)

    Abnizova, A.; Miller, E.; Shakil, S.; Young, K. L.

    2012-12-01

    Small water bodies (lakes, ponds) in permafrost environments make up roughly half of the total area of surface water, but their relevance to nutrient and carbon fluxes on a landscape scale still remains largely unknown. Small variations in pond water balance as a result of seasonal changes in precipitation, evaporation, or drainage processes have the potential to produce considerable changes in the carbon and nutrient budgets as small changes in the water level can have a major effect on volumes and surface areas of ponds. The aims of this study were (1) to identify the main characteristics in pond hydrology both seasonally and between years; (2) to identify factors controlling variation in measured physicochemical variables; and (3) to detect seasonal trends in the hydrological and chemical characteristics of ponds located in an extensive low-gradient High Arctic wetland. We conducted detailed limnological surveys of 50 wetland ponds located at Polar Bear Pass (PBP), Bathurst Island, Nunavut, Canada during 2007-2010. The results indicate large seasonal variability in physicochemical parameters that is associated with pond water budget changes, especially for ponds with steady water levels vs. dynamic ponds (fluctuating water levels). Principal component analysis (PCA) of the datasets indicated that major ion content, specifically calcium (Ca2+), was responsible for much of the variability among the ponds in both 2008 and 2009. Additionally in 2009 most of the variability was also due to specific conductivity in the summer and magnesium (Mg2+) in the fall. These trends are typically identified as a result of dilution or evapo-concentration processes in small water bodies. In 2007, a warm and dry year, pH and potassium (K+) were responsible for much of variation between ponds. This is attributed to high vegetation growth in ponds and a longer growing season. While no trend was identified in 2010 (PCA analysis), calculations of greenhouse gas (GHG) emissions from 50

  2. Carbon dioxide exchange in the High Arctic - examples from terrestrial ecosystems

    DEFF Research Database (Denmark)

    Grøndahl, L.

    of the growing season, which in combination with high temperatures increased uptake rates. The dry heath ecosystem in general gained carbon during the summer season in the order of magnitude -1.4 gCm-2 up to 32 gCm-2. This result is filling out a gap of knowledge on the response of high Arctic ecosystems...... the measurements conducted in the valley to a regional level. Including information on temporal and spatial variability in air temperature and radiation, together with NDVI and a vegetation map a regional estimate of the CO2 exchange during the summer was provided, elaborating the NDVI based estimate on net carbon...

  3. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    Science.gov (United States)

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. © 2016 John Wiley & Sons Ltd.

  4. Arctic Ice Management: an integrated approach to climate engineering

    Science.gov (United States)

    Desch, S. J.; Hartnett, H. E.; Groppi, C. E.; Romaniello, S. J.

    2017-12-01

    The warming climate is having the most rapid and pronounced effects in the high Arctic. The loss of Arctic sea ice is not only changing the physical oceanography of the Arctic Ocean and its coastlines; it is also promoting new conversations about the dangers and benefits for trade, transportation, and industry in the Arctic. The rate of decrease of summer sea ice in the Arctic is currently -300 km3 yr-1, a rate that will lead to complete loss of end-summer sea ice as soon as 2030. Preventing the strong positive feedbacks and increased warming due to sea ice albedo loss must be an important component of climate mitigation strategies. Here, we explore a direct engineering approach we call Arctic Ice Management (AIM) to reduce the loss of Arctic sea ice. We predict that pumping seawater onto the ice surface during the Arctic winter using wind-powered pumps can thicken sea ice by up to 1 m per year, reversing the current loss rates and prolonging the time until the Arctic Ocean is ice-free. Thickening sea ice would not change CO2 levels, which are the underlying cause of ice loss, but it would prevent some of the strongest feedbacks and would buy time to develop the tools and governance systems necessary to achieve carbon-neutrality. We advocate exploration of AIM as a mitigation strategy employed in parallel with CO2 reduction efforts. The opportunity and risk profiles of AIM differ from other geoengineering proposals. While similar in principle to solar radiation management, AIM may present fewer large-scale environmental risks. AIM is separate from greenhouse gas emission reduction or sequestration, but might help prevent accelerated release of methane from thawing permafrost. Further, AIM might be usefully employed at regional and local scales to preserve Arctic ecosystems and possibly reduce the effects of ice-loss induced coastal erosion. Through presentation of the AIM concept, we hope to spark new conversations between scientists, stakeholders, and decision

  5. The Need and Opportunity for an Integrated Research, Development and Testing Station in the Alaskan High Arctic

    Science.gov (United States)

    Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip

  6. Deep-ocean predation by a high Arctic cetacean

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Jørgensen, Ole A

    2004-01-01

    were correlated with predicted whale predation levels based on diving behavior. The difference in Greenland halibut biomass between an area with high predation and a comparable area without whales, approximately 19000 tonnes, corresponded well with the predicted biomass removed by the narwhal sub...

  7. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, Anthony K.M.; Romanovsky, V.E.

    2011-01-01

    Quantifying changes in thermokarst lake extent is of importance for understanding the permafrost-related carbon budget, including the potential release of carbon via lake expansion or sequestration as peat in drained lake basins. We used high spatial resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, Alaska. The number of water bodies larger than 0.1 ha increased over the entire observation period (666 to 737 or +10.7%); however, total surface area decreased (5,066 ha to 4,312 ha or -14.9%). This pattern can largely be explained by the formation of remnant ponds following partial drainage of larger water bodies. Thus, analysis of large lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, differing from lake changes reported from other continuous permafrost regions. Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 (0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr). However, most lakes that drained did expand as a result of surface permafrost degradation before lateral drainage. Drainage rates over the observation period were stable (2.2 to 2.3 per year). Thus, analysis of decadal-scale, high spatial resolution imagery has shown that lake drainage in this region is triggered by lateral breaching and not subterranean infiltration. Future research should be directed toward better understanding thermokarst lake dynamics at high spatial and temporal resolution as these systems have implications for landscape-scale hydrology and carbon budgets in thermokarst lake-rich regions in the circum-Arctic.

  8. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...

  9. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems : A meta-analysis

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G M; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-01-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the

  10. Optimization in the use of Air Convection Embankments for Protection of Underlying Permafrost

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2012-01-01

    Since the beginning of the 1990s a significant increase in the mean annual air temperatures has been recorded all over the arctic regions. This has lead to a degrading of permafrost, which is now threatening the stability of airport and road embankments. To minimize the damages caused by thaw...

  11. Permafrost Monitoring Sonnblick

    Science.gov (United States)

    Reisenhofer, Stefan; Riedl, Claudia

    2014-05-01

    Within the project 'Permafrost Monitoring Sonnblick' (PERSON) the spatial distribution of permafrost is investigated by the 'Zentralanstalt für Meteorologie und Geodynamik' (ZAMG) in the Sonnblick area, in the Hohe Tauern in Austria. The aim of PERSON is to identify parameters affecting permafrost (geological, geomorphological, orographical and climatic factors), to determine its spatio-temporal behaviour under present day climate conditions and to estimate its possible future extension under a climate change scenario. PERSON makes use of a permafrost monitoring network that was installed 2005 in the Sonnblick area and is made up by four study sites: On the one hand the spatial extension of permafrost was focused at the ice-dammed lake Pilatus and the rock glacier Zirmsee. On the other hand, at two sites, namely Goldbergspitze and Wintergasse measurements of 'Ground-Surface Temperature' (GST) and 'Bottom Temperatures of the Snow cover' (BTS) are measured. In order to record temperatures in the uppermost layer of the ground and avoid heating by direct solar radiation loggers were buried a few centimetres into the ground or installed in boreholes at depths between 2 and 140 cm. Each of the 'Near Surface Temperature' (NST) borehole mouths is closed up with insulating foam to protect the measurements from atmospheric influence. In addition to these measurements, continuous temperature records from three 20 m deep boreholes located at the southern slope of Hoher Sonnblick are available since 2007, which represent the longest series of its kind in Austria. Furthermore, data from seismic and geoelectric measurements, temperature sensors readings at the surface and extensive meteorological observations from the Sonnblick Observatory are available. Already collected and evaluated data indicate that the thickness of the debris layer around the boreholes reaches a depth of 2 m but no more. The active layer thickness measured in the borehole next to the glacier ranges between

  12. Arctic Sovereignty Disputes: International Relations Theory in the High North

    Science.gov (United States)

    2011-12-01

    Russians continue to retain their long-range strategic bombing fleets, consisting of the TU-160 Supersonic ( Blackjack ), an all-weather aircraft with...icebreakers, and the only operational heavy icebreaker, it is already beyond service life expectations and recently suffered a major engine failure...DISPUTES: INTERNATIONAL RELATIONS THEORY IN THE HIGH NORTH by Darrin D. Davis December 2011 Thesis Co-Advisors: Anne L. Clunan

  13. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    Science.gov (United States)

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  14. Collaboration in Education: International Field Class on Permafrost

    Science.gov (United States)

    Streletskiy, D. A.; Shiklomanov, N. I.; Grebenets, V. I.

    2011-12-01

    Field work is a dominant research component in the earth sciences. Understanding and proper use of field methods can enhance the quality of research, while lack of understanding in acquiring data can lead to misleading interpretation of results. Early involvement in field work helps students to bridge the gap between theoretical knowledge and practical applications and to be better prepared for future jobs. However, many University curriculums lack adequate, required field methods courses. Presented are results of collaboration between the George Washington and Moscow State Universities in organization of field courses on Arctic physical and social environments. The latest field course took place in summer 2011 in the Central Siberian region and is a part of the International Permafrost Association education and outreach effort initiated during International Polar Year. The 25 day course involved fifteen Russian and US students who traveled from Moscow to Krasnoyarsk, and then along Yenisey river to Norilsk. This route was chosen as having diversity of natural conditions and variety of economic, engineering, and demographic problems associated with development. The main goal of the class was to investigate permafrost conditions of Central Siberia; dynamics of upper permafrost due to changing climate and under anthropogenic influence; and to understand factors responsible for the diversity of permafrost conditions in the region. The students and instructors were required to make presentations on a variety of topics focusing on the region or research methods, such as climate, vegetation, hydrology, history of development, economics, remote sensing, etc. The emphasis in the field was made on understanding permafrost in relation to other components of the natural system. For example, landscape conditions (including microclimatic, biogeographic and pedologic conditions) were described at every site located in natural settings. Sites located in settlements were evaluated

  15. International Field School on Permafrost, Polar Urals, 2012

    Science.gov (United States)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    Russian Arctic in general. Series of discussions were focused on methodological aspects of permafrost research, data mining techniques, international projects, job opportunities etc. The experience gained by students during the field school, new networking opportunities and good spirit of polar research cannot be adequately replaced by any classroom demonstrations. That is why it is critically important to conduct such filed schools in the future. We are grateful to administration of Yamal-Nenets Autonomous region for providing financial support and to Yamal Tour for the organization and logistics in the field.

  16. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  17. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  18. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  19. Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia

    Science.gov (United States)

    Castro-Morales, Karel; Kleinen, Thomas; Kaiser, Sonja; Zaehle, Sönke; Kittler, Fanny; Kwon, Min Jung; Beer, Christian; Göckede, Mathias

    2018-05-01

    Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %). This is followed by ebullition ( ˜ 35 %), while summertime molecular diffusion is negligible (0.02 %) compared to the diffusion through the snow during winter ( ˜ 4 %). We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.

  20. Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia

    Directory of Open Access Journals (Sweden)

    K. Castro-Morales

    2018-05-01

    Full Text Available Wetlands of northern high latitudes are ecosystems highly vulnerable to climate change. Some degradation effects include soil hydrologic changes due to permafrost thaw, formation of deeper active layers, and rising topsoil temperatures that accelerate the degradation of permafrost carbon and increase in CO2 and CH4 emissions. In this work we present 2 years of modeled year-round CH4 emissions into the atmosphere from a Northeast Siberian region in the Russian Far East. We use a revisited version of the process-based JSBACH-methane model that includes four CH4 transport pathways: plant-mediated transport, ebullition and molecular diffusion in the presence or absence of snow. The gas is emitted through wetlands represented by grid cell inundated areas simulated with a TOPMODEL approach. The magnitude of the summertime modeled CH4 emissions is comparable to ground-based CH4 fluxes measured with the eddy covariance technique and flux chambers in the same area of study, whereas wintertime modeled values are underestimated by 1 order of magnitude. In an annual balance, the most important mechanism for transport of methane into the atmosphere is through plants (61 %. This is followed by ebullition ( ∼  35 %, while summertime molecular diffusion is negligible (0.02 % compared to the diffusion through the snow during winter ( ∼  4 %. We investigate the relationship between temporal changes in the CH4 fluxes, soil temperature, and soil moisture content. Our results highlight the heterogeneity in CH4 emissions at landscape scale and suggest that further improvements to the representation of large-scale hydrological conditions in the model will facilitate a more process-oriented land surface scheme and better simulate CH4 emissions under climate change. This is especially necessary at regional scales in Arctic ecosystems influenced by permafrost thaw.

  1. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  2. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    , nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  3. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  4. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  5. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    P. Kotas

    2018-03-01

    Full Text Available The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS, and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs. We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects, mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  6. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Science.gov (United States)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  7. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  8. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    Science.gov (United States)

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  9. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    Science.gov (United States)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  10. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    Science.gov (United States)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  11. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  12. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem "1"5N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m"−"2 yr"−"1, applied as "1"5NH_4"1"5NO_3 in Svalbard (79"°N), during the summer. Separate applications of "1"5NO_3"− and "1"5NH_4"+ were also made to determine the importance of N form in their retention. More than 95% of the total "1"5N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of "1"5N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater "1"5NO_3"− than "1"5NH_4"+, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a

  13. Thermal state of permafrost in North America: A contribution to the international polar year

    Science.gov (United States)

    Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J.

    2010-01-01

    A snapshot of the thermal state of permafrost in northern North America during the International Polar Year (IPY) was developed using ground temperature data collected from 350 boreholes. More than half these were established during IPY to enhance the network in sparsely monitored regions. The measurement sites span a diverse range of ecoclimatic and geological conditions across the continent and are at various elevations within the Cordillera. The ground temperatures within the discontinuous permafrost zone are generally above -3°C, and range down to -15°C in the continuous zone. Ground temperature envelopes vary according to substrate, with shallow depths of zero annual amplitude for peat and mineral soils, and much greater depths for bedrock. New monitoring sites in the mountains of southern and central Yukon suggest that permafrost may be limited in extent. In concert with regional air temperatures, permafrost has generally been warming across North America for the past several decades, as indicated by measurements from the western Arctic since the 1970s and from parts of eastern Canada since the early 1990s. The rates of ground warming have been variable, but are generally greater north of the treeline. Latent heat effects in the southern discontinuous zone dominate the permafrost thermal regime close to 0°C and allow permafrost to persist under a warming climate. Consequently, the spatial diversity of permafrost thermal conditions is decreasing over time.

  14. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau.

    Science.gov (United States)

    Gao, Tanguang; Zhang, Tingjun; Guo, Hong; Hu, Yuantao; Shang, Jianguo; Zhang, Yulan

    2018-01-01

    The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau.

  15. Amount and timing of permafrost carbon release in response to climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Kevin; Zhang, Tingjun; Barrett, Andrew P. (National Snow and Ice Data Center, Cooperative Inst. for Research in Environmental Sciences, Univ. of Colorado at Boulder, Boulder (United States)), e-mail: kevin.schaefer@nsidc.org; Bruhwiler, Lori (National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder (United States))

    2011-04-15

    The thaw and release of carbon currently frozen in permafrost will increase atmospheric CO{sub 2} concentrations and amplify surface warming to initiate a positive permafrost carbon feedback (PCF) on climate.We use surface weather from three global climate models based on the moderate warming, A1B Intergovernmental Panel on Climate Change emissions scenario and the SiBCASA land surface model to estimate the strength and timing of the PCF and associated uncertainty. By 2200, we predict a 29-59% decrease in permafrost area and a 53-97 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere is 190 +- 64 Gt C. This estimate may be low because it does not account for amplified surface warming due to the PCF itself and excludes some discontinuous permafrost regions where SiBCASA did not simulate permafrost. We predict that the PCF will change the arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil fuel emissions to reach a target atmospheric CO{sub 2} concentration

  16. The variability and controls of rock strength along rocky coasts of central Spitsbergen, High Arctic

    Science.gov (United States)

    Strzelecki, Mateusz Czesław

    2017-09-01

    This paper presents the results of the Schmidt Hammer Rock Tests (SHRTs) across a range of rocky coastal landforms. Northern Billefjorden (central Spitsbergen), represents typical High Arctic microtidal fjord environment. Sheltered location and prolonged sea-ice conditions limit wave action. Coastal cliffs, shore platforms and skerries are developed in various rock types including limestone, sandstone, anhydrite/gypsum, dolomite and metamorphic outcrops. SHRT demonstrated a broad variety of relationships between rock strength and distance from shoreline, presence of sediment cover, distribution of snow patches and icefoot, and accumulations of seaweed and driftwood. In general, rock cliff surfaces were the most resistant in their lower and middle zones, that are thermally insulated by thick winter snowdrifts. More exposed cliff tops were fractured and weathered. The differences in rock strength observed along the shore platforms were highly dependent on thickness of sediment cover and shoreline configuration promoting stronger rock surfaces in areas exposed to the longest wave fetch and washed from gravel deposits. Rock strength of skerry islands is influenced by tidal action controlling the duration of tide inundation and movement of sea-ice scratching boulder surfaces. The results presented in this paper emphasize the richness of rock coast geomorphology and processes operating in High Arctic settings.

  17. Plant traits and trait-based vegetation modeling in the Arctic

    Science.gov (United States)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  18. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.

    Science.gov (United States)

    Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M

    2017-10-03

    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

  19. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

    Science.gov (United States)

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G

    2017-09-01

    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity (GPP), and net summer CO 2 storage (NEE). Over 7 years R eco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP, and NEE. However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP. Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO 2 source. © 2017 John Wiley & Sons Ltd.

  20. Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes

    Science.gov (United States)

    Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.

    2014-12-01

    A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from

  1. Estimation of the Past and Future Infrastructure Damage Due the Permafrost Evolution Processes

    Science.gov (United States)

    Sergeev, D. O.; Chesnokova, I. V.; Morozova, A. V.

    2015-12-01

    The geocryological processes such as thermokarst, frost heaving and fracturing, icing, thermal erosion are the source of immediate danger for the structures. The economic losses during the construction procedures in the permafrost area are linked also with the other geological processes that have the specific character in cold regions. These processes are swamping, desertification, deflation, flooding, mudflows and landslides. Linear transport structures are most vulnerable component of regional and national economy. Because the high length the transport structures have to cross the landscapes with different permafrost conditions that have the different reaction to climate change. The climate warming is favorable for thermokarst and the frost heaving is linked with climate cooling. In result the structure falls in the circumstances that are not predicted in the construction project. Local engineering problems of structure exploitation lead to global risks of sustainable development of regions. Authors developed the database of geocryological damage cases for the last twelve years at the Russian territory. Spatial data have the attributive table that was filled by the published information from various permafrost conference proceedings. The preliminary GIS-analysis of gathered data showed the widespread territorial distribution of the cases of negative consequences of geocryological processes activity. The information about maximum effect from geocryological processes was validated by detailed field investigation along the railways in Yamal and Transbaicalia Regions. Authors expect the expanding of database by similar data from other sectors of Arctic. It is important for analyzing the regional, time and industrial tendencies of geocryological risk evolution. Obtained information could be used in insurance procedures and in information systems of decisions support in different management levels. The investigation was completed with financial support by Russian

  2. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  3. High renesting rates in arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment

    Science.gov (United States)

    Gates, H. River; Lanctot, Richard B.; Powell, Abby N.

    2013-01-01

    The propensity to replace a clutch is a complex component of avian reproduction and poorly understood. We experimentally removed clutches from an Arctic-breeding shorebird, the Dunlin (Calidris alpina arcticola), during early and late stages of incubation to investigate replacement clutch rates, renesting interval, and mate and site fidelity between nesting attempts. In contrast to other Arctic studies, we documented renesting by radiotracking individuals to find replacement clutches. We also examined clutch size and mean egg volume to document changes in individual females’ investment in initial and replacement clutches. Finally, we examined the influence of adult body mass, clutch volume, dates of clutch initiation and nest loss, and year on the propensity to renest. We found high (82–95%) and moderate (35–50%) rates of renesting for early and late incubation treatments. Renesting intervals averaged 4.7–6.8 days and were not different for clutches removed early or late in incubation. Most pairs remained together for renesting attempts. Larger females were more likely to replace a clutch; female body mass was the most important parameter predicting propensity to renest. Clutches lost later in the season were less likely to be replaced. We present evidence that renesting is more common in Arctic-breeding shorebirds than was previously thought, and suggest that renesting is constrained by energetic and temporal factors as well as mate availability. Obtaining rates of renesting in species breeding at different latitudes will help determine when this behavior is likely to occur; such information is necessary for demographic models that include individual and population-level fecundity estimates.

  4. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2011-12-01

    the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.

  5. Ukpik: testbed for a miniaturized robotic astronomical observatory on a high Arctic mountain

    Science.gov (United States)

    Steinbring, Eric; Leckie, Brian; Hardy, Tim; Caputa, Kris; Fletcher, Murray

    2012-09-01

    Mountains along the northwestern coast of Ellesmere Island, Canada, possess the highest peaks nearest the Pole. This geography, combined with an atmospheric thermal inversion restricted to below ~1000 m during much of the long arctic night, provides excellent opportunities for uninterrupted cloud-free astronomy - provided the challenges of these incredibly remote locations can be overcome. We present a miniaturized robotic observatory for deployment on a High Arctic mountaintop. This system tested the operability of precise optical instruments during winter, and the logistics of installation and maintenance during summer. It is called Ukpik after the Inuktitut name for the snowy owl, and was deployed at two sites accessible only by helicopter, each north of 82 degrees latitude; one on rock at 1100 m elevation and another on a glacier at 1600 m. The instrument suite included at first an all-sky-viewing camera, with the later addition of a small telescope to monitor Polaris, both protected by a retractable weather-proof enclosure. Expanding this to include a narrow-field drift-scanning camera for studying extra-solar planet transits was also investigated, but not implemented. An unique restriction was that all had to be run on batteries recharged primarily by a wind turbine. Supplementary power came from a methanol fuel-cell electrical generator. Communications were via the Iridium satellite network. The system design, and lessons learned from three years of operation are discussed, along with prospects for time-domain astronomy from isolated, high-elevation polar mountaintops.

  6. Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics

    Science.gov (United States)

    Chen, Y.; Veraverbeke, S.; Randerson, J. T.

    2017-12-01

    Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.

  7. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    Science.gov (United States)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  8. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  9. Computing a ground appropriateness index for route selection in permafrost regions

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-10-01

    Full Text Available The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appropriateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in permafrost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.

  10. Discovery of a novel methanogen prevalent in thawing permafrost.

    Science.gov (United States)

    Mondav, Rhiannon; Woodcroft, Ben J; Kim, Eun-Hae; McCalley, Carmody K; Hodgkins, Suzanne B; Crill, Patrick M; Chanton, Jeffrey; Hurst, Gregory B; VerBerkmoes, Nathan C; Saleska, Scott R; Hugenholtz, Philip; Rich, Virginia I; Tyson, Gene W

    2014-01-01

    Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus 'Methanoflorens stordalenmirensis' gen. nov. sp. nov., belonging to the uncultivated lineage 'Rice Cluster II' (Candidatus 'Methanoflorentaceae' fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, 'Methanoflorentaceae' are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus 'M. stordalenmirensis' appears to be a key mediator of methane-based positive feedback to climate warming.

  11. Improving permafrost distribution modelling using feature selection algorithms

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its

  12. Continuous daylight in the high-Arctic summer supports high plankton respiration rates compared to those supported in the dark

    KAUST Repository

    Mesa, Elena; Delgado-Huertas, Antonio; Carrillo-de-Albornoz, Paloma; Garcí a-Corral, Lara S.; Sanz-Martí n, Marina; Wassmann, Paul; Reigstad, Marit; Sejr, Mikael; Dalsgaard, Tage; Duarte, Carlos M.

    2017-01-01

    Plankton respiration rate is a major component of global CO2 production and is forecasted to increase rapidly in the Arctic with warming. Yet, existing assessments in the Arctic evaluated plankton respiration in the dark. Evidence that plankton

  13. Historical and Possible Future Changes in Permafrost and Active Layer Thickness in Alaska: Implications to Landscape Changes and Permafrost Carbon Pool.

    Science.gov (United States)

    Marchenko, S. S.; Helene, G.; Euskirchen, E. S.; Breen, A. L.; McGuire, D.; Rupp, S. T.; Romanovsky, V. E.; Walsh, J. E.

    2017-12-01

    The Soil Temperature and Active Layer Thickness (ALT) Gridded Data was developed to quantify the nature and rate of permafrost degradation and its impact on ecosystems, infrastructure, CO2 and CH4 fluxes and net C storage following permafrost thaw across Alaska. To develop this database, we used the process-based permafrost dynamics model GIPL2 developed in the Geophysical Institute Permafrost Lab, UAF and which is the permafrost module of the Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada. The climate forcing data for simulations were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP, http://www.snap.uaf.edu/). These data are based on the historical CRU3.1 data set for the retrospective analysis period (1901-2009) and the five model averaged data were derived from the five CMIP5/AR5 IPCC Global Circulation Models that performed the best in Alaska and other northern regions: NCAR-CCSM4, GFDL-CM3, GISS-E2-R, IPSL-CM5A-LR, MRI-CGCM3. A composite of all five-model outputs for the RCP4.5 and RCP8.5 were used in these particular permafrost dynamics simulations. Data sets were downscaled to a 771 m resolution, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climatology. Additional input data (snow characteristics, soil thermal properties, soil water content, organic matter accumulation or its loss due to fire, etc.) came from the Terrestrial Ecosystem Model (TEM) and the ALFRESCO (ALaska FRame-based EcoSystem COde) model simulations. We estimated the dynamics of permafrost temperature, active layer thickness, area occupied by permafrost, and volume of seasonally thawed soils within the 4.75 upper meters (original TEM soil column) across the Alaska domain. Simulations of future changes in permafrost indicate that, by the end of the 21st century, late-Holocene permafrost in Alaska will be actively thawing at all locations and that some Late Pleistocene carbon-rich peatlands underlain by permafrost will

  14. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Science.gov (United States)

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.

    2017-07-01

    : the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.

  15. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Directory of Open Access Journals (Sweden)

    T. V. Raudina

    2017-07-01

    fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA, Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.

  16. Ultrafine particles in inhabited areas in the Arctic - From very low to high concentrations

    DEFF Research Database (Denmark)

    Pétursdóttir, Una; Kirkelund, Gunvor Marie; Press-Kristensen, Kåre

    2017-01-01

    The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d < 100 nm) in the town Sisimiut and two nearby settlements, Sarfann......The Arctic is considered a pristine environment, where pollution mainly originates from global sources. The present study examines particle number concentrations (PNCs) and the main sources of airborne ultrafine particles (UFPs, d ..., Sarfannguit and Itilleq, in West Greenland. Measurements were carried out during three weeks in April and May 2016. Air temperatures during the measurements ranged from −4.4 to +8.7 °C. A portable condensation particle counter (P-Trak) was used for the measurements. Results showed that the lowest...... in Sisimiut, while subsequent measurements at the same location showed much lower PNCs. The presence of heavy machinery elevated PNCs highly during two measurement events, giving PNCs up to 270,993 cm−3 but dropping to 1180 cm−3 10 min later, after the vehicle had passed by. A measurement event in Sisimiut...

  17. Estimating Rates of Permafrost Degradation and their Impact on Ecosystems across Alaska and Northwest Canada using the Process-based Permafrost Dynamics Model GIPL as a Component of the Integrated Ecosystem Model (IEM)

    Science.gov (United States)

    Marchenko, S. S.; Genet, H.; Euskirchen, E. S.; Breen, A. L.; McGuire, A. D.; Rupp, S. T.; Romanovsky, V. E.; Bolton, W. R.; Walsh, J. E.

    2016-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Permafrost temperature has increased in most locations in the Arctic and Sub-Arctic during the past 30-40 years. The typical increase in permafrost temperature is 1-3°C. The process-based permafrost dynamics model GIPL developed in the Geophysical Institute Permafrost Lab, and which is the permafrost module of the Integrated Ecosystem Model (IEM) has been using to quantify the nature and rate of permafrost degradation and its impact on ecosystems, infrastructure, CO2 and CH4fluxes and net C storage following permafrost thaw across Alaska and Northwest Canada. The IEM project is a multi-institutional and multi-disciplinary effort aimed at understanding potential landscape, habitat and ecosystem change across the IEM domain. The IEM project also aims to tie three scientific models together Terrestrial Ecosystem Model (TEM), the ALFRESCO (ALaska FRame-based EcoSystem Code) and GIPL so that they exchange data at run-time. The models produce forecasts of future fire, vegetation, organic matter, permafrost and hydrology regimes. The climate forcing data are based on the historical CRU3.1 data set for the retrospective analysis period (1901-2009) and the CMIP3 CCCMA-CGCM3.1 and MPI-ECHAM5/MPI-OM climate models for the future period (2009-2100). All data sets were downscaled to a 1 km resolution, using a differencing methodology (i.e., a delta method) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climatology. We estimated the dynamics of permafrost temperature, active layer thickness, area occupied by permafrost, and volume of thawed soils across the IEM domain. The modeling results indicate how different types of ecosystems affect the thermal state of permafrost and its stability. Although the rate of soil warming and permafrost degradation in peatland areas are slower than

  18. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to

  19. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  20. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  1. Assimilation of old carbon by stream food webs in arctic Alaska

    Science.gov (United States)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  2. Unusually Warm Spring Temperatures Magnify Annual CH4 Losses From Arctic Ecosystems

    Science.gov (United States)

    Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Murphy, P.; Zona, D.

    2015-12-01

    The relatively fast pace of Northern high latitude warming puts the very large permafrost soil C pool at a higher risk of being lost to the atmosphere as CH4. Estimates for the Arctic tundra's contribution to the global wetland CH4 emissions range from 15-27 TgCH4 y-1 (8-14% of total). However, these estimates are largely based on data from the growing season, or from boreal systems underlain by discontinuous permafrost with different physical, hydrological, and biogeochemical dynamics than continuous permafrost zones. Recent data from a transect of eddy covariance flux towers across the North Slope of Alaska revealed the importance of cold season emissions to the annual CH4 budget, which may not correlate with summer flux patterns. However, understanding of the controls and inter-annual variability in fluxes at these different sites is lacking. Here, we present data from ~3 years at 5 tundra ecosystems along this Arctic transect to show the influence of earlier and deeper spring active layer thaw on timing and magnitude of CH4 fluxes. This year's warm spring led to significantly greater thaw depths and lower water tables than the previous year. Substantial CH4 emissions in 2015 were recorded at the wettest sites >20 days earlier than in the more meteorologically normal previous year. Since the soil remained saturated despite a lowered water table, total spring CH4 emissions more than doubled at these wet sites. At the drier sites, soil moisture declined with water table during the warmer spring, resulting in similar emissions to the previous year. However, deeper thaw depths prolonged fall and early winter emissions during the 'zero-curtain' soil temperature freezing phase, particularly at the drier site. In general, warmer spring temperatures in the Arctic may result in large increases in early season CH4 losses at wet sites and prolonged steady losses at the upland sites, enhancing the feedback between changing climate and tundra CH4 emissions at all sites.

  3. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  4. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Directory of Open Access Journals (Sweden)

    M J L Coolen

    2015-03-01

    Full Text Available Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gases, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after eleven days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  5. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Science.gov (United States)

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  6. Temporally delineated sources of major chemical species in high Arctic snow

    Directory of Open Access Journals (Sweden)

    K. M. Macdonald

    2018-03-01

    Full Text Available Long-range transport of aerosol from lower latitudes to the high Arctic may be a significant contributor to climate forcing in the Arctic. To identify the sources of key contaminants entering the Canadian High Arctic an intensive campaign of snow sampling was completed at Alert, Nunavut, from September 2014 to June 2015. Fresh snow samples collected every few days were analyzed for black carbon, major ions, and metals, and this rich data set provided an opportunity for a temporally refined source apportionment of snow composition via positive matrix factorization (PMF in conjunction with FLEXPART (FLEXible PARTicle dispersion model potential emission sensitivity analysis. Seven source factors were identified: sea salt, crustal metals, black carbon, carboxylic acids, nitrate, non-crustal metals, and sulfate. The sea salt and crustal factors showed good agreement with expected composition and primarily northern sources. High loadings of V and Se onto Factor 2, crustal metals, was consistent with expected elemental ratios, implying these metals were not primarily anthropogenic in origin. Factor 3, black carbon, was an acidic factor dominated by black carbon but with some sulfate contribution over the winter-haze season. The lack of K+ associated with this factor, a Eurasian source, and limited known forest fire events coincident with this factor's peak suggested a predominantly anthropogenic combustion source. Factor 4, carboxylic acids, was dominated by formate and acetate with a moderate correlation to available sunlight and an oceanic and North American source. A robust identification of this factor was not possible; however, atmospheric photochemical reactions, ocean microlayer reaction, and biomass burning were explored as potential contributors. Factor 5, nitrate, was an acidic factor dominated by NO3−, with a likely Eurasian source and mid-winter peak. The isolation of NO3− on a separate factor may reflect its complex atmospheric

  7. Soil formation in high elevation and permafrost areas in the Qinghai Plateau (China Edafogénesis en zonas elevadas y con permafrost en el Plateau Qunghai (China Formação do solo em áreas de elevada altitude e em ambientes"permafrost" do planalto de Qinghai Plateau (China

    Directory of Open Access Journals (Sweden)

    Joselito Arocena

    2012-07-01

    Full Text Available

    Soil systems continuously gain and lose matter and energy even in areas where climate is too harsh to support the higher plants such as in high elevations and in permafrost environments. The purpose of this paper was to elucidate soil formation at 4 700 m asl in the Kunlun Mountains of the Qinghai (Tibet Plateau, China. We collected twenty-six samples from three pedons developed on carbonate-rich slate and quartzitic-sandstone materials. The samples were analyzed for routine physical, chemical and mineralogical properties. Our results indicate that soil-forming processes are barely taking place in the study site as shown by pH > 7.0 reflecting limited decarbonation, biological activity (< 1.0% total C and < 0.05% total N, podzolization (<1 g Fep+Alp kg-1 soil and lessivage. The relative amounts of mica and kaolinite show no apparent change with depth suggesting minimal transformation and translocation of phyllosilicates. The most noticeable mineral transformation resulted in micaceous “flakes” and feldspathic “fragments” possibly due to thermal stress. Calcite is also observed coating the slate fragments. The soils are classified as Cryosols in the World Reference Base system and Gelisols in the Soil Taxonomy with ochric epipedon as the only diagnostic horizon indicating recent development of soils due to cold and arid environment. The results of this study show that soil-forming processes in harsh environments are manifested in the mechanical breakdown of minerals such as mica and feldspars.

    Los sistemas edáficos ganan y pierden continuamente materia y energía incluso en zonas donde el clima es demasiado severo como para permitir el desarrollo de plantas superiores, como son las zonas de elevada altitud o los ambientes con permafrost. El objetivo de este trabajo es analizar la formación del suelo a una altitud de 4 700 m en las Monta

  8. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  9. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    Science.gov (United States)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  10. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    Science.gov (United States)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  11. Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland

    Directory of Open Access Journals (Sweden)

    Maria L. Paulsen

    2017-06-01

    Full Text Available The land-to-ocean flux of organic carbon is increasing in glacierized regions in response to increasing temperatures in the Arctic (Hood et al., 2015. In order to understand the response of the coastal ecosystem metabolism to the organic carbon input it is essential to determine the bioavailability of the different carbon sources in the system. We quantified the bacterial turnover of organic carbon in a high Arctic fjord system (Young Sound, NE Greenland during the ice-free period (July-October 2014 and assessed the quality and quantity of the 3 major organic carbon sources; (1 local phytoplankton production (2 runoff from land-terminating glaciers and a lowland river and (3 inflow from the ocean shelf. We found that despite relatively low concentrations of DOC in the rivers, the bioavailability of the river–DOC was significantly higher than in the fjord, and characterized by high cell-specific bacterial production and low C:N ratios. In contrast, the DOC source entering via inflow of coastal shelf waters had high DOC concentrations with high C:N and low specific bacterial production. The phytoplankton production in the fjord could not sustain the bacterial carbon demand, but was still the major source of organic carbon for bacterial growth. We assessed the bacterial community composition and found that communities were specific for the different water types i.e., the bacterial community of the coastal inflow water could be traced mainly in the subsurface water, while the glacial river community strongly dominated the surface water in the fjord.

  12. Uav Photogrammetry for Mapping and Monitoring of Northern Permafrost Landscapes

    Science.gov (United States)

    Fraser, R. H.; Olthof, I.; Maloley, M.; Fernandes, R.; Prevost, C.; van der Sluijs, J.

    2015-08-01

    Northern environments are changing in response to recent climate warming, resource development, and natural disturbances. The Arctic climate has warmed by 2-3°C since the 1950's, causing a range of cryospheric changes including declines in sea ice extent, snow cover duration, and glacier mass, and warming permafrost. The terrestrial Arctic has also undergone significant temperature-driven changes in the form of increased thermokarst, larger tundra fires, and enhanced shrub growth. Monitoring these changes to inform land managers and decision makers is challenging due to the vast spatial extents involved and difficult access. Environmental monitoring in Canada's North is often based on local-scale measurements derived from aerial reconnaissance and photography, and ecological, hydrologic, and geologic sampling and surveying. Satellite remote sensing can provide a complementary tool for more spatially comprehensive monitoring but at coarser spatial resolutions. Satellite remote sensing has been used to map Arctic landscape changes related to vegetation productivity, lake expansion and drainage, glacier retreat, thermokarst, and wildfire activity. However, a current limitation with existing satellite-based techniques is the measurement gap between field measurements and high resolution satellite imagery. Bridging this gap is important for scaling up field measurements to landscape levels, and validating and calibrating satellite-based analyses. This gap can be filled to a certain extent using helicopter or fixed-wing aerial surveys, but at a cost that is often prohibitive. Unmanned aerial vehicle (UAV) technology has only recently progressed to the point where it can provide an inexpensive and efficient means of capturing imagery at this middle scale of measurement with detail that is adequate to interpret Arctic vegetation (i.e. 1-5 cm) and coverage that can be directly related to satellite imagery (1-10 km2). Unlike satellite measurements, UAVs permit frequent

  13. UAV PHOTOGRAMMETRY FOR MAPPING AND MONITORING OF NORTHERN PERMAFROST LANDSCAPES

    Directory of Open Access Journals (Sweden)

    R. H. Fraser

    2015-08-01

    Full Text Available Northern environments are changing in response to recent climate warming, resource development, and natural disturbances. The Arctic climate has warmed by 2–3°C since the 1950’s, causing a range of cryospheric changes including declines in sea ice extent, snow cover duration, and glacier mass, and warming permafrost. The terrestrial Arctic has also undergone significant temperature-driven changes in the form of increased thermokarst, larger tundra fires, and enhanced shrub growth. Monitoring these changes to inform land managers and decision makers is challenging due to the vast spatial extents involved and difficult access. Environmental monitoring in Canada’s North is often based on local-scale measurements derived from aerial reconnaissance and photography, and ecological, hydrologic, and geologic sampling and surveying. Satellite remote sensing can provide a complementary tool for more spatially comprehensive monitoring but at coarser spatial resolutions. Satellite remote sensing has been used to map Arctic landscape changes related to vegetation productivity, lake expansion and drainage, glacier retreat, thermokarst, and wildfire activity. However, a current limitation with existing satellite-based techniques is the measurement gap between field measurements and high resolution satellite imagery. Bridging this gap is important for scaling up field measurements to landscape levels, and validating and calibrating satellite-based analyses. This gap can be filled to a certain extent using helicopter or fixed-wing aerial surveys, but at a cost that is often prohibitive. Unmanned aerial vehicle (UAV technology has only recently progressed to the point where it can provide an inexpensive and efficient means of capturing imagery at this middle scale of measurement with detail that is adequate to interpret Arctic vegetation (i.e. 1–5 cm and coverage that can be directly related to satellite imagery (1–10 km2. Unlike satellite measurements

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  15. Groundwater controls on post-fire permafrost thaw: Water and energy balance effects

    OpenAIRE

    Rocha, Adrian; Mckenzie, Jeffrey; Lamontagne-Halle, Pierrick; Zipper, Samuel

    2018-01-01

    Fire frequency and severity is increasing in high latitude regions, with large impacts on the water and energy balances. However, the degree to which groundwater flow impacts the permafrost response to fire remains poorly understood and understudied. Here, we use the Anaktuvuk River Fire (Alaska, USA) as an archetypal example to investigate groundwater-permafrost interactions following fire. We identify key thermal and hydrologic parameters controlling permafrost and active layer response to ...

  16. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  17. On the physical controls of the carbon dioxide balance at a high arctic site in Svalbard

    International Nuclear Information System (INIS)

    Lloyd, C.R.

    2001-01-01

    Current predictions of the effects of climate change indicate that the Arctic may experience a larger than average increase in temperature with consequent changes to the length of the snow-free active summer period, winter snow depth and amount and frequency of summer precipitation being highly probable. This paper reports on measurements of carbon dioxide flux at a high arctic site at Ny-Aalesund (78 o 56' N, 11 o 55' E), Svalbard and the physical climate variables that largely control this flux. lt is shown that during three important precipitation-free periods of the active summer period, namely post snow melt, high summer, and early autumn, the net balance between CO 2 flux from the soil (due to respiration of roots and soil organisms) and CO 2 assimilation by the vegetation is controlled largely by soil temperature and solar radiation. A simple combined photosynthetic assimilation-soil respiration model is shown to be capable of simulating the net CO 2 flux during mid-summer, but is less proficient in the post snow melt period and in early autumn when the simple models' inability to simulate the effects of emergent growth and ponding during the former and senescence, freezing temperatures and dew during the latter indicates the need for a more complex descriptive model. The net CO 2 flux during the measurement periods progresses from a net CO 2 source of 0.3 gC m -2 d -1 during late snow melt to a mid summer net CO 2 sink of -0.39 gC m -2 d -1 , returning to a net CO 2 source of 0.1 gC m -2 d -1 in the early autumn. Simple extrapolation of the data indicates that, during the active summer season in 1995, this site was a net sink of CO 2 of approximately -9 gC m -2 . (author)

  18. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  19. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode

    2015-01-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...... and did not decrease below -12. °C. Those under deep snow were even more stable and did not decline below -2. °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid...

  20. Thick-billed murres from the High Arctic have the luxury of being lazy!

    DEFF Research Database (Denmark)

    Linnebjerg, Jannie; Tremblay, Yann; Mosbech, Anders

    cold waters where energy consumption is low. This causes potential problems for homoeothermic predators, which require constant access to nutritious prey to survive or large body lipid reserves. Diving birds are particularly vulnerable to periods of low prey availability and many species therefore......Aquatic environments in the temperate, boreal and arctic climate zones are highly seasonal in terms of biological productivity. Many poikilothermic aquatic organisms survive the winter, when food availability is low, by reducing their activity levels and/or performing vertical migrations to deep...... resolve this by migrating to warmer waters, where locating food is energetically less challenging. Migration by flight, however, is extremely energetically costly for birds with wings specialized for underwater swimming. Little is known of how they manage to obtain sufficient energy during migration...

  1. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhut, K.; Vann, D.R.; LePage, B.A. [University of Pennsylvania, Philadelphia, PA (United States). Dept. of Earth & Environmental Science

    2004-06-01

    The ultrastructural examination by transmission electron microscopy of 45-million-year-old mummified leaves of Metasequoia extracted from the Upper Coal member of the Buchanan Lake Formation in Napartulik on Axel Heiberg Island revealed the preservation of intact chloroplasts and chloroplast components. Abundant tanniferous cell inclusions may indicate that the 3-mo period of constant daylight during the Arctic summer induced high concentrations of tannins in the leaf tissues, which may have arrested microbial degradation of the litter. Quantified differences in the extent of chloroplast preservation through a vertical section of the lignite suggest that short-term shifts in the depositional environment took place, perhaps influencing the exposure of the leaf tissues to conditions that would either promote or inhibit decomposition.

  2. The long-term fate of permafrost peatlands under rapid climate warming

    DEFF Research Database (Denmark)

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon...... stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological...... approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed...

  3. High Arctic Coasts At Risk - The Impact of Coastal Hazards on Scientific and Community Infrastructure in Svalbard

    Science.gov (United States)

    Strzelecki, M. C.; Pawlowski, L.; Jaskolski, M.; Lim, M.; Zagorski, P.; Long, A. J.; Jensen, M.

    2015-12-01

    The rapid climate warming being observed in the Svalbard is leading to an increase in human activities in the coastal zone, leading to an increased need for coastal hazard assessment. Present-day Svalbard coastal landscapes are modified by increased degradation of permafrost accelerated sediment supply from deglaciated catchments, and prolonged periods of open-water conditions and wave activity. Since the second half of 20thcentury there is also an observed increase in the number and intensity of storms entering the Arctic particularly in summer months when coastlines are free of protective ice cover. Despite the potential significance of these coastal hazards on the security of scientific (research bases and devices) and community (ports, airports, roads, buildings) infrastructure on Svalbard, relatively little is known on the present-day rate of Svalbard coastal zone changes and how they might impact the nearshore infrastructure in the future. Here we report the results of a project that focused on rates of coastal zone changes in Svalbard and examined the impact of extreme coastal processes on scientific and community infrastructure. The project applied combination of remote sensing and field-based mapping techniques to characterise coastal changes observed in the surroundings of main research stations in Svalbard in Hornsund (PPS), Petuniabukta (AMUPS) and Bellsund (Calypsobyen) as well as a major towns: Longyearbyen, Piramiden, Barentsburg and Svea. Our results document dramatic changes of Svalbard coastal zone under intervals characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. The study confirmed the growing importance of extreme processes in shaping coasts of Svalbard and the impact of these changes on human infrastructure. Our study proposes a risk assessment for a development and protection of infrastructure along the coasts of Svalbard under scenarios of climate change, sea level rise

  4. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    consistent with inputs of OM from non-woody angiosperm sources mixed with organic matter derived from woody gymnosperm sources. A simple linear mixing model based on the lignin phenol distributions indicates organic matter in TSM samples from the delta and Buor Khaya Bay surface sediments contain comparable contributions from gymnosperm sources, which are primarily from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small area covered by tundra (∝12% of total catchment), the input of tundra-derived OM input is substantial and likely to increase in a warming Arctic. Radiocarbon compositions (Δ{sup 14}C) of bulk OM in Lena River TSM samples varied from -55 to -391 permille, translating into {sup 14}C ages of 395 to 3920 years BP. Using δ{sup 13}C compositions to estimate the fraction of phytoplankton-derived OM and assuming that this material has a modern {sup 14}C signature, we inferred the Δ{sup 14}C compositions of terrigenous OM in TSM exported by the Lena River to range between -190 and -700 permille. Such variability in the ages of terrigenous OM (i.e. 1640 to 9720 {sup 14}C years BP) reflects the heterogeneous composition and residence time of OM in the Lena River catchment soils (Holocene to Pleistocene ages). Lignin phenol and Δ{sup 14}C compositions of surface sediments from the adjacent Buor Khaya Bay suggest that terrestrial OM deposited there is older and more degraded than materials present in river particles and catchment soils. Stronger diagenetic alteration in Lena Delta TSM and marine sediments relative to soils may reflect degradation of more labile components during permafrost thawing and transport. Despite the high natural heterogeneity in catchment soils, the lignin biomarker compositions and radiocarbon ages of terrestrial OM exported by the Lena River reflect catchment characteristics such as vegetation and soil type. Climate warming related changes in the Lena River catchment may be

  5. Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    Science.gov (United States)

    Hindshaw, Ruth S.; Tosca, Nicholas J.; Piotrowski, Alexander M.; Tipper, Edward T.

    2018-03-01

    The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (ɛNd = -20.6 to -13.4; 87Sr / 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr / 86Sr and low ɛNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr / 86Sr and high ɛNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed

  6. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  7. National Atlas of Arctic: structure and creation approaches

    Directory of Open Access Journals (Sweden)

    N. S. Kasimov

    2015-01-01

    Full Text Available On the instructions of President and Government of the Russian Federation, works for development of National Atlas of Arctic are started in the country. In this article the authors present their ideas from viewpoint of geographers who are well experienced in the field of cartographic works. A structure of future Atlas and lines of approaches to its development are proposed. The totality of experiences of preparation of other geographical atlases in both, the USSR and Russia, as well as the latest achievements of cartography, aerospace sources and GIS-technologies are recommended to be used. The National Atlas of Arctic is understood as a collection of knowledge of spatial-temporal information about geographical, ecological, economic, historical-ethnographic, cultural and social features of the Arctic. This cartographic model of the territory is designed for using in a wide range of scientific, managing, economic, defensive and social activities. A hard copy of the atlas is intended to be used as scientific-reference publication while its electronic version will make it possible to renovate its content and to improve it by means of actualization according to various directions of its practical use 16 sections proposed in a draft of the Atlas content are as follows: introductory, geological structure, relief, mineral resources, environment evolution, climate, land waters, seas, seashores, snow cover, glaciers, permafrost, soils, flora and fauna, state of the environment and the Nature protection, population, economics, and prospects for future. The popular-scientific edition of the Atlas is intended for use by wide circle of readers and also as a textbook for all levels of education. Presentation of material in the Atlas should combine a high scientific level and accessible language. In a popular form it will clarify traditions of careful treatment to the Nature and the nature-protective ethics of religious confessions of local people

  8. Resource utilisation by deep-sea megabenthos in the Canadian High Arctic (Baffin Bay and Parry Channel)

    Science.gov (United States)

    Bourgeois, Solveig; Witte, Ursula; Harrison, Ailish M.; Makela, Anni; Kazanidis, Georgios; Archambault, Philippe

    2016-04-01

    Ongoing climate change in the Arctic is causing drastic alteration of the Arctic marine ecosystem functioning, such as shifts in patterns of primary production, and modifying the present tight pelagic-benthic coupling. Subsequently benthic communities, which rely upon organic matter produced in the top layers of the Ocean, will also be affected by these changes. The benthic megafaunal communities play a significant role in ecological processes and ecosystem functioning (i.e. organic matter recycling, bioturbation, food source for the higher trophic levels…). Yet, information is scarce regarding the main food sources for dominant benthic organisms, and therefore the impact of the ongoing changes is difficult to assess. The goal of this study is to investigate the preferential feeding of different carbon sources by megabenthic organisms in the Canadian High Arctic and to identify environmental drivers which explain the observed trends. In summer 2013, benthic megafauna was collected at 9 stations spread along latitudinal (58 to 81°N) and longitudinal (62 to 114°W) transects in the Baffin Bay and Parry Channel, respectively. Carbon and nitrogen bulk stable isotope analyses (δ13C and δ15N) were performed on several species divided into groups according to their feeding type. This study highlights distinct trends in δ13C values of benthic organisms suggesting the importance of both phytoplankton and ice algae as carbon sources for megafauna in the Canadian High Arctic. The importance of physical and biological parameters as drivers of food web structure will be furthermore discussed.

  9. Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska

    Science.gov (United States)

    Hunt, Stephanie D.; Yu, Zicheng; Jones, Miriam C.

    2013-01-01

    peatland at permafrost site (NL10-1) is characterized by rapid C accumulation (66 g C m−2 yr−1), high OM content and a peak in Sphagnum spp. at 5.8–4.6 ka, suggesting the lack of permafrost. A transition to extremely low C accumulation rates of 6.3 g C m−2 yr−1 after 4.5 ka at this site suggests the onset of permafrost aggradation, likely in response to Neoglacial climate cooling as documented across the circum-Arctic region. A similar decrease in C accumulation rates also occurred at non-permafrost site NL10-2. Time-weighted C accumulation rates are 21.8 g C m−2 yr−1 for core NL10-1 during the last ∼6.5 ka and 14.8 g C m−2 yr−1 for core NL10-2 during the last ∼15 ka. Evidence from peat-core analysis and historical aerial photographs shows an abrupt increase in Sphagnum spp. and decrease in area of thermokarst lakes over the last century, suggesting major changes in hydrology and ecosystem structure, likely due to recent climate warming.Our results show that the thermokarst–permafrost complex was much more dynamic with high C accumulation rates under warmer climates in the past, while permafrost was stabilized and C accumulation slowed down following the Neoglacial cooling in the late Holocene. Furthermore, permafrost presence at local scales is controlled by both regional climate and site-specific factors, highlighting the challenge in projecting responses of permafrost peatlands and their C dynamics to future climate change.

  10. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Science.gov (United States)

    Benjamin W. Abbott,; Jeremy B. Jones,; Edward A.G. Schuur,; F.S. Chapin, III; Bowden, William B.; M. Syndonia Bret-Harte,; Howard E. Epstein,; Michael D. Flannigan,; Tamara K. Harms,; Teresa N. Hollingsworth,; Mack, Michelle C.; McGuire, A. David; Susan M. Natali,; Adrian V. Rocha,; Tank, Suzanne E.; Merrit R. Turetsky,; Jorien E. Vonk,; Wickland, Kimberly P.; Aiken, George R.

    2016-01-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  11. Evaluating permafrost thaw vulnerabilities and hydrologic impacts in boreal Alaska (USA) watersheds using field data and cryohydrogeologic modeling

    Science.gov (United States)

    Walvoord, M. A.; Voss, C.; Ebel, B. A.; Minsley, B. J.

    2017-12-01

    Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.

  12. Cryolithozone of Western Arctic shelf of Russia

    Science.gov (United States)

    Kholmyanskii, Mikhail; Vladimirov, Maksim; Snopova, Ekaterina; Kartashev, Aleksandr

    2017-04-01

    We propose a new original version of the structure of the cryolithozone of west Arctic seas of Russia. In contrast to variants of construction of sections and maps based on thermodynamic modeling, the authors have used electrometric, seismic, and thermal data including their own profile measurements by near-field transient electromagnetic technique and seismic profile observations by reflection method. As a result, we defined the spatial characteristics of cryolithozone and managed to differentiate it to several layers, different both in structure and formation time. We confirmed once again that the spatial boundary of cryolithozone, type and thickness of permafrost, chilled rocks and thawed ground are primarily determined by tectonic and oceanographic regimes of the Arctic Ocean and adjacent land in different geological epochs. Permafrost formed on the land in times of cold weather, turn to submarine during flooding and overlap, in the case of the sea transgression, by marine sediments accumulating in the period of warming. We have been able to establish a clear link between the permafrost thickness and the geomorphological structure of the area. This can be explained by the distribution of thermodynamic flows that change the temperature state of previously formed permafrost rocks. Formation in the outer parts of the shelf which took place at ancient conversion stage can be characterized by the structure: • permafrost table - consists of rocks, where the sea water with a temperature below 0 °C has replaced the melted ice; • middle horizon - composed of undisturbed rocks, and the rocks chilled through the lower sieving underlay; As a result of the interpretation and analysis of all the available data, the authors created a map of types of cryolithozone of the Western Arctic shelf of Russia. The following distribution areas are marked on the map: • single-layer cryolithozone (composed of sediments upper Pleistocene and Holocene); • monosyllabic relict

  13. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Science.gov (United States)

    Benjamin W Abbott; Jeremy B Jones; Edward A G Schuur; F Stuart Chapin III; William B Bowden; M Syndonia Bret-Harte; Howard E Epstein; Michael D Flannigan; Tamara K Harms; Teresa N Hollingsworth; Michelle C Mack; A David McGuire; Susan M Natali; Adrian V Rocha; Suzanne E Tank; Merritt R Turetsky; Jorien E Vonk; Kimberly P Wickland; George R Aiken; Heather D Alexander; Rainer M W Amon; Brian W Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Amy L Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet; Sean K Carey; Jing M Chen; Han Y H Chen; Torben R Christensen; Lee W Cooper; J Hans C Cornelissen; William J de Groot; Thomas H DeLuca; Ellen Dorrepaal; Ned Fetcher; Jacques C Finlay; Bruce C Forbes; Nancy H F French; Sylvie Gauthier; Martin P Girardin; Scott J Goetz; Johann G Goldammer; Laura Gough; Paul Grogan; Laodong Guo; Philip E Higuera; Larry Hinzman; Feng Sheng Hu; Gustaf Hugelius; Elchin E Jafarov; Randi Jandt; Jill F Johnstone; Eric S Kasischke; Gerhard Kattner; Ryan Kelly; Frida Keuper; George W Kling; Pirkko Kortelainen; Jari Kouki; Peter Kuhry; Hjalmar Laudon; Isabelle Laurion; Robie W Macdonald; Paul J Mann; Pertti J Martikainen; James W McClelland; Ulf Molau; Steven F Oberbauer; David Olefeldt; David Par??; Marc-Andr?? Parisien; Serge Payette; Changhui Peng; Oleg S Pokrovsky; Edward B Rastetter; Peter A Raymond; Martha K Raynolds; Guillermo Rein; James F Reynolds; Martin Robards; Brendan M Rogers; Christina Sch??del; Kevin Schaefer; Inger K Schmidt; Anatoly Shvidenko; Jasper Sky; Robert G M Spencer; Gregory Starr; Robert G Striegl; Roman Teisserenc; Lars J Tranvik; Tarmo Virtanen; Jeffrey M Welker; Sergei Zimov

    2016-01-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting...

  14. Carbon loss from an unprecedented Arctic tundra wildfire

    Science.gov (United States)

    Michelle C. Mack; M. Syndonia Bret-Harte; Teresa N. Hollingsworth; Randi R. Jandt; Edward A.G. Schuur; Gaius R. Shaver; David L. Verbyla

    2011-01-01

    Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the...

  15. A promising tool for subsurface permafrost mapping-An application of airborne geophysics from the Yukon River Basin, Alaska

    Science.gov (United States)

    Abraham, Jared E.

    2011-01-01

    Permafrost is a predominant physical feature of the Earth's Arctic and Subarctic clines and a major consideration encompassing ecosystem structure to infrastructure engineering and placement. Perennially frozen ground is estimated to cover about 85 percent of the state of Alaska where northern reaches are underlain with continuous permafrost and parts of interior Alaska are underlain by areas of discontinuous and (or) sporadic permafrost (fig. 1). The region of Interior Alaska, where permafrost is scattered among unfrozen ground, is a complex mosaic of terrains and habitats. Such diversity creates arrays of lakes and surface-water and groundwater patterns that continental populations of migratory waterfowl and internationally significant fisheries have adapted to over time. A road or pipeline might pass over frozen and unfrozen ground, affecting the types of materials and engineering approaches needed to sustain the infrastructure.

  16. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  17. AirSWOT flights and field campaigns for the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Smith, L. C.; Pavelsky, T.; Lettenmaier, D. P.; Gleason, C. J.; Pietroniro, A.; Applejohn, A.; Arvesen, J. C.; Bjella, K.; Carter, T.; Chao, R.; Cooley, S. W.; Cooper, M. G.; Cretaux, J. F.; Douglass, T.; Faria, D.; Fayne, J.; Fiset, J. M.; Goodman, S.; Hanna, B.; Harlan, M.; Langhorst, T.; Marsh, P.; Moreira, D. M.; Minear, J. T.; Onclin, C.; Overstreet, B. T.; Peters, D.; Pettit, J.; Pitcher, L. H.; Russell, M.; Spence, C.; Topp, S.; Turner, K. W.; Vimal, S.; Wilcox, E.; Woodward, J.; Yang, D.; Zaino, A.

    2017-12-01

    Some 50% of Canada and 80% of Alaska is thought to be underlain by permafrost, influencing the hydrology, ecology and carbon cycles of Arctic-Boreal landscapes. This influence includes enhanced presence of millions of lakes and wetlands, which release trace gases while supporting critical ecosystems and traditional subsistence economies. Permafrost is challenging to infer from remote sensing and difficult to sample in the field. A series of 2017 AirSWOT flights flown for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) will study whether small variations in water surface elevations (WSEs) of Arctic-Boreal lakes are sensitive to presence and/or disturbance of permafrost. AirSWOT is an experimental NASA airborne radar designed to map WSE and a precursor to SWOT, a forthcoming NASA/CNES/CSA satellite mission to map WSE globally with launch in 2021. The ABoVE AirSWOT flight experiments adopted long flight lines of the broader ABoVE effort to traverse broad spatial gradients of permafrost, climate, ecology, and geology. AirSWOT acquisitions consisted of long (1000s of kilometers) strips of Ka-band interferometric radar imagery, and high resolution visible/NIR imagery and DEMs from a digital Cirrus CIR camera. Intensive AirSWOT mapping and ground-based GPS field surveys were conducted at 11 field sites for eight study areas of Canada and Alaska: 1) Saint-Denis, Redberry Lake, North Saskatchewan River (Saskatchewan); 2) Peace-Athabasca Delta (Alberta); 3) Slave River Delta (N.W.T.); 4) Canadian Shield (Yellowknife area, Daring Lake, N.W.T.); 5) Mackenzie River (Inuvik-Tuktoyaktuk corridor, N.W.T.); 6) Old Crow Flats (Yukon Territory); 7) Sagavanirktok River (Alaska); 8) Yukon Flats (Alaska). Extensive ground campaigns were conducted by U.S. and Canadian collaborators to collect high quality surveys of lake WSE, river WSE and discharge, and shoreline locations. Field experiments included traditional and novel GPS surveying methods, including custom-built GPS buoys

  18. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    Science.gov (United States)

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  19. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E; Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G; Epstein, H E; Yu, Q; Forbes, B C; Kaarlejaervi, E; Comiso, J C; Jia, G J; Kaplan, J O; Kumpula, T; Kuss, P; Matyshak, G

    2009-01-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  20. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E [University of Alaska Fairbanks, Fairbanks, AK (United States); Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G [Earth Cryosphere Institute, Russian Academy of Science, Siberian Branch, Tyumen (Russian Federation); Epstein, H E; Yu, Q [University of Virginia, Charlottesville, VA (United States); Forbes, B C; Kaarlejaervi, E [Arctic Center, University of Lapland, Rovaniemi (Finland); Comiso, J C [NASA Goddard Space Flight Center, MD (United States); Jia, G J [Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing (China); Kaplan, J O [Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf (Switzerland); Kumpula, T [University of Joensuu, Joensuu (Finland); Kuss, P [University of Berne, Berne (Switzerland); Matyshak, G [Moscow State University, Moscow (Russian Federation)

    2009-10-15

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  1. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  2. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    Science.gov (United States)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  3. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  4. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  5. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    KAUST Repository

    Bourgeois, Solveig; Kerhervé , Philippe; Calleja, Maria Ll; Many, Gaë l; Morata, Nathalie

    2016-01-01

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions

  6. Permafrost Organic Carbon Mobilization From the Watershed to the Colville River Delta: Evidence From 14C Ramped Pyrolysis and Lignin Biomarkers

    Science.gov (United States)

    Zhang, Xiaowen; Bianchi, Thomas S.; Cui, Xingqian; Rosenheim, Brad E.; Ping, Chien-Lu; Hanna, Andrea J. M.; Kanevskiy, Mikhail; Schreiner, Kathryn M.; Allison, Mead A.

    2017-11-01

    The deposition of terrestrial-derived permafrost particulate organic carbon (POC) has been recorded in major Arctic river deltas. However, associated transport pathways of permafrost POC from the watershed to the coast have not been well constrained. Here we utilized a combination of ramped pyrolysis-oxidation radiocarbon analysis (RPO 14C) along with lignin biomarkers, to track the linkages between soils and river and delta sediments. Surface and deep soils showed distinct RPO thermographs which may be related to degradation and organo-mineral interaction. Soil material in the bed load of the river channel was mostly derived from deep old permafrost. Both surface and deep soils were transported and deposited to the coast. Hydrodynamic sorting and barrier island protection played important roles in terrestrial-derived permafrost POC deposition near the coast. On a large scale, ice processes (e.g., ice gauging and strudel scour) and ocean currents controlled the transport and distribution of permafrost POC on the Beaufort Shelf.

  7. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Andreasen, Frank

    2007-01-01

    Kangerlussuaq Airport is located at 67°N and 51°W in the zone of continuous permafrost in western Greenland. Its proximity to the Greenlandic ice sheet results in a dry sub-arctic climate with a mean annual temperature of −5.7 °C. The airport is built on a river terrace mostly consisting of fluvial......, in autumn 2000, three test areas were painted white in order to reduce further development of depressions in the asphalt pavement. GPR profiles crossing the white areas show a distinct difference in depth to the permafrost surface under the painted areas compared to the natural black asphalt surface. GPR...... of the permafrost surface and the formation of several depressions in the pavement of the southern parking area. The depressions can be clearly seen after rainfall. To calibrate the GPR survey, sediment samples from a borehole were analyzed with respect to water content, grain size and content of organic material...

  8. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire

    DEFF Research Database (Denmark)

    Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.

    2016-01-01

    estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost......-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments...... indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty...

  9. Observations and Impacts of Permafrost Thaw in the Lower Yukon River Basin and Yukon Delta Region: the Importance of Local Knowledge

    Science.gov (United States)

    Herman-Mercer, N. M.; Elder, K.; Toohey, R.; Mutter, E. A.

    2015-12-01

    In regions of the arctic and subarctic baseline measurements of permafrost dynamics are lacking and scientific research can be especially expensive when remote sensing techniques are utilized. This research demonstrated the importance of local observations, a powerful tool for understanding landscape change, such as permafrost dynamics. Fifty-five interviews were recently conducted with community members in four villages of the lower Yukon River Basin and Yukon Delta to understand local environmental and landscape changes and the impacts these changes may be having on the lives and livelihoods of these communities. The interviews were semi-structured and focused on many climate and landscape change factors including knowledge of permafrost in their community or the surrounding landscape. All positive respondents stated that they believe the permafrost is thawing. The research revealed that residents of the arctic and subarctic interact with permafrost in a variety of ways. Some people utilize permafrost to store food resources and have found that they have to dig deeper presently than in their youth in order to find ground cold enough. Others are involved in digging graves and report encountering easier excavation in recent years. Subsistence hunters and gatherers travel long distances by snowmobile and boat, and have noticed slumping ground, eroding river banks and coast lines, as well as land that seems to be rising. Finally, all residents of the arctic and subarctic interact with permafrost in terms of the stability of their homes and other infrastructure. Many interview participants complained of their houses leaning and needing more frequent adjustment than in the past. Indigenous residents of the arctic and subarctic have intimate relationships with their landscape owing to their subsistence lifestyle and are also connected to the landscape of the past through the teachings of their elders. Further, arctic and subarctic communities will sustain the majority

  10. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  11. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    Science.gov (United States)

    Kristofer D. Johnson; Jennifer W. Harden; A. David McGuire; Mark Clark; Fengming Yuan; Andrew O. Finley

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF),...

  12. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    Science.gov (United States)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble

  13. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    Science.gov (United States)

    Göckede, Mathias; Kittler, Fanny; Kwon, Min Jung; Burjack, Ina; Heimann, Martin; Kolle, Olaf; Zimov, Nikita; Zimov, Sergey

    2017-12-01

    Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  14. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure

    Directory of Open Access Journals (Sweden)

    M. Göckede

    2017-12-01

    Full Text Available Hydrologic conditions are a key factor in Arctic ecosystems, with strong influences on ecosystem structure and related effects on biogeophysical and biogeochemical processes. With systematic changes in water availability expected for large parts of the northern high-latitude region in the coming centuries, knowledge on shifts in ecosystem functionality triggered by altered water levels is crucial for reducing uncertainties in climate change predictions. Here, we present findings from paired ecosystem observations in northeast Siberia comprising a drained and a control site. At the drainage site, the water table has been artificially lowered by up to 30 cm in summer for more than a decade. This sustained primary disturbance in hydrologic conditions has triggered a suite of secondary shifts in ecosystem properties, including vegetation community structure, snow cover dynamics, and radiation budget, all of which influence the net effects of drainage. Reduced thermal conductivity in dry organic soils was identified as the dominating drainage effect on energy budget and soil thermal regime. Through this effect, reduced heat transfer into deeper soil layers leads to shallower thaw depths, initially leading to a stabilization of organic permafrost soils, while the long-term effects on permafrost temperature trends still need to be assessed. At the same time, more energy is transferred back into the atmosphere as sensible heat in the drained area, which may trigger a warming of the lower atmospheric surface layer.

  15. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  16. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light.

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.

  17. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development

    Science.gov (United States)

    Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna. Lee

    2009-01-01

    Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...

  18. East Siberian Sea, an Arctic region of very high biogeochemical activity

    Directory of Open Access Journals (Sweden)

    L. G. Anderson

    2011-06-01

    Full Text Available Shelf seas are among the most active biogeochemical marine environments and the East Siberian Sea is a prime example. This sea is supplied by seawater from both the Atlantic and Pacific Oceans and has a substantial input of river runoff. All of these waters contribute chemical constituents, dissolved and particulate, but of different signatures. Sea ice formation during the winter season and melting in the summer has a major impact on physical as well as biogeochemical conditions. The internal circulation and water mass distribution is significantly influenced by the atmospheric pressure field. The western region is dominated by input of river runoff from the Laptev Sea and an extensive input of terrestrial organic matter. The microbial decay of this organic matter produces carbon dioxide (CO2 that oversaturates all waters from the surface to bottom relative to atmospheric level, even when primary production, inferred from low surface water nutrients, has occurred. The eastern surface waters were under-saturated with respect to CO2 illustrating the dominance of marine primary production. The drawdown of dissolved inorganic carbon equals a primary production of ~0.8 ± 2 mol C m−2, which when multiplied by half the area of the East Siberian Sea, ~500 000 km2, results in an annual primary production of 0.4 (± 1 × 1012 mol C or ~4 (± 10 × 1012 gC. Microbial decay occurs through much of the water column, but dominates at the sediment interface where the majority of organic matter ends up, thus more of the decay products are recycled to the bottom water. High nutrient concentrations and fugacity of CO2 and low oxygen and pH were observed in the bottom waters. Another signature of organic matter decomposition, methane (CH4, was observed in very high but variable concentrations. This is due to its seabed sources of glacial origin or modern production from

  19. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  20. Permafrost Meta-Omics and Climate Change

    DEFF Research Database (Denmark)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr

    2016-01-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil...

  1. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  2. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades

    International Nuclear Information System (INIS)

    Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982–2010). We found that the southernmost tundra subzones (C–E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field. (letter)

  3. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  4. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  5. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  6. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  7. Applying High Resolution Imagery to Understand the Role of Dynamics in the Diminishing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    describe contemporary ice pack thickness, MODIS , AVHRR, RadarSat-2 (satellite imagery) that describe ice pack deformation features on large scales, as well...high-resolution visible-band images of the Arctic ice pack that are available at the GFL, USGS. The statistics related to the available images are...University of Maryland team as a Faculty Research Assistant, working under the guidance of Co-PI Farrell. Ms. Faber is responsible for analysis of MODIS

  8. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes

    Science.gov (United States)

    Balascio, Nicholas L.; D'Andrea, William J.; Gjerde, Marthe; Bakke, Jostein

    2018-03-01

    The response of the Arctic hydrologic cycle to global warming includes changes in precipitation patterns and moisture availability associated with variable sea ice extent and modes of atmospheric circulation. Reconstructions of past hydroclimate changes help constrain the natural range of these systems, identify the manners in which they respond to different forcing mechanisms, and reveal their connections to other components of the climate system, all of which lead to a better understanding of present and future changes. Here we examine hydroclimate changes during the Holocene in the High Arctic archipelago of Svalbard by reconstructing the isotopic composition of precipitation. We measured the hydrogen isotopic composition (δD values) of leaf wax compounds (n-alkanes; C25-C31) in a sediment core from Lake Hakluytvatnet on the island of Amsterdamøya, northwest Spitsbergen. We interpret δD values of mid-chain (C25) and long-chain (C29, C31) length n-alkanes to represent changes in the isotopic composition of lake water and precipitation over the last 12.9 ka. After deglaciation of the catchment, water supply became restricted and the lake experienced significant evaporative isotopic enrichment indicating warmer conditions from 12.8 to 7.5 ka. The isotope values suggest an increase in the delivery of moisture from warmer sub-polar air masses between 12.8 and 9.5 ka, followed by generally warm, but unstable conditions between 9.5 and 7.5 ka, possibly indicating a response to meltwater forcing. Sedimentary evidence indicates a hiatus in deposition c. 7.5-5.0 ka, likely as a result of desiccation of the lake. At c. 5.0 ka lacustrine sedimentation resumed and over the last 5 ka there was a progressive increase in the influence of polar air masses and colder conditions, which culminated in an abrupt shift to colder conditions at c. 1.8 ka. This late Holocene cooling ended c. 0.18 ka, when isotopic data indicate warmer conditions and greater influence of moisture

  9. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    Science.gov (United States)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    of nutrient enrichment