WorldWideScience

Sample records for high amylose starches

  1. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes

    Science.gov (United States)

    Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...

  2. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification.

  3. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2014-12-01

    The effect of annealing on starch structure and functionality of three maize starches (waxy, normal and high-amylose) was investigated, with the aim of understanding the role of amylose molecules during starch annealing. Amylose content, granular morphology and crystallinity of maize starches were little affected by annealing treatment. Annealing treatment did not alter the swelling power of waxy maize starch, but reduced the swelling power of normal and high-amylose maize starches. The thermal transition temperatures were increased, and the temperature range was decreased, but the enthalpy change was not affected greatly. The pasting viscosities of normal and waxy maize starches were decreased significantly, with the pasting temperature being little affected. The in vitro digestibility of three maize starches was not affected significantly by annealing treatment. Our results demonstrated that amylose molecules play an important role in the structural reorganization of starch granules during annealing treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Science.gov (United States)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  5. Resistant-starch formation in high-amylose maize starch during Kernel development.

    Science.gov (United States)

    Jiang, Hongxin; Lio, Junyi; Blanco, Mike; Campbell, Mark; Jane, Jay-Lin

    2010-07-14

    The objective of this study was to understand the resistant-starch (RS) formation during kernel development of a high-amylose maize, GEMS-0067 line. The RS content of the starch, determined using AOAC method 991.43 for total dietary fiber, increased with kernel maturation and increase in the amylose/intermediate component (IC) content of the starch. Gelatinization of the native starches showed a major thermal transition with peak temperature at 76.6-81.0 degrees C. An additional peak ( approximately 97.1 degrees C) first appeared 20 days after pollination and then developed into a significant peak on later dates. After removal of lipids from the starch, this peak disappeared, but the conclusion gelatinization temperature remained the same. The proportion of the enthalpy change of the thermal transition above 95 degrees C, calculated from the thermogram of the defatted starch, increased with kernel maturation and was significantly correlated with the RS content of the starch (r = 0.98). These results showed that the increase in crystallites of amylose/IC long-chain double helices in the starch resulted in the increase in the RS content of the starch during kernel development.

  6. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhu, Lijia; Zhou, Weidong; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-01-27

    A high-amylose transgenic rice line (TRS) modified by antisense RNA inhibition of starch branching enzymes revealed a resistant starch-rich quality. Compound starch granules in whole grains of the regular rice cultivar Teqing (TQ) were readily split during fracturing, whereas the starch granules in TRS were structurally intact and showed large voluminous, non-angular rounded bodies and elongated, filamentous structures tolerant of fracturing. In isolated preparation, TQ starch granules broke up into separate polygonal granules, whereas TRS starch granules kept their intactness. TRS starch granules consisted of packed smaller subgranules, some of which located at the periphery of starch granules were fused to each other with adjacent ones forming a thick band or wall encircling the entire circumference of the granules. TQ starch granules had a high concentration of amylose in the concentric hilum, whereas TRS starch granules showed a relatively even distribution of amylose with intense amylose in both hilum and band.

  7. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch.

    Science.gov (United States)

    Chai, Yanwei; Wang, Mingzhu; Zhang, Genyi

    2013-09-11

    High-amylose maize starch (HAM) is a common source material to make resistant starch with its high content of amylose (>70%). In the current investigation, the self-assembly of amylose in the presence of bioactive tea polyphenols (TPLs) and resulting slow digestion property of starch were explored. The experimental results using a mouse model showed a slow digestion property can be achieved with an extended and moderate glycemic response to HAM starch cocooked with TPLs. Further studies using a dilute aqueous amylose solution (0.1%, w/v) revealed an increased hydrodynamic radius of amylose molecules, indicating that TPLs could bridge them together, leading to increased molecular sizes. On the other hand, the bound TPLs interrupted the normal process of amylose recrystallizaiton evidenced by a decreased viscosity and storage modulus (G') of HAM (5%) gel, a rough surface of the cross-section of HAM film, and decreased short-range orders examined by Fourier transform infrared spectral analysis. Single-step degradation curves in the thermal gravimetric profile demonstrated the existence of a self-assembled amylose-TPL complex, which is mainly formed through hydrogen bonding interaction according to the results of iodine binding and X-ray powder diffraction analysis. Collectively, the amylose-TPL complexation influences the normal self-assembling process of amylose, leading to a low-ordered crystalline structure, which is the basis for TPLs' function in modulating the digestion property of HAM starch to produce a slowly digestible starch material that is beneficial to postprandial glycemic control and related health effects.

  8. Studies of Amylose Content in Potato Starch

    Science.gov (United States)

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  9. Different structural properties of high-amylose maize starch fractions varying in granule size.

    Science.gov (United States)

    Cai, Canhui; Lin, Lingshang; Man, Jianmin; Zhao, Lingxiao; Wang, Zhifeng; Wei, Cunxu

    2014-12-03

    Large-, medium-, and small-sized granules were separated from normal and high-amylose maize starches using a glycerol centrifugation method. The different-sized fractions of normal maize starch showed similar molecular weight distribution, crystal structure, long- and short-range ordered structure, and lamellar structure of starch, but the different-sized fractions of high-amylose maize starch showed markedly different structural properties. The amylose content, iodine blue value, amylopectin long branch-chain, and IR ratio of 1045/1022 cm(-1) significantly increased with decrease of granule size, but the amylopectin short branch-chain and branching degree, relative crystallinity, IR ratio of 1022/995 cm(-1), and peak intensity of lamellar structure markedly decreased with decrease of granule size for high-amylose maize starch. The large-sized granules of high-amylose maize starch were A-type crystallinity, native and medium-sized granules of high-amylose maize starch were CA-type crystallinity, and small-sized granules of high-amylose maize starch were C-type crystallinity, indicating that C-type starch might contain A-type starch granules.

  10. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available Carbohydrate Polymers Vol. 112 Inducing PLA/starch compatibility through butyl-etherification ofwaxy and high amylose starch Obiro Cuthbert Wokadalaa,b, Naushad Mohammad Emmambuxc,Suprakas Sinha Raya,b,c,∗ aDST/CSIR National Centre for Nanostructured... Materials, Council for Scientific and Industrial Research, 1-Meiring Naude Road, Brummeria, Pretoria 0001,South Africa bDepartment of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa cDepartment of Food Science...

  11. Different structures of heterogeneous starch granules from high-amylose rice.

    Science.gov (United States)

    Man, Jianmin; Lin, Lingshang; Wang, Zhifeng; Wang, Youping; Liu, Qiaoquan; Wei, Cunxu

    2014-11-19

    High-amylose cereal starches usually have heterogeneous starch granules in morphological structure. In the present study, the polygonal, aggregate, elongated, and hollow starch granules were separated from different regions of the kernels of high-amylose rice, and their structures were investigated. The results showed that the polygonal starch granules had low amylose content and high short branch-chain and branching degree of amylopectin, and exhibited A-type crystallinity. The aggregate starch granules had high long branch-chain of amylopectin, relative crystallinity, and double helix content, and exhibited C-type crystallinity. The elongated starch granules had high amylose content and low branching degree of amylopectin and relative crystallinity, and exhibited C-type crystallinity. The hollow starch granules had very high amylose content, proportion of amorphous conformation, and amylose-lipid complex, and very low branch-chain of amylopectin, branching degree of amylopectin, and double helix content, and exhibited no crystallinity. The different structures of heterogeneous starch granules from high-amylose rice resulted in significantly different thermal properties.

  12. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  13. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  14. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  15. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion.

  16. Breeding for improved potato nutrition: High amylose starch potatoes show promise as fiber source

    Science.gov (United States)

    Potato starch is composed of approximately 75% amylopectin and 25% amylose. We are interested in breeding for higher amylose content, which would increase the fiber content of potato and decrease glycemic index. In order to make progress in a breeding program, we have developed a high throughput ass...

  17. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment.

    Science.gov (United States)

    Chen, Xu; Du, Xianfeng; Chen, Peirong; Guo, Li; Xu, Yang; Zhou, Xiuhong

    2017-02-10

    The granule morphologies and gelatinization behaviours of high-amylose maize starches during heating treatment were investigated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Maltese crosses demonstrated that the high-amylose maize starches maintained a granular structure even at 120°C. The granules of high-amylose maize starches swelled slightly at 100°C and swelled remarkably at approximately 120°C. The destruction of the starch structure began at the centre and expanded rapidly to the periphery. The intense fluorescence of high-amylose maize starch granules gradually became feeble, and the darker region spread outward during heating at 130°C for 30min, indicating that the amylose component may have been damaged and shifted. The starch granules treated at 140°C were substantially destroyed, and the CLSM, normal light microscopy (NL) and SEM images displayed no discernible granules, which indicated that the original starch granules formed a continuous integrated matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dosage effect of high-amylose modifier gene(s) on the starch structure of maize amylose-extender mutant.

    Science.gov (United States)

    Jiang, Hongxin; Campbell, Mark; Wu, Yusheng; Du, Shuangkui; Srichuwong, Sathaporn; Jane, Jay-Lin

    2015-01-21

    The objective of this study was to investigate how dosages of high-amylose modifier (HAM) gene(s) affected the structure of maize amylose extender (ae) mutant starch. GEMS-0067 (G), a homozygous mutant of ae and the HAM gene(s), and H99ae (H), an ae single mutant, were self-pollinated or inter-crossed to produce maize endosperms of G/G, G/H, H/G, and H/H with 3, 2, 1, and 0 doses of HAM gene(s), respectively. Endosperm starch was fractionated into amylopectin, amylose, and intermediate component (IC) of large and small molecular weights using 1-butanol precipitation of amylose followed by gel-permeation chromatography. Increases in the dosage of HAM gene(s) from 0 to 3 decreased the amylopectin content. The HAM-gene dosage significantly changed the branch chain-length of small-molecular-weight IC, but had little effect on the branch chain-length distributions of amylopectin and large-molecular-weight IC and the molecular structure of amylose.

  19. Amylose Content in Tuber Starch of Wild Potato Species

    Science.gov (United States)

    Approximately 20% of potato tuber fresh weight is starch, which is composed of amylose (straight chains of glucose) and amylopectin (branched chains). Potato starch is low in amylose (~25%), but high amylose starch has superior nutritional qualities. Amylose content has been determined in tuber samp...

  20. Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant Goami 2.

    Science.gov (United States)

    Butardo, Vito M; Daygon, Venea Dara; Colgrave, Michelle L; Campbell, Peter M; Resurreccion, Adoracion; Cuevas, Rosa Paula; Jobling, Stephen A; Tetlow, Ian; Rahman, Sadequr; Morell, Matthew; Fitzgerald, Melissa

    2012-11-21

    Elevated proportions of amylose in cereals are commonly associated with either the loss of starch branching or starch synthase activity. Goami 2 is a high-amylose mutant of the temperate japonica rice variety Ilpumbyeo. Genotyping revealed that Goami 2 and Ilpumbyeo carry the same alleles for starch synthase IIa and granule-bound starch synthase I genes. Analyses of granule-bound proteins revealed that SSI and SSIIa accumulate inside the mature starch granules of Goami 2, which is similar to the amylose extender mutant IR36ae. However, unlike the amylose extender mutants, SBEIIb was still detectable inside the starch granules of Goami 2. Detection of SBEIIb after protein fractionation revealed that most of the SBEIIb in Goami 2 accumulates inside the starch granules, whereas most of it accumulates at the granule surface in Ilpumbyeo. Exhaustive mass spectrometric characterisations of granule-bound proteins failed to detect any peptide sequence mutation or major post-translational modifications in Goami 2. Moreover, the signal peptide was found to be cleaved normally from the precursor protein, and there is no apparent N-linked glycosylation. Finally, no difference was found in the SBEIIb structural gene sequence of Goami 2 compared with Ilpumbyeo. In contrast, a G-to-A mutation was detected in the SBEIIb gene of IR36ae located at the splice site between exon and intron 11, which could potentially introduce a premature stop codon and produce a truncated form of SBEIIb. It is suggested that the mutation responsible for producing high amylose in Goami 2 is not due to a defect in SBEIIb gene as was observed in IR36ae, even though it produces a phenotype analogous to the amylose extender mutation. Understanding the molecular genetic basis of this mutation will be important in identifying novel targets for increasing amylose and resistant starch contents in rice and other cereals.

  1. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize.

    Science.gov (United States)

    Cai, Canhui; Zhao, Lingxiao; Huang, Jun; Chen, Yifang; Wei, Cunxu

    2014-02-15

    High-amylose cereal endosperm is rich in heterogeneous starch granules. In this paper, we investigated the morphology, structure and gelatinization properties of high-amylose maize endosperm starch. Starch had individual, aggregate and elongated heterogeneous granules. Most of individual granules were round with small size and had one central hilum. Aggregate and elongated granules consisted of many subgranules with central hila, and had irregular and rod/filamentous shapes, respectively. Iodine stained starch granules showed five types of polarization colors: blue, purple, fuchsia, dark red, and interior dark blue and exterior brown. Most of individual and aggregate granules had the color of dark red, that of elongated granules the color of interior dark blue and exterior brown. Amylose was mainly distributed in the hilum region and the circumference of starch granules. Aggregate and elongated granules had higher amylose content than individual granules. Elongated and individual granules had the highest and the lowest gelatinization resistance among high-amylose maize heterogeneous starch granules, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Ordered structure and thermal property of acid-modified high-amylose rice starch.

    Science.gov (United States)

    Man, Jianmin; Qin, Fengling; Zhu, Lijia; Shi, Yong-Cheng; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2012-10-15

    High-amylose cereal starch has a great benefit on human health. Acid modification is very helpful for application of high-amylose starch in food and non-food industries. In this study, the ordered structure of acid-modified high-amylose rice starch was investigated by GPC, HPAEC, (13)C CP/MAS NMR and XRD. Acid preferentially degraded the amylose, then A chain and short B chain of amylopectin. Relative double helix content and crystallinity both initially increased sharply and then progressively with acid hydrolysis. The relative crystallinity of starches obtained from (13)C CP/MAS NMR was higher than that from XRD. The onset gelatinisation temperature decreased, while the peak and conclusion temperatures increased with increasing hydrolysis time. The endothermic value initially increased and then decreased with acid hydrolysis. The swelling power decreased while solubility increased after acid hydrolysis. These results add to our understanding of the effect of acid hydrolysis on the high-amylose rice starch. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods.

    Science.gov (United States)

    Chen, Ming-Hsuan; Bergman, Christine J; McClung, Anna M; Everette, Jace D; Tabien, Rodante E

    2017-11-01

    Resistant starch (RS), which is not hydrolyzed in the small intestine, has proposed health benefits. We evaluated 40 high amylose rice varieties for RS content in cooked rice and a 1.9-fold difference was found. Some varieties had more than two-fold greater RS content than a US long-grain intermediate-amylose rice. The high amylose varieties were grouped into four classes according to paste viscosity and gelatinization temperature based on genetic variants of the Waxy and Starch Synthase IIa genes, respectively. RS content was not different between the four paste viscosity-gelatinization temperature classes. Multiple linear regression analysis showed that apparent amylose content and pasting temperature were strong predictors of RS within each class. Two cooking methods, fixed water-to-rice ratio/time and in excess-water/minimum-cook-time, were compared using six rice varieties that were extremes in RS in each of the genetic variant classes, no difference in RS content due to cooking method was observed. Published by Elsevier Ltd.

  4. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion.

  5. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Xu, Bin; Qin, Fengling; Yu, Huaguang; Chen, Chong; Meng, Xianglen; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-06-23

    High-amylose starch is a source of resistant starch (RS) which has a great benefit on human health. A transgenic rice line (TRS) enriched amylose and RS had been developed by antisense RNA inhibition of starch branching enzymes. In this study, the native starch granules were isolated from TRS grains as well as the wild type, and their crystalline type was carefully investigated before and after acid hydrolysis. In high-amylose TRS rice, the C-type starch, which might result from the combination of both A-type and B-type starch, was observed and subsequently confirmed by multiple physical techniques, including X-ray powder diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared. Moreover, the change of starch crystalline structure from C- to B-type during acid hydrolysis was also observed in this RS-rich rice. These data could add to our understanding of not only the polymorph structure of cereal starch but also why high-amylose starch is more resistant to digestion.

  7. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    Science.gov (United States)

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (starch.

  9. Understanding the structural features of high-amylose maize starch through hydrothermal treatment.

    Science.gov (United States)

    Yang, Jianing; Xie, Fengwei; Wen, Wenqiang; Chen, Ling; Shang, Xiaoqin; Liu, Peng

    2016-03-01

    In this study, high-amylose starches were hydrothermally-treated and the structural changes were monitored with time (up to 12h) using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). When high-amylose starches were treated in boiling water, half-shell-like granules were observed by SEM, which could be due to the first hydrolysis of the granule inner region (CLSM). This initial hydrolysis could also immediately (0.5h) disrupt the semi-crystalline lamellar regularity (SAXS) and dramatically reduce the crystallinity (XRD); but with prolonged time of hydrothermal treatment (≥2 h), might allow the perfection or formation of amylose single helices, resulting in slightly increased crystallinity (XRD and DSC). These results show that the inner region of granules is composed of mainly loosely-packed amylopectin growth rings with semi-crystalline lamellae, which are vulnerable under gelatinization or hydrolysis. In contrast, the periphery is demonstrated to be more compact, possibly composed of amylose and amylopectin helices intertwined with amylose molecules, which require greater energy input (higher temperature) for disintegration.

  10. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In Vitro Utilization of Amylopectin and High-Amylose Maize (Amylomaize) Starch Granules by Human Colonic Bacteria

    OpenAIRE

    Wang, Xin; Conway, Patricia Lynne; Brown, Ian Lewis; Evans, Anthony John

    1999-01-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced ...

  12. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.

    Science.gov (United States)

    Luo, Zhi-Gang; Shi, Yong-Cheng

    2012-09-19

    Acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution (DS) were prepared in aqueous solution with 20% (w/w) sodium hydroxide as a catalyst. The level of DS was in the order high-amylose maize starch > waxy maize starch > normal maize starch. Settling volume indicated that during the early reaction, normal maize starch swelled to a lesser extent compared with waxy and high-amylose maize starches. The settling volume of all three starches increased initially but decreased after long reaction time. Aggregation of granules was observed as DS increased. The A-type X-ray diffraction pattern of acetylated normal and waxy maize starches weakened as DS increased, whereas the diffraction peaks disappeared in acetylated high-amylose starch when DS was 0.95. Low DS promoted the swelling of the starches in water, but at high DS, the starches became more hydrophobic and the peak viscosity of acetylated starches decreased.

  13. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations.

    Science.gov (United States)

    Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil

    2017-02-01

    The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones.

  14. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...... irregular and showed no distinct melting enthalpy and very weak X-ray scattering. Hyperphosphorylated barley starch was achieved by endosperm specific overexpression of the potato glucan water dikinase1 (StGWD1). The content of phosphate esters in this starch was tenfold higher than the control lines...

  15. Comparative methodologies for measuring metabolizable energy of various types of resistant high amylose corn starch.

    Science.gov (United States)

    Tulley, Richard T; Appel, Marko J; Enos, Tanya G; Hegsted, Maren; McCutcheon, Kathleen L; Zhou, Jun; Raggio, Anne M; Jeffcoat, Roger; Birkett, Anne; Martin, Roy J; Keenan, Michael J

    2009-09-23

    Energy values of high amylose corn starches high in resistant starch (RS) were determined in vivo by two different methodologies. In one study, energy values were determined according to growth relative to glucose-based diets in rats fed diets containing RS(2), heat-treated RS(2) (RS(2)-HT), RS(3), and amylase predigested versions to isolate the RS component. Net metabolizable energy values ranged from 2.68 to 3.06 kcal/g for the RS starches, and 1.91-2.53 kcal/g for the amylase predigested versions. In a second study, rats were fed a diet containing RS(2)-HT and the metabolizable energy value was determined by bomb calorimetry. The metabolizable energy value was 2.80 kcal/g, consistent with Study 1. Thus, high amylose corn based RS ingredients and their amylase predigested equivalents have energy values approximately 65-78% and 47-62% of available starch (Atwater factor), respectively, according to the RS type (Garcia, T. A.; McCutcheon, K. L.; Francis, A. R.; Keenan, M. J.; O'Neil, C. E.; Martin, R. J.; Hegsted, M. The effects of resistant starch on gastrointestinal organs and fecal output in rats. FASEB J. 2003, 17, A335).

  16. Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE).

    Science.gov (United States)

    Tian, Yaoqi; Chen, Huangli; Zhang, Xiwen; Zhan, Jinling; Jin, Zhengyu; Wang, Jinpeng

    2016-07-15

    Branching enzyme (BE, EC 2.4.1.18) was isolated from the developing waxy rice endosperm and used to prepare a highly branched dextrin based on high-amylose maize starch (HAMS) as a substrate. The molecular mass of the starch initially degraded quickly from 2.5 × 10(7) to 4.1 × 10(5)Da, and then stabilized, with a minimal increase during the BE treatment. The resultant branched dextrin had a narrow size distribution, with a mean molecular weight of 5.1 × 10(5)Da and a polydispersity index (PI) of 1.567. The results of high-performance anion exchange chromatography indicated that the degree of polymerization (DP) of the branched chains ranged from 3 to 27; approximately 75.26% of these chains were short (DPhighly branched dextrins with a narrow size distribution and short side chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  18. Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex.

    Science.gov (United States)

    Seo, Tae-Rang; Kim, Hee-Young; Lim, Seung-Taik

    2016-11-15

    Crystalline starch-CLA complexes were prepared by blending an alcoholic solution of conjugated linoleic acid (CLA) in an aqueous high-amylose maize starch dispersion. Recovery yield of CLA in the precipitates obtained by centrifuging the dispersion was dependent on reaction conditions such as temperature, time and pH. The CLA recovery reached a maximum when the reaction was performed at 90°C for 6h at neutral pH, with 67.7% of the initial CLA being co-precipitated with starch. The precipitates contained amylose-CLA complex exhibiting a V6I-type crystalline structure under X-ray diffraction analysis and a type II polymorph under DSC analysis. Ultrasonic treatment for the re-dispersed starch-CLA complex in water resulted in the reduction of hydrodynamic diameter of the complex particles to 201.5nm. The dispersion exhibited a zeta potential of -27.0mV and remained stable in an ambient storage without forming precipitates for more than 4weeks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Heterogeneous structure and spatial distribution in endosperm of high-amylose rice starch granules with different morphologies.

    Science.gov (United States)

    Cai, Canhui; Huang, Jun; Zhao, Lingxiao; Liu, Qiaoquan; Zhang, Changquan; Wei, Cunxu

    2014-10-15

    Starch granules from high-amylose cereal mutants or transgenic lines usually have different morphologies. It is not clear whether the structure and spatial distribution of starch granules with different morphologies in endosperm is homogeneous or heterogeneous. In the present study, the structure and spatial distribution in endosperm of morphologically different starch granules from high-amylose transgenic rice line (TRS) were investigated. The TRS endosperm had individual, aggregate, elongated, and interior hollow starch granules. The individual and interior hollow granules had the lowest and the highest amylose content and gelatinization resistance, respectively, among the four types of granules. The individual granules were mainly distributed in the middle of the endosperm; the aggregate granules in the starchy endosperm cells between the subaleurone layer and the middle of the endosperm; the elongated granules in the peripheral starchy endosperm cells adjacent to the subaleurone layer; and the interior hollow granules in the subaleurone layer cells.

  20. Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars.

    Science.gov (United States)

    Damiran, Daalkhaijav; Yu, Peiqiang

    2010-10-13

    The objective of this study was to compare three new Canadian hull-less barley cultivars with altered starch characteristics (zero-amylose waxy, CDC Fibar; waxy, CDC Rattan; and high-amylose, HB08302) with conventional normal starch hull-less barley (HB) cultivar (CDC McGwire) in terms of ruminant feed value. The study revealed that altered starch HB cultivars possessed several desirable feed characteristics, distinct from conventional normal starch HB, although they were similar in some respects: (1) basic chemical and carbohydrate subfraction profiles varied; (2) starch degradation kinetics showed altered starch HB containing higher soluble starch, rumen undegraded starch, lower degradable starch, and slower degradation rate; (3) all altered starch HB cultivars had similar soluble and degradable starch, different from that of conventional normal starch HB; (4) two waxy HB cultivars were lower, whereas the high-amylose cultivar was similar in effective degradability of the starch as compared to conventional normal starch HB; (5) zero-amylose waxy HB had the greater effective degradability of protein among HB cultivars; and (6) amylopectin in HB had a positive relationship with protein supply (increasing amylopectin was correlated with increased effective degradability of protein). Overall, these results demonstrate that the alteration of starch structure in granule affects not only starch fermentation and utilization but also protein value in hull-less barley. In summary, the HB cultivars with modified starch might be a better feed grain for ruminants than the normal starch HB.

  1. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  2. Formation of semi-compound C-type starch granule in high-amylose rice developed by antisense RNA inhibition of starch-branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Chen, Yifang; Xu, Bin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-10-27

    Cereal starch granules with high-amylose and resistant starch (RS) always show irregular morphology and special crystalline structure, but their formation during grain development is not yet clear. In our previous studies, we had generated a transgenic rice line (TRS) enriched with amylose and RS, which contained semi-compound starch showing a C-type crystalline structure. In this study, the formation of semi-compound C-type starch granule during TRS endosperm development was carefully investigated with light, scanning electron, and transmission electron microscopes and X-ray powder diffraction. The results showed that the TRS starch subgranules, each with a central hilum, were individually initiated in amyloplast and showed an A-type crystal at the early stage of starch granule development, which was similar to that in its wild type. However, with the endosperm development, the amylose content in TRS endosperm starch increased and the B-type starch crystal was deposited in the periphery of subgranules; then, the adjacent subgranules fused together and finally formed a continuous outer layer band surrounding the entire circumference of the starch granule. Accordingly, a mechanistic model for the formation of semi-compound C-type starch granules is proposed.

  3. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch.

    Science.gov (United States)

    Zhu, Fan; Wang, Ya-Jane

    2013-05-01

    Amylose can form inclusion complexes with diverse small molecules. Modified starch has different and unique properties compared with its native counterpart. In this study, chemically/enzymatically modified high-amylose maize starches were used to make inclusion complexes with α-naphthol, and the physical properties of complexes and their influences on the rheology of wheat starch were characterized. The results showed that modification of starch had little influence on the wide angle X-ray diffraction pattern of complex (eightfold single helix), but did so on the complexation index and precipitation yield. Inclusion complexes with chemically modified starch showed a lower range of thermostability and recrystallization temperatures. Addition of complex considerably influenced the rheological properties of wheat starch, and the effect was dependent on the type of modified starch used. It may be concluded that starch inclusion complexes, with a range of properties and potential food applications, may be feasibly prepared by using diverse modified high-amylose maize starches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology.

    Science.gov (United States)

    Zhang, Yanjun; Liu, Wei; Liu, Chengmei; Luo, Shunjing; Li, Ti; Liu, Yunfei; Wu, Di; Zuo, Yanna

    2014-09-01

    Native rice starch (NRS, amylose/28.9%) was gelatinized by improved extrusion cooking technology (IECT) and retrograded (RRS) after low temperature storage (4 °C). The retrogradation behaviour of RRS was changed to low retrogradation percentage and low retrogradation rate. The retrogradation resulted in a high compact morphology. The melt enthalpy change and percentage of retrogradation of RRS was 3.68 J/g and 37.7%, respectively, compared to those of NRS (9.75 J/g, 100%). The retrogradation percentage for RRS was low during storage as shown as a low retrogradation rate (0.21 d(-1)) and a high Avrami exponent (0.89). The pattern of rice starch changed from A-type to amorphous and B-type. Both the relative crystallinity of RRS (12.7%) by the X-ray diffractograms and the ratio of the band height (0.63) in the FTIR spectra were low. The analysis of retrogradation structure and short-range molecular order further confirmed the retrogradation behaviour of rice starch after IECT treatment.

  5. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs.

    Science.gov (United States)

    Regmi, Prajwal R; Metzler-Zebeli, Barbara U; Gänzle, Michael G; van Kempen, Theo A T G; Zijlstra, Ruurd T

    2011-07-01

    Diets containing different starch types can affect enzymatic digestion of starch and thereby starch availability for microbial fermentation in the gut. However, the role of starch chemistry in nutrient digestion and flow and microbial profile has been poorly explained. Eight ileal-cannulated pigs (29.4 ± 0.9 kg body weight) were fed 4 diets containing 70% purified starch (amylose content, starch output, postileal crude protein yield, fecal total SCFA and total butyrate content, and gene copies of Bifidobacterium spp. in feces were higher (P starch diet than the remaining 3 starch diets. The in vitro starch digestion rate had a negative, nonlinear relationship with ileal starch flow (R(2) = 0.98; P starch flow was positively related to Bifidobacterium spp. (R(2) = 0.27; P starch with high amylose content and low in vitro digestibility increased postileal nutrient flow and microbial fermentation and selectively promoted Bifidobacterium spp. in the distal gut.

  6. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio.

    Science.gov (United States)

    Zhu, Jie; Zhang, Shuyan; Zhang, Binjia; Qiao, Dongling; Pu, Huayin; Liu, Siyuan; Li, Lin

    2017-04-01

    This work concerned the effects of amylose/amylopectin ratio on the structure and thermal stability of propionylated starches with high degree of substitution (DS). Four starches with different amylose content were used to obtain propionylated starches. Acylation partly disrupted granule morphology of native starches, and the imperfection and porous structures of starch granule were intensified along with the increased amylose content. It was noted that the crystalline structure of starch was destroyed and thus intense acylation occurred in both amorphous and crystalline regions. The acylated starch with high-amylose content displayed more ordered region compared to low-amylose starch. Acylation enhanced the thermal stability of starch, and this effect became more evident as the amylose content increased. Thus, the amylose/amylopectin ratio has been confirmed capable of affecting the structure and thermal behaviors of hydrophobic propionylated starch, which is of value for the design of starchy materials with tailored thermal stability.

  7. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing.

    Science.gov (United States)

    Šimková, Dagmar; Lachman, Jaromír; Hamouz, Karel; Vokál, Bohumil

    2013-12-15

    In recent time the interest of industry increases particularly in processing and use of potato high amylopectin (AMP) starches. Therefore the plant breeders effort to obtain "waxy" potato cultivars with low amylose (AMS) content. In this four-year study sixteen potato cultivars grown on five experimental locations were evaluated on the percentage of AMS/AMP by enzymatic method, starch content by the underwater weight method, phosphorus (P) content in starch digests spectrophotometrically, and starch granule size determined by laser diffraction method. Between enzymatic and iodine-potassium iodide method good correlation has been revealed (r=0.71). The correlation analysis between AMS and P levels showed a clear negative correlation. For all measured parameters (starch, AMS, P, starch granule size) significant impact of cultivar has been determined. Location and year have lower, but significant impact. No statistically significant effect of year on AMS has been found. The cultivar Amado distinguished with the highest AMP and P contents and the cultivar Westamyl showed all positive values interesting for growers and processors.

  8. Inclusion complexation of flavour compounds by dispersed high-amylose maize starch (HAMS) in an aqueous model system.

    Science.gov (United States)

    Yeo, Lihe; Thompson, Donald B; Peterson, Devin G

    2016-05-15

    This study investigated how hydrophobicity, solubility and the concentration of flavour compounds related to inclusion complexation by dispersed native high amylose maize starch (HAMS). The effect of native lipid on flavour retention and the effect of time (one day to one month) on flavour retention and precipitated starch yield was also examined. Flavour-starch complexation was dependent on the flavour compound hydrophobicity, the flavour concentration in a dose-dependent manner and also influenced by time (increased during storage). Flavour composition also influenced starch complexation; no flavour complexes were reported with limonene by itself but were observed when added in binary flavour mixtures with menthone or thymol. Furthermore, no difference in flavour retention was observed for native and lipid-free starch dispersions. In summary, flavour inclusion complexes with HAMS exhibited cooperativity-type binding behaviour; with a critical ligand concentration needed for a stable physical association between flavour compounds and HAMS.

  9. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes

    Science.gov (United States)

    Sun, Yongwei; Jiao, Guiai; Liu, Zupei; Zhang, Xin; Li, Jingying; Guo, Xiuping; Du, Wenming; Du, Jinlu; Francis, Frédéric; Zhao, Yunde; Xia, Lanqin

    2017-01-01

    Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits. Previous studies using chemical mutagenesis or RNA interference have demonstrated that starch branching enzyme (SBE) plays a major role in determining the fine structure and physical properties of starch. However, it remains a challenge to control starch branching in commercial lines. Here, we use CRISPR/Cas9 technology to generate targeted mutagenesis in SBEI and SBEIIb in rice. The frequencies of obtained homozygous or bi-allelic mutant lines with indels in SBEI and SBEIIb in T0 generation were from 26.7 to 40%. Mutations in the homozygous T0 lines stably transmitted to the T1 generation and those in the bi-allelic lines segregated in a Mendelian fashion. Transgene-free plants carrying only the frame-shifted mutagenesis were recovered in T1 generation following segregation. Whereas no obvious differences were observed between the sbeI mutants and wild type, sbeII mutants showed higher proportion of long chains presented in debranched amylopectin, significantly increased AC and RS content to as higher as 25.0 and 9.8%, respectively, and thus altered fine structure and nutritional properties of starch. Taken together, our results demonstrated for the first time the feasibility to create high-amylose rice through CRISPR/Cas9-mediated editing of SBEIIb. PMID:28326091

  10. Sensory characteristics of high-amylose maize-resistant starch in three food products.

    Science.gov (United States)

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2013-03-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g, 13.10 g/100 g, and 8.94 g/100 g RS, respectively, based on lyophilized dry weight. The HAM-RS2-enriched muffin had higher moisture content and was perceived as being significantly moister than the control according to the sensory evaluation. The addition of HAM-RS2 to muffins significantly enhanced all sensory characteristics and resulted in a higher mean overall likeability score. The HAM-RS2-enriched focaccia bread appeared significantly darker in color, was more dense, and had the perception of a well-done crust versus the control. A grainer texture was observed with the chicken curry containing HAM-RS2 which did not significantly affect overall likeability. We concluded that the addition of HAM-RS2 may not significantly alter consumer's acceptability in most food products.

  11. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...

  12. High-amylose sodium carboxymethyl starch matrices: development and characterization of tramadol hydrochloride sustained-release tablets for oral administration.

    Science.gov (United States)

    Nabais, Teresa; Leclair, Grégoire

    2014-01-01

    Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.

  13. Effect of glycerol monostearate on the gelatinization behavior of maize starches with different amylose contents

    OpenAIRE

    2015-01-01

    The effect of different concentrations (1, 2, and 3%w/w) of glycerol monostearate (GMS) on gelatinization behavior of normal maize starch (NMS), waxy maize starch (WMS), and high amylose maize starch (HAMS) was evaluated. Leaching of amylose and solubility decreased in all starches with added GMS. Gelatinization temperatures increased in NMS but there was no change in WMS. During first heating in DSC, only NMS with added GMS displayed the dissociation peak of amylose-lipid complex. In cooling...

  14. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Yu, Huaguang; Xu, Bin; Chen, Chong; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-11-24

    C-type starch, which is a combination of both A-type and B-type crystal starch, is usually found in legumes and rhizomes. We have developed a high-amylose transgenic line of rice (TRS) by antisense RNA inhibition of starch branching enzymes. The starch in the endosperm of this TRS was identified as typical C-type crystalline starch, but its fine granular structure and allomorph distribution remained unclear. In this study, we conducted morphological and spectroscopic studies on this TRS starch during acid hydrolysis to determine the distribution of A- and B-type allomorphs. The morphology of starch granules after various durations of acid hydrolysis was compared by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that amorphous regions were located at the center part of TRS starch subgranules. During acid hydrolysis, starch was degraded from the interior of the subgranule to the outer surface, while the peripheral part of the subgranules and the surrounding band of the starch granule were highly resistant to acid hydrolysis. The spectroscopic changes detected by X-ray powder diffraction, 13C cross-polarization magic-angle spinning NMR, and attenuated total reflectance Fourier transform infrared showed that the A-type allomorph was hydrolyzed more rapidly than the B-type, and that the X-ray diffraction profile gradually changed from a native C-type to a CB-type with increasing hydrolysis time. Our results showed that, in TRS starch, the A-type allomorph was located around the amorphous region, and was surrounded by the B-type allomorph located in the peripheral region of the subgranules and the surrounding band of the starch granule. Thus, the positions of A- and B-type allomorphs in the TRS C-type starch granule differ markedly from those in C-type legume and rhizome starch.

  15. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  16. Impact of micronization on rapidly digestible, slowly digestible, and resistant starch concentrations in normal, high-amylose, and waxy barley.

    Science.gov (United States)

    Emami, Shahram; Meda, Venkatesh; Pickard, Mark D; Tyler, Robert T

    2010-09-08

    This study determined the effect of micronization (high intensity infrared heating) on the concentrations of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in normal barley (NB), high-amylose barley (HAB), and waxy barley (WB). The gelatinized starch contents and the thermal properties of the micronized samples also were determined. Samples of each barley type were tempered to each of three moisture contents (approximately 17, 31, or 41%), and then each tempered sample was micronized to each of three surface temperatures (100, 120, or 140 degrees C). Micronized barley samples were substantially lower in RS and in SDS and, therefore, higher in RDS than corresponding unprocessed samples. In general, higher concentrations of RDS and of gelatinized starch were associated with higher initial moisture contents and higher surface temperatures. The lowest concentrations of RS were observed in micronized WB samples. Similar concentrations of RS were observed in corresponding NB and HAB samples. Micronization resulted in slight increases in the onset (To), peak (Tp), and completion (Tc) gelatinization temperatures and in substantial reductions in the gelatinization enthalpy (DeltaH), the latter reflecting the levels of gelatinized starch in micronized samples, particularly in samples micronized at higher moisture contents and to higher surface temperatures. Endothermic transitions were evident only in samples tempered to 17% moisture or 31% moisture (surface temperature of 100 degrees C only).

  17. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content.

    Science.gov (United States)

    Itoh, Yuuki; Crofts, Naoko; Abe, Misato; Hosaka, Yuko; Fujita, Naoko

    2017-05-01

    Resistant starch (RS) is beneficial to human health. In order to reduce the current prevalence of diabetes and obesity, several transgenic and mutant crops containing high RS content are being developed. RS content of steamed rice with starch-branching enzyme (BE)IIb-deficient mutant endosperms is considerably high. To understand the mechanisms of RS synthesis and to increase RS content, we developed novel mutant rice lines by introducing the gene encoding starch synthase (SS)IIa and/or granule-bound starch synthase (GBSS)I from an indica rice cultivar into a japonica rice-based BEIIb-deficient mutant line, be2b. Introduction of SSIIa from an indica rice cultivar produced higher levels of amylopectin chains with degree of polymerization (DP) 11-18 than those in be2b; the extent of the change was slight due to the shortage of donor chains for SSIIa (DP 6-12) owing to BEIIb deficiency. The introduction of GBSSI from an indica rice cultivar significantly increased amylose content (by approximately 10%) in the endosperm starch. RS content of the new mutant lines was the same as or slightly higher than that of the be2b parent line. The relationship linking starch structure, RS content, and starch biosynthetic enzymes in the new mutant lines has also been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...

  19. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs.

    Science.gov (United States)

    Regmi, Prajwal R; van Kempen, Theo A T G; Matte, J Jacques; Zijlstra, Ruurd T

    2011-03-01

    Diets containing different starch types affect peripheral glucose and insulin responses. However, the role of starch chemistry in kinetics of nutrient absorption and insulin and incretin secretion is poorly understood. Four portal vein-catheterized pigs (35.0 ± 0.2 kg body weight) consumed 4 diets containing 70% purified starch [0-63.2% amylose content and 0.22 (slowly) to 1.06%/min (rapidly) maximum rate of in vitro digestion] for 7-d periods in a 4 × 4 Latin square. On d 7, blood was collected for 12 h postprandial with simultaneous blood flow measurement for determining the net portal appearance (NPA) of nutrients and hormones. The NPA of glucose, insulin, C-peptide, and glucose-dependent insulinotropic polypeptide (GIP) during 0-4 h postprandial were lower (P starch. The peak NPA of insulin occurred prior to that of glucose when pigs consumed diets containing rapidly digestible starch. The kinetics of insulin secretion had a linear positive relation with kinetics of NPA of glucose (R(2) = 0.50; P starch with high amylose and low in vitro digestibility decreases the kinetics of glucose absorption and insulin and GIP secretion and increases SCFA absorption and glucagon-like peptide-1 secretion. In conclusion, starch with high amylose content and a lower rate and extent of in vitro digestion decreased glucose absorption and insulin secretion and increased SCFA absorption.

  20. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    Science.gov (United States)

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We

  2. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    Directory of Open Access Journals (Sweden)

    Carciofi Massimiliano

    2012-11-01

    Full Text Available Abstract Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed “resistant starch” (RS escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs. However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb in barley (Hordeum vulgare L., resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 % was observed, which is 2.2-fold higher than control (29%. The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. Conclusions This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch

  3. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation.

    Science.gov (United States)

    Mishra, Ankita; Singh, Anuradha; Sharma, Monica; Kumar, Pankaj; Roy, Joy

    2016-10-06

    Starch is a major part of cereal grain. It comprises two glucose polymer fractions, amylose (AM) and amylopectin (AP), that make up about 25 and 75 % of total starch, respectively. The ratio of the two affects processing quality and digestibility of starch-based food products. Digestibility determines nutritional quality, as high amylose starch is considered a resistant or healthy starch (RS type 2) and is highly preferred for preventive measures against obesity and related health conditions. The topic of nutrition security is currently receiving much attention and consumer demand for food products with improved nutritional qualities has increased. In bread wheat (Triticum aestivum L.), variation in amylose content is narrow, hence its limited improvement. Therefore, it is necessary to produce wheat lines or populations showing wide variation in amylose/resistant starch content. In this study, a set of EMS-induced M4 mutant lines showing dynamic variation in amylose/resistant starch content were produced. Furthermore, two diverse mutant lines for amylose content were used to study quantitative expression patterns of 20 starch metabolic pathway genes and to identify candidate genes for amylose biosynthesis. A population comprising 101 EMS-induced mutation lines (M4 generation) was produced in a bread wheat (Triticum aestivum) variety. Two methods of amylose measurement in grain starch showed variation in amylose content ranging from ~3 to 76 % in the population. The method of in vitro digestion showed variation in resistant starch content from 1 to 41 %. One-way ANOVA analysis showed significant variation (p wheat. It is also useful for the study of the genetic and molecular basis of amylose/resistant starch variation in wheat. Furthermore, gene expression analysis of 20 starch metabolic genes in the two diverse mutant lines (low and high amylose mutants) indicates that in addition to key genes, several other genes (such as phosphorylases, isoamylases, and

  4. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Science.gov (United States)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  5. Properties of High Amylose Starch-Beeswax Inclusion Complexes Prepared by Steam Jet Cooking

    Science.gov (United States)

    Amylose is known to form inclusion complexes with a large number of polar and non-polar organic compounds including fatty acids. Amylose inclusion complexes are proposed to be employed as carrier for delivering ligands with desired functional properties in food and nutritional supplement products. ...

  6. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm....... This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  7. Effect of melt-processing and ultrasonic treatment on physical properties of high-amylose maize starch.

    Science.gov (United States)

    Lima, Felipe F; Andrade, Cristina T

    2010-04-01

    High-amylose maize starch (Hylon VII) was submitted to melt-processing in an internal mixer at 100 degrees C and 40 rpm for 8 min. Glycerol was used as a plasticiser at different polymer/glycerol ratios. Torque and temperature curves were obtained. After glycerol extraction with ethyl alcohol, the samples were dispersed at 5 g/L, and treated by ultrasound radiation at the same conditions for 30 min. Samples were characterised by (1)H NMR spectrometry, viscosity measurements, and X-ray diffractometry. The results revealed that both glycerol and water had an important role on the crystallinity properties of the resulting products. Melt-processed and sonicated samples showed similar (1)H NMR spectra. Ultrasound treatment caused a significant reduction in intrinsic viscosity for the sample previously processed with the highest glycerol content, probably because of its higher solubility in water.

  8. Development of high amylose wheat through TILLING

    National Research Council Canada - National Science Library

    Slade, Ann J; McGuire, Cate; Loeffler, Dayna; Mullenberg, Jessica; Skinner, Wayne; Fazio, Gia; Holm, Aaron; Brandt, Kali M; Steine, Michael N; Goodstal, John F; Knauf, Vic C

    2012-01-01

    .... Starches with increased levels of amylose are of interest because of the correlation between higher amylose content and elevated levels of resistant starch, which has been shown to have beneficial...

  9. INFLUENCE OF AMYLOSE STARCH ON DEVELOPMENT AND LIFESPAN OF FRUIT FLY DROSOPHILA MELANOGASTER

    Directory of Open Access Journals (Sweden)

    Oleksandra Abrat

    2015-05-01

    Full Text Available Last years, the concept of resistant starch (RS has evoked a new interest in researchers in the context of bioavailability of starch and its use as a source of dietary fiber. Based on clinical and animal research, RS has been proposed to be the most potentially beneficial starch fraction for human health. In this study, the effects of amylose starch as a fraction of RS on development and lifespan of fruit fly Drosophila melanogaster were investigated. In both Canton S and w1118 strains, the diet with 20% amylose RS delayed fly development, increased triacylglyceride level in the body of adult insects and reduced their lifespan compared to the diet with 4% amylose starch. Thus, our data clearly demonstrate that amylose starch at high concentrations may negatively affect fruit fly.

  10. Is there variation in resistant starch among high amylose rice varieties?

    Science.gov (United States)

    Resistant starch (RS) is the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and is partially or entirely fermented in the colon by the microbiota. RS in food lowers postprandial glucose concentration and has potential in ...

  11. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    Parviz Fasahat; Sadequr Rahman; Wickneswari Ratnam

    2014-04-01

    Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world’s most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.

  12. Molecular characteristics of amylose and starch in dimethyl sulfoxide.

    Science.gov (United States)

    Radosta, S; Haberer, M; Vorwerg, W

    2001-01-01

    The aim of this work was the molecular characterization of starch polysaccharides to determine solution structure. Studies of amylose and potato starches of different origins were carried out by the static light scattering, dynamic light scattering, and HPSEC-MALLS methods. Molecular parameters such as Mw, Rg, A2, molar mass distribution, Dz, Rh, the structure-dependent rho-parameter, and osmotic modulus for amylose were determined. The Mw of amylose was found to be in the range from 1 x 10(5) to 1 x 10(6) g mol-1. The Mw of potato starches was much higher, that is, in the range of 23-37 x 10(6) g mol-1. The Rg of the amylose samples was in the range of 24-71 nm, and that of the potato starches was between 130 and 150 nm. The intensity-time correlation function showed one diffusive relaxation motion for amylose as well as for starch. The diffusion coefficients of the amylose prepared from starch by several methods were in the range of 2.7-9.1 x 10(-8) cm2 s-1, and those of the starches were 1 magnitude lower between 4.8 and 6.7 x 10(-9) cm2 s-1. The rho-parameter of amylose was calculated as having values between 1.5 and 2.2, and that of starches was calculated to be an average value of 0.62. The assumed solution behavior of amylose in dimethyl sulfoxide corresponds to that of a flexible chain, while the behavior of starch more closely resembles that of a spherelike structure.

  13. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    Science.gov (United States)

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)

  14. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat.

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M; Dubcovsky, Jorge

    2012-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat.

  15. Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.

    Science.gov (United States)

    Nabais, Teresa; Zaraa, Sarra; Leclair, Grégoire

    2016-11-01

    Spray-dried high-amylose sodium carboxymethyl starch (SD HASCA) is a promising pharmaceutical excipient for sustained-release (SR) matrix tablets produced by direct compression. The presence of α-amylase in the gastrointestinal tract and the variations of the gastric residence time of non-disintegrating dosage forms may affect the presystemic metabolism of this excipient and, consequently, the drug-release profile from formulations produced with SD HASCA. In this study, the influence of α-amylase and the residence time in acidic conditions on the drug-release profile was evaluated for a once-daily acetaminophen formulation (Acetaminophen SR) and a once-daily tramadol hydrochloride formulation (Tramadol SR). Both formulations were based on SD HASCA. α-Amylase concentrations ranging from 0 IU/L to 20000 IU/L did not significantly affect the drug-release profiles of acetaminophen and tramadol hydrochloride from SD HASCA tablets (f2 > 50) for all but only one of the studied conditions (f2 = 47). Moreover, the drug-release properties from both SD HASCA formulations were not significantly different when the residence time in acidic medium was 1 h or 3 h. An increase in α-amylase concentration led to an increase in the importance of polymer erosion as the main mechanism of drug-release instead of drug diffusion, for both formulations and both residence times, even if release profiles remained comparable. As such, it is expected that α-amylase concentration and residence time in the stomach will not clinically affect the performance of both SD HASCA SR formulations, even if the mechanism of release itself may be affected.

  16. Dietary butyrylated high-amylose starch reduces azoxymethane-induced colonic O(6)-methylguanine adducts in rats as measured by immunohistochemistry and high-pressure liquid chromatography.

    Science.gov (United States)

    Le Leu, Richard K; Scherer, Benjamin L; Mano, Mark T; Winter, Jean M; Lannagan, Tamsin; Head, Richard J; Lockett, Trevor; Clarke, Julie M

    2016-09-01

    O(6)-methyl guanine (O(6)MeG) adducts are major toxic, promutagenic, and procarcinogenic adducts involved in colorectal carcinogenesis. Resistant starch and its colonic metabolite butyrate are known to protect against oncogenesis in the colon. In this study, we hypothesized that a dietary intervention that specifically delivers butyrate to the large bowel (notably butyrylated high-amylose maize starch [HAMSB]) would reduce colonic levels of O(6)MeG in rats shortly after exposure to the deoxyribonucleic acid (DNA) alkylating agent azoxymethane (AOM) when compared with a low-amylose maize starch (LAMS). A further objective was to validate an immunohistochemistry (IHC) method for quantifying O(6)MeG against a high-performance liquid chromatography method using fluorescence and diode array detection. Rats were fed either LAMS or HAMSB diets for 4 weeks followed by a single injection of AOM or saline and killed 6 hours later. After AOM exposure, both IHC and high-performance liquid chromatography method using fluorescence and diode array detection measured a substantially increased quantity of DNA adducts in the colon (Preducing colonic adduct load compared with the LAMS diet (Pload was reduced in the lower third of the crypt compartment in HAMSB-fed rats (P=.036). The apoptotic response to AOM was higher in the HAMSB-fed rats (P=.002). In conclusion, the reduction in O(6)MeG levels and enhancement of the apoptotic response to DNA damage in the colonic epithelium through consumption of HAMSB provide mechanistic insights into how HAMSB protects against colorectal tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    Science.gov (United States)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-12-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch's amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  18. Impact of full range of amylose contents on the architecture of starch granules.

    Science.gov (United States)

    Goldstein, Avi; Annor, George; Putaux, Jean-Luc; Hebelstrup, Kim H; Blennow, Andreas; Bertoft, Eric

    2016-08-01

    The effects of amylose deposition on crystalline regions of barley starch granules were studied in granules containing zero to 99.1% amylose using "waxy" (WBS, 0% amylose), normal (NBS, 18% amylose) and amylose-only barley lines (AOS, 99.1% amylose). The effects were probed after hydrolysis of amorphous regions of starch granules in dilute HCl generating lintners, which typically represent the crystalline lamella of starch granules. Compared to NBS and WBS, AOS granules exhibited an irregular, multilobular morphology with a rough surface texture. AOS displayed lower rates of acid hydrolysis than WBS, and AOS reached a plateau at ∼45wt% acid hydrolysis. High-performance anion-exchange chromatography of lintners at equivalent levels of hydrolysis (45wt%) revealed the average degree of polymerization (DP) of AOS lintners was 21, substantially smaller than that of NBS and WBS (DP 42). AOS lintners contained the lowest number of chains (NC) per molecule (1.1) compared to NBS (2.8) and WBS (3.3) and the average chain length of AOS, NBS and WBS lintners was 19, 15 and 13, respectively. Hence, both NC and the average chain length correlated with amylose content. The size distribution profile of AOS lintners revealed a repeat motif in the molecules corresponding to 5-6 glucose residues.

  19. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto

    2014-02-01

    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  20. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity.

  1. Amylose-lipid complexes as controlled lipid release agents during starch gelatinization and pasting.

    Science.gov (United States)

    Gelders, Greta G; Goesaert, Hans; Delcour, Jan A

    2006-02-22

    The effect of amylose-lipid (AM-L) complexes consisting of amylose populations with different peak degrees of polymerization (DP) and complexed with glyceryl monostearate (GMS) or docosanoic acid (C22) on the pasting properties of wheat and rice starches was evaluated with a rapid visco analyzer (RVA). AM-L complexes were formed by both (i) addition of lipids to amylose fractions with peak DP 20, 60, 400, or 950 at 60 degrees C or (ii) potato phosphorylase-catalyzed amylose synthesis in the presence of lipids. All AM-L complexes affected pasting properties in line with their dissociation characteristics. AM-L complexes therefore have potential as "controlled lipid release agents" with effects markedly different from those observable with emulsifier addition in starch pasting. More in particular, short chain AM-L complexes resulted in a starch pasting behavior comparable to that of cross-linked starch, as evidenced by reduced granule swelling, good viscosity stability in conditions of high temperature and shear, and a stable cold paste viscosity.

  2. Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents.

    Science.gov (United States)

    Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling

    2016-06-25

    Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility.

  3. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L;

    2012-01-01

    yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...... amylose-only grains may be due to an important physiological role played by amylopectin ordered crystallinity for rapid starch remobilization explaining the broad conservation in the plant kingdom of the amylopectin structure....

  4. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men.

    Science.gov (United States)

    Luhovyy, Bohdan L; Mollard, Rebecca C; Yurchenko, Svitlana; Nunez, Maria Fernanda; Berengut, Shari; Liu, Ting Ting; Smith, Christopher E; Pelkman, Christine L; Anderson, G Harvey

    2014-12-01

    The objective of this study was to determine the dose response effect of whole grain high-amylose maize (HAM) flour as a source of resistant starch (RS) on blood glucose, appetite and short-term food intake. In a repeated-measures crossover trial, healthy men (n = 30, 22.9 ± 0.6 y, BMI of 22.6 ± 0.3 kg/m(2)) were randomly assigned to consume 1 of 3 cookies once a week for 3 wk. Cookies were control (100% wheat flour), low-dose (63% wheat flour,37% HAM flour), and high-dose (33% wheat flour, 67% HAM flour) providing 53.5, 43.5, and 36.3 g of available carbohydrate, respectively. Ad libitum food intake was measured 120 min at a pizza meal, blood glucose and subjective appetite were measured after consumption of the cookie (0 to 120 min) and after the pizza meal (140 to 200 min). Blood glucose concentrations were lower at 30 and 45 min after high-dose treatment, and at 120 min after both high- and low-dose treatments compared to control (P < 0.05). Blood glucose AUC before the pizza meal (0 to 120 min) was 44% and 14% lower, and higher by 43% and 41% after the pizza meal (140 to 200 min) compared with control. Yet despite the higher response following the meal, cumulative AUC (0 to 200 min) was still 22% lower after the high-dose treatment (P < 0.05). All treatments equally suppressed subjective appetite and there was no effect on food intake. In conclusion, HAM flour as a source of RS and incorporated into a cookie was associated with better glycemic control in young men.

  5. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  6. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.

    Science.gov (United States)

    Gayral, Mathieu; Bakan, Bénédicte; Dalgalarrondo, Michele; Elmorjani, Khalil; Delluc, Caroline; Brunet, Sylvie; Linossier, Laurent; Morel, Marie-Hélène; Marion, Didier

    2015-04-08

    Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.

  7. Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios.

    Science.gov (United States)

    Liu, Rui; Xu, Chen; Cong, Xu; Wu, Tao; Song, Yingshi; Zhang, Min

    2017-04-15

    The effect of oligomeric procyanidins (OPCs) on the retrogradation of maize starch with different amylose/amylopectin ratios was investigated. The apparent amylose contents in high-amylose maize (HAM), normal maize (NM), and amylopectin maize (APM) starches are 79.05%, 25.43% and 0%. Structural characterizations of retrograded maize starches in the presence of OPCs were conducted by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR). The results suggest that OPCs inhibit the retrogradation of maize starches in low concentrations (1.5-2.5%) with different inhibitory effects for HAM, NM and APM starches. It may be attributed to the variations on interaction ways and binding capabilities between different types of starches and OPCs. The in vitro enzymatic digestion result indicates HAM starch and OPCs have stronger interactions with the formation of resistant structures. These findings provide a further evidence for exploring the interactions between starches and phenolic compounds. Copyright © 2016. Published by Elsevier Ltd.

  8. Phenotypic and genotypic characterization of an amylose-free starch mutant of the potato

    NARCIS (Netherlands)

    Jacobsen, E.; Hovenkamp-Hermelink, J.H.M; KRIJGSHELD, HT; NIJDAM, H; Pijnacker, L.P.; Witholt, B.; Feenstra, W.J.

    1989-01-01

    The amylose-free (amf) potato mutant 86.040 has been characterized phenotypically and genotypically . Not only storage starch in tubers and metabolic starch in leaves but also starch in cells with specific functions, such as columella cells in the root cap and guard cells of stomata, was

  9. Localization and dynamics of amylose-lipophilic molecules inclusion complex formation in starch granules

    NARCIS (Netherlands)

    Manca, Marianna; Woortman, Albert J. J.; Mura, Andrea; Loos, Katja; Loi, Maria Antonietta

    2015-01-01

    Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate

  10. Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

    OpenAIRE

    2016-01-01

    Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant starch. Ethyl methane sulfonate mutations in SBEIIa and SBEIIb paralogs were combined in the hexaplo...

  11. Structure and functional properties of sorghum starches differing in amylose content.

    Science.gov (United States)

    Sang, Yijun; Bean, Scott; Seib, Paul A; Pedersen, Jeff; Shi, Yong-Cheng

    2008-08-13

    Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.

  12. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase

    DEFF Research Database (Denmark)

    Morris, V. M.; Gunning, A. P.; Faults, C. B.

    2005-01-01

    Atomic force microscopy has been used to investigate the complexes formed between high molecular weight amylose chains and Aspergillus niger glucoamylase mutants (E400Q and W52F), wild-type A. niger starch binding domains (SBDS), and mutant SBDs (W563K and W590K) lacking either of the two starch ...

  13. Impact of full range of amylose contents on the architecture of starch granules*

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Putaux, Jean Luc;

    2016-01-01

    of amorphous regions of starch granules in dilute HCl generating lintners, which typically represent the crystalline lamella of starch granules. Compared to NBS and WBS, AOS granules exhibited an irregular, multilobular morphology with a rough surface texture. AOS displayed lower rates of acid hydrolysis than...... WBS, and AOS reached a plateau at ∼45wt% acid hydrolysis. High-performance anion-exchange chromatography of lintners at equivalent levels of hydrolysis (45wt%) revealed the average degree of polymerization (DP) of AOS lintners was 21, substantially smaller than that of NBS and WBS (DP 42). AOS...... lintners contained the lowest number of chains (NC) per molecule (1.1) compared to NBS (2.8) and WBS (3.3) and the average chain length of AOS, NBS and WBS lintners was 19, 15 and 13, respectively. Hence, both NC and the average chain length correlated with amylose content. The size distribution profile...

  14. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to modify starch structure exploring potentials to extensively increase the number of branch points in starch. Amylose is an important...... constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution...... by the molar mass rather that the branching density of the glucan per se . Our data demonstrate that a higher amylose content in the substrate starch efficiently produces α-1,6 glucosidic linkages and that the present of amylose generates a higher Μw and more resistant product than amylopectin. The combination...

  15. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    Science.gov (United States)

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  16. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  17. 交联酶解高直链玉米淀粉的制备及糊化特性%Study on preparation and pasting properties of crosslinking hydrolysis high amylose corn starch

    Institute of Scientific and Technical Information of China (English)

    李德海; 马莺

    2011-01-01

    The crosslinking hydrolysis high amylose corn starch by the isoamylase was prepared with sodium hexametaphosphate as crosslinking agent By the response surface methodology, the optimal process parameters were obtained, sodium hexametaphosphate was 3.12%, pH was 11, temperature was 50℃, time was 2.2h, subsidence product was 2.34mL.The pasting temperature,the viscosity and stability of the crosslinking hydrolysis high amylose corn starch were improved by the analysis of RVA and DSC.%以异淀粉酶水解玉米淀粉制备的高直链玉米淀粉为原料,采用六偏磷酸钠为交联剂,制备交联酶解高直链玉米淀粉.采用响应面实验设计进行优化,结果表明,最佳工艺条件为:六偏磷酸钠的用量为3.12%、pH为11、温度为50℃、时间为2.2h,在此条件下制备的交联酶解高直链玉米淀粉沉降积为2.34mL.RVA和DSC分析表明,酶解高直链玉米淀粉经交联后淀粉的糊化温度、粘度和粘度稳定性较大程度上得到了提高.

  18. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  19. 高直链玉米淀粉的糊化特性研究%Study on gelatinization properties of high amylose corn starch

    Institute of Scientific and Technical Information of China (English)

    徐忠; 刘雪唯; 王志鹏; 徐巧娇; 赵丹

    2015-01-01

    Objective The effect of water bath heating, microwave heating and high pressure heating on the gelatinization properties of high amylase corn starch were studied,the theoretical basis for further study on development and application of high amylase corn starch were provided. Methods High amylase corn starch based starch paste was prepared under excessive water by water bath heating, microwave heating and high pressure heating method,the variation rules of the blue value and enzyme hydrolysability of high amylase corn starch as the increase of gelatinization time under different temperature and microwave power were studied. Results Blue value and enzyme hydrolysability of high amylase corn starch prepared by water bath heating, microwave heating and high pressure heating increased as the prolong of heating time during gelatinization. the blue value and enzyme hydrolysability of high amylase corn starch paste prepared by microwave were lower than those by high pressure heating, and higher than those by water bath heating, and the gelatinization rate of starch prepared by microwave was faster than that by water bath heating and that by high pressure heating. Conclusion The gelatinization effect and degree of starch prepared were better by high pressure heating, which was a good method to make high amylase corn starch gelatinized entirely.%目的:研究水浴加热、微波加热和高压加热方法对高直链玉米淀粉糊化性能的影响,为高直链淀粉的进一步开发和应用提供理论基础。方法以高直链玉米淀粉为原料,在过量水分存在条件下,分别采用水浴加热、微波加热和高压加热制备高直链玉米淀粉糊,分别研究不同温度和微波功率下,高直链玉米淀粉糊碘兰值和酶解力随糊化时间增加的变化规律。结果水浴加热、微波加热和高压加热糊化过程中高直链玉米淀粉的碘兰值和酶解力均随时间的延长呈上升趋势,微波加热高直链玉

  20. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  1. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  2. The effects of amylose and starch phosphate on starch gel retrogradation studied by low-field 1H NMR relaxometry

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Blennow, A.; Engelsen, S. B.

    2003-01-01

    ) relaxation curves from the two measurements (day 1 and day 7) could be used as a simple, illustrative way of describing the retrogradation. Three different behaviours were identified: One group of samples (mostly potato starches) slowly changed from a soft to a more rigid gel from day 1 to 7. A second group...... (mostly cereal starches) formed a rigid gel already before the first measurement and changed little after that. A third group comprised a few samples containing little or no amylose aged similarly to the first group of samples, but at a much slower rate. For the potato starches, a weak negative......Low-field Nuclear Magnetic Resonance (23 MHz) was used to study the effects of the degree of phosphorylation, the amylose content and the amylopectin chain length distribution on gel retrogradation for a set of 26 starches, six of which were of crystal polymorph type A, 18 of type B and two of type...

  3. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Science.gov (United States)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  4. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert; Hamer, Rob; Loos, Katja

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Ba

  5. Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes

    CSIR Research Space (South Africa)

    Wokadala, OC

    2012-09-01

    Full Text Available acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time...

  6. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  7. Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes.

    Science.gov (United States)

    Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M

    2017-08-01

    Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.

  8. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Oudhuis, A A C M; Hamer, R J; Loos, K

    2013-09-12

    This study was aimed to assess the role of lysophosphatidylcholine (LPC) in the development of slowly digestible starch (SDS). The influence of LPC, on the enzymatic degradation of diluted 9% wheat starch suspensions (w/w) was investigated, using an in vitro digestion method. Wheat starch suspensions containing 0.5-5% LPC (based on starch) were heated in a Rapid Visco Analyser (RVA) till 95 °C and subjected to enzyme hydrolysis by porcine pancreatic α-amylase at 37 °C for several digestion periods. In vitro digestion measurements demonstrated that complexing starch with 5% LPC leads to a 22% decrease in rate of reducing sugar compared to the reference while the samples containing 0.5% LPC showed an equal digestibility comparable to the control. A clear decrease in the formation of reducing sugars was observed in presence of 2-5% LPC, since the results after 15 min digestion imply the formation of SDS due to the formation of amylose-LPC inclusion complexes. The DSC measurements proved the presence of amylose-LPC inclusion complexes even after 240 min digestion demonstrating the low susceptibility of amylose-V complexes to amylase.

  9. Preparation and characterization of new and improved soluble-starches, -amylose, and -amylopectin by reaction with benzaldehyde/zinc chloride.

    Science.gov (United States)

    Johnston, David A; Mukerjea, Rupendra; Robyt, John F

    2011-12-13

    Seven different starches from potato, rice, maize, waxymaize, amylomaize-VII, shoti, and tapioca, and potato amylose and potato amylopectin have been reacted with benzaldehyde, catalyzed by ZnCl(2), to give new water-soluble starches and water soluble-amylose and soluble-amylopectin. In contrast to the native starches, aqueous solutions of the modified starches could not be precipitated with 2-, 3-, or 4-volumes of ethanol. β-Amylase gave no reaction with the modified starches, in contrast to the native starches, indicating that the modification occurred exclusively at the nonreducing-ends, giving 4,6-benzylidene-D-glucopyranose at the nonreducing-ends. Reactions of α-amylase with native and modified potato and rice starches gave a decrease in the triiodide blue color and an increase in the reducing-value that were similar for the native- and modified-starches, indicating the modified starches had not been significantly altered by the modification. The benzaldehyde-modified starches and benzaldehyde-modified potato amylose and potato amylopectin components, therefore, have a starch structure very much like their native counterparts, in contrast to the Lintner, Small, and the alcohol/acid-hydrolyzed soluble-starches that have undergone acid hydrolysis. The benzaldehyde-modified starches and starch components have significantly higher water solubility than their native counterparts even though the structures of the modified starches had only been slightly altered from the structures of their native counterparts. They all gave crystal-clear solutions that did not retrograde.

  10. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2013-12-15

    Amylose forms inclusion complexes with lysophosphatidylcholine (LPC), that decrease the susceptibility of amylose to amylase degradation. This study on the influence of complexation on starch susceptibility to amylase explains the nature of this protective effect. Wheat starch suspensions (9% w/w) containing 0.5-5% LPC were subjected to hydrolysis by porcine pancreatic α-amylase at 37 °C for several digestion times. The digesta were analysed by size-exclusion chromatography (SEC). The molar mass distribution was closely dependent on the digestion time and amount of LPC. This study precisely demonstrates the alteration of the digestion profile of starch on a molecular level, influenced by amylose-LPC complexation; however the effect depends on the digestion time. During 15 and 30 min digestion, inclusion complexes not only protect amylopectin in the initial hydrolysis stage, but also demonstrate lower susceptibility of the molecular amylose complexes to amylase hydrolysis. Digestion for 240 min resulted in a lower oligosaccharide peak concentration, in the presence of a high LPC concentration, which is related to less degradation of complexed amylose fraction.

  11. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2009-12-01

    Full Text Available O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M e o amido de milho ceroso (AP foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram encontrados nas amostras. O amido de milho ceroso apresentou maior viscosidade máxima e uma menor tendência à retrogradação, se comparado ao amido de milho normal. O amido AP apresentou menor entalpia de gelatinização, como pode ser observado nas análises de calorimetria exploratória diferencial (DSC, na qual a temperatura de gelatinização foi de 75 °C e o ΔH de 3,34 J.g-1, e também na análise de RVA (Rapid Visco Analyser, em que a temperatura de pasta foi de 71 °C. Apresentando, dessa forma, valores inferiores aos verificados para os outros amidos. O valor do ΔH de retrogradação do amido AP, mostrou-se 25,8% inferior ao ΔH do amido M. O amido AM apresentou o valor de 26,38 J.g-1, demonstrando o maior envolvimento da molécula de amilose no processo de retrogradação. Isso também foi evidenciado pela medida da força dos géis: o gel de AM apresentou força 99,18% superior, retrogradando mais que os outros amidos. As análises de difração de raio X mostraram que os amidos de milho normal e ceroso apresentaram um padrão de difração do tipo A e o amido de milho com alto teor de amilose apresentou padrão do tipo B.The objective of this work was to evaluate normal, waxy, and high amylose corn starches from National Starch, through the determination of the physicochemical, morphological, thermal, and rheological properties. The high amylose corn starch (AM presented amylose content of 71%, and the value of this component for the

  12. DSC studies of gamma irradiation influence on gelatinisation and amylose-lipid complex transition occurring in wheat starch[Wheat starch; Gelatinisation; Amylose-lipid complex transition; Gamma irradiation; Differential scanning calorimetry, DSC

    Energy Technology Data Exchange (ETDEWEB)

    Ciesla, K. E-mail: kciesla@orange.ichtj.waw.pl; Eliasson, A.-C

    2003-12-01

    Differential scanning calorimetry studies are presented dealing with the influence of gamma irradiation (carried out in the solid state) on the structure of amylose-lipid complex in wheat starch. Suspensions of the control and the wheat starch irradiated with a 30 kGy gamma rays (characterised by starch-to-water ratio of 1:1 and ca. 1:4) were examined during several courses of heating and cooling at rates of 2.5 and 10 deg. C min{sup -1}. Differences were observed between enthalpy and temperature of gelatinisation and amylose-lipid complex transition as well as retrogradation taking place in the suspensions and gels of the control and the irradiated starch. The influence of the preceding heating and cooling on further transformations of the amylose-lipid complex differs for the control and the irradiated samples.

  13. Molecular Structure and Physicochemical Properties of Starches from Rice with Different Amylose Contents Resulting from Modification of OsGBSSI Activity.

    Science.gov (United States)

    Zhang, Changquan; Chen, Shengjie; Ren, Xinyu; Lu, Yan; Liu, Derui; Cai, Xiuling; Li, Qianfeng; Gao, Jiping; Liu, Qiaoquan

    2017-03-15

    OsGBSSI, encoded by the Waxy (Wx) gene, is the key enzyme in the synthesis of amylose chains. Transgenic rice lines with various GBSSI activities were previously developed via site-directed mutagenesis of the Wx gene in the glutinous cultivar Guanglingxiangnuo (GLXN). In this study, grain morphology, molecular structure, and physicochemical properties were investigated in four transgenic lines with modified OsGBSSI activity and differences in amylose content. A milky opaque appearance was observed in low- and non-amylose rice grains due to air spaces in the starch granules. Gel permeation chromatography (GPC) and high-performance anion-exchange chromatography (HPAEC) analyses showed that although OsGBSSI can synthesize intermediate and extra-long amylopectin chains, it is mainly responsible for the longer amylose chains. Amylose content was positively correlated with trough viscosity, final viscosity, setback viscosity, pasting time, pasting temperature, and gelatinization temperature and negatively with gel consistency, breakdown viscosity, gelatinization enthalpy, and crystallinity. Overall, the findings suggest that OsGBSSI may be also involved in amylopectin biosynthesis, in turn affecting grain appearance, thermal and pasting properties, and the crystalline structure of starches in the rice endosperm.

  14. [Effect of dynamic high-pressure micro-fluidization on the structure of maize amylose].

    Science.gov (United States)

    Tu, Zong-Cai; Yin, Yue-Bin; Zhang, Qiu; Wang, Hui

    2013-05-01

    The effect of dynamic high-pressure micro-fluidization (DHPM) at 80, 120, 160, and 200 MPa on the structure of maize amylose was investigated using scanning electron microscopy (SEM), atomic force microscope (AFM), Xray diffraction, and FT-IR spectroscopy. SEM analysis showed that the surface appearances of maize amylose were altered and the starch granules were partially congregated together after DHPM treatment. AFM images showed that the treated starch molecules are cross-linked to each other and arranged in a close mesh structure. Xray diffraction spectra and IR spectra indicated that relative crystallinity declined gradually with the pressure increasing. The results provide a theoretical basis for starch modification of DHPM.

  15. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to modify starch structure exploring potentials to extensively increase the number of branch points in starch. Amylose is an important...

  16. DSC studies of gamma irradiation influence on gelatinisation and amylose-lipid complex transition occurring in wheat starch

    Science.gov (United States)

    Cieśla, K.; Eliasson, A.-C.

    2003-12-01

    Differential scanning calorimetry studies are presented dealing with the influence of gamma irradiation (carried out in the solid state) on the structure of amylose-lipid complex in wheat starch . Suspensions of the control and the wheat starch irradiated with a 30 kGy gamma rays (characterised by starch-to-water ratio of 1:1 and ca. 1:4) were examined during several courses of heating and cooling at rates of 2.5 and 10°C min -1. Differences were observed between enthalpy and temperature of gelatinisation and amylose-lipid complex transition as well as retrogradation taking place in the suspensions and gels of the control and the irradiated starch. The influence of the preceding heating and cooling on further transformations of the amylose-lipid complex differs for the control and the irradiated samples.

  17. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: Role of surface binding site 2

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum; Kramhøft, Birte; Bozonnet, Sophie

    2012-01-01

    of amylose progressed mono-exponentially. β-Cyclodextrin, however, inhibited only one of the two reaction rates of amylopectin and β-limit dextrin hydrolysis, whereas hydrolysis of amylose was unaffected. The Y380A enzyme showed no detectable inhibition by β-cyclodextrin but displayed similar kinetics...... is required for binding of the amylose helix mimic, β-cyclodextrin. Also, mutant enzymes altered at position 380 displayed reduced binding to starch granules. Similarly, binding of wild type AMY1 to starch granules was suppressed in the presence of β-cyclodextrin. We investigated the role of SBS2 by comparing...... kinetic properties of the wild type AMY1 and the Y380A mutant enzyme in hydrolysis of amylopectin, amylose and β-limit dextrin, and the inhibition by β-cyclodextrin. Progress curves of the release of reducing ends revealed a bi-exponential hydrolysis of amylopectin and β-limit dextrin, whereas hydrolysis...

  18. Gas Transmission and Water Vapor Transmission Properties of High-Amylose Corn Starch/Chitosan Edible Film%高直链玉米淀粉-壳聚糖复合膜透气透水性能研究

    Institute of Scientific and Technical Information of China (English)

    陈琼; 邱礼平; 马细兰

    2011-01-01

    In this experiment, edible films from high-amylose com starch (HACS) and chitosan (CS) were developed by casting film-solution on leveled trays. The effects of ratio of starch to chitosan, glycerol dosage and methylcellulose (MC) dosage on CO2 and O2 transmission, water vapor transmission (WVT) of edible films were investigated. The result showed that the edible composite fihns had the lowest CO2 and O2 transmission and lower WVT when the ratio of chitosan and content of glycerol reach 2:1. The value of CO2 and O2 transmission increase to the highest and then decrease, and WVT increased while the ratio of chitosan and content of glycerol continued decrease. The increase of content of glycerol improved the CO2, O2 transmission and WVT of edible films first, and then decreased gradually. The addition of 2% methylcellulose decreased the gas permeability properties of the edible film to the lowest When the content of methylcellulose was between 4% and 6%, WVT of the edible film reached the lowest.%本文以高直链玉米淀粉(HACS)和壳聚糖(CS)为基本材料,甘油为增塑剂,甲基纤维素(MC)为增强剂制备可食性复合膜,研究了高直链玉米淀粉与壳聚糖的配比、甘油的添加量以及甲基纤维素的添加量对复合膜的透气透水性能的影响.结果表明,HACS:CS为2:1时,膜的CO2透过量和O2透过量最低,水蒸气透过量(WVT)也处于较低水平.随着HACS:CS的降低,膜的CO2透过量和O2透过量增加到最大值再降低,而WVT值呈增大趋势.甘油量的增加使复合膜的CO2透过量和O2透过量先增加后降低,而WVT变化趋势与透气量一致.MC的添加量为2%时,HACS/CS复合膜的透气量最低,而在MC添加量4%~6%时,膜的WVT最低.

  19. Effect of simultaneous inhibition of starch branching enzymes I and IIb on the crystalline structure of rice starches with different amylose contents.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-10-16

    Mutating or inhibiting genes encoding starch branching enzymes (SBEs) can increase the amylose content (AC) of cereals. We analyzed endosperm starches from three rice cultivars with different ACs and from transgenic lines derived from them. The transgenic lines had simultaneously inhibited SBE I and IIb genes. Compared with the starch from their wild-type parents, the starch from transgenic lines showed significantly increased apparent ACs and lamella size and decreased relative crystallinity, double helix content, and lamellar peak scattering intensity, and altered short-range ordered structure in the external region. These changes were more prominent in the line derived from the high-AC cultivar than in those derived from waxy and low-AC cultivars. Inhibiting both SBE I and IIb changed the crystalline structure of starch from A-type to CA-type in lines derived from waxy and low-AC cultivars, and from A-type to C-type in that derived from the high-AC cultivar.

  20. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    Science.gov (United States)

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related.

  1. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, A. J. J.; Hamer, R. J.; Loos, K.

    2013-01-01

    Amylose forms inclusion complexes with lysophosphatidylcholine (LPC), that decrease the susceptibility of amylose to amylase degradation. This study on the influence of complexation on starch susceptibility to amylase explains the nature of this protective effect. Wheat starch suspensions (9% w/w) c

  2. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Hamer, R.J.; Loos, K.

    2013-01-01

    Amylose forms inclusion complexes with lysophosphatidylcholine (LPC), that decrease the susceptibility of amylose to amylase degradation. This study on the influence of complexation on starch susceptibility to amylase explains the nature of this protective effect. Wheat starch suspensions (9% w/w) c

  3. DSC studies of retrogradation and amylose lipid complex transition taking place in gamma irradiated wheat starch

    Science.gov (United States)

    Cieśla, K.; Eliasson, A. C.

    2007-12-01

    The effect of gamma irradiation ( 60Co) with doses of 5-30 kGy on the amylose-lipid complex transition and retrogradation occurring in gels containing ca. 50% and ca. 20% wheat starch was studied by differential scanning calorimetry (DSC) during heating-cooling-heating cycles (up to three cycles). Transition of the amylose-lipid complex occurs in all the irradiated samples at a lower temperature as compared to the non-irradiated starch. That effect was larger when the radiation dose was higher. A further thermal treatment causes a decrease of the transition temperature in the irradiated samples, with no effect or increase of that temperature observed for the non-irradiated ones. Irradiation hinders retrogradation taking place in 50% gels but facilitates the process occurring in 20% gels. The differences between the irradiated and the non-irradiated samples are more evident in the every next heating or cooling cycle as well as after storage and in the case of ca. 50% suspensions as compared to ca. 20% suspensions. The results point out to the deterioration of the structure of the complexes formed in the irradiated starch as compared to the non-irradiated one.

  4. Genetic Engineering of Cereal Grains with Starch Consisting of More Than 99% Amylase

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Carciofi, Massimiliano; Blennow, Andreas

    2013-01-01

    Numerous textbooks tell us that plant starches are a mix of two starch types: amylopectin and amylose. We recently succeeded in engineering a cereal crop – a barley line – producing grain starch consisting of more than 99% amylose1. This amylose-only starch contains a high residual fraction...

  5. Analysis of hydroxypropyl starch hydrolysates by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, M.; Kesavamoorthy, S.; Azemi, B.M.N.M.

    1985-08-01

    Acid hydrolysates of hydroxypropyl derivatives of wheat, maize, waxy maize and high amylose maize starches were separated using four HPLC procedures. An amine treated silica column gave best resolution of glucose and six nonglucose components. The proportions of these varied depending on the native starch and the acid used for hydrolysis. There was a linear relationship between molar substitution and ratio of nonglucose peak areas which varied between the native starches.

  6. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents.

    Science.gov (United States)

    Van Hung, Pham; Chau, Huynh Thi; Phi, Nguyen Thi Lan

    2016-01-15

    The native and physically modified rice starches with varying amylose contents were subjected to investigate the in vitro digestibility and the in vivo glucose tolerance in mice. The amylose and resistant starch (RS) contents of five native rice starches ranged in 4.7-30.6% and 6.3-11.8%, respectively. The RS contents of rice starches increased to 18.5-23.9% after heat-moisture treatment (HMT) and to 19.5-26.9% after annealing treatment (ANN). The heat-moisture and annealing treatments significantly reduced glycemic index (GI) values of the rice starches. GI values of the native, heat-moisture treated and annealed rice starches ranged in 68.9-100, 61.2-88.9 and 21.2-43.9, respectively. There was no correlation between amylose contents and the RS contents or GI values, while a strong negative correlation between RS contents and GI values was found (R(2)=-0.747, P<0.01).

  7. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  8. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...... maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content...... and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers...

  9. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis.

  10. Preparation of chitosan oligomers COS and their effect on the retrogradation of intermediate amylose rice starch.

    Science.gov (United States)

    Wu, Yue; Lin, Qin Lu; Chen, Zheng Xing; Wu, Wei; Xiao, Hua Xi

    2012-12-01

    Chitosan oligomers (COS) were obtained by enzymatic hydrolysis and H2O2 oxidative treatment, and then separated into different fractions using ultra-filtration membranes. Each COSM fraction prepared using enzymatic hydrolysis retained its structure, especially the reduced end residue (-NH2 group), and had a peak for molecular weight. On the other hand, each COSH fraction prepared by oxidative treatment had partly damaged -NH2 groups and two peaks for molecular weight. These results indicate that the same COS fractions prepared by the two methods differ in their amino groups and in their molecular weights, though they can both pass through the same size ultra-filtration membrane. The effect of COS on the retrogradation of intermediate amylose rice starch (IA-RS) was also investigated. The 5 k COS determined its anti-retrogradation capability. All COSH fractions from oxidative treatment had no effect on the retrogradation.

  11. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating.

  12. Estabilidade de géis de amido de milho normal, ceroso e com alto teor de amilose adicionados de gomas guar e xantana durante os processos de congelamento e descongelamento Freeze-thaw stability of normal, waxy and high amylose corn starch gels with added guar and xanthan gums

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2008-06-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos das gomas guar e xantana sobre a estabilidade dos géis de amido de milho normal, ceroso e com alto teor de amilose submetidos aos processos de congelamento e descongelamento. Os géis desses amidos, com concentração total de sólidos de 10% e adicionados das gomas (0,15; 0,50; 0,85 e 1%, foram submetidos a 5 ciclos de congelamento (20 horas a -18 °C e descongelamento (4 horas a 25 °C, com exceção dos géis com alto teor de amilose, que foram submetidos a apenas 1 ciclo, devido à perda da estrutura de gel. A determinação da sinérese (porcentagem de água liberada foi realizada pela diferença entre a massa inicial e a massa final das amostras. O gel de amido de milho normal liberou 74,45% de água, sendo que a adição de 1% da goma xantana reduziu significativamente a sinérese para 66,43%. A adição de 0,85 e 1% da goma xantana também reduziu a sinérese dos géis de amido ceroso. O menor teor de sinérese foi obtido com a utilização de 1% de goma xantana ao gel de amido de milho com alto teor de amilose, evidenciando a ação crioprotetora desta goma.The objective of the present work was to study the effects of guar and xanthan gums on the stability of normal, waxy and high amylose corn starch gels, submitted to freeze-thaw processes. The gels of these starches with a total solids content of 10% and added gums (0.15;0.50;0.85and1%, were submitted to 5 freezing (20 hours, -18 °C and thawing (4 hours, 25 °C cycles, with exception of the high amylose gels that were submitted to only 1 cycle. Syneresis (% water released was determined by the difference between the initial and final masses of the samples. The normal corn starch gel released 74.45% water and the addition of 1% xanthan gum significantly reduced syneresis to 66.43%. The incorporation of 0.85 and 1% xanthan gum also reduced syneresis of waxy starch gels. The lowest level of syneresis was reached with the use of 1

  13. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans

    Directory of Open Access Journals (Sweden)

    Alison M. Zenel

    2015-07-01

    Full Text Available The present study compared the effects of three rice cultivars on postprandial glycemic control and appetite. A single-blind, randomized, crossover clinical trial was performed with 18 healthy subjects, nine males and nine females. Three treatments were administered at three separate study visits: commercially available conventional white rice (short grain, specialty high amylose white rice 1 (Dixiebelle, and specialty high amylose white rice 2 (Rondo. Postprandial capillary blood glucose, venous blood glucose and insulin measurements, and appetite visual analog scale (VAS surveys were done over the course of two hours. The capillary blood glucose concentrations were significantly lower for Rondo compared to short grain rice at 30 min, and for Dixiebelle and Rondo compared to short grain rice at 45, 60, and 120 min. Capillary blood glucose area under the curve (AUC was significantly lower for Dixiebelle and Rondo compared to short grain rice. Subjects were significantly more hungry at 30 min after Dixiebelle intake than Rondo intake, but there were no other significant effects in appetite ratings. The present study determined that intake of high amylose rice with resistant starch (RS can attenuate postprandial blood glucose and insulin response in comparison to short grain rice.

  14. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch

    Energy Technology Data Exchange (ETDEWEB)

    Ciesla, K. [Institute of Nuclear Chemistry and Technology, Dorodna 16 str., 03-195 Warsaw (Poland)], E-mail: kciesla@orange.ichtj.waw.pl; Eliasson, A.C. [Department of Food Technology Engineering and Nutrition, Division of Food Technology, University of Lund, P.O. Box 124, S-221 00 Lund (Sweden)

    2007-12-15

    The effect of gamma irradiation ({sup 60}Co) with doses of 5-30 kGy on the amylose-lipid complex transition and retrogradation occurring in gels containing ca. 50% and ca. 20% wheat starch was studied by differential scanning calorimetry (DSC) during heating-cooling-heating cycles (up to three cycles). Transition of the amylose-lipid complex occurs in all the irradiated samples at a lower temperature as compared to the non-irradiated starch. That effect was larger when the radiation dose was higher. A further thermal treatment causes a decrease of the transition temperature in the irradiated samples, with no effect or increase of that temperature observed for the non-irradiated ones. Irradiation hinders retrogradation taking place in 50% gels but facilitates the process occurring in 20% gels. The differences between the irradiated and the non-irradiated samples are more evident in the every next heating or cooling cycle as well as after storage and in the case of ca. 50% suspensions as compared to ca. 20% suspensions. The results point out to the deterioration of the structure of the complexes formed in the irradiated starch as compared to the non-irradiated one.

  15. Presence of amylose crystallites in parboiled rice.

    Science.gov (United States)

    Lamberts, Lieve; Gomand, Sara V; Derycke, Veerle; Delcour, Jan A

    2009-04-22

    Mildly, intermediately, and severely parboiled Jacinto [16% free amylose (FAM) content] and Puntal (26% FAM content) rice samples were submitted to differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). DSC thermograms revealed ungelatinized starch only in mildly parboiled rices and retrograded amylopectin in all parboiled samples. Amylose crystallites were present in intermediately and severely parboiled samples but could not be detected due to their high melting temperature. Nonparboiled and parboiled rice DSC profiles showed only type I and type II amylose-lipid complexes, respectively. Intermediately and severely parboiled rice showed a clear V(h)-type (crystalline amylose-lipid complexes) with a superimposed B-type (retrograded amylopectin and/or amylose crystallites) pattern. The mildly parboiled samples showed a mix of A- (native starch crystallites) and V(h)-type patterns (Puntal) and A-, V(h)-, and B-type patterns (Jacinto). Mild acid hydrolysis destroyed the acid labile retrograded amylopectin crystallites and increased the relative abundance of amylose crystallites. Indeed, acid-hydrolyzed intermediately and severely parboiled samples of both cultivars showed a clear B-type diffraction pattern conclusively showing, for the first time, the presence of amylose crystallites. The melting temperature of the amylose crystallites was ca. 135 degrees C, and melting peaks were visible in the DSC thermograms of the intermediately and severely parboiled samples. Their levels depended on the degree of parboiling and FAM content.

  16. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Directory of Open Access Journals (Sweden)

    Elin Östman

    2011-08-01

    Full Text Available Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS. Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%.Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW, EAW with added lactic acid (EAW-la, and ordinary whole grain wheat bread (WGW. All test breads were baked at pumpernickel conditions (20 hours, 120°C. A conventionally baked white wheat bread (REF was used as reference. Resistant starch (RS content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis in breads based on EAW than in WGW (p<0.001. Lactic acid further increased RS (p<0.001 compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05, but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI (r= − 0.571, p<0.001.This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response.

  17. Role of molecular entanglements in starch fiber formation by electrospinning.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2012-08-13

    We have demonstrated a method of fabricating pure starch fibers with an average diameter in the order of micrometers. In the present study, correlation between the rheological properties of starch dispersions and the electrospinnability was attempted via the extrapolation of the critical entanglement concentration, which is the boundary between the semidilute unentangled regime and the semidilute entangled regime. Dispersions of high amylose starch containing nominally 80% amylose (Gelose 80) required 1.2-2.7 times the entanglement concentration for effective electrospinning. Besides starch concentration, molecular conformation, and shear viscosity were also of importance in determining the electrospinnability. The rheological properties and electrospinnability of different starches were studied. Hylon VII and Hylon V starches, containing nominally 70 and 50% amylose, respectively, required concentrations of 1.9 and 3.7 times their entanglement concentrations for electrospinning. Only poor fibers were obtained from mung bean starch, which contains about 35% amylose, while starches with even lower amylose contents could not be electrospun.

  18. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    Science.gov (United States)

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

  19. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2013-01-01

    This study was aimed to assess the role of lysophosphatidylcholine (LPC) in the development of slowly digestible starch (SDS). The influence of LPC, on the enzymatic degradation of diluted 9% wheat starch suspensions (w/w) was investigated, using an in vitro digestion method. Wheat starch suspension

  20. High surface area starch products as filler-binder in direct compression tablets

    NARCIS (Netherlands)

    te Wierik, G.HP; Ramaker, J.S; Eissens, A.C; Bergsma, J; Arends-Scholte, A.W.; Lerk, C.F

    1996-01-01

    Amylodextrin and modified starch products were prepared from amylose-free starches and from (amylose containing) potato starch by enzymatic degradation, followed by precipitation and filtration. The intermediate retrograded starch products were dehydrated by drying at room temperature or washing wit

  1. Microstructure changes of on the extruded high-amylose bionanocomposites as affected by moisture content via synchrotron radiation studies

    Science.gov (United States)

    Liu, Huihua; Chaudhary, Deeptangshu

    2014-08-01

    The crystalline domain changes and lamellar structure observations of sorbitol-plasticized starch nanocomposite had been investigated via synchrotron. Strong interactions were found between amylose-sorbitol, resulting in reduced inter-helix spacing of the starch polymer. Achievable dspacing of nanoclay was confirmed to be correlated to the moisture content (mc) within the nanocomposites. SAXS diffraction patterns changed from circular (high mc samples) to elliptical (low mc samples), indicating the formation of long periodic structure and increased heterogeneities of the electron density within the samples. Two different domains sized at around 90 Å and 350 Å were found for the low mc samples. However, only the ~90 Å domain was observed in high mc samples. Formation of the 380 Å domain is attributed to the retrogradation behaviour in the absence of water molecules. Meanwhile, the nucleation effect of nanoclay is another factor leading to the emergence of the larger crystalline domain.

  2. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction.

    Science.gov (United States)

    Yang, Zhi; Gu, Qinfen; Hemar, Yacine

    2013-08-14

    The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    Science.gov (United States)

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  4. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes were prepared from high amylose corn starch and the HCl salts of hexadecylamine and octadecylamine. Solutions of the complexes were applied to paper at concentrations of 2-4%. After the treated papers were dried, sodium hydroxide solution was applied to convert the adsorb...

  5. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  6. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    Science.gov (United States)

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules.

  7. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  8. Amylose content decreases during tuber development in potato.

    Science.gov (United States)

    Jansky, Shelley; Fajardo, Diego

    2016-10-01

    Potato starch is composed primarily of amylopectin and amylose in an approximately 3:1 ratio. Amylose is considered to be nutritionally desirable in North American and European markets, so there is interest in finding strategies to increase the amylose content of potato starch. There is also interest in marketing 'baby' potatoes, which are harvested when they are physiologically immature. This study was carried out to determine weekly changes in amylose content in potato tubers of 11 North American cultivars during the growing season. The trial was repeated across 3 years. We determined that amylose content is highest early and it decreases in a linear fashion as the growing season progresses. Mean amylose content across cultivars and years declined from 30.0% in late June to 26.8% in late August. The rate of decrease varied across years, with slopes of linear regression plots ranging from -0.17 in 2012 to -0.74 in 2011. Amylose content in tuber starch varied among cultivars, with the highest levels observed in Ranger Russet (30.7%) and White Pearl (31.6%); it was lowest in Kennebec (25.7%) and Langlade (25.6%). This study adds to a growing body of literature on the nutritional value of immature potato tubers. In addition to having higher levels of some phytonutrients, as reported in other studies, immature tubers have a higher proportion of amylose in the starch. This is nutritionally desirable in affluent regions where high fiber content is more important than calories from carbohydrates. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  10. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Visser, R.G.F.; Delcour, J.A.

    2010-01-01

    Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a

  11. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs.

  12. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  13. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  14. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  15. Characterization of Maize Amylose-extender (ae) Mutant Starches. Part II: Structures and Properties of Starch Residues Remaining After Enzymatic Hydrolyis at Boiling-water Temperature

    Science.gov (United States)

    GEMS-0067 maize ae-line starch developed by Truman State University and the Germplasm Enhancement of Maize (GEM) Project consisted of 39.4%-43.2% resistant-starch (RS), which was larger than the existing ae-line starches of H99ae, OH43ae, B89ae, and B84ae (11.5%-19.1%) as reported in part I of the s...

  16. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: a statistical investigation.

    Science.gov (United States)

    Yao, Yuan; Zhang, Jingmin; Ding, Xiaolin

    2002-12-04

    Amylose content and amylopectin chain length distribution, the two most commonly used structural parameters of starch, have significant effects on starch retrogradation. In the present work, starches were separated and purified from 18 rice cultivars. The amylopectin was purified from each starch. Amylopectin chain length distribution was analyzed by high-performance size-exclusion chromatography after debranched using isoamylase. The blue value was used to measure the amylose content before and after the defatting of starch. The amount of amylose associated with lipid was calculated. Pulsed nuclear magnetic resonance was used to follow the retrogradation of starch both in cooked rice grains and in the purified form. The Avrami equation was employed to describe the retrogradation kinetics of rice starch. To look into the relationship between the starch structure and retrogradation behavior, the structural parameters were correlated with retrogradation kinetics parameters using both Pearson and partial correlations. The results indicated the following: first, the retrogradation behavior of rice starch remains similar in both the purified form and cooked rice grains; second, the peak value of amylopectin short-chain length has a significant positive relationship with the amylopectin crystallization rate constant k; third, the amylose content after defatting has a significant positive relationship with the parameter k and a negative relationship with the Avrami exponent n; and fourth, the amount of amylose associated with lipid has a negative relationship with the parameter k.

  17. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes.

    Science.gov (United States)

    Hay, William T; Behle, Robert W; Fanta, George F; Felker, Frederick C; Peterson, Steven C; Selling, Gordon W

    2017-02-10

    Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in the spray drying process were the% solids of the amylose-hexadecyl ammonium chloride complex being fed into the spray dryer, feed rate and the spray dryer outlet temperature. The amylose-inclusion complexes remained intact in all spray drying conditions tested as determined by X-ray diffraction. The rheological properties of solutions of the spray dried amylose-complexes remained unchanged when compared with the freeze dried control. Particle density and moisture content decreased with increased outlet temperature while particle size increased. X-ray diffraction and DSC analysis confirmed the formation of type II amylose inclusion complexes. Spray drying is a high throughput, low cost continuous commercial production method, which when coupled with excess steam jet cooking allows for the industrial scale production of cationic amylose-hexadecyl ammonium chloride complexes which may have value as flocculating and filtration enhancing agents and other aspects of paper production.

  18. Amylose content decreases during tuber development in potato

    Science.gov (United States)

    Potato starch is composed of amylopectin and amylose in an approximately three to one ratio. Amylose is considered to be nutritionally desirable, so there is interest in finding strategies to increase the amylose content of potatoes. There is also interest in marketing “baby” potatoes, which are har...

  19. Starch granule protein (SGP) polymorphism in cultivated naked barley from Qinghai-Tibet Plateau in China and relationship between SGPs and starch/amylose content

    Institute of Scientific and Technical Information of China (English)

    Zhifen PAN; Yixing ZOU; Tao ZHAO; Guangbing DENG; Xuguang ZHAI; Fang WU; Maoqun YU

    2008-01-01

    Starch granule proteins (SGPs) are minor components bound with starch granule, whose variation could impact starch properties. This study investigated, for the first time, the variation of SGPs in the cultivated naked barley from Qinghai-Tibet Plateau in China. The relation-ship between SGPs and starch content was preliminarily dealt with. Ten major SGPs and 16 types of patterns were present in the 66 cultivated naked varieties, indicating that the SGPs in cultivated naked barley from Qinghai-Tibet Plateau in China are polymorphic. The SGPs of naked barley in Tibet and Sichuan were greatly different and the SGP patterns were specific to sampling regions. Significance test analysis demonstrated that the SGPs described in this study, except for SGP1, could be related with the variation of starch content in the different naked barleys.

  20. Characterization of starch from two ecotypes of andean achira roots (Canna edulis).

    Science.gov (United States)

    Cisneros, Fausto H; Zevillanos, Roberto; Cisneros-Zevallos, Luis

    2009-08-26

    Starches from two ecotypes of achira roots (Canna edulis Ker-Gawler) were characterized and compared to commercial potato and corn starches. This included scanning electron microscopy (SEM) of starch granules and amylose content determination of starch. Starch solutions or gels were tested by rotational viscometry, Rapid Visco Analyzer (RVA), and texture analysis. Some starch samples were subjected to various treatments: pH reduction, autoclaving at high temperature, and high shear before testing by rotational viscometry. Achira starch showed some unusual properties, such as very large oblong granules (approximately 45-52 microm major axis and approximately 33-34 microm minor axis) and relatively high amylose content (approximately 33-39%). The San Gaban achira ecotype formed high-consistency gels upon cooling, both in RVA study (5% starch) and in texture analysis (8% starch), compared to other starch gels and also exhibited higher thermal resistance to viscosity breakdown.

  1. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  2. Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion.

    Science.gov (United States)

    Teng, Anju; Witt, Torsten; Wang, Kai; Li, Ming; Hasjim, Jovin

    2016-03-30

    The objective of the present study is to understand the changes in starch structures during digestion and the structures contributing to slow digestion properties. The molecular, crystalline, and granular structures of native waxy maize, normal maize, high-amylose maize, and normal potato starch granules were monitored using SEC, XRD, DSC, and SEM. The amylose and amylopectin molecules of all four starches were hydrolyzed to smaller dextrins, with some having linear molecular structure. Neither the A- nor B-type crystallinity was resistant to enzyme hydrolysis. Starch crystallites with melting temperature above 120°C appeared in waxy and normal maize starches after digestion, suggesting that the linear dextrins retrograded into thermally stable crystalline structure. These crystallites were also observed for high-amylose maize starch before and after digestion, contributing to its low enzyme digestibility. On the contrary, the enzyme-resistant granular structure of native normal potato starch was responsible for its low susceptibility to enzyme hydrolysis.

  3. Effect of high temperature on the expressions of genes encoding starch synthesis enzymes in developing rice endosperms

    Institute of Scientific and Technical Information of China (English)

    CAO Zhen-zhen; PAN Gang; WANG Fu-biao; WEI Ke-su; LI Zhao-wei; SHI Chun-hai; GENG Wei; CHENG Fang-min

    2015-01-01

    High temperature is the major environmental factor affecting grain starch properties of cooking rice cultivars. In this study, two non-waxy indica rice genotypes, cv. 9311 and its mutant with extremely high amylose phenotype (9311eha) were used to study the differential expressions of genes in starch synthesis and their responses to high temperature (HT). Signiifcant increase in apparent amylose content and hot-water-soluble starch content in mutant 9311eha were genetical y caused by a substitution from AGTTATA to AGGTATA at the leader intron 5´ splice site in Wx gene. This mutation resulted in different mRNA transcript levels, mRNA splicing efifciencies and protein levels of Wx between the two rice genotypes, which also lead to the genotype-dependent alteration in the temporal pattern of Wx transcription and granule-bound starch synthase (GBSS) activity in response to HT. However, changes in the activities of other starch synthesizing enzymes and their expressions of distinct isoform genes were not signiifcant with the Wx gene mutation, thus only minor difference in the particle size of starch granule, chain-length distribution and gelatinization enthalpy were found between the two genotypes. The tempo-ral-speciifc expression of multiple isoform genes responsive to different temperature regiments indicated that the reduction of GBSS transcript expression under HT was general y accompanied by the decreased expressions of SSSIIa, SSSIIIa and SBEIIb. Consequently, high temperature-ripened grains in 9311eha showed high proportion of intermediate and long B chains and somewhat lower level of short A chain compared to the wildtype. The temperature-dependent alteration of amylose content was not only attributed to the reduced expression of GBSS, but also associated with the complimentary effect of SSSIIa and SBEIIb.

  4. Effect of annealing and pressure on microstructure of cornstarches with different amylose/amylopectin ratios.

    Science.gov (United States)

    Liu, Hongsheng; Yu, Long; Simon, George; Zhang, Xiaoqing; Dean, Katherine; Chen, Ling

    2009-02-17

    This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and (13)C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.

  5. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.

    Science.gov (United States)

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2012-09-01

    Cereal starch granules with high (>50%) amylose content are a promising source of nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine, but the structural features responsible are not fully understood. We report the effects of partial enzyme digestion of maize starch granules on amylopectin branch length profiles, double and single helix contents, gelatinisation properties, crystallinity and lamellar periodicity. Comparing results for three maize starches (27, 57, and 84% amylose) that differ in both structural features and amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. All starches are found to be digested by a side-by-side mechanism in which there is no major preference during enzyme attack for amylopectin branch lengths, helix form, crystallinity or lamellar organisation. We conclude that the major factor controlling enzyme susceptibility is granule architecture, with shorter length scales not playing a major role as inferred from the largely invariant nature of numerous structural measures during the digestion process (XRD, NMR, SAXS, DSC, FACE). Results are consistent with digestion rates being controlled by restricted diffusion of enzymes within densely packed granular structures, with an effective surface area for enzyme attack determined by external dimensions (57 or 84% amylose - relatively slow) or internal channels and pores (27% amylose - relatively fast). Although the process of granule digestion is to a first approximation non-discriminatory with respect to structure at molecular and mesoscopic length scales, secondary effects noted include (i) partial crystallisation of V-type helices during digestion of 27% amylose starch, (ii) preferential hydrolysis of long amylopectin branches during the early stage hydrolysis of 27% and 57% but not 84% amylose starches, linked with disruption of lamellar repeating structure

  6. Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system

    Science.gov (United States)

    The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...

  7. Effects of Elevated Ozone Concentration on Starch and Starch Synthesis Enzymes of Yangmai 16 Under Fully Open-Air Field Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ru-biao; HU Hai-juan; ZHAO Zheng; YANG Dan-dan; ZHU Xin-kai; GUO Wen-shan; ZHU Jian-guo; Kazuhiko Kobayashi

    2013-01-01

    O3 is not only greenhouse gas but also a primary gaseous contaminant in the atmosphere. It has long-lasting effects on crop growth, yield and quality, and brings a series of ecological and environmental problems. A free-air controlled enrichment (FACE) system was applied to study the effect of elevated ozone concentration on activities of key enzymes of starch synthesis of Yangmai 16 in 2009-2010. The main-plot treatment had two levels of O3: ambient level (A-O3) and 50% higher than ambient level (E-O3). The main results were that accumulation rate of amylose, amylopectin and starch were represented in a single peak curve, and their content and accumulation amount rose gradually. The O3elevation decreased the accumulation rate of amylose, amylopectin and starch amylase, reduced the accumulation amount of amylopectin and starch, and decreased the content of amylopectin and starch, but increased the content of amylose. With the increase of O3 concentration, the enzyme activity of grain granule-bound starch synthase (GBSS), soluble starch synthase (SSS) and starch branching enzyme (SBE) decreased after anthesis. The activities of GBSS and SSS had highly signiifcant correlations with amylose, amylopectin and starch accumulation rate, and the activity of SBE had signiifcant correlations with these items. So the O3elevation decreased the activity of key enzymes of starch synthesis, which led to the variation of starch synthesis.

  8. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  9. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucos

  10. Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas.

    Science.gov (United States)

    Mir, Shabir Ahmad; Bosco, Sowriappan John Don

    2014-08-15

    Starch and flour of seven temperate rice cultivars grown in Himalayan region were evaluated for composition, granule structure, crystallinity, Raman spectrometry, turbidity, swelling power, solubility, pasting properties and textural properties. The rice cultivars showed medium to high amylose content for starch (24.69-32.76%) and flour (17.78-24.86%). SKAU-382 showed the highest amount of amylose (32.76%). Rice starch showed polyhedral granule shapes and differences in their mean granule size (2.3-6.5 μm) were noted among the samples. The starch and flour samples showed type A-pattern with strong reflection at 15, 18, and 23. Pasting profile and textural analysis of rice starch and flour showed that all the cultivars differences, probably due to variation in amylose content. The present study can be used for identifying differences between rice genotypes for starch and flour quality and could provide guidance to possible industries for their end use.

  11. Amylose content of rice marketed in Portugal

    OpenAIRE

    2014-01-01

    Amylose content is considered to be the most important parameter of cooking quality in rice. Presently, rice cultivars are categorized according to amylose content into three groups: low, medium and high amylose content cultivars. The specific objective of this work is to evaluate the grain amylose content of 77 cultivars, which cover Índica and Japónica subspecies, and different types of commercial rice like, aromatic (basmati and thay), wild rice, medium rice (carlose and risotto), glutinou...

  12. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H;

    2016-01-01

    -structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper...... relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had...... high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences...

  13. Effects of Sorghum [Sorghum bicolor (L.) Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) Contents of Porridges

    OpenAIRE

    2012-01-01

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts ...

  14. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    the wild-type cultivar. These exciting results may provide a potential clean technological approach to starch modification by in-planta bioengineering and avoid environmental hazards resulting from post-harvest treatments by chemical modifications. The third study was to investigate the effects...... involved in this process, has enabled the genetic modification f crops in a rational manner to produce novel designer starches with improved functionality. The hypothesis of the present study is that the hyper-phosphorylation of cereal endosperm starch makes it easily accessible and degradable...... by the amylolytic enzymes while the amylose-only endosperm starch exhibits high resistance to degradation and hence less available for degradation. With the aim to investigate the hypothesis, starch molecular structures were modulated with the above mentioned modifications and were studied for the effects...

  15. Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch.

    Science.gov (United States)

    Chung, H-J; Liu, Q

    2009-06-01

    Carboxyl content and amylose leaching of gamma-irradiated corn starch increased and swelling factor decreased with increasing radiation dose. The apparent amylose content decreased gradually from 28.7% for native starch to 20.9% for 50 kGy irradiated starch. The proportion of short amylopectin branch chains (DP 6 to 12) increased, while the proportion of longer branch chains (DP > or = 37) decreased with increasing radiation dose. The relative crystallinity and the degree of granule surface order decreased from 28.5% and 0.631 in native starch to 26.9% and 0.605 in 50 kGy irradiated starch, respectively. Pasting viscosity and gelatinization temperatures decreased with an increase in radiation dose. At a high dose (50 kGy), melting of amylose-lipid complex in DSC thermogram was not observed. The rapidly digestible starch (RDS) content slightly decreased up to 10 kGy but increased at 50 kGy. The resistant starch (RS) content slightly decreased at 2 kGy and then increased up to 50 kGy. The slowly digestible starch (SDS) content showed the opposite trend to RS content. Slower irradiation dose rate reduced carboxyl content, swelling factor, and amylose leaching. The apparent amylose content and amylopectin chain length distribution were not significantly affected by dose rate of gamma irradiation. However, the relative crystallinity and gelatinization enthalpy increased with slower dose rate. Slower dose rate decreased RDS and SDS contents, and increased RS content.

  16. Evaluation of the Molecular Structural Parameters of Normal Rice Starch and Their Relationships with Its Thermal and Digestion Properties

    Directory of Open Access Journals (Sweden)

    Lingshang Lin

    2017-09-01

    Full Text Available The molecular structural parameters of six normal rice starches with different amylose contents were investigated through their iodine absorption spectra and gel permeation chromatography of fully branched and debranched starches. The thermal and digestion properties of starches were also determined and their relationships with molecular structural parameters were analyzed. Results showed that the molecular structural parameters of maximum absorption wavelength, blue value (BV, optical density 620 nm/550 nm (OD 620/550, amylose, intermediate component, and amylopectin, including its short branch-chains, long branch-chains, and branching degree, had high correlation in different determining methods. The intermediate component of starch was significantly positively related to amylose and negatively related to amylopectin, and the amylopectin branching degree was significantly positively related to amylopectin content and negatively related to amylose content. The gelatinization temperatures and enthalpy of native starch were significantly positively related to BV, OD 620/550, and amylose content and negatively related to amylopectin short branch-chains. The gelatinization temperatures and enthalpy of retrograded starch were significantly negatively related to amylopectin branching degree. The digestions of gelatinized and retrograded starches were significantly negatively related to the BV, OD 620/550, amylose, and intermediate component and positively related to amylopectin and its short branch-chains and branching degree.

  17. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing.

  18. Slow digestion properties of rice different in resistant starch.

    Science.gov (United States)

    Shu, Xiaoli; Jia, Limeng; Ye, Hongxia; Li, Chengdao; Wu, Dianxing

    2009-08-26

    The hydrolysis of starch is a key factor for controlling the glycemic index (GI). Slow digestion properties of starch lead to slower glucose release and lower glycemic response. Food with high resistant starch (RS) possesses great value for controlling the GI. To elucidate the factors that play a role in slow digestibility, seven rice mutants different in RS contents were selected for comparative studies. The degree of hydrolysis showed highly significant correlation with RS, apparent amylose content (AAC), lipid content (LC), and other starch physiochemical properties in all these materials with different RS contents. The rate of in vitro digestible starch correlated positively with RS, whereas digestibility was affected mostly by lipid content for those mutants with similar RS. Starch-lipid complexes and short chains with degrees of polymerization (DP) of 8-12 strongly influenced starch digestion. The integrity of aggregated starch and the number of round starch granules might influence the digestibility of starch directly.

  19. Understanding the structure and digestibility of heat-moisture treated starch.

    Science.gov (United States)

    Wang, Hongwei; Zhang, Binjia; Chen, Ling; Li, Xiaoxi

    2016-07-01

    To rationalize the effects of heat-moisture treatment (HMT) on starch digestibility, the HMT-induced alterations in the mesoscopic and molecular scale structures of regular and high-amylose maize starches, as well as in their digestibility, were evaluated. Accompanying the supramolecular structural disorganizations and certain molecular degradation induced by HMT, somewhat molecular rearrangements occurred to probably form densely packed starch fractions, which eventually weakened starch digestion and thus transformed RDS into SDS and RS for regular and high-amylose starches. Interestingly, due to its larger amount of inter-helical water molecules that could be induced by HMT, B-polymorphic high-amylose starch was more susceptible to HMT (relative A-polymorphic regular starch), causing more prominent structural evolutions including molecular re-assembly and thus increasingly slowed digestion. In particular, the treated high-amylose starch with 30% moisture content showed a high SDS+RS content (48.3%). The results indicate that HMT-treated starch may serve as a functional ingredient with adjustable enzymatic digestibility for various food products.

  20. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  1. Deciphering Starch Quality of Rice Kernels Using Metabolite Profiling and Pedigree Network Analysis

    Institute of Scientific and Technical Information of China (English)

    Miyako Kusano; Atsushi Fukushima; Naoko Fujita; Yozo Okazaki; Makoto Kobayashi; Naoko Fujita Oitome; Kaworu Ebana; Kazuki Saito

    2012-01-01

    The physiological properties of rice grains are immediately obvious to consumers.High-coverage metabolomic characterization of the rice diversity research set predicted a negative correlation between fatty acid and lipid levels and amylose/total starch ratio (amylose ratio),but the reason for this is unclear.To obtain new insight into the relationships among the visual phenotypes of rice kernels,starch granule structures,amylose ratios,and metabolite changes,we investigated the metabolite changes of five Japonica cultivars with various amylose ratios and two knockout mutants (e1,a Starch synthase Ⅲa (SSⅢa)-deficient mutant and the SSⅢa/starch branching enzyme (BE) double-knockout mutant 4019) by using mass spectrometry-based metabolomics techniques.Scanning electron microscopy clearly showed that the two mutants had unusual starch granule structures.The metabolomic compositions of two cultivars with high amylose ratios (Hoshiyutaka and Yumetoiro) exhibited similar patterns,while that of the double-knockout mutant,which has an extremely high amylose ratio,differed.Rice pedigree network analysis of the cultivars and the mutants provided insight into the association between metabolic-trait properties and their underlying genetic basis in rice breeding in Japan.Multidimensional scaling analysis revealed that the Hoshiyutaka and Yumetoiro cultivars were Indica-like,yet they are classified as Japonica subpopulations.Exploring metabolomic traits is a powerful way to follow rice genetic traces and breeding history.

  2. Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch.

    Science.gov (United States)

    Lu, Ting-Jang; Lin, Jheng-Hua; Chen, Jia-Ci; Chang, Yung-Ho

    2008-03-26

    Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.

  3. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was bot...

  4. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches

    OpenAIRE

    Fernanda Hart Weber; Fernanda Paula Collares-Queiroz; Yoon Kil Chang

    2009-01-01

    O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM) apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M) e o amido de milho ceroso (AP) foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram e...

  5. Molecular and Morphological Aspects of Annealing-Induced Stabilization of Starch Crystallites

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Gommes, C.J.; Visser, R.G.F.; Delcour, J.A.; Goderis, B.

    2012-01-01

    A unique series of potato (mutant) starches with highly different amylopectin/amylose (AP/AM) ratios was annealed in excess water at stepwise increasing temperatures to increase the starch melting (or gelatinization) temperatures in aqueous suspensions. Small-angle X-ray scattering (SAXS) experiment

  6. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch.

    Science.gov (United States)

    Chen, Wenting; Zhou, Hongxian; Yang, Hong; Cui, Min

    2015-01-15

    The objective of this study was to evaluate the effects of charge-carrying amino acids (lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the gelatinization and retrogradation properties of potato starch. Acidic amino acids (Asp and Glu) showed a decreasing trend in swelling power and granule size of potato starch, but increased amylose leaching and gelatinization temperature. Alkaline amino acid (Arg) showed an increasing trend in swelling power and granule size of potato starch, but decreasing amylose leaching and gelatinization temperature. Lys had no effect on the swelling power of potato starch, except at a high content (0.2 mol/kg). Like other two acidic amino acids, Lys also increased gelatinization temperature. Moreover, the addition of alkaline amino acids (Arg) decreased syneresis value of potato starch but acidic amino acids (Asp and Glu) increased it. Compared to Arg, the syneresis of potato starch with Lys was similar to that of its native starch.

  7. Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis1[OPEN

    Science.gov (United States)

    Parween, Sabiha; Samson, Irene; de Guzman, Krishna; Alhambra, Crisline Mae; Misra, Gopal

    2017-01-01

    A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases. PMID:27881726

  8. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  9. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amyloselysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  10. A study on starch profile of rajma bean (Phaseolus vulgaris) incorporated noodle dough and its functional characteristics.

    Science.gov (United States)

    Kumar, S Bharath; Prabhasankar, P

    2015-08-01

    Starch profile reflects functional characteristics like digestibility and product quality. A study was aimed to incorporate rajma in noodle processing to improve product and nutritional quality and also to reduce starch digestibility. It is known that some of the pulses like Kidney beans have an isoforms of Starch-Branching-Enzyme (SBE) helps in converting amylose to amylopectin. Rajma flour was incorporated at 10%, 20% and 30% with Triticumdurum and subjected to rheological, physico-chemical and amylose/amylopectin determination using High-Performance-Size-Exclusion-Chromatography (HPSEC). Results revealed that rajma flour decreased peak-viscosity from 954 to 683 BU and increased water absorption. Protein and dietary fiber content increased significantly. Sensory profile showed higher overall quality (>8.5). In vitro starch digestibility reduced from 65% to 49%. Starch profile from HPSEC showed changes in amylose:amylopectin peak, this may be because of the presence of SBE, further studies may be required to support the hypothesis.

  11. Effect of nitrogen rate and the environment on physicochemical properties of selected high amylose rice cultivars

    Science.gov (United States)

    Genetic marker haplotypes for the Waxy and alk genes are associated with amylose content and gelatinization temperature, respectively, and are used by breeders to develop rice cultivars that have physicochemical properties desired by the parboiling and canning industries. Cultivars that provide cons...

  12. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    Science.gov (United States)

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  13. Physico-chemical and rheological properties of gelatinized/freeze-dried cereal starches

    Science.gov (United States)

    Krystyjan, Magdalena; Ciesielski, Wojciech; Gumul, Dorota; Buksa, Krzysztof; Ziobro, Rafał; Sikora, Marek

    2017-07-01

    The influence of gelatinization and freeze-drying process on the physico-chemical and rheological properties of cereal starches was evaluated, and it was observed that modified starches revealed an increased water binding capacity and solubility when compared to dry starches, while exhibiting the same amylose and fat contents. The molecular weights of starches decreased after modification which resulted in the lower viscosity of dissolved modified samples in comparison to native starch pastes. As it was observed by scanning electron microscopy modified starches were characterized by an expanded surface, a uniform structure and high porosity.

  14. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  15. Starch Accumulation and Enzyme Activities Associated with Starch Synthesis in Maize Kernels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yan; DONG Shu-ting; GAO Rong-qi; SUN Qing-quan

    2007-01-01

    The filling rate and the starch accumulation in developing maize kernel were analyzed. The changes of enzyme activities associated with sucrose metabolism and starch biosynthesis were investigated. The purpose is to discuss the enzymatic mechanisms responsible for starch synthesis. Two types of maize cultivars (Zea mays), high starch maize (Feiyu 3) and normal maize (Yuyu 22), were grown in a corn field. The factors involved in starch synthesis were performed during the growth period. The kernel filling rate, the sucrose content, the starch accumulating rates and the activities of SS (sucrose synthase), GBSS (granule-bound starch synthase), SBE (starch branching enzyme) of Feiyu 3, which has high starch content, were significantly higher than those of Yuyu 22, which has low starch content, after 10 DAP (days after pollination).Correlation analysis indicated that ADPGPPase (ADP-glucose pyrophosphorylase) and DBE (starch debranching enzyme)were not correlated with the starch accumulating rates and the kernel filling rate, but the SS activity at the middle and late period were highly significantly correlated with the starch accumulating rates and the kernel filling rate. The GBSS activity was highly significantly correlated with the amylose accumulating rate, but not correlated with the kernel filling rate. The SBE activity was highly significantly correlated with the amylopectin accumulating rate and the kernel filling rate. It was not ADPGPPase and DBE, but SS was the rate-limiting factor of starch biosynthesis in developing maize kernels. GBSS had an important effect on amylose accumulation, and SBE had a significant effect on amylopectin accumulation.

  16. Recrystallization of starches by hydrothermal treatment: digestibility, structural, and physicochemical properties.

    Science.gov (United States)

    Trinh, Khanh Son

    2015-12-01

    Gelatinized starches were recrystallized under hydrothermal treatment and their properties were characterized by X-ray diffractometry, solid-state (13)C cross-polarization and magic-angle spinning nuclear magnetic resonance, differential scanning calorimetry, gel-permeation chromatography, high-performance anion-exchange chromatography using pulsed amperomeric detection, high-performance size-exclusion chromatography with attached multiangle laser light scattering and refractive index detectors, and digestibility analysis. Amylopectin molecules of hylon (V, VII) and water yam starch contained long side-chains with high proportion of fb1 and fb2. Under hydrothermal treatment, the double helix proportion and relative crystallinity significantly increased and reached maxima of water yam (48.7 and 28.2 %, respectively). Except water yam starch, X-ray diffraction pattern of all starches exhibited the evidence of type 2 amylose-lipid complex. Besides, under DSC measurement, potato and hylon starches showed the endotherm of amylose-amylose interaction. The hydrothermal treatment caused the recrystallization resulting in the decrease of RDS, especially in case of hylon and water yam starch. HTT water yam contained highest SDS (48.3 %) and HTT hylon VII contained highest RS (44.5 %). The relationship between structure and digestibility was observed, in which, high amylose content and specific structures of amylopectin molecule were necessary for the production of RS and/or SDS of hydrothermally treated starches.

  17. Characterization of Arenga starch in comparison with sago starch.

    Science.gov (United States)

    Adawiyah, Dede R; Sasaki, Tomoko; Kohyama, Kaoru

    2013-02-15

    The aim of this research was to characterize the composition and physical properties of palm starch obtained from Arenga pinnata in comparison with another palm starch from Metroxylon sago. The amylose contents of both starches were not significantly different. Peak gelatinization temperature was also similar at approximately 67 °C, but arenga starch showed a narrower range of gelatinization temperature than sago. The crystallinity and swelling power capacity of arenga starch were lower than those of sago. Arenga and sago starch paste at low concentrations showed shear thinning behavior, and sago formed a more viscous sol/paste than arenga. The sol-gel transition concentration of sago starch paste was found at a lower concentration than arenga starch. At high concentrations, gel from arenga starch was more rigid than that of sago. The breaking properties and texture profile of both starch gels were also clearly different, suggesting that they are suited for different applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage.

    Science.gov (United States)

    Chen, Jianlin; Tang, Liang; Shi, Peihua; Yang, Baohua; Sun, Ting; Cao, Weixing; Zhu, Yan

    2017-03-01

    High temperature causes negative effects on grain yield and quality of rice (Oryza sativa L.). In this study, the effects of short-term high temperature (SHT) on grain quality and starch granules were investigated in two rice cultivars Nanjing 41 (NJ41, heat-sensitive) and Wuxiangjing 14 (WJ14, heat-tolerant) at post-anthesis stage (anthesis and early grain-filling stage). The results of rice quality analysis showed that chalky rate and chalkiness increased while brown rice rate, milled rice rate, and head rice rate decreased in two rice cultivars with the increase of high temperature and prolonged duration. Moreover, SHT stress reduced the accumulation of amylose as well as starch accumulation. The starch accumulation and eating quality were more sensitive to SHT than the appearance and milling quality. The starch structure data observed by scanning electron microscope further showed that the starch granules are arranged loosely and more single starch granules appeared after SHT treatment. The extent of change in rice quality and starch traits of WJ14 under SHT was lower than that of NJ41. The effects of SHT at anthesis stage were greater than that at grain-filling stage. Taken together, the results could help further understand the physiological and biochemical processes governing rice quality under high-temperature conditions.

  19. Extraction and chemical characterization of starch from S. lycocarpum fruits.

    Science.gov (United States)

    Pascoal, Aline M; Di-Medeiros, Maria Carolina B; Batista, Karla A; Leles, Maria Inês Gonçalves; Lião, Luciano Moraes; Fernandes, Kátia F

    2013-11-06

    In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To=61.25 °C, Tp=64.5 °C, Tc=67.5 °C), gelatinization temperature (ΔT=6.3 °C) ranges and enthalpy changes (ΔH=13.21 J g(-1)) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene

    DEFF Research Database (Denmark)

    Chen, Yaling; Sun, Xiao; Zhou, Xin Mao

    2017-01-01

    . The gelatinization temperatures of both rice flour and extracted starch were significantly lower than those of the control and hence negatively correlated with the starch phosphate content. The 6-P content was positively correlated with amylose content and relatively long amylopectin chains with DP25-36, and the 3-P......Starch phosphorylation occurs naturally during starch metabolism in the plant and is catalysed by glucan water dikinases (GWD1) and phosphoglucan water dikinase/glucan water dikinase 3 (PWD/GWD3). We generated six stable individual transgenic lines by over-expressing the potato GWD1 in rice....... Transgenic rice grain starch had 9-fold higher 6-phospho (6-P) monoesters and double amounts of 3-phospho (3-P) monoesters, respectively, compared to control grain. The shape and topography of the transgenic starch granules were moderately altered including surface pores and less well defined edges...

  1. Properties of corn starch subjected hydrothermal modification

    Science.gov (United States)

    Gryszkin, Artur; Zięba, Tomasz; Kapelko-Żeberska, Małgorzata

    2017-01-01

    The objective of this study was to determine the effect of heating a water dispersion of corn starch to various temperatures, followed by its freezing and defrosting, on selected properties of re-formed starch pastes. A suspension of starch was heated to various temperatures ranging from 59 to 94°C, and afterwards frozen and defrosted. The differential scanning calorimetry (Mettler Toledo, 822E) thermal characteristics of starch pre-heated to temperatures not inducing complete pasting revealed transitions of: (I) retrograded amylopectin, (II) non-pasted starch, (III) amylose-lipid complexes, (IV) retrograded amylose, and (V) highly thermostable starch structures. The application of higher temperatures during heating caused disappearance of transitions II and V. The increase of pre-heating temperature induced firstly a decrease and then stabilization of the swelling power as well as a successive decrease in starch solubility. Pastes pre-heated to temperatures over 79°C contained large macroparticles that were increasing viscosity of the re-formed starch paste (their size was positively correlated with viscosity value).

  2. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro......-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed...... high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences...

  3. Evaluation of a high throughput starch analysis optimised for wood.

    Directory of Open Access Journals (Sweden)

    Chandra Bellasio

    Full Text Available Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11 was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood of four species (coniferous and flowering plants. The optimised protocol proved to be remarkably precise and accurate (3%, suitable for a high throughput routine analysis (35 samples a day of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  4. Evaluation of a high throughput starch analysis optimised for wood.

    Science.gov (United States)

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes.

  5. Evaluation of a High Throughput Starch Analysis Optimised for Wood

    Science.gov (United States)

    Bellasio, Chandra; Fini, Alessio; Ferrini, Francesco

    2014-01-01

    Starch is the most important long-term reserve in trees, and the analysis of starch is therefore useful source of physiological information. Currently published protocols for wood starch analysis impose several limitations, such as long procedures and a neutralization step. The high-throughput standard protocols for starch analysis in food and feed represent a valuable alternative. However, they have not been optimised or tested with woody samples. These have particular chemical and structural characteristics, including the presence of interfering secondary metabolites, low reactivity of starch, and low starch content. In this study, a standard method for starch analysis used for food and feed (AOAC standard method 996.11) was optimised to improve precision and accuracy for the analysis of starch in wood. Key modifications were introduced in the digestion conditions and in the glucose assay. The optimised protocol was then evaluated through 430 starch analyses of standards at known starch content, matrix polysaccharides, and wood collected from three organs (roots, twigs, mature wood) of four species (coniferous and flowering plants). The optimised protocol proved to be remarkably precise and accurate (3%), suitable for a high throughput routine analysis (35 samples a day) of specimens with a starch content between 40 mg and 21 µg. Samples may include lignified organs of coniferous and flowering plants and non-lignified organs, such as leaves, fruits and rhizomes. PMID:24523863

  6. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    to produce slowly digestible and resistant maltodextrin structures. Well-defined ratios of amylose only-barley starch (AO) and waxy maize starch (WX) with non-granular AO content varied from 0 to 100% were used as a substrate. For only BE catalysis, an increase rate of α-1,6 linkage formation for the 0% AO....... The combination of BEAMBE produced more resistant α-glucan products as compared to BE alone. The high amylose starch showed potential to apply as a raw material for enzymatic modification to produce slowly- and indigested dextrin. Slowly and resistant maltodextrin conferring isomaltooligosaccharides (IMO...

  7. Exogenous Application of Abscisic Acid or Gibberellin Acid Has Different Effects on Starch Granule Size Distribution in Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    PENG Dian-liang; CAI Tie; YIN Yan-ping; YANG Wei-bing; NI Ying-li; YANG Dong-qing; WANG Zhen-lin

    2013-01-01

    Granule size distribution of wheat starch is an important characteristic that can affect its chemical composition and the functionality of wheat products. Two high-yield winter wheat cultivars were used to evaluate the effects of the application of exogenous ABA or GA during the reproductive phase of the initial grain filling on starch granule size distribution and starch components in grains at maturity. The results indicated that a bimodal curve was found in the volume and surface area distribution of grain starch granules, and a unimodal curve was observed for the number distribution under all treatments. The exogenous ABA resulted in a significant increase in the proportions (both by volume and by surface area) of B-type (9.9μm) starch granules, while, the exogenous GA3 led to converse effects on size distribution of those starch granules. The exogenous ABA also increased starch, amylose and amylopectin contents at maturity but significantly reduced the ratio of amylose to amylopectin. Application of GA3 significantly reduced starch content, amylopectin content but increased the ratio of amylose to amylopectin. The ratio of amylose to amylopectin showed a significant and negative relationship with the volume proportion of granules<9.9μm, but was positively related to the volume proportion of granules 22.8-42.8μm.

  8. Starch Applications for Delivery Systems

    Science.gov (United States)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  9. Growth, Feed Utilization and Blood Metabolic Responses to Different Amylose-amylopectin Ratio Fed Diets in Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Chen, Meng-Yao; Ye, Ji-Dan; Yang, Wei; Wang, Kun

    2013-08-01

    A feeding trial was conducted in tilapia to determine the growth performance, nutrient digestibility, digestive enzymes, and postprandial blood metabolites in response to different dietary amylose-amylopectin ratios. Five isonitrogenous and isolipidic diets containing an equal starch level with different amylose-amylopectin ratios of 0.11 (diet 1), 0.24 (diet 2), 0.47 (diet 3), 0.76 (diet 4) and 0.98 (diet 5) were formulated using high-amylose corn starch (as the amylose source) and waxy rice (as the amylopectin source). Each diet was hand-fed to six tanks of 15 fish each, three times a day over a 6-wk period. After the growth trial, a postprandial blood metabolic test was carried out. Fish fed diet 2 exhibited the highest percent weight gain and feed efficiency and protein efficiency ratio, whereas fish fed with diet 5 showed the lowest growth and feed utilization among treatments. The digestibility for starch in fish fed diet 1 and 2 was higher than those in fish fed with other diets (pdietary treatments, while the lowest values for these indexes were observed in fish fed the diet 3, diet 5 and diet 4, respectively. The liver glycogen concentrations in fish fed diets 4 and 5 were found higher than in fish fed other diets (pacid time was observed in fish fed with the diets 1 or 2. The lowest peak values for each of the three blood metabolites were observed in fish fed diet 5. The results indicate that high-dietary amylose-amylopectin ratio could compromise growth, but help in reducing the blood glucose stress on fish caused by postprandial starch load.

  10. Molecular Characteristics of New Wheat Starch and Its Digestion Behaviours

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-kai; HUA Ze-tian; YANG Yan; ZHENG Pai-yun; ZHANG Yan; CHEN Xiao-shan

    2014-01-01

    In order to understand the effect of starch molecular characteristics on the gel structure, which subsequently inlfuence the gel digestion behaviours, three wheat starches, control (conventional wheat starch), two new wheat cultivars with different genetic backgrounds (by knocking out SBE IIb and SBE IIa, respectively) were used in this study. In comparison with control, slight differences in the morphology of the starch granules of new wheat 1 were observed, whereas the starch granules of new wheat 2 had irregular shapes both for A-type granules and B-type granules. Starch molecular weight size was determined by SE-HPLC, and the results indicate that there was a subtle increase in the amylose content in the starch of new wheat 1 compared to that of control. The starch of new wheat 2 had the highest amylose content, and the molecular weight (MW) of its amylopectin was the lowest among the three starches. Fourier transform infrared spectroscopy (FTIR) was employed to investigate starch gel structure and the results suggest that the molecules of starch gel from new wheat 2 are more likely to re-associate to form an organized conformation. The digestion behaviours of the three starch gels were measured using a mixture of pancreatinα-amylase and amyloglucosidase. The results indicated that the starch gels of control and new wheat 1 had very high digestibility of 91.7 and 91.9%, respectively, whereas the digestibility of wheat 2 starch gel was only 36.2%. In comparison with the digestion curve patterns of control and new wheat 1 starch gels, the new wheat 2 exhibited a much lower initial velocity. These results indicated that the molecules in the starch of new wheat 2 are more readily to re-associate to form an organized structure during gel formation because of its unique molecular characteristics.

  11. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Science.gov (United States)

    Patients with advanced CKD exhibit profound changes in the composition and function of the gut microbiome. This is, in part, mediated by: I- heavy influx of urea in the intestinal tract leading to the dominance of urease-possessing bacteria and II- dietary restriction of potassium-rich fruits and ve...

  12. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease

    Science.gov (United States)

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammoni...

  13. Starch modification with microbial alpha-glucanotransferase enzymes.

    Science.gov (United States)

    van der Maarel, Marc J E C; Leemhuis, Hans

    2013-03-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucose syrups as substrate for the fermentative production of bioethanol and basic chemicals. Over the last two decades α-glucanotransferases (EC 2.4.1.xx), such as branching enzyme (EC 2.4.1.18) and 4-α-glucanotransferase (EC 2.4.1.25), have received considerable attention. These enzymes do not hydrolyze the starch as amylases do. Instead, α-glucanotransferases remodel parts of the amylose and amylopectin molecules by cleaving and reforming α-1,4- and α-1,6-glycosidic bond. Here we review the properties of α-glucanotransferases and discuss the emerging use of these enzymes in the generation of novel starch derivatives.

  14. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  15. Crystallite orientation maps in starch granules from polarized Raman spectroscopy (PRS) data.

    Science.gov (United States)

    Galvis, Leonardo; Bertinetto, Carlo G; Putaux, Jean-Luc; Montesanti, Nicole; Vuorinen, Tapani

    2016-12-10

    In this work, polarized Raman spectroscopy (PRS) was used to determine orientation maps of crystallites present in Phajus grandifolius starch granules based on the anisotropic response of the glycosidic Raman band at 865cm(-1). The response of this band was preliminarily evaluated using model A-amylose crystals as standard. The A-amylose crystals oriented "in plane" showed a maximal intensity ratio of ∼3.0 for bands 865/1343cm(-1) when the polarization of the laser was along the chain axis of the crystal, i.e., parallel to the axis of the amylose double helices, and a minimal intensity ratio of ∼0.25 when perpendicular. The orientation maps of Phajus grandifolius starch granules showed two distinct regions: one isotropic and the other with a highly anisotropic response. The origin of the difference might be changes in both organization/concentration and orientation of the crystallites across the starch granules.

  16. Physicochemical and Gelatinization Properties of Starches Separated from Various Rice Cultivars.

    Science.gov (United States)

    Woo, Hee-Dong; We, Gyoung Jin; Kang, Tae-Young; Shon, Kee Hyuk; Chung, Hyung-Wook; Yoon, Mi-Ra; Lee, Jeom-Sig; Ko, Sanghoon

    2015-10-01

    Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G' values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G' and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γ(c)), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γ(c). The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications. Rice flour has potential applications in various food products. The physicochemical properties of rice flour are dependent on its variety, which affects the quality of the final products. In this study, the combined analysis including hydration, pasting, viscoelastic, and thermal properties of rice flour could afford information for preparing a particular product such as bread and noodle. © 2015 Institute of Food Technologists®

  17. Isolation and characterization of wheat bran starch and endosperm starch of selected soft wheats grown in Michigan and comparison of their physicochemical properties.

    Science.gov (United States)

    Liu, Ya; Ng, Perry K W

    2015-06-01

    Three soft wheat varieties with relatively high crop yields and different levels of milling softness equivalence were studied to characterize bran starch properties compared with those of endosperm starch from the same wheat sample. Bran starch had more short chains than had endosperm starch, and was found to have a higher percentage of B-type granules, higher amylose content, higher crystallinity, broader gelatinization temperature range, higher enthalpy of gelatinization, lower retrogradation degree, and lower pasting peak and setback viscosities than had the counterpart endosperm starch. Bran starch of variety Aubrey had the highest crystallinity (21.75%) and gelatinization temperature (62.9°C), while bran starch of variety D8006 had the highest percentage of B-type granules and lowest retrogradation degree (21.7%). Results of this study provide a foundation for better utilization of bran starch during whole grain food processing.

  18. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  19. Imidazole-based deep eutectic solvents for starch dissolution and plasticization.

    Science.gov (United States)

    Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata

    2016-04-20

    Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted.

  20. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  1. Effect of Temperature on Rice Starch Biosynthesis Metabolism at Grain-Filling Stage of Early Indica Rice

    Institute of Scientific and Technical Information of China (English)

    CHENG Fang-min; ZHU Hai-jiang; ZHONG Lian-jin; SUN Zong-xiu

    2003-01-01

    The sucrose content, starch content and the ratio of amylose to total starch and the activitiesof six key enzymes, sucrose synthase (SS), soluble starch synthesis enzyme (SSS), ADPG pyrophosphorylase(ADPG-Ppase), granule-boundstarch synthase ( GBSS), starch branching enzyme (SBE) and debranchingenzyme (DBE), which involved in starch synthesis metabolism of developing rice grains and effect of tempe-rature on their activities were analyzed by using two early indica varieties Zhefu49 and Jiazao935 in phyto-trons, the daily average temperature was 22 and 32℃ , respectively. Results showed that the sucrose con-tent, the starch content, and the activities of enzymes such as SS, ADPG-Ppase, SSS, SBE, and DBEwere generally higher under the high temperature treatment (32℃)at the beginning stage as compared withthat under low temperature treatment (22℃). However, at the middle and late stages, there were greatdifferences in the change trend of some enzyme activities, and the association with the sucrose content andstarch content was very complicated. It could be found that the activities of SS and SSS under high temper-ature were always lower than that under Iow temperature, which was closely related to the variation of thesucrose content and starch-accumulating rate. Moreover, compared with ADPG-Ppase, the SS and SSS ac-tivities were more sensitive to temperature, indicating that SS and SSS were controlled by enzyme throughaffecting starch accumulating rate. Difference of the amylose/total starch ratio in developing grains between32 and 22℃ was significant and the lower amylose/total starch ratio was always lower in 32℃ , which wasclosely related to the lower activity level of GBSS. Therefore, it could be concluded that effect of tempera-ture on amylose/total starch was more attributable to GBSS rather than to SS, SSS, ADPG-Ppase, SBEand DBE.

  2. Assessing the susceptibility of amylose-lysophosphatidylcholine complexes to amylase by the use of iodine

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Hamer, Rob J.; Loos, Katja

    2014-01-01

    The formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes renders amylose less susceptible to amylase digestion. In order to better understand this phenomenon on a structural level, the complexation of 9% wheat starch suspensions with 0, 2, 3, and 5% exogenous LPC was developed in R

  3. Size separations of starch of different botanical origin studied by asymmetrical-flow field-flow fractionation and multiangle light scattering.

    Science.gov (United States)

    Wahlund, Karl-Gustav; Leeman, Mats; Santacruz, Stalin

    2011-02-01

    Asymmetrical-flow field-flow fractionation combined with multiangle light scattering and refractive index detection has been revealed to be a powerful tool for starch characterization. It is based on size separation according to the hydrodynamic diameter of the starch components. Starch from a wide range of different botanical sources were studied, including normal starch and high-amylose and high-amylopectin starch. The starch was dissolved by heat treatment at elevated pressure in a laboratory autoclave. This gave clear solutions with no granular residues. Amylose retrogradation was prevented by using freshly dissolved samples. Programmed cross flow starting at 1.0 mL min(-1) and decreasing exponentially with a half-life of 4 min was utilised. The starches showed two size populations representing mainly amylose and mainly amylopectin with an overlapping region where amylose and amylopectin were possibly co-eluted. Most of the first population had molar masses below 10(6) g mol(-1), and most of the second size population had molar masses above 10(7) g mol(-1). Large differences were found in the relative amounts of the two populations, the molar mass, and hydrodynamic diameters, depending on the plant source and its varieties.

  4. [Evaluation of culture media for detecting the starch hydrolysis reaction in pathovars of Xanthomonas campestris].

    Science.gov (United States)

    Alippi, A M

    1991-01-01

    Sixty strains of different pathovars of Xanthomonas campestris have been tested for the evaluation of various starch agars and compounds of starch degradation on six media: soluble starch, potato insoluble starch, corn insoluble starch, potato amylopectin, corn amylopectin and potato amylose. The purpose of the present investigation was the selection of the most suitable medium for the visualization of the starch hydrolysis test, presenting this reaction as a distinct character between pathovars of the Xanthomonas campestris group. From 60 strains tested, 74% gave positive reactions. Pathovars holcicola, pelargonii, pruni and vitians were negative. Regarding X. campestris pv. vesicatoria cultures, results were variable. Potato and corn insoluble starch agars were the most suitable media for the visualization of the starch hydrolysis reaction and at the same time the most appropriate for direct isolation. Differentiation at species level could be practicable, but within the Xanthomonas campestris group, variation amongst pathovars suggest the unsuitability of the test in spite of the high percentage of positive reactions.

  5. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... of pea starch with different pea protein isolates and fiber has been investigated to learn about the involvement of anti-nutrients for the digestibility of legume starches. All tested samples gave high HI-values, indicating a rapid digestion. In conclusion, the effect of anti-nutrients in legumes...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors...

  6. High pressure intensification of cassava resistant starch (RS3) yields

    OpenAIRE

    2015-01-01

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly in...

  7. Relationship of starch changes to puffing expansion of parboiled rice.

    Science.gov (United States)

    Mahanta, Charu Lata; Bhattacharya, K R

    2010-03-01

    'Intan' variety of paddy (Oryza sativa) was tested for puffing. It was parboiled under a wide range of paddy moisture content, steaming pressure and time, as also temperature and time of sand heating. The resulting milled rices were studied for their diverse properties including puffing. Indices of starch changes in the samples were calculated as: (1) gelatinisation index from the solubility of amylose in 0.2 N KOH; (2) amylopectin retrogradation from the post-production drop in room-temperature hydration power of the parboiled paddy during air-drying, (3) thermal breakdown of starch from the drop in gel permeation chromatographic fraction I of starch; lipid-amylose complexation indirectly from (4) drop in rate of water uptake during cooking and (5) cooked-rice firmness. It was found that the puffing expansion was very highly correlated with the combined above 5 indices of starch changes, as much as 90% of the variation in puffing being explainable on that basis. Puffing was promoted by gelatinisation as well as lipid-amylose complexation, but was retarded by amylopectin retrogradation and probably starch breakdown.

  8. Dietary acylated starch improves performance and gut health in necrotic enteritis challenged broilers.

    Science.gov (United States)

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Swick, Robert A; Choct, Mingan

    2015-10-01

    Resistant starch has been reported to act as a protective agent against pathogenic organisms in the gut and to encourage the proliferation of beneficial organisms. This study examined the efficacy of acetylated high amylose maize starch (SA) and butyralated high-amylose maize starch (SB) in reducing the severity of necrotic enteritis (NE) in broilers under experimental challenge. A total of 720 one-day-old male Ross 308 chicks were assigned to 48 floor pens with a 2 × 4 factorial arrangement of treatments. Factors were a) challenge: no or yes; and b) feed additive: control, antibiotics (AB), SA, or SB. Birds were challenged with Eimeria and C. perfringens according to a previously reported protocol. On d 24 and 35, challenged birds had lower (P enteritis. Depending on the acid used, starch acylation also offers a degree of specificity in short chain fatty acid (SCFA) delivery to the lower intestinal tract which improves gut health.

  9. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate; Caracterizacao fisica de misturas alta amilose/pectina reticuladas com trimetafosfato de sodio

    Energy Technology Data Exchange (ETDEWEB)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C., E-mail: curybsf@fcfar.unesp.b [UNESP, Araraquara, SP (Brazil). Fac. de Ciencias Farmaceuticas

    2010-07-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  10. Retrogradation of rye starch pastes

    Directory of Open Access Journals (Sweden)

    Anna Nowotna

    2007-12-01

    Full Text Available The retrogradation susceptibility of starch determines consumer suitability of food products rich in this polymer. Starch isolated from flour obtained from rye variety ‘Amilo’, which displays very low amylolytic activity, contains highest amounts of amylose and exhibits strong retrogradation susceptibility. Flour from rye ‘Dańkowskie Złote’ and commercial rye flour type 720, that have higher amylolytic activity in comparison to ‘Amilo’, contain starch with lower amounts of amylose and reduced retrogradation susceptibility. Wheat starch displays lower degree of retrogradation in comparison to rye, because of larger amounts of phosphorus (phospholipids.

  11. Resistant starch does not affect zinc homeostasis in rural Malawian children

    Science.gov (United States)

    This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. This was a small controlled clinical trial to dete...

  12. High performance liquid chromatographic separation of eight drugs collected in Chinese Pharmacopoeia 2010 on amylose ramification chiral stationary phase

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The enantiomers separation of eight pharmaceutical racemates collected in Chinese Pharmacopoeia 2010 (Ch.P2010, including nitrendipine, felodipine, omeprazole, praziquantel, sulpiride, clenbuterol hydrochloride, verapamil hydrochloride and chlorphenamine maleate, was performed on chiral stationary phase of amylose ramification by high performance liquid chromatography (HPLC on Chiralpak AD-H column and Chiralpak AS-H column with the mobile phase consisted of isopropanol and n-hexane. The detection wavelength and the flow rate were set at 254 nm and 0.7 mL/min, respectively. The effects of proportion of organic additives, alcohol displacer and temperature on the separation were investigated. The results indicated that eight chiral drugs were separated on chiral stationary phase of amylase ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers were adjusted by factors, including the changes of the concentration of alcohol displacer in mobile phase, organic alkaline modifier and column temperature. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When the concentration of organic alkaline modifier was 0.2%, the resolution and the peak shape were fairly good. Most racemates mentioned above had the best resolution at column temperature of 25 °C. The best temperature should be kept unchanged in the process of separation so as to obtain stable separation results.

  13. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato

    Directory of Open Access Journals (Sweden)

    Yafeng Zheng

    2016-07-01

    Full Text Available Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT and enzyme debranching combined heat-moisture treatment (EHMT on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.

  14. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.

    Science.gov (United States)

    Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo

    2016-07-19

    Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.

  15. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Jones, Roger W. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-12-04

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-week study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  16. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.

    Science.gov (United States)

    Nakazawa, Yuta; Wang, Ya-Jane

    2003-11-21

    Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.

  17. Chemical and rheological properties of a starch-rich fraction from the pulp of the fruit cupuassu (Theobroma grandiflorum)

    Energy Technology Data Exchange (ETDEWEB)

    Vriesmann, Lucia C.; Silveira, Joana L.M. [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil); Petkowicz, Carmen L. de O [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil)], E-mail: clop@ufpr.br

    2009-03-01

    The pulp obtained from the fruit of cupuassu (Theobroma grandiflorum) was extracted with hot aqueous 0.1% citric acid to give fraction 0.1CA-2 in 15% yield. This was the predominant component polysaccharide, 91% of which was composed of starch, by an iodine test and monosaccharide composition, and its {sup 13}C NMR spectrum was consistent with that of a high amylose starch. The content of amylose found in fraction 0.1CA-2 was 71%. This value is higher than those of common starches of cereal grains, tubers, roots, and other fruits. The fraction was submitted to rheological examination, gels being prepared on heating with concentrations of 4 to 7% (w/w). A non-Newtonian behavior was observed, and gel viscosity and strength depended on the concentration. The presence of starch, as well as the presence of previously investigated pectin, conferred the high viscosity and gelling capability of the pulp.

  18. Factors influencing gene silencing of granule-bound starch synthase in potato

    NARCIS (Netherlands)

    Heilersig, H.J.B.

    2005-01-01

    In the past, antisense RNA technology was used to modify the composition of potato tuber starch. Potato starch comprises amylose and amylopectin, polymers of glucose. Amylose production in potato is completely dependent on the presence of granule-bound starch synthase I (GBSSI). Inhibition of GBSSI

  19. Modification of potato starch composition by introduction and expression of bacterial branching enzyme genes.

    NARCIS (Netherlands)

    Kortstee, A.J.

    1997-01-01

    Starch consists of two major components; amylose and amylopectin. Amylose is synthesized by the enzyme Granule-Bound Starch Syntase (GBSS) and consists of essentially linear chains of α-1,4 linked glucose residues. Amylopectin is synthesized by the combined activity of the enzymes Soluble Starch Syn

  20. High pressure intensification of cassava resistant starch (RS3) yields.

    Science.gov (United States)

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

  1. The amylose-free potato mutant as a model plant to study gene expression and gene silencing.

    NARCIS (Netherlands)

    Flipse, E.

    1995-01-01

    In this thesis, gene-expression and gene silencing were examined for Granule Bound Starch Synthase (GBSS) which catalyses the formation of amylose and Branching Enzyme (BE) which catalyses the formation of amylopectin. The (GBSS) deficient, with iodine, red staining amylose-free (amf) potato mutant

  2. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    Science.gov (United States)

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (pstarch granules, leading to high water absorption and making granules sensitive to the freezing treatment.

  3. Growth, Feed Utilization and Blood Metabolic Responses to Different Amylose-amylopectin Ratio Fed Diets in Tilapia (

    Directory of Open Access Journals (Sweden)

    Meng-Yao Chen

    2013-08-01

    Full Text Available A feeding trial was conducted in tilapia to determine the growth performance, nutrient digestibility, digestive enzymes, and postprandial blood metabolites in response to different dietary amylose-amylopectin ratios. Five isonitrogenous and isolipidic diets containing an equal starch level with different amylose-amylopectin ratios of 0.11 (diet 1, 0.24 (diet 2, 0.47 (diet 3, 0.76 (diet 4 and 0.98 (diet 5 were formulated using high-amylose corn starch (as the amylose source and waxy rice (as the amylopectin source. Each diet was hand-fed to six tanks of 15 fish each, three times a day over a 6-wk period. After the growth trial, a postprandial blood metabolic test was carried out. Fish fed diet 2 exhibited the highest percent weight gain and feed efficiency and protein efficiency ratio, whereas fish fed with diet 5 showed the lowest growth and feed utilization among treatments. The digestibility for starch in fish fed diet 1 and 2 was higher than those in fish fed with other diets (p<0.05. The highest activities for protease, lipase and amylase were found in fish fed the diet 2, diet 1, and diet 1 respectively among dietary treatments, while the lowest values for these indexes were observed in fish fed the diet 3, diet 5 and diet 4, respectively. The liver glycogen concentrations in fish fed diets 4 and 5 were found higher than in fish fed other diets (p<0.05. The feeding rate, hepatosomatic index, condition factor, and plasma parmeters (glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol did not differ across treatments. In terms of postprandial blood responses, peak blood glucose and triglycerides were lower after 3 or 6 h in the fish fed with diets 3–5 than in the fish fed diet 1, but delayed peak blood total amino acid time was observed in fish fed with the diets 1 or 2. The lowest peak values for each of the three blood metabolites were observed in fish fed diet 5. The

  4. Modulating rheo-kinetics of native starch films towards improved wet-strength

    DEFF Research Database (Denmark)

    Gillgren, Thomas; Blennow, Andreas; Pettersson, Anders J.;

    2011-01-01

    highly different starch types derived from potato and cereal sources of normal and mutant and transgenic backgrounds. A new improved technique was developed to permit the dynamic mechanical analysis of films in the presence of water. It was found that the amylose content was decisive for the mechanical....... Transgenic potato starch with a low content of phosphate displayed an extraordinary combination of high robustness, transparency, mechanical strength and extensibility even in a wet condition. The combination of optimal phosphate and amylose concentrations in this sample probably favoured hydration......Starch directly functionalised in the plant by modulation of its biosynthesis by mutagenesis and transgene technology was exploited for its extended functionality beyond the normal variation. In this study we investigated the rheological and mechanical properties of films from such structurally...

  5. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites.

    Science.gov (United States)

    Gomand, Sara V; Lamberts, Lieve; Gommes, Cedric J; Visser, Richard G F; Delcour, Jan A; Goderis, Bart

    2012-05-14

    A unique series of potato (mutant) starches with highly different amylopectin/amylose (AP/AM) ratios was annealed in excess water at stepwise increasing temperatures to increase the starch melting (or gelatinization) temperatures in aqueous suspensions. Small-angle X-ray scattering (SAXS) experiments revealed that the lamellar starch crystals gain stability upon annealing via thickening for high-AM starch, whereas the crystal surface energy decreases for AM-free starch. In starches with intermediate AP/AM ratio, both mechanisms occur, but the surface energy reduction mechanism prevails. Crystal thickening seems to be associated with the cocrystallization of AM with AP, leading to very disordered nanomorphologies for which a new SAXS data interpretation scheme needed to be developed. Annealing affects neither the crystal internal structure nor the spherulitic morphology on a micrometer length scale.

  6. Genotype by environment interaction effects on starch content and digestibility in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Bach, Stephanie; Yada, Rickey Y; Bizimungu, Benoit; Fan, Ming; Sullivan, J Alan

    2013-04-24

    Biochemically, starch is composed of amylose and amylopectin but can also be defined by its digestibility rates within the human intestinal tract, i.e., rapidly digested (RDS), slowly digested (SDS), or resistant (RS). The relative ratio of these starch components is the main contributor to differences in the glycemic index (GI) of carbohydrate sources. This study evaluated the digestible starch profile of 12 potato genotypes comprising elite breeding lines and commercial varieties in six environments, with the optimal profile defined as low RDS and high SDS. Genotype by environment interaction (GEI) analysis found significant (p = 0.05) genotypic and environmental effects for all digestibility rate components; however, interaction effects were only significant for SDS. Optimal starch profiles were identified for two genotypes, CV96044-3 and Goldrush. The desirable starch profile in these potato cultivars can be exploited in breeding programs for the improvement of starch profile and other important characteristics such as high yields and disease resistance.

  7. Characterization of banana starches obtained from cultivars grown in Brazil.

    Science.gov (United States)

    de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

    2016-08-01

    The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications.

  8. Studies of the retrogradation process for various starch gels using Raman spectroscopy.

    Science.gov (United States)

    Fechner, Petra M; Wartewig, Siegfried; Kleinebudde, Peter; Neubert, Reinhard H H

    2005-11-21

    The retrogradation of untreated wild-type starches (potato, maize, and wheat), waxy maize starches, and one pregelatinized, modified amylose-rich starch was investigated continuously using Raman spectroscopy. The method detects conformational changes due to the multi-stage retrogradation, the rate of which differs between the starches. The pregelatinized, modified amylose-rich starch shows all stages of retrogradation in the course of its Raman spectra. In comparison to amylose, the retrogradation of amylopectin is faster at the beginning of the measurements and slower in the later stages. The untreated starches can be ranked in the order of their rate of retrogradation as follows: potato>maize>wheat.

  9. Changes in Activities of Key Enzymes for Starch Synthesis and Glutamine Synthetase in Grains of Progenies from a Rice Cross During Grain Filling

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-guang; LIU Hai-ying; JIN Zheng-xun; LIU Hong-liang; HUANG Xing; XU Mei-lan; ZHANG Feng-zhuan

    2010-01-01

    The progenies differed in amylose and protein contents in grains, which derived from a rice cross, Dongnong 423×Toukei 180, were used to study changes in the activities of ADP-glucose pyrophosphorylase (AGPP), soluble starch synthetase (SSS), starch branching enzyme (SBE) and glutamine synthetase (GS) in rice grains during grain filling. The activities of AGPP, SSS and SBE gradually increased and then declined as a single-peak curve with the process of grain filling in the progenies with high and low amylose contents in grains. The progenies with high amylose content peaked earlier in the AGPP, SSS and SBE activities and had higher AGPP, SSS and SBE activities at the early grain filling stage than those with low amylose content. The GS activity peaked earlier and was higher at the late stage of grain filling in the progenies with high protein content than in those with low protein content. It is suggested that the activities of key enzymes for starch synthesis and glutamine synthetase could be changed in oriented breeding for amylose and protein contents in grains.

  10. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    Science.gov (United States)

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.

  11. Molecular insights into how a deficiency of amylose affects carbon allocation – carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant

    Directory of Open Access Journals (Sweden)

    Zhang Ming-Zhou

    2012-12-01

    Full Text Available Abstract Background Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops with enhanced starch yields for food security and for producing specified end-products high in amylose, β-glucan, or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of amylopectin and have been well characterized. However, the allocation of carbon to other components, such as β-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for the changes in carbon allocation in GM077 seeds. Results Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced, while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose, total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild type. Suppression subtractive hybridization (SSH experiments generated 116 unigenes in the mutant on the wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the carbon reallocation from amylose to amylopectin. Conclusion Analyses of carbohydrate and oil fractions and gene expression

  12. Fractionation and reconstitution experiments provide insight into the role of wheat starch in frozen dough.

    Science.gov (United States)

    Tao, Han; Wang, Pei; Ali, Barkat; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-01-01

    The wheat dough was subjected to freezing/thawing treatment for 0, 3, 7, and 10 cycles and fractionated into non-gluten proteins and starch. High-performance liquid chromatography revealed changes in molecular mass distribution occurred for the extracted non-gluten proteins. As for the residual starch, it reflected a loss of chemical components such as amylose, proteins and lipids induced by freezing treatment. X-ray diffraction revealed increased crystallinity in separated starch as the freezing cycle was repeated. Rapid visco-analyser exhibited different pasting behaviors on starch pellets, especially on the breakdown and setback viscosities. In the reconstituted dough, an increase was observed in storage and loss modulus, corresponding to the presence of freezing/thawing-treated starches, which was changed as a result of higher water absorption. These results extended the knowledge of starch granules in dough deterioration upon freezing process and might contribute to the better understanding of frozen dough quality loss.

  13. Evaluating the effects of amylose and Concord grape extract powder substitution on physicochemical properties of wheat flour extrudates produced at different temperatures.

    Science.gov (United States)

    Tacer-Caba, Zeynep; Nilufer-Erdil, Dilara; Boyacioglu, M Hikmet; Ng, Perry K W

    2014-08-15

    In this study, the effects of Concord grape extract powder (CGEP), high-amylose starch, and their combinations on quality parameters of extruded products were investigated by substituting wheat flour with those ingredients in the formulations. Physical quality parameters such as water absorption, bulk density, diametric expansion and hardness of extrudates were evaluated in addition to thermal properties, pasting properties and resistant starch contents. Average values obtained for 90, 120 and 150 °C extrusion temperatures changed respectively as follows: 0.916, 0.987 and 0.467 N for hardness; 2.12, 4.07 and 5.12 ml water/g sample for water absorption; 1.35, 2.09 and 2.51 for diametric expansions and 1286.6, 723.6 and 311.1 kg/m(3) for bulk densities. Extrusion temperature was found to have more distinct effect on physical quality parameters of extrudates than the substitution level of ingredients. Both CGEP and amylose additions negatively affected pasting properties, slightly affected resistant starch content and prevented gelatinization. However retardation of retrogradation was more evident when substitution was with CGEP alone rather than its combination with amylose.

  14. Effect of Soil Texture on Starch Accumulation and Activities of Key Enzymes of Starch Synthesis in the Kernel of ZM 9023

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jing; ZHAN Hai-hong

    2008-01-01

    Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.

  15. Influence of glucan structure on the swelling and leaching properties of starch microparticles.

    Science.gov (United States)

    Bordenave, Nicolas; Janaswamy, Srinivas; Yao, Yuan

    2014-03-15

    Microparticles were made by a water-in-oil emulsion technique from acid-hydrolyzed and debranched normal, waxy and high-amylose corn starches. The starches prepared had a weight-average molecular weight (Mw) ranging 3.6 × 10(7)-2.5 × 10(4), a polydispersity ranging 1.16-9.16, an apparent amylose content ranging 2.84-100%. These microparticles exhibited crystallinity ranging 4.41-22.84%, swelling power ranging 2.45-7.84 and percentage of leaching ranging 1.72-74.91%. Swelling power in water (R(2)=0.86) and percentage of leaching in water (R(2)=0.89) were modeled by a response surface method, using the following parameters: Mw, polydispersity, apparent amylose content and crystallinity of starch in microparticles. Overall, this study showed the key parameters for controlling the behavior of starch microparticles were related to the cohesiveness of the three-dimensional network, particularly through the retrogradation of starch polymers, the formation of crystallites and junctions zones. Such microparticles could be used for designing economical and biocompatible delivery systems of compounds for food, drug, or other applications.

  16. Amylopectin molecular structure reflected in macromolecular organization of granular starch.

    Science.gov (United States)

    Vermeylen, Rudi; Goderis, Bart; Reynaers, Harry; Delcour, Jan A

    2004-01-01

    For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.

  17. Insights into molecular structure and digestion rate of oat starch.

    Science.gov (United States)

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate.

  18. Efeito do teor de água, amilose, amilopectina e grau de gelatinização no crescimento do biscoito de amido de mandioca obtido por fermentação natural Effect of the water, amylose, amylopectin contents and the degree of gelatinization on the sour cassava (Manihot sculenta, K. starch biscuit growth

    Directory of Open Access Journals (Sweden)

    Claudio Ernani MENDES DA SILVA

    1998-04-01

    Full Text Available O amido de mandioca, assim como o amido de araruta, modificado por fermentação natural, quando formulado com água, sal e gordura vegetal hidrogenada para produzir o biscoito de "polvilho azedo", tem a propriedade de se expandir durante a cocção, como se nessa formulação existisse um agente aerante. O produto final obtido, tem uma estrutura alveolar, crocante e de baixa densidade. Pouco se conhece a respeito do mecanismo que envolve essa expansão e sobre os fatores que interferem na mesma. No presente trabalho, investigamos a influência do teor de água, o efeito da pré-gelatinização do amido fermentado e a adição de amilose e de amilopectina no crescimento do biscoito. O tempo de formação do biscoito, demonstrou ser altamente dependente do teor de água presente na sua formulação. A gelatinização total do amido modificado por fermentação, parece destruir completamente suas propriedades de expansão, pois não foi observado crescimento do biscoito com uma formulação padrão contendo apenas amido totalmente gelatinizado. Biscoitos formulados com amilose ou amilopectina em substituição ao amido fermentado, apresentaram baixo grau de expansão quando comparados ao padrão.The sour cassava starch (and also ararut starch is unique in the ability to produce a biscuit (made of water, shortening and salt that oven springs during baking as if it has in its formulation a leavening agent. The final product has an alveolar structure, it is crocant and low density. The fators that control its growth are unknown. In this paper were investigated the effects of the water, pregelatinized sour cassava starch, amylose and amylopectin contents on the biscuit growth. It has been showed that the time of formation of the biscuit structure depends on the water formulation content. The complete gelatinization of this starch seems to destroy its unique property to grow with heat as if it had a leavening agent in its formulation. Biscuits made of

  19. Effects of molecular characteristics of on konjac glucomannan glass transitions of potato amylose, amylopection and their mixtures.

    Science.gov (United States)

    Guo, Li; Liang, Qin; Du, Xianfeng

    2011-03-15

    The purpose of this study was to explore further the functions of konjac glucomannan (KGM) in starch-based foods. Experiments were carried out using the mixed amylose/amylopectin/KGM system as a model. High-speed differential scanning calorimetry (hyper-DSC) with the support of high-performance size exclusion chromatography (HPSEC) equipped with multi-angle laser light scattering (MALLS) and differential refractive index (RI), X-ray diffractometry (XRD) and viscosimetry was used to investigate the effects of KGM on glass transition temperatures (T(g) s) of mixtures with different amylose/amylopectin ratios. Hyper-DSC results showed that the T(g) s of amylose, amylopection and their mixtures decreased with increasing concentration of KGM. Based on the molecular characteristics of KGM, HPSEC-MALLS-RI, viscosimetry and XRD results showed that the molar masses of KGM ranged from 1.023 × 10(6) to 1.329 × 10(6) g mol(-1) ; the root mean square (RMS) radii were distributed from 110.5 to 129.6 nm, and M(w) /M(n) was 1.017. KGM was a linear molecule with random-coil conformation in solution and the crystallinity was 0.00%. It is suggested that the addition of KGM has plasticizing effects on the structures of amylose and amylopectin, which can increase free volume and molecular movement of amylose and amylopectin chains, resulting in a decrease in their T(g) s. Copyright © 2010 Society of Chemical Industry.

  20. Internal structure and physicochemical properties of corn starches as revealed by chemical surface gelatinization.

    Science.gov (United States)

    Kuakpetoon, Daris; Wang, Ya-Jane

    2007-11-05

    The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.

  1. Effect of high-pressure on calorimetric, rheological and dielectric properties of selected starch dispersions.

    Science.gov (United States)

    Ahmed, Jasim; Singh, Ajaypal; Ramaswamy, H S; Pandey, Pramod K; Raghavan, G S V

    2014-03-15

    Effects of high-pressure (HP) treatment on the rheological, thermal and dielectric properties of the four selected starch dispersions (two modified starches, one native and one resistant) were evaluated. Differential scanning calorimetry (DSC) and oscillatory rheometry were employed to assess the extent of starch gelatinization and the developed gel rigidity (G') of starch gels after HP treatment. It was observed that starch dispersions gelatinized completely at 500 MPa with a 30-min holding time. The HP-treated starch samples exhibited predominantly solid-like (G'>G") behavior except for the resistant starch. Pressure-induced gel rigidity differed significantly among starch samples. The G' of starch gels increased with the pressure (400-600 MPa) in the studied frequency range (0.1-10 Hz) except for the native starch where a marginal decrease was recorded at similar condition. The holding time (15-30 min) and concentration (20-25% w/w) significantly attributed towards gel rigidity of starch samples. Measurement of dielectric properties of HP-treated samples over the frequency range 450-4450 MHz indicated differences in the dielectric constant (ɛ'), loss factor (ɛ") and penetration depth among starch gels. Pressure did not show any effect on dielectric property of the resistant starch sample. Power penetration depth decreased significantly with frequency and with the pressure.

  2. Effect of replacing corn with hulled and hulless or low-amylose hulless barley varieties on growth performance and carcass quality of Italian growing-finishing pig.

    Science.gov (United States)

    Prandini, A; Sigolo, S; Giuberti, G; Moschini, M; Marchetto, G; Della Casa, G

    2015-02-01

    A study was conducted to evaluate the effect of diets based on hulled or hulless (normal- and low-amylose) barley varieties on growth performance and carcass characteristics in heavy growing-finishing pigs for the production of protected designation of origin (PDO) Italian products. The study was performed with 40 gilts and 40 barrows (Italian Duroc × Italian Large White). Four diets were formulated: 1) corn-based diet (control), 2) control diet with 80% of a normal-amylose hulled barley variety named Cometa (Cometa), 3) control diet with 80% of a normal-amylose hulless barley variety named Astartis (Astartis), and 4) control diet with 80% of a low-amylose hulless barley variety named Alamo (Alamo). The diets were formulated according to 3 growth phases (P1, 40 to 80 kg BW; P2, 80 to 120 kg BW; and P3, 120 to 170 kg BW), with the same Lys:DE ratio (2.60, 2.20, and 1.80, respectively in P1, P2, and P3) according to the NRC requirements for P1 and P2 and according to requirements for high-performing pigs for P3. The diets were analyzed for their in vitro starch digestion potentials (predicted glycemic index, pGI) and for their resistant starch (RS) contents. In P1, P2, and P3, the Alamo diet had the numerically lowest RS contents and greatest pGI values, whereas the control diet had the numerically greatest RS contents and the lowest pGI values. Throughout the study, the pigs fed Cometa and Alamo diets grew faster (P 0.05). This study showed that diets based both on hulled and hulless barley might be suitable for the heavy pig breeding intended to the production of Italian PDO products. In addition, hulled or low-amylose hulless barley could be valuable to support maximum pig growth performance without affecting carcass composition.

  3. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage.

    Science.gov (United States)

    Zhang, Changquan; Zhou, Lihui; Zhu, Zhengbin; Lu, Huwen; Zhou, Xingzhong; Qian, Yiting; Li, Qianfeng; Lu, Yan; Gu, Minghong; Liu, Qiaoquan

    2016-05-25

    Temperature during the growing season is a critical factor affecting grain quality. High temperatures at grain filling affect kernel development, resulting in reduced yield, increased chalkiness, reduced amylose content, and poor milling quality. Here, we investigated the grain quality and starch structure of two japonica rice cultivars with good sensory properties grown at different temperatures during the filling stage under natural field conditions. Compared to those grown under normal conditions, rice grains grown under hot conditions showed significantly reduced eating and cooking qualities, including a higher percentage of grains with chalkiness, lower protein and amylose contents, and higher pasting properties. Under hot conditions, rice starch contained reduced long-chain amylose (MW 10(7.1) to 10(7.4)) and significantly fewer short-chain amylopectin (DP 5-12) but more intermediate- (DP 13-34) and long- (DP 45-60) chain amylopectin than under normal conditions, as well as higher crystallinity and gelatinization properties.

  4. A comparative study on starch digestibility, glycemic index and resistant starch of pigmented ('Njavara' and 'Jyothi') and a non-pigmented ('IR 64') rice varieties.

    Science.gov (United States)

    Deepa, G; Singh, Vasudeva; Naidu, K Akhilender

    2010-12-01

    In vitro starch digestibility and glycemic indices of three rice varieties- 'Njavara', 'Jyothi' (pigmented rice verities) and 'IR 64' (non-pigmented rice) with similar amylose content were studied. Starch digestibility studies showed differences in glycemic response in three types of rice. The rate of starch hydrolysis was maximum (67.3%) in 'Njavara' rice compared to other two rice varieties. 'Njavara' exhibited the lowest kinetic constant (k) indicating inherent resistance to enzymatic hydrolysis. The glycemic load (GL) and glycemic index (GI) of 'Njavara' were similar to 'Jyothi' and 'IR 64'. Resistant starch content was high in pigmented rice varieties compared to 'IR 64'. The resistant starch content of dehusked and cooked rice increased with the storage time at refrigeration temperature (4°C). 'Njavara' is an easily digestible rice and can be used for baby and geriatric foods.

  5. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges.

    Science.gov (United States)

    Lemlioglu-Austin, Dilek; Turner, Nancy D; McDonough, Cassandra M; Rooney, Lloyd W

    2012-09-17

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  6. Effects of Sorghum [Sorghum bicolor (L. Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS Contents of Porridges

    Directory of Open Access Journals (Sweden)

    Dilek Lemlioglu-Austin

    2012-09-01

    Full Text Available Bran extracts (70% aqueous acetone of specialty sorghum varieties (tannin, black, and black with tannin were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA. The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  7. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents.

    Science.gov (United States)

    Srichuwong, Sathaporn; Curti, Delphine; Austin, Sean; King, Roberto; Lamothe, Lisa; Gloria-Hernandez, Hugo

    2017-10-15

    Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  9. Expression of Escherichia coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans.

    Science.gov (United States)

    Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice

    2016-07-01

    Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.

  10. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa).

    Science.gov (United States)

    Chun, Areum; Lee, Ho-Jin; Hamaker, Bruce R; Janaswamy, Srinivas

    2015-04-01

    The effect of ripening temperature on rice (Oryza sativa) grain quality was evaluated by assessing starch structure and gelatinization, pasting, and cooking properties. As the ripening temperature increased, the amylose content and number of short amylopectin chains decreased, whereas intermediate amylopectin chains increased, resulting in higher gelatinization temperatures and enthalpy in the starch. These results suggested that an increase in cooking temperature and time would be required for rice grown at higher temperatures. A high ripening temperature increased the peak, trough, and final viscosities and decreased the setback due to the reduction in amylose and the increase in long amylopectin chains. With regard to starch crystallinity and amylopectin molecular structure, the highest branches and compactness were observed at 28/20 °C. Rice that was grown at temperatures above 28/20 °C showed a deterioration of cooking quality and a tendency toward decreased palatability in sensory tests.

  11. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.

    Science.gov (United States)

    Guo, Hui; Tang, Yi; Yu, Yang; Xue, Lu; Qian, Jun-Qing

    2016-06-01

    Enzyme immobilized on magnetic particles can be used as efficient recoverable biocatalysts under strong magnetic response. To enable re-use of enzyme, modified Fe3O4 particles were used as carrier to immobilize α-amylase in this paper. Firstly, the surface of Fe3O4 particles were coated with amino groups by direct using TEOS (tetraethoxysilane) followed by treatment with APTES (3-aminopropyltriethoxysilane) and then carboxylated by reacting it with succinic anhydride. In addition, the effect of the immobilization condition on enzyme activity recovery and immobilization efficiency were investigated. The results showed that the optimal immobilization occurred under following conditions: pH 5.5, 40°C, enzyme concentration of 20mgmL(-1), reaction time for 36h. Using immobilized α-amylase as biocatalyst, the optimum pH and temperature for hydrolysis were observed to be 6.5 and 60°C. The kinetics of hydrolysis reaction were studied using Michaelis-Menten equation. The affinity constant (Km) and maximum reaction rate (vmax) of magnetic particles immobilization α-amylase (MPIA) was 0.543mgmL(-1) and 1.321mgmin(-1) compared to those of 0.377mgmL(-1) and 6.859mgmin(-1) of free enzyme. After immobilization, enzymatic activity, storage stability, thermo-stability, and reusability of MPIA were found superior to those of the free one. MPIA maintained 86% enzyme activity after 30 days and maintained 78% enzyme activity after recycling six times.

  12. Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets.

    Science.gov (United States)

    Nozière, P; Steinberg, W; Silberberg, M; Morgavi, D P

    2014-01-01

    The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4×4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels.

  13. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch.

    Science.gov (United States)

    Shah, Asima; Masoodi, Farooq Ahmad; Gani, Adil; Ashwar, Bilal Ahmad

    2016-12-01

    Starches isolated from three different varieties of oat were modified with dual autoclaving-retrogradation treatment to make modified food starches with high contents of type 3 resistant starch (RS3). FT-IR spectroscopy showed increase in the ratio of intensity of 1047cm(-1)/1022cm(-1) on treatment. Morphology of the oat starches changed into a continuous network with increased values for onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc). XRD showed an additional peak at 13° and increase in peak intensity at 20° inclusive of the major X-ray diffraction peaks which reflects formation of amylose-lipid complex from dual autoclaving-retrogradation cycle. Peaks at 13° and 20° are the typical peaks of the V-type pattern. Rheological analysis suggested that retrogradated oat starches showed shear thickening behavior as revealed from Herschel-Bulkely model and frequency sweep. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate.

    Science.gov (United States)

    Li, Zhaofeng; Wang, Jian; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Kowalczyk, Agnieszka

    2014-01-01

    Sodium dodecyl sulfate (SDS) was used to improve the performance of starch-based wood adhesive. The effects of SDS on shear strength, viscosity and storage stability were investigated. It was shown that, although the addition of 1.5-2% (dry starch basis) SDS resulted in a slight decrease in shear strength, the mobility and storage stability of adhesive were significantly enhanced. Possible mechanisms regarding specific action of SDS were discussed. It was proved, using blue value or differential scanning calorimetry (DSC) analysis, that the amylose-SDS complexes were formed in the adhesive. The complex formation or simple adsorption of SDS with starch molecules might hinder the aggregation of latex particles, as shown by scanning electron microscopy images, and inhibit starch retrogradation, as observed by DSC analysis. As a result, in the presence of SDS, the adhesive had higher mobility and storage stability, indicating that SDS could be used to prepare starch-based wood adhesives with high performance.

  15. MORPHOLOGICAL AND THERMAL PROPERTIES OF MAIZE STARCH

    Directory of Open Access Journals (Sweden)

    Elena Corina Popescu

    2010-01-01

    Full Text Available Maize, rice, wheat and potato are the main sources of starches which differ significantly in composition, morphology,thermal, rheological and retrogradation properties. Starch has unique thermal properties and functionality that havepermitted its wide use in food products and industrial applications.The structure of the starch granule results from the physical arrangement of amylose and amylopectin. Amylose contentof starches from different maize types ranged between 15.3% and 25.1%. Amylopectin is considered responsible for thecrystalline structure of starch granules.The morphological and physicochemical characteristics of maize starch are related to the enzymes involved in itsbiosynthesis.The surface of the starch granule plays a fundamental rôle as the first barrier to processes such as granule hydration,enzyme attack, and chemical reaction with modifying agents. Major parameters describing the solid surface are:specific surface area, total pore volume, mean pore radius (diameter and pore volume distribution in relation to poreradius (diameter.

  16. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China.

    Science.gov (United States)

    Li, Qiao; Pan, Zhifen; Deng, Guangbing; Long, Hai; Li, Zhongyi; Deng, Xiaoqing; Liang, JunJun; Tang, Yawei; Zeng, Xingquan; Tashi, Nyima; Yu, Maoqun

    2014-11-26

    Granule-bound starch synthase I (GBSS I) plays an important role in the synthesis of amylose and in the determination of starch properties in barley grains. Genomic DNAs for the Waxy gene encoding GBSS I protein were sequenced from 34 barley accessions or lines from Qinghai-Tibet plateau in China, to identify Waxy gene nucleotide variations and study the roles of polymorphic sites of the Waxy gene on expression levels of Waxy transcripts and GBSS I proteins and on resulting starch properties. A total of 116 DNA polymorphic sites were identified within the barley Waxy gene, which divided the studied accessions into 11 haplotypes. Among 33 nucleotide polymorphic sites in coding regions, 5 SNPs in three exons were found to play different roles on the expression level of the Waxy transcript and the GBSS I protein and on the amylose content and starch properties. One SNP G(3935)-to-T substitution in the 10th exon in the accession Z999 (HP II-2) caused a high expression level of the Waxy transcript and the GBSS I protein and the amylose free phenotype. The other SNP alteration was a C(2453)-to-T in the fifth exon in the accession Z1191 (HP I-5), which drastically reduced the expression level of the Waxy transcript and the GBSS I protein and, finally, produced the amylose free phenotype. Three SNPs in the seventh exon in the accession Z1337 (HP I-6) did not significantly change the level of Waxy transcript, the GBSS I protein, and starch properties, except obviously reducing the breakdown value of starch viscosity and extending the peak time. A total of 84 DNA polymorphic sites were found in the noncoding regions. A 403 bp deletion at 5'UTR in the accession Z1979 (HP I-3) had low transcript level, low GBSS I protein level, and low amylose content due to the deletion of cis-acting DNA regulatory elements. A 191 bp insertion and a 15 bp insertion in the first intron and second exons, respectively, may be closely related to a higher transcript level of the Waxy gene and

  17. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Glaring, Mikkel Andreas;

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... identified starch biosynthesis genes including seven soluble starch synthases (SS), three granule bound starch syntheses (GBSS), four starch branching enzymes (SBE), two glucan- and one phosphoglucan- water dikinases (GWD, PWD). Phylogenetic analysis based on the SS genes provided evidence for a close...

  18. Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose

    DEFF Research Database (Denmark)

    Wilkens, Casper; Auger, Kyle D.; Anderson, Nolan T.;

    2016-01-01

    The plant glucan phosphatases Starch EXcess 4 (SEX4) and Like Sex Four2 (LSF2) apply different starch binding mechanisms. SEX4 contains a carbohydrate binding module, and LSF2 has two surface binding sites (SBSs). We determined KDapp for amylopectin and amylose, and KD for β-cyclodextrin and vali...

  19. Synthesis, analysis and reduction of 2-nitropropyl starch

    NARCIS (Netherlands)

    Heeres, A; van Doren, HA; Gotlieb, KF; Bleeker, IP; Kellogg, RM; Doren, Henk A. van; Gotlieb, Kees F.; Bleeker, Ido P.

    2001-01-01

    Granular 3-nitropropyl potato starch was synthesized by reaction with 3-nitropropyl acetate in an aqueous suspension. Nitroalkylation occurs preferentially with the amylose fraction of potato starch, as was confirmed by leaching experiments and digestion of the modified starch with alpha -amylase. T

  20. Starch gelatinization.

    Science.gov (United States)

    Ratnayake, Wajira S; Jackson, David S

    2009-01-01

    Starch occurs as highly organized structures, known as starch granules. Starch has unique thermal properties and functionality that have permitted its wide use in food products and industrial applications. When heated in water, starch undergoes a transition process, during which the granules break down into a mixture of polymers-in-solution, known as gelatinization. The sequence of structural transformations that the starch granule undergoes during this order-to-disorder transition has been extensively researched. None of the published starch gelatinization theories can fully and adequately explain the exact mechanism of sequential structural changes that starch granules undergo during gelatinization. This chapter analyzes several published theories and summarizes our current understanding of the starch gelatinization process.

  1. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet.

    Science.gov (United States)

    Li, Cheng; Oh, Sea-Gwan; Lee, Dong-Hyun; Baik, Hyun-Wook; Chung, Hyun-Jung

    2017-07-22

    Four selected grains (brown rice, oat, sorghum, and millet) were subjected to germinate and changes in granule morphology, molecular structure, crystalline structure, and physicochemical properties of isolated starch were investigated. The germinated starches showed pits and holes on the surface of the starch granules and the particle size distributions shifted slightly to smaller size as the germination time increased. Germination led to decrease in amylose content, while molecular weights of the germinated starches showed no significant changes. The relative crystallinity of all selected grain starches decreased significantly during germination. Compared to the native starches, the germinated starches had lower retrogradation enthalpy. Brown rice and oat starches exhibited marginal increases in peak viscosities, whereas those of sorghum and millet starches decreased significantly during germination. Amylose leaching of brown rice and oat starches decreased after germination, whereas sorghum and millet starches showed an increase in amylose leaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties.

    Science.gov (United States)

    Guzmán, Carlos; Alvarez, Juan B

    2016-01-01

    The starch fraction, comprising about 70% of the total dry matter in the wheat grain, can greatly affect the end-use quality of products made from wheat kernels, especially Asian noodles. Starch is associated with the shelf life and nutritional value (glycaemic index) of different wheat products. Starch quality is closely associated with the ratio of amylose to amylopectin, the two main macromolecules forming starch. In this review, we briefly summarise the discovery of waxy proteins-shown to be the sole enzymes responsible for amylose synthesis in wheat. The review particularly focuses on the different variants of these proteins, together with their molecular characterisation and evaluation of their effects on starch composition. There have been 19 different waxy protein variants described using protein electrophoresis; and at a molecular level 19, 15 and seven alleles described for Wx-A1, Wx-B1 and Wx-D1, respectively. This large variability, found in modern wheat and genetic resources such as wheat ancestors and wild relatives, is in some cases not properly ordered. The proper ordering of all the data generated is the key to enhancing use in breeding programmes of the current variability described, and thus generating wheat with novel starch properties to satisfy the demand of industry and consumers for novel high-quality processed food.

  3. Evaluation of the Functional Properties of Promising Dioscorea trifida L. Waxy Starches for Food Innovation

    Directory of Open Access Journals (Sweden)

    Elevina Pérez

    2011-01-01

    Full Text Available Few natural waxy starches are offered to the industry demand. Therefore, the morphological, physical, and chemical characteristics of “Mapuey” waxy starch were assessed. Amylose contents of starches isolated from Dioscorea trifida L. (“Mapuey” landraces cultivated in the Amazons of Venezuela were lower (8.7%. DSC onset gelatinization temperatures varied from 71.1 to 73.2°C. All starches exhibited B-type patterns, with degrees of crystallinity varying from 28% to 33%. The highest crystallinity was found for the starches exhibiting the highest amylose content. At 90°C, solubility and swelling power varied from 2.3 to 4.3% and 20.9 to 32.8%, respectively. Gel clarity was variable from 20.8 to 62.1%. A 5% starch suspension induced a high RVA peak viscosity between 1667 and 2037 cP. This natural waxy yam resource is a promising ingredient for food industry.

  4. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  5. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  6. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms.

    Science.gov (United States)

    Lü, Bing; Guo, ZhiGang; Liang, JianSheng

    2008-10-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amylopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch biosynthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm development, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amylopectin changed continually during the development of rice grains and varied between two rice cultivars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  7. Expression of an engineered granule-bound Escherichia coli glycogen branching enzyme in potato results in severe morphological changes in starch granules.

    Science.gov (United States)

    Huang, Xing-Feng; Nazarian-Firouzabadi, Farhad; Vincken, Jean-Paul; Ji, Qin; Suurs, Luc C J M; Visser, Richard G F; Trindade, Luisa M

    2013-05-01

    The Escherichia coli glycogen branching enzyme (GLGB) was fused to either the C- or N-terminus of a starch-binding domain (SBD) and expressed in two potato genetic backgrounds: the amylose-free mutant (amf) and an amylose-containing line (Kardal). Regardless of background or construct used, a large amount of GLGB/SBD fusion protein was accumulated inside the starch granules, however, without an increase in branching. The presence of GLGB/SBD fusion proteins resulted in altered morphology of the starch granules in both genetic backgrounds. In the amf genetic background, the starch granules showed both amalgamated granules and porous starch granules, whereas in Kardal background, the starch granules showed an irregular rough surface. The altered starch granules in both amf and Kardal backgrounds were visible from the initial stage of potato tuber development. High-throughput transcriptomic analysis showed that expression of GLGB/SBD fusion protein in potato tubers did not affect the expression level of most genes directly involved in the starch biosynthesis except for the up-regulation of a beta-amylase gene in Kardal background. The beta-amylase protein could be responsible for the degradation of the extra branches potentially introduced by GLGB.

  8. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms

    Institute of Scientific and Technical Information of China (English)

    L(U) Bing; GUO ZhiGang; LIANG JianSheng

    2008-01-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy-Iopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio-synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de-velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy-Iopectin changed continually during the development of rice grains and varied between two rice culti-vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  9. In planta modification of potato starch granule biogenesis by different granule-bound fusion proteins

    NARCIS (Netherlands)

    Nazarian, F.

    2007-01-01

    Starch is composed of amylose and amylopectin and it is deposited in amyloplasts/choloroplasts as semi-crystalline granules. Many biosynthetic enzymes are involved in starch degradation and biosynthesis. Some microbial starch degrading enzymes have a Starch Binding Domain (SBD) which has affinity fo

  10. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  11. Retrogradation of rye starch pastes

    OpenAIRE

    2007-01-01

    The retrogradation susceptibility of starch determines consumer suitability of food products rich in this polymer. Starch isolated from flour obtained from rye variety ‘Amilo’, which displays very low amylolytic activity, contains highest amounts of amylose and exhibits strong retrogradation susceptibility. Flour from rye ‘Dańkowskie Złote’ and commercial rye flour type 720, that have higher amylolytic activity in comparison to ‘Am...

  12. The deposition and characterization of starch in Brachypodium distachyon.

    Science.gov (United States)

    Tanackovic, Vanja; Svensson, Jan T; Jensen, Susanne L; Buléon, Alain; Blennow, Andreas

    2014-10-01

    Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  14. Progresses in Researches of the Application of Low-Amylose Content Rice Gene for Breeding

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-lan; SHEN Wen-biao; ZHAI Hu-qu; WAN Jian-min

    2004-01-01

    Amylose content is a key determinant of eating quality of rice. With the characteristics of fluffy texture, glossy appearance when cooked, remaining soft when cooled and excellent puffing ability, the low-amylose rice with amylose content 5-15% could be served as not only cooked rice directly, but also good material for convenience, mixed rice and puffing foods.Current status on characterization, inheritance, molecular mechanism and breeding of lowamylose content rice was reviewed in this paper, strategy of related researches in the era of glymics was mainly discussed furthermore. The future research should focus on screening and enhancing the germplasm, further elucidating the molecular mechanism on mutation of low amylose content, utilizing the genes independent of Wx on low-amylose content rice breeding program, and developing high quality functional rice cultivars for special usage through pyramiding low amylose gene and other special quality genes.

  15. Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro.

    Science.gov (United States)

    Ek, Kai Lin; Wang, Shujun; Copeland, Les; Brand-Miller, Jennie C

    2014-02-01

    Potatoes are usually a high-glycaemic index (GI) food. Finding a low-GI potato and developing a screening method for finding low-GI cultivars are both health and agricultural priorities. The aims of the present study were to screen the commonly used and newly introduced cultivars of potatoes, in a bid to discover a low-GI potato, and to describe the relationship between in vitro starch digestibility of cooked potatoes and their in vivo glycaemic response. According to International Standard Organisation (ISO) guidelines, seven different potato cultivars were tested for their GI. In vitro enzymatic starch hydrolysis and chemical analyses, including amylose content analysis, were carried out for each potato cultivar, and correlations with the respective GI values were sought. The potato cultivars had a wide range of GI values (53-103). The Carisma cultivar was classified as low GI and the Nicola cultivar (GI = 69) as medium GI and the other five cultivars were classified as high GI according to ISO guidelines. The GI values were strongly and positively correlated with the percentage of in vitro enzymatic hydrolysis of starch in the cooked potatoes, particularly with the hydrolysis percentage at 120 min (r 0·91 and P starch content was not correlated with either in vitro starch digestibility or GI. The findings suggest that low-GI potato cultivars can be identified by screening using a high-throughput in vitro digestion procedure, while chemical composition, including amylose and fibre content, is not indicative.

  16. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  17. Starch granule size strongly determines starch noodle processing and nnodle quality.

    NARCIS (Netherlands)

    Chen Zenghong,; Schols, H.A.; Voragen, A.G.J.

    2003-01-01

    Chemical compositions, physical properties, and suitability for starch noodle making of different granule size fractions from potato and sweet potato starches were studied. The ash content, amylose content, phosphorus content, gel firmness, and freeze-thaw stability of small-size granule fractions

  18. Effects of Weak Light on Starch Accumulation and Starch Synthesis Enzyme Activities in Rice at the Grain Filling Stage

    Institute of Scientific and Technical Information of China (English)

    LI Tian; Ryu OHSUGI; Tohru YAMAGISHI; Haruto SASAKI

    2006-01-01

    Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments after flowering were studied using two dce varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch,amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity vaded with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.

  19. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes.

    Science.gov (United States)

    Lai, Yung C; Wang, Shu Y; Gao, Huan Y; Nguyen, Khiem M; Nguyen, Chinh H; Shih, Ming C; Lin, Kuan H

    2016-05-15

    The functional properties of starches from six sweet potato varieties containing various starch components and structures were studied in an attempt to identify starch sources for industrial uses. Tainan 18 (TNN18) with high-amylose (AM) starch exhibited high setback and breakdown viscosities, high water solubility at 85°C but low swelling volume at 65°C, and high hardness and adhesiveness; in contrast, the low-AM starch of Tainung 31 (TNG31) had opposite characteristics. Seven genes related to starch biosynthesis were tested, and GBSS, SS, SBEII, ISA, and AGPase were highly expressed in TNN18 and TNG31; however, transcript levels in DBE and SBE were extremely low. GBSS and SS activity reflected the abundance of GBSS and SS mRNA in TNG31 and TNN18, and expression of AGPase, GBSS, SS, and SBE in TNN18 substantially increased content of AM. The expression and activity of DBE had a significant effect on TNG31 with increased AP content.

  20. Substituent distribution in highly branched dextrins from methylated starches

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Burgt, Y.E.M. van der; Bergsma, J.; Bleeker, I.P.; Mijland, P.J.H.C.; Kamerling, J.P.

    2000-01-01

    Granular potato starch and amylopectin potato starch were methylated to molar substitutions (MS) up to 0.29. Extensive alpha-amylase digestion gave mixtures of partially methylated oligomers. Precipitation of larger fragments by methanol yielded mainly alpha-limit dextrins (84–99%). Methanol precipi

  1. Substituent distribution in highly branched dextrins from methylated starches

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Burgt, Y.E.M. van der; Bergsma, J.; Bleeker, I.P.; Mijland, P.J.H.C.; Kamerling, J.P.

    2000-01-01

    Granular potato starch and amylopectin potato starch were methylated to molar substitutions (MS) up to 0.29. Extensive alpha-amylase digestion gave mixtures of partially methylated oligomers. Precipitation of larger fragments by methanol yielded mainly alpha-limit dextrins (84–99%). Methanol precipi

  2. Substituent distribution in highly branched dextrins from methylated starches

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Burgt, Y.E.M. van der; Bergsma, J.; Bleeker, I.P.; Mijland, P.J.H.C.; Kamerling, J.P.

    2000-01-01

    Granular potato starch and amylopectin potato starch were methylated to molar substitutions (MS) up to 0.29. Extensive alpha-amylase digestion gave mixtures of partially methylated oligomers. Precipitation of larger fragments by methanol yielded mainly alpha-limit dextrins (84–99%). Methanol

  3. A new generation of starch products as excipient in pharmaceutical tablets .1. Preparation and binding properties of high surface area potato starch products

    NARCIS (Netherlands)

    Wierik, GHPT; ArendsScholte, AW; Eissens, AC; Lerk, CF

    1996-01-01

    A new pharmaceutical excipient with a high binding capacity was prepared from potato starch by enzymatic degradation, followed by suitable dehydration of the precipitated and filtered retrograded starch to produce high specific surface area products. Thermal dehydration methods like drying at room o

  4. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Starch and Prolamin Level in Single and Double High-Lysine Barley Mutants

    DEFF Research Database (Denmark)

    Kreis, M.; Doll, Hans

    1980-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...

  6. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    Science.gov (United States)

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  7. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    Science.gov (United States)

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition.

  8. 原花青素抑制玉米淀粉回生作用的研究%Study on preventing the retrogradation of maize starch using proanthocyanidins

    Institute of Scientific and Technical Information of China (English)

    许晨; 刘锐; 孙婵婵; 史春悦; 丛旭; 侯滕; 张民

    2015-01-01

    目的:研究原花青素(OPCs)对高直链玉米淀粉、普通玉米淀粉和高支链玉米淀粉回生的影响。方法采用差示扫描量热仪(DSC)、傅立叶红外光谱仪(FTIR)、核磁共振光谱仪(NMR)测定与分析原花青素与淀粉间的相互作用;同时测定原花青素对淀粉体外消化性的影响。结果结果表明,随着OPCs含量的增加,高直链玉米淀粉回生程度降低;当OPCs 添加量为5%时,原花青素对普通玉米淀粉和高支链玉米淀粉回生抑制效果较好。高直链玉米淀粉中慢消化淀粉(SDS)含量随OPCs增加而增加,普通淀粉中SDS含量在添加5% OPCs 时较高,而高支链玉米淀粉的快消化淀粉(RDS)含量在5%时较高; NMR 结果表明OPCs 分子与直链和支链淀粉之间均存在分子间相互作用。结论添加5%原花青素对三种玉米淀粉回生抑制效果较好;原花青素对直链和支链淀粉的结合方式和结合能力不同。%Objective To investigate the effect of proanthocyanidins (OPCs) on the retrogradation of high amylose maize starch, normal maize starch and high amylopectin maize starch. Methods The differential scanning calorimetry (DSC), Fourier transform infrared spectrom (FTIR) and nuclear magnetic resonance (NMR) were employed to investigate the interactions between OPCs and starch. In addition, the effect of OPCs on in vitro digestibility of maize starch was detected. Results DSC and FTIR results indicated that the retrogradation degree of high amylose maize starch decreased with OPCs concentration increasing, whereas the retrogradation inhibition effect of 5% OPCs on normal maize starch and high amylopectin maize starch was relatively better than those with other OPCs concentrations. NMR results suggested that there were intermolecular interactions between OPCs molecules and maize starch. In addition, in vitro digestibility experiments indicated that the content of slowly digested starch (SDS) in high amylose

  9. Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure.

    Science.gov (United States)

    Guo, Zebin; Zeng, Shaoxiao; Lu, Xu; Zhou, Meiling; Zheng, Mingjing; Zheng, Baodong

    2015-11-01

    Aqueous lotus seed starch suspensions (15%, w/w) were subjected to ultra-high pressure treatment (UHP, 100-600 MPa) for 30 min. The effects of UHP treatment on the structural and physicochemical properties of starch were investigated. The SEM and laser diffraction particle size analysis revealed that UHP treatment affected the shape and size distribution of starch granules. The morphological structure of starch was completely destroyed at 600 MPa, indicating complete gelatinization. Analysis of HPSEC-MALLS-RI suggested that the dispersity index of UHP-treated starch were decreased from 1.28 to 1.11. According to XRD analyses, UHP treatment converted native starch (C-type) into a B-type pattern. The swelling power and solubility presented a significant decrease at 85 and 95 °C, but opposite trends were found at 55-75 °C. The DSC results indicated a reduction in gelatinization temperatures and enthalpy with increasing pressure treatment. The RVA viscograms revealed that UHP-treated starch showed a decreased breakdown and setback viscosity, reflecting lower retrogradation tendency compared to native starch.

  10. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality

    OpenAIRE

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2015-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P 

  11. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts seeds.

    Science.gov (United States)

    Pérez-Pacheco, E; Moo-Huchin, V M; Estrada-León, R J; Ortiz-Fernández, A; May-Hernández, L H; Ríos-Soberanis, C R; Betancur-Ancona, D

    2014-01-30

    In this paper, the Ramon starch was isolated and its chemical composition and physical and microscopic characteristics were determined. Corn starch was used as reference. In general, the proximal composition was similar between starches studied. Ramon starch granules were oval-spherical and rounded with sizes between 6.5 and 15 μm. Starch purity was high (92.57%) with amylose content of 25.36%. The gelatinization temperature was 83.05°C and transition enthalpy was 21.423 J/g. At 90°C, solubility was 20.42%, swelling power 17.64 g water/gstarch and water absorption capacity was 13 gwater/gstarch. The pH, clarity and color (Hue angle) of Ramon starch were higher to those reported for corn starch. The results achieved suggest that Ramon starch has potential for application in food systems requiring high processing temperatures and it is also a promising option for use in the manufacture of biodegradable materials.

  12. Syntheses of PVA/starch blend hydrogels by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Maolin [Peking Univ., College of Chemistry, Inst. of Applied Chemistry, Beijing (China); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hashim, Kamaruddin [Malaysian Institute for Nuclear Technology Research, Bangi (Malaysia)

    2002-03-01

    A series of excellent PVA/starch blend hydrogels were prepared by gamma and electric beam (EB) radiation at room temperature. The influence of dose, the content of starch in blend system on the properties of the prepared hydrogels were investigated. The gel strength was improved obviously after adding starch into PVA hydrogels, but the swelling properties decreased slightly due to low swelling capacity of starch. The effect of component of starch on the properties of PVA/starch blend hydrogels as well as the reaction mechanism between PVA and starch under irradiation were investigated further. Comparing with PVA/starch blend hydrogels, PVA/amylose blend hydrogels had higher gel fraction, mechanical strength, and lower swelling capacity. PVA/amylopectin blend hydrogels were over the left. It indicated that the amylose of starch was a key component that influenced the properties of PVA/starch blend hydrogels. The analyses of FTIR and DSC spectra of the prepared gel samples after extracting sol indicated that there was a grafting reaction between PVA and starch molecules except for the crosslinking of PVA molecules under irradiation, and the amylose of starch was a key reactive component. (author)

  13. Correlation of pasting behaviors with total phenolic compounds and starch digestibility of indigenous pigmented rice grown in upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Jirapa Ponjanta

    2016-03-01

    Full Text Available Background: Thailand has one of the most important rice genetic resources with white, light brown, brown, red, and purple rice bran colors. The latter believed to have potential for health benefits due to their phenolic content. Recently researchers have indicated that starch digestive enzymes, including salivary and pancreatic α-amylases and α-glucosidases, can be inhibited by phenolic compounds. Although pasting properties of rice flour are key determinants of quality significantly impacting the final product texture, there is no in-depth study on their correlation with phenolic compound and starch digestibility. Methods: Rice flour from twelve varieties, three from each of five bran colors (white, brown, red, and purple, were evaluated for pasting properties (RVA-3D, total phenolic compounds, amylose content, resistant starch and estimated glycemic index. Simple correlation coefficients were calculated for the relationships between pasting properties (final viscosity, breakdown, setback and pasting temperature and total phenolic compounds, resistant starch and estimated glycemic index. Results: Within each rice variety, red and purple pigmented flours had higher total phenolic compounds (TPC and more resistant starch than that of white flours. The TPC and resistant starch content of the flours ranged between 7.83- 47.3 mg/L and 2.44–10.50% respectively, and producing 60-80 of estimated glycemic index. Viscosity behavior showed that pigmented with low amylose rice had lower viscosity temperature than that of pigmented with high amylose rice flour, but higher in peak viscosity. Correlation coefficients of pasting temperature, final viscosity, break down and setback with TCP was observed to be inversely related to glycemic index. However, it was positively correlated to the resistant starch and amylose content. Conclusions: Pigmented rice flour is a better source of TPC and resistant starch which in turn provides low glycemic index. This

  14. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.

    Science.gov (United States)

    Sun, Yujie; Hu, Qiongen; Qian, Jiangtao; Li, Ting; Ma, Piming; Shi, Dongjian; Dong, Weifu; Chen, Mingqing

    2016-03-30

    Based on stearyl chloride and native starch, esterified starch were prepared and the chemical structure was characterized by (1)H NMR and FTIR. It was found that stearyl chloride was an efficient agent to fabricate esterified starch with high degree of substitution (DS). During the melt blending of esterified starch (80 wt%) and poly(caprolactone) (PCL, 20 wt%), it was shown the torque of PCL/esterified starch was much lower than that of PCL/native starch without any plasticizer, and further decreased with increasing DS. Compared with PCL/native starch, the tensile properties of PCL/esterified starch composites were significantly enhanced. The tensile strength and elongation at break were increased from 2.7 MPa to 56% for PCL/native starch composites to 9.1 MPa and 626% for PCL/esterified starch ones with DS of 1.50, respectively. SEM observation revealed the esterified starch particles in matrix became smaller and more uniform. In addition, the water resistance and hydrophobic character of PCL/esterified starch composites were improved. PCL composites containing 80 wt% esterified starch with favorable mechanical properties would have great potential applications in broad areas.

  15. [X-ray diffraction study of high hydrostatic pressure on crystalline structure of different type starches].

    Science.gov (United States)

    Liu, Pei-Ling; Shen, Qun; Hu, Xiao-Song; Wu, Ji-Hong

    2012-09-01

    Crystalline changes of different type starches after high hydrostatic pressure treated under 300, 450, 600 MPa were studied by X-ray diffraction. Waxy maize (A type, 100% amylopectin), hylon VII (B type, 30% amylopectin) and tapioca starch (C type, 83% amylopectin) were chosen. The results indicated that for waxy maize starch, annealing effect was observed at 300 MPa, disappearance of crystalline structure happened at 450 MPa and retrogradation at 600 MPa. The results proved that the granule under high hydrostatic pressure processing experiences "three development stages" including annealling effect, disappearance of crystalline structure and recrystalline after granule disintegration.

  16. Studies on preparation and property of high-substitutional starch acetate hydrophode for the membrane material

    Institute of Scientific and Technical Information of China (English)

    ZUO Xiu-jin; DAI Xiao-min; MA Xiao-jun

    2005-01-01

    @@ Control-release technique is probably the most widely used,films control-release technique is the key of control-release technique,and film materials are the elements.The high-substitutional starch acetate was prepared by acetylation of starch with an acetic anhydride mixture.The best parameter of the technics (time of activation and reaction, reactant ratio) was obtained by orthogonal experiments.It was the hydrophode membrane material that property of the high-substitutional starch acetate was proofed.

  17. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations.

    Science.gov (United States)

    Nada, Sharif S; Zou, Wei; Li, Changfeng; Gilbert, Robert G

    2017-09-25

    Amylose, one of the components of starch, is a glucose polymer consisting largely of long, linear chains with a few long-chain branch points. The chain-length (molecular weight) distribution (CLD) of the component chains of amylose can provide information on amylose biosynthesis-structure-property relations, as has been done previously by fitting amylopectin CLDs to a model with physically meaningful parameters. Due to the presence of long chains, the CLD of amylose can currently best be obtained by size-exclusion chromatography, a technique that suffers from band-broadening effects which alter the observed distribution. The features of the multiple regions present in amylose chain-length distributions are also difficult to resolve, an issue that combines with band broadening to compound the difficulty of analysis and subsequent parameterization of the structural characteristics of amylose. A new method is presented to fit these distributions with biologically meaningful parameters in a way that accounts for band broadening. This is achieved by assuming that band broadening takes the form of a simple Gaussian over a relatively small region and that chain stoppage is a random process independent of the length of the substrate chain over the same region; these assumptions are relatively weak and expected to be frequently applicable. The method provides inbuilt consistency tests for its applicability to a given data set and, in cases where it is applicable, allows for the first nonempirical parameterization of amylose biosynthesis-structure-property relations from CLDs by using parameters directly linked to the activities of the enzymes responsible for chain growth and chain stoppage. Graphical abstract Model calculation illustrating the method described and showing the division between the three characteristic regions of a typical amylose chain-length distribution.

  18. Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility.

    Science.gov (United States)

    Cappai, Maria Grazia; Alesso, Giuseppe Andrea; Nieddu, Giuseppa; Sanna, Marina; Pinna, Walter

    2013-06-01

    The structure and composition of starch play an important role as co-factors affecting raw starch digestibility: such features were investigated in raw acorn starch from the most diffused oak trees in the Mediterranean basin. A total of 620 whole ripe acorns from Holm (Quercus ilex L., n = 198), Downy (Quercus pubescens Willd., n = 207) and Cork (Quercus suber L., n = 215) oaks sampled on the Sardinia Isle (40° 56' 0'' N; 9° 4' 0'' E; 545 m above the mean sea level) in the same geographical area, were analyzed for their chemical composition. The starch contents ranged between 51.2% and 53.5% of dry matter. The starch granules displayed a spheroid/ovoid and cylindrical shape; on scanning electron microscopic (SEM) analyses, a bimodal distribution of starch granule size was observed both for Holm and Cork oak acorns, whereas the starch granules of Downy oak acorns showed diameters between 10.2 and 13.8 μm. The specific amylose to amylopectin ratio of acorn starch was 25.8%, 19.5% and 34.0% in the Holm, Downy and Cork oaks, respectively. The (13)C Nuclear Magnetic Resonance (NMR) signal analysis displayed a pivotal spectrum for the identification of the amylose peaks in raw acorn starch, as a basis for the amylose to amylopectin ratio determination.

  19. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Jones, Roger W. [Ames Laboratory; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  20. SINTESIS PATI JAGUNG TERFOSFORILASI MELALUI TEKNIK GELOMBANG MIKRO [Microwave-Assisted Synthesis of Phosphorylated Corn Starch

    Directory of Open Access Journals (Sweden)

    Atep Dian Supardan*

    2014-06-01

    Full Text Available Phosphorylated starch is a type of modified starches which is mostly imported. Commonly, starch to be modified must contain more than 25% of amylose. This study aimed to synthesize phosphorylated starch and evaluate its potency as a heavy metal adsorbent. Corn starch was subjected to phosphorylation through microwave-assisted reaction with a mixture of sodium dihydrogen orthophosphate and disodium hydrogen phosphate. The experiment was designed to optimize the pH, microwave radiation power, and phosphorylation time. The results showed that the maximum phosphate subtitution degree was obtained at pH of 6, microwave radiation of 500 W, and a reaction time of 10 minutes. The degree of subtitution ranged from 0.567 to 0.787. The physicochemical properties of the product i.e. swelling capacity, solubility, water binding capacity, and paste clarity were significantly different than that of the unmodified corn starch. The infrared spectrum showed a high peak absorption at the wavelength of 1651 cm-1, indicating hydrogen bond formation of phosphoric group-water- phosphoric group. In the fingerprint area, there were two new absorption peaks at 1200 and 990 cm-1, which were assigned for the P=O and C-O-P vibrations, respectively. The phosphorylated corn starch adsorbed methylene blue up to 73.3% and mercury up to 73.6%, suggesting the prospect of the microwave-assisted synthetic phosphorylated corn starch as an effective adsorbent for heavy metals.

  1. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies.

    Science.gov (United States)

    Crittenden, R; Laitila, A; Forssell, P; Mättö, J; Saarela, M; Mattila-Sandholm, T; Myllärinen, P

    2001-08-01

    Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 and Bifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for alpha-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of technology and for synbiotic food applications.

  2. Amylose recognition and ring-size determination of amylomaltase

    Science.gov (United States)

    Roth, Christian; Weizenmann, Nicole; Bexten, Nicola; Saenger, Wolfram; Zimmermann, Wolfgang; Maier, Timm; Sträter, Norbert

    2017-01-01

    Starch is a major carbon and energy source throughout all kingdoms of life. It consists of two carbohydrate polymers, branched amylopectin and linear amylose, which are sparingly soluble in water. Hence, the enzymatic breakdown by glycoside hydrolases (GHs) is of great biological and societal importance. Amylomaltases (AMs) are GHs specialized in the hydrolysis of α-1,4–linked sugar chains such as amylose. They are able to catalyze an intramolecular transglycosylation of a bound sugar chain yielding polymeric sugar rings, the cycloamyloses (CAs), consisting of 20 to 100 glucose units. Despite a wealth of data on short oligosaccharide binding to GHs, no structural evidence is available for their interaction with polymeric substrates that better represent the natural polysaccharide. We have determined the crystal structure of Thermus aquaticus AM in complex with a 34-meric CA—one of the largest carbohydrates resolved by x-ray crystallography and a mimic of the natural polymeric amylose substrate. In total, 15 glucose residues interact with the protein in an extended crevice with a length of more than 40 Å. A modified succinimide, derived from aspartate, mediates protein-sugar interactions, suggesting a biological role for this nonstandard amino acid. The structure, together with functional assays, provides unique insights into the interaction of GHs with their polymeric substrate and reveals a molecular ruler mechanism for minimal ring-size determination of CA products. PMID:28097217

  3. Preparation and characterization of modified starch granules with high hydrophobicity and flowability.

    Science.gov (United States)

    Chang, Fengdan; He, Xiaowei; Fu, Xiong; Huang, Qiang; Qiu, Yaofang

    2014-01-01

    Normal cornstarch (NC) was chemically modified by octenylsuccinic anhydride (OSA) and Al2(SO4)3. The effects of the concentration of NaOH, OSA, and Al2(SO4)3 on the properties of modified starch(OS-starch-Al) were investigated. The OS-starch-Al was characterized by repose angle, activation index, inductively coupled plasma-atomic emission spectrometry (ICP-OES), light microscopy, SEM, FT-IR, and (27)Al NMR. The results showed that pH 4 was the optimum condition for Al(3+) cross-linking with OS-starch and for obtaining high flowability and hydrophobicity. When the concentration of OSA and Al2(SO4)3 was 2%, the OS-starch-Al was characterized by high flowability. A concentration of 4% OSA and Al2(SO4)3 yielded the highest activation index. The moisture content affected the flowability of native NC, but had a minor effect on OS-starch-Al. SEM and polarized microscopy revealed that the modification had slight effects on the crystalline structure and morphology of NC. During the preparation, some dust particles functioning as flow additives were produced on the surface of starch granules. The results of FT-IR, ICP-OES, and (27)Al NMR confirmed the formation of ester group and the cross-link with Al(3+). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High pressure impact on changes in potato starch granules

    Directory of Open Access Journals (Sweden)

    Słomińska Lucyna

    2015-12-01

    Full Text Available Air dry potato starch (84.9% d.s. was subjected to pressurizing under the pressure of 50, 100, 250, 500, 750, 1000 and 2000 MPa for 1 h. The physical properties of pressurized starch, such as morphology, surface and crystalline structure, gelatinization parameters, were studied by means of scanning and atomic force microscopy (SEM/AFM, X-ray diffraction (X-ray, differential scanning calorimetry (DSC. The susceptibility to the amylolytic enzyme (α-amylase was also measured. Application of pressure in the range of 50–2000 MPa results in an increase in the compressed potato starch bulk density, change in the contours of the granules from oval to polyhedral, increase in the roughness of the granule surface, vanishing of the X-ray reflexes generated by the orthogonal structure and weakening of the reflexes generated by the hexagonal structure, lowering of the enthalpy of starch gelatinization, and the enhancement of hydrolytic susceptibility of starch granules to the amylolytic enzyme.

  5. Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches.

    Science.gov (United States)

    Tian, Yaoqi; Li, Dandan; Zhao, Jianwei; Xu, Xueming; Jin, Zhengyu

    2014-01-01

    The slowly digestible properties of high hydrostatic pressure (HHP)-gelatinized non-waxy and waxy rice starches during the retrogradation were evaluated in this study. The results show that slowly digestible starch (SDS) was observed at a higher percentage in HHP-gelatinized, non-waxy and waxy rice starches than in heat-gelatinized starches, after retrogradation for 7 days. The HHP treatment significantly reduced the enthalpy change of starch retrogradation and retarded the freezable water transformation into unfreezable water during retrogradation. This indicated that the SDS percentage was not positively correlated to the retrogradation degree of starch. Furthermore, X-ray diffraction (XRD) data revealed that the HHP treatment decreased the perfect crystallites of the 7 day-retrograded. Non-waxy and waxy starches from 19.5% to 12.1% and 15.7% to 11.4%, while increased imperfect crystallites from 26.4% to 30.7% and 28.6% to 31.3%, respectively. These findings suggest that the higher SDS percentage can be attributed to the formation of less perfect crystallites and more imperfect crystallites during the HHP and retrogradation treatments.

  6. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure.

    Science.gov (United States)

    Zhang, Genyi; Ao, Zihua; Hamaker, Bruce R

    2008-06-25

    The relationship between the slow digestion property of cooked maize starch and its molecular fine structure was investigated. Results of the in vitro Englyst assay showed a range of rapidly digestible starch (RDS) (70.1-98.9%), slowly digestible starch (SDS) (0.2-20.3%), and resistant starch (RS) (0.0-13.7%) among the tested maize mutant flour samples. Further analysis showed that amylose content was significantly correlated ( R = 0.763, P analysis revealed a parabolic relationship between SDS content and the weight ratio of amylopectin short chains (DP /= 13, named LF), which means amylopectin with a higher amount of either short chains or long chains can produce relatively high amounts of SDS. Furthermore, debranching analysis of the SDS materials from samples with the highest and lowest weight ratios of SF/LF (both had a high amount SDS) showed significantly different profiles, indicating there is not a uniform molecular structure for SDS. Thus, genetic mutants of maize samples have a good potential to provide raw starch materials of high nutritional quality. An additional finding showed that a simple and comparably high-throughput technique of Rapid Visco-Analyzer (RVA) can be used to screen genetic mutants on the basis of their RVA profiles.

  7. Crystallinity in starch plastics: consequences for material properties

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van

    1997-01-01

    The processing of starches with biodegradable additives has made biodegradable plastics suitable for a number of applications. Starch plastics are partially crystalline as a result of residual crystallinity and the recrystallization of amylose and amylopectin. Such crystallinity is a key determinant

  8. Exploring and exploiting starch-modifying amylomaltases from thermophiles

    NARCIS (Netherlands)

    Kaper, T.; Maarel, M.J.E.C. van der; Euverink, G.J.W.; Dijkhuizen, L.

    2004-01-01

    Starch is a staple food present in water-insoluble granules in many economically important crops. It is composed of two glucose polymers: the linear α-1,4-linked amylose and amylopectin with a backbone of α-1,4-glycosidic bonds and α-1,6-linked side chains. To dissolve starch completely in water it

  9. quantification of starch physicochemical characteristics in a cassava ...

    African Journals Online (AJOL)

    Administrator

    18-24 hr and stored in dry plastic air tight containers at room temperature until ... maximum output of the total utilisable solid matter within the crop. ..... characteristics of starch based on their effect on ..... of adhesives and in the use of starch as a binder. The amylose .... poly(hydroxyester ether) composite materials. Polymer ...

  10. Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, G.; Akoni, S. (International Inst. of Tropical Agriculture, Ibadan (Nigeria)); Swennen, R. (Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Tropical Husbandry)

    1992-04-01

    Starches from mature, unripe fruit pulp of plantain cultivars (Musa supp., AAB group) representing the wide variability in Africa, tetraploid and diploid plantain hybrids and starchy cooking bananas (Musa spp., ABB group) were isolated and characterised. In general, studies revealed very compact irregularly shaped and sized granules, with low amylose content (9.11-17.16%), highly resistant to bacterial {alpha}-amylase attack; Brabender amylograms showed very restricted swelling type patterns with great stability and negligible retrogradation. Results indicate that differences in physico-chemical properties exist amongst the three Musa fruit group starches. Plantains represent a chemical/molecular homogeneous group, but heterogeneous for granule structure. Ploidy level affected hybrid properties. ABB cooking bananas starches exhibited highly pronounced restricted swelling and high gelatinisation and pasting temperatures, indicating a more ordered, very strongly bonded granule structure; chemical and physical properties varied considerably within the ABB genotype. (orig.).

  11. The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis.

    Science.gov (United States)

    Zhang, Yi; Wang, Ying; Zheng, Baodong; Lu, Xu; Zhuang, Weijing

    2013-11-01

    Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.

  12. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity.

    Science.gov (United States)

    Tai, N L; Adhikari, Raju; Shanks, Robert; Adhikari, Benu

    2017-05-01

    Starch-polyurethane (PU) composite films with improved mechanical and hydrophobic properties were developed in this work. A simple and effective microwave-aided starch gelatinisation instrument was used to prepare glycerol plasticized high amylose starch (HAGS) material. Polyethylene glycol-isocyanate (PEG-iso) linker was prepared by reacting PEG 1000 with hexamethylene diisocyanate (HMDI). PEG-iso linker was then grafted into HAGS forming three dimensional urethane networks (PEG-PU). HAGS-PEG-PU composite blends were prepared and dried at ambient temperature to obtain HAGS-PEG-PU films. The mechanical properties and hydrophobicity (as contact angle, CA) of the HAGS-PEG-PU films were measured and analysed. Fourier transform infrared spectroscopy showed good grafting of PEG-iso into starch structure. Increase of PEG-iso concentration up to 20% (w/w) improved the molecular mixing and interpenetration between the starch and PEG-PU. The HAGS-PEG-PU films had improved hydrophobicity as indicated by CA values ranging from 51 to 110°and very high flexibility as evidenced from elongation at break (εB) values from 17 to 1000%. The HAGS-PEG-PU film formulation containing 20% (w/w) PEG-iso provided the best flexibility (εB>1000%) and hydrophobicity (CA>110°). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Physicochemical properties of Venezuelan breadfruit (Artocarpus altilis) starch.

    Science.gov (United States)

    Rincón, Alicia Mariela; Padilla, Fanny C

    2004-12-01

    Artocarpus altilis, seedless variety, is a fruit-producing plant which is cultived in Margarita Island, Venezuela, and is consumed by the inhabitants of the region. Its chemical composition and physical characteristics were determined. The chemical (AOAC and AACC methods), physicochemical, morphometric characteristics, viscoamylographic properties and digestibility in vitro of starch from Artocarpus were studied. The starch yield was 18.5 g/100 g (dw)w with a purity of 98.86%, 27.68 and 72.32% of amylose and amylopectin, respectively. Scanning electron microscopy showed irregular-rounded granules. Swelling power, water absorption and solubility values were determined and found to be higher than that of corn and amaranth starch. The amylographic study showed a gelatinization temperature at 73.3 degrees C, with high stability during heating and cooling cycles. Artocarpus starch could also be categorized in the group of mixed short chain branched/long chain branched glucan starches, this agrees with digestibility results that showed a high degree of digestibility in vitro. These results might be advantageous in medical and food use.

  15. Oxidative stability of high-oleic sunflower oil in a porous starch carrier.

    Science.gov (United States)

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena

    2015-01-01

    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation.

  16. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    Science.gov (United States)

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  17. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure.

    Science.gov (United States)

    Ao, Zihua; Simsek, Senay; Zhang, Genyi; Venkatachalam, Mahesh; Reuhs, Bradley L; Hamaker, Bruce R

    2007-05-30

    The hypothesis of increasing the branch density of starch to reduce its digestion rate through partial shortening of amylopectin exterior chains and the length of amylose was investigated. Starch products prepared using beta-amylase, beta-amylase and transglucosidase, maltogenic alpha-amylase, and maltogenic alpha-amylase and transglucosidase showed significant reduction of rapidly digested starch by 14.5%, 29.0%, 19.8%, and 31.0% with a concomitant increase of slowly digested starch by 9.0%, 19.7%, 5.7%, and 11.0%, respectively. The resistant starch content increased from 5.1% to 13.5% in treated starches. The total contents of the prebiotics isomaltose, isomaltotriose, and panose (Isomaltooligosaccharides) were 2.3% and 5.5%, respectively, for beta-amylase/transglucosidase- and maltogenic alpha-amylase/transglucosidase-treated starches. The molecular weight distribution of enzyme-treated starches and their debranched chain length distributions, analyzed using high-performance size-exclusion chromatography with multiangle laser light scattering and refractive index detection (HPSEC-MALLS-RI) and HPSEC-RI, showed distinctly different patterns among starches with different enzyme treatments. A larger proportion of low molecular weight fractions appeared in starches treated additionally with transglucosidase. All enzyme-treated starches showed a mixture of B- and V-type X-ray diffraction patterns, and 1H NMR spectra showed a significant increase of alpha-1,6 linkages. Both the increase of the starch branch density and the crystalline structure in the treated starches likely contribute to their slow digestion property.

  18. Physicochemical and release characteristics of acetylated Indian palmyrah retrograded shoot starch.

    Science.gov (United States)

    Kumar, K Jayaram; Varma, Ch Ashok Kumar; Panpalia, S G

    2014-08-01

    The aim of the present study is to determine the influence of serial modifications, including retrogradation followed by acetylation on morphological, physicochemical and drug release properties of retrograded Indian palmyrah (Borassus flabellifer L.) shoot starch. The acetylated retrograded starches prepared by using different concentrations of acetic anhydride were shown a degree of substitution (DS) in the range of 0.16-0.55. Acetylation of retrograded starch produced significant morphological changes from rough to smooth surface. The amylose content, water holding capacity, swelling and solubility power tend to increase with increase in DS. A strong peak at 1751 and 1032cm(-1) confirms the formation of acetylated retrograded starch. The TGA data reveal that with increase in DS there is an increased thermal stability and decreased bound water of starch. The elemental analysis also confirms the addition of acetyl groups because of increased carbon and hydrogen content. The matrix tablets of acetylated retrograded starch with high DS showed a delayed release in gastric pH and sustained release in simulated intestinal fluid. Overall, this result suggested that acetylated retrograded starch with high DS are thermally stable and can be used for formulating protein and peptide drugs for colon targeting.

  19. Engineering Potato Starch with a Higher Phosphate Content

    Science.gov (United States)

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  20. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults.

    Science.gov (United States)

    Mandel, Abigail L; Breslin, Paul A S

    2012-05-01

    In the current study, we determined whether increased digestion of starch by high salivary amylase concentrations predicted postprandial blood glucose following starch ingestion. Healthy, nonobese individuals were prescreened for salivary amylase activity and classified as high (HA) or low amylase (LA) if their activity levels per minute fell 1 SD higher or lower than the group mean, respectively. Fasting HA (n = 7) and LA (n = 7) individuals participated in 2 sessions during which they ingested either a starch (experimental) or glucose solution (control) on separate days. Blood samples were collected before, during, and after the participants drank each solution. The samples were analyzed for plasma glucose and insulin concentrations as well as diploid AMY1 gene copy number. HA individuals had significantly more AMY1 gene copies within their genomes than did the LA individuals. We found that following starch ingestion, HA individuals had significantly lower postprandial blood glucose concentrations at 45, 60, and 75 min, as well as significantly lower AUC and peak blood glucose concentrations than the LA individuals. Plasma insulin concentrations in the HA group were significantly higher than baseline early in the testing session, whereas insulin concentrations in the LA group did not increase at this time. Following ingestion of the glucose solution, however, blood glucose and insulin concentrations did not differ between the groups. These observations are interpreted to suggest that HA individuals may be better adapted to ingest starches, whereas LA individuals may be at greater risk for insulin resistance and diabetes if chronically ingesting starch-rich diets.

  1. Revertants of the amylose-free (amf) potato clone 86.040 (2n=1x=12)

    NARCIS (Netherlands)

    Jacobsen, Evert; KRIJGSHELD, HT; Hermelink, J; Ponstein, A.S.; Witholt, Bernard; Feenstra, W.J.

    1990-01-01

    The amylose-free (amf) potato clone 86.040 (2n = 1x = 12), in which the enzyme granule bound starch synthase (GBSS) is affected, has been used for the induction and isolation of revertants with loosely branched amylopectin. Screening of 5500 microtubers, which were induced on stem segments of 685 ir

  2. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella fusca (Chlorophyta).

    Science.gov (United States)

    Jerez, Celia G; Malapascua, José R; Sergejevová, Magda; Figueroa, Félix L; Masojídek

    2016-02-01

    The effect of nitrogen and sulphur limitation under high irradiance (PAR) was studied in the green microalga Chlorella fusca (Chlorophyta) in order to follow lipid and/or starch accumulation. Growth, biomass composition and the changes in photosynthetic activity (in vivo chlorophyll a fluorescence) were followed in the trials. The full nutrient culture showed high biomass production and starch accumulation at Day 1, when photosynthetic activity was high. Gradual deprivation (no nutrients added) became evident when photosynthesis was significantly suppressed (Day 3 onwards), which entailed a decrease of maximum relative electron transport rate (rETRmax) and increase of non-photochemical quenching (NPQ), accompanied by the onset of lipid accumulation and decline in starch content. In N- and S-starved cultures, rETRmax significantly decreased by Day 3, which caused a substantial drop in biomass production, cell number, biovolume and induction of lipid and starch accumulation. High starch content (45-50 % of DW) was found at the initial stage in full nutrient culture and at the stationary phase in nutrient-starved cultures. By the end of the trial, all treatments showed high lipid content (~30 % of DW). The full nutrient culture had higher biomass yield than starved treatments although starch (~0.2 g L(-1) day(-1)) and lipid (~0.15 g L(-1) day(-1) productivities were fairly similar in all the cultures. Our results showed that we could enrich biomass of C. fusca (% DW) in lipids using a two-stage strategy (a nutrient replete stage followed by gradual nutrient limitation) while under either procedure, N- or S-starvation, both high lipid and starch contents could be achieved.

  3. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  4. Exploration of Breadfruit, Jicama, and Rice Starches as Stabilizer in Food Emulsion

    Directory of Open Access Journals (Sweden)

    Sri Haryani Anwar

    2016-02-01

    Full Text Available The aim of this research was to investigate the ability of three native starches from Indonesia to stabilize oil in water emulsion with and without the addition of lecithin as surfactant. Breadfruit, bengkuang (jicama, and rice starches were extracted from local sources in Banda Aceh - Indonesia. Two variables studied were type of starches and the amount of oil added into emulsion (15 and 25%. Proximate analysis showed that the starch content of breadfruit, jicama and rice were 77.57, 67.41, and 80.51% respectively and the amylose content were 20.50, 16.5, and 13.6%. Results showed that the emulsification index (EI of emulsion prepared with jicama and rice starches were lower than the EI of emulsion stabilized by breadfruit starch. However, the viscosity of breadfruit emulsion was higher than the other two emulsions. Storage stability test in room temperature also demonstrated that oil in water emulsion made from breadfruit starch had the lowest separation rate over storage period compared to jicama and rice emulsions. Overall, stabilization of 25% oil in breadfruit emulsion was slightly better than addition of 15% oil where the visible boundaries or serum layer of the emulsion was in the range of 5-6 ml at the end of storage test. Breadfruit starch was further modified by reacting it with octenyl succinic anhydride (OSA to produce OSA-modified breadfruit starch. The degree of substitution (DS of OSA modified breadfruit starch was 0.0231. OSA-modified breadfruit starch is highly potential to be used as food emulsifier and therefore studied further to examine its ability to stabilize oil in water emulsion.

  5. The physical, chemical and functional characterization of starches from Andean tubers: oca (Oxalis tuberosa Molina, olluco (Ullucus tuberosus Caldas and mashua (Tropaeolum tuberosum Ruiz & Pavón

    Directory of Open Access Journals (Sweden)

    Beatriz Valcárcel-Yamani

    2013-09-01

    Full Text Available The physical, chemical, and functional properties of starches isolated from the Andean tubers oca (Oxalis tuberosa M., olluco (Ullucus tuberosus C. and mashua (Tropaeolum tuberosum R. & P. were studied. The tubers were obtained from a local grocery. The morphology of the starch granules (size and shape was studied with scanning electron microscopy (SEM, which revealed ellipsoid, oval, conical, pear-shaped and prismatic forms: ellipsoids and oval granules with lengths up to 54.30 µm in oca; with lengths up to 32.09 µm for olluco starch granules; and with predominantly truncated spherical or oval forms and smaller dimensions (up to 16.29 um for mashua starch granules. Amylose contents were similar among the samples: 27.60% (oca, 26.49% (olluco and 27.44% (mashua. Olluco starch had less swelling power, forming opaque, less firm gels. All three starch gels showed the same stability on refrigeration and presented high syneresis under freezing temperatures, with a variation of 40.28 to 74.42% for olluco starch. The starches cooked easily, with high peak viscosity. The low gelatinization temperatures and high stability during cooling make these starches suitable feedstock for use in formulations that require milder processing temperatures and dispense freezing storage.

  6. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface.

  7. Effect of modification temperature on starch oxidation and its physico-chemical properties

    OpenAIRE

    Sławomir Pietrzyk; Teresa Fortuna; Elżbieta Pabiś

    2012-01-01

    Corn starch was oxidised by hydrogen peroxide at temperatures 20, 30, 40 and 50°C. The oxidised starches were examined for the content of carboxyl groups, carbonyl groups, amylose and for water binding capacity and water solubility. Susceptibility to retrogradation and pasting characteristics were also determined. The results indicate that the effectiveness of oxidation process increased with increased temperature of modification. Temperature of modification influenced content of amylose ...

  8. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... textiles thanks to their interesting physicochemical and functional properties. Key words: .... showed the same profile of Gaussian curve, with a peak at 80 °C for .... molecular weight of the amylose fraction in cassava starches ...

  9. Solvent effects on starch dissolution and gelatinization.

    Science.gov (United States)

    Koganti, Nagamani; Mitchell, John R; Ibbett, Roger N; Foster, Tim J

    2011-08-08

    The disruption of starch granular structure during dissolution in varying concentrations of N-methyl morpholine N-oxide (NMMO) has been studied using three maize starches with varying ratios of amylose and amylopectin. Behavior in NMMO has been characterized by differential scanning calorimetry (DSC), microscopy, rapid viscosity analysis (RVA), and rheometry. Exothermic transitions were observed for the three starches in both 78 and 70% NMMO; the transition changed to an endotherm at 60 and 50% NMMO. Consistent with DSC, hot stage microscopy showed that starch granules dissolved at NMMO concentrations of 78 and 70%, whereas in 60 and 50% NMMO, gelatinization behavior similar to that found for starch in water was observed. Mechanical spectroscopy revealed the dominant viscous behavior (G″ > G') of starch at NMMO concentrations of 70 and 78% and more elastic behavior (G' > G″) at lower concentrations. Starch solutions in 78% NMMO obey the Cox-Merz rule, suggesting that the solutions are homogeneous on a molecular level.

  10. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    Science.gov (United States)

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis.

  11. Characterization of A- and B-type starch granules in Chinese wheat cultivars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; GUO Qi; FENG Nan; WANG Jin-rong; WANG Shu-jun; HE Zhong-hu

    2016-01-01

    Starch is the major component of wheat lfour and serves as a multifunctional ingredient in food industry. The objective of the present study was to investigate starch granule size distribution of Chinese wheat cultivars, and to compare structure and functionality of starches in four leading cultivars Zhongmai 175, CA12092, Lunxuan 987, and Zhongyou 206. A wide variation in volume percentages of A- and B-type starch granules among genotypes was observed. Volume percentages of A- and B-type granules had ranges of 68.4–88.9% and 9.7–27.9% in the ifrst cropping seasons, 74.1–90.1% and 7.2–25.3% in the second. Wheat cultivars with higher volume percentages of A- and B-type granules could serve as parents in breeding program for selecting high and low amylose wheat cultivars, respectively. In comparison with the B-type starch granules, the A-type granules starch showed difference in three aspects: (1) higher amount of ordered short-range structure and a lower relative crystalinity, (2) higher gelatinization onset (To) temperatures and enthalpies (ΔH), and lower gelatinization conclusion temperatures (Tc), (3) greater peak, though, and ifnal viscosity, and lower breakdown viscosity and pasting temperature. It provides important information for breeders to develop potentialy useful cultivars with particular functional properties of their starches suited to speciifc applications.

  12. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches.

    Science.gov (United States)

    Du, Shuang-Kui; Jiang, Hongxin; Ai, Yongfeng; Jane, Jay-Lin

    2014-08-08

    Physicochemical properties and digestibility of pinto bean, red kidney bean, black bean and navy bean starches were analyzed. All the common bean starches had oval and spherical granules with average diameter of 25.3-27.4 μm. Amylose contents were 32.0-45.4%. Black bean starch showed the highest peak viscosity, breakdown, final viscosity and setback, whereas red kidney bean starch showed the lowest pasting temperature, peak viscosity, breakdown, and setback. Pinto bean starch showed the highest onset and peak gelatinization temperatures, and the lowest gelatinization temperature range; whereas navy bean starch exhibited the lowest values. Amylopectin of red kidney bean had the highest molecular weight (Mw) and z-average gyration radius (Rz), whereas black bean amylopectin had the lowest values of Mw and Rz. The proportions of DP 6-12, DP 13-24, DP 25-36, and DP ≥ 37 and average branch-chain lengths were 23.30-35.21%, 47.79-53.53%, 8.99-12.65%, 6.39-13.49%, and 17.91-21.56, respectively. All the native bean starches were highly resistant to enzyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Model approach to starch functionality in bread making.

    Science.gov (United States)

    Goesaert, Hans; Leman, Pedro; Delcour, Jan A

    2008-08-13

    We used modified wheat starches in gluten-starch flour models to study the role of starch in bread making. Incorporation of hydroxypropylated starch in the recipe reduced loaf volume and initial crumb firmness and increased crumb gas cell size. Firming rate and firmness after storage increased for loaves containing the least hydroxypropylated starch. Inclusion of cross-linked starch had little effect on loaf volume or crumb structure but increased crumb firmness. The firming rate was mostly similar to that of control samples. Presumably, the moment and extent of starch gelatinization and the concomitant water migration influence the structure formation during baking. Initial bread firmness seems determined by the rigidity of the gelatinized granules and leached amylose. Amylopectin retrogradation and strengthening of a long-range network by intensifying the inter- and intramolecular starch-starch and possibly also starch-gluten interactions (presumably because of water incorporation in retrograded amylopectin crystallites) play an important role in firming.

  14. Isolation and characterization of potato-tomato somatic hybrids using an amylose-free potato mutant as parental genotype.

    Science.gov (United States)

    Jacobsen, E; Reinhout, P; Bergervoet, J E; de Looff, J; Abidin, P E; Huigen, D J; Ramanna, M S

    1992-11-01

    Using different genotypes of tomato and diploid potato, possessing alien selectable markers as well as endogenous markers, very high frequencies of protoplast fusion hybrids were obtained. One endogenous genetic marker, the amylose-free (amf) mutant of potato, was helpful not only for the confirmation of fusion products but also for the study of genetic complementation and the segregation of amylose-free starch in microspores. Cytological analysis of the fusion hybrids indicated that except for one which was hexaploid, all of them had a perfectly balanced chromosome number of allotetraploid constitution (2n = 4x = 48). Despite normal chromosome pairing and a diploid behaviour, the microspores in some of the fusion hybrids segregated for the recessive amf-locus. This anomalous segregation of a recessive character in these hybrids was shown not to be due to chromosome elimination or to the absence of the wild-type tomato Amf gene. Although all fusion hybrids were totally sterile, the hexaploid produced stainable pollen and berries with badly developed seeds. Embryo rescue has so far failed to produce backcross progeny.

  15. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch.

    Science.gov (United States)

    Li, Xingfeng; Miao, Ming; Jiang, Huan; Xue, Jiangchao; Jiang, Bo; Zhang, Tao; Gao, Yaqi; Jia, Yingmin

    2014-12-01

    Partial branching enzyme treatment was used to modulate the starch fine chain structure responsible for a high content of slowly digestible starch fraction. Normal maize starch modified using branching enzyme for 4h showed a maximum slowly digestible starch content of 23.90%. The branching enzyme hydrolysis decreased the amylose content from 32.8% to 12.8%. The molecular weight distribution of enzyme-treated starches showed a larger proportion of low molecular weight fractions appeared in the enzyme treated starch sample compare to native starch. The number of shorter chains (DP30) from 20.11% to 11.95%. (1)H NMR spectra showed an increase of α-1,6 branching ratio from 4.7% to 9.4% during enzyme treatment. The increase in the amount of shorter chains and more α-1,6 linkages likely contribute to their slow digestion property. These results suggest that starches treated with partial branching enzyme synthesis a novel branched structure with slowly digestible character.

  16. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...... biosynthesis and demonstrates the possibility for in planta production of highly phosphorylated cereal starch....

  17. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    Science.gov (United States)

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.

  18. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  19. Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran.

    Science.gov (United States)

    Rachmawati, Rachmawati; Woortman, Albert J J; Loos, Katja

    2014-01-01

    Highly crystalline amylose-polytetrahydrofuran (PTHF) complexes can be obtained by employing organic solvents as washing agents after complex formation. The X-ray diffraction (XRD) of the washed complexes appear sharp at 12.9°-13.2° and 19.6°-20.1°, clear signs of the presence of V6I -amylose. Other diffraction peaks correlate with V6II -amylose, which indicates that the complexed amylose helices are in the form of an intermediate or a mixture of V6I - and V6II -amylose. SEM imaging reveals that the amylose-PTHF complexes crystallize in the form of lamellae, which aggregate in a round shape on top of one another with a diameter around 4-8 μm. Some lamellas aggregate as flower-like or flat-surface spherulitic crystals. There is a visible matrix in between the aggregated lamellas which shows that a part of the amylose-PTHF complexes is amorphous.

  20. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation.

    Science.gov (United States)

    Chang, Yanjiao; Yan, Xiaoxia; Wang, Qian; Ren, Lili; Tong, Jin; Zhou, Jiang

    2017-07-15

    The purpose of this work was to develop an approach to produce size controlled starch nanoparticles (SNPs), via precipitation with high efficiency and low cost. High concentration starch aqueous pastes (up to 5wt.%) were treated by ultrasound. Viscosity measurements and size exclusion chromatography characterization revealed that, after 30min ultrasonic treatment, viscosity of the starch pastes decreased two orders of magnitude and the weight average molecular weight of the starch decreased from 8.4×10(7) to 2.7×10(6)g/mol. Dynamic light scattering measurements and scanning electron microscopy observations showed that the SNPs prepared from the starch pastes with ultrasonic treatments were smaller (∼75nm) and more uniform. Moreover, SNPs could be obtained using less non-solvents. X-ray diffraction results indicated that effect of the ultrasonic treatment on crystalline structure of the SNPs was negligible. Ultrasound can be utilized to prepare smaller SNPs through nanoprecipitation with higher efficiency and lower cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Amylose folding under the influence of lipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2012-01-01

    The molecular dynamics simulation technique was used to study the folding and complexation process of a short amylose fragment in the presence of lipids. In aqueous solution, the amylose chain remains as an extended left-handed helix. After the addition of lipids in the system, however, we observe s

  2. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Hulleman, S.H.D.; Wit, D. de

    1996-01-01

    The influence of crystallization on the stress-strain behaviour of thermoplastic potato starch has been monitored. Potato starch has been processed by extrusion with glycerol and water added as plasticizers. The thermoplastic starch consists of a molecular network of semicrystalline amylose and amyl

  3. New starch phenotypes produced by TILLING in barley.

    Directory of Open Access Journals (Sweden)

    Francesca Sparla

    Full Text Available Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1, GBSSI (Granule Bound Starch Synthase I, LDA1 (Limit Dextrinase 1, SSI (Starch Synthase I, SSIIa (Starch Synthase IIa. Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.

  4. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice

    Energy Technology Data Exchange (ETDEWEB)

    Wu Dianxing E-mail: dianxingwu@hotmail.com; Shu Qingyao; Wang Zhonghua; Xia Yingwu

    2002-08-01

    Three types of rice cultivars (indica, japonica and hybrid rice) with similar intermediate apparent amylose content (AAC) as well as early indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physicochemical properties and starch granule structure. Four major parameters of RVA profile, that was determined by a rapid visco analyser (RVA, Model-3D), peak viscosity, hot pasting viscosity, cool pasting viscosity, and setback viscosity, were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in gelatinization temperature were detected after irradiation, but the peak time was reduced with the dose levels. Gel consistency was significantly increased in the tested cultivars, especially in the high AAC indica rice. The starch granules were somewhat deformed by gamma irradiation. These results suggested that it is promising to use gamma irradiation to improve rice eating or cooking quality.

  5. Coupling effects of irrigation and nitrogen fertilization on grain protein and starch quality of strong-gluten winter wheat

    Institute of Scientific and Technical Information of China (English)

    Xiaoying WANG; Mingrong HE; Fei LI; Yonghuan LIU; Honghua ZHANG; Chungang LIU

    2008-01-01

    Effects of irrigation and nitrogen fertilization on the grain yield,protein composition,protein quality,starch composition and starch pasting properties of a strong-gluten winter wheat were investigated in a high fertility field.Compared with non-irrigation treatment,grain yields under irrigation treatments were significantly increased,but the content of grain protein,monomeric protein and flour wet gluten was reduced.There were no significant differences in the above parameters between the irrigation treatments.Nitrogen application could significantly increase grain yield under low irrigation frequency (W0 and W1),while the neglected effect on yield was observed with high irrigation frequency (W2 and W3).With the increase of irrigation frequency,the glutenin content leveled off,but the changes of glutenin composition were not uniform,in which the soluble glutenin content was increased,while the insoluble glutenin content and polymerization index (the ratio of insoluble glutenin to total glutenin) were reduced.Both dough development time and stability time became shorter with the increased irrigation frequency.Nitrogen application improved the content of all grain protein fractions and grain quality,in which the increased degree in non-gluten protein (albumin and globulin) was higher than gluten protein (gliadin and glutenin),and the increased degree in soluble glutenin was found higher than that of insoluble glutenin.The interactive effects of irrigation and nitrogen on starch composition were significant.Starch content and amylopectin content was increased as irrigation frequency added in non-nitrogen treatment.Compared to non-irrigation treatment,irrigation significantly increased the starch content and the amylopectin content in nitrogen application treatment,but the starch and amylopectin content had no significant difference between irrigation treatments.Amylose content and the ratio of amylose to amylopectin were reduced while RVA indexes (peak viscosity

  6. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    substrate, and granular products were only obtained at low hydration of the starch. Hence, limiting hydration and gelatinization by using low-phosphate starch and high substrate oncentration was required for obtaining these products. Also high BE activity was a requirement and could partly compensate...... exclusively been conducted on gelatinized starch. This study provides a new concept for transferase-based modification of starches in granular state.......In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...

  7. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail......-resolution 1H-13C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnologi-cal starch utilization....

  8. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size.

  9. Resistant starch content, in vitro starch digestibility and physico-chemical properties of flour and starch from Thai bananas

    Directory of Open Access Journals (Sweden)

    Nednapis Vatanasuchart

    2012-07-01

    Full Text Available Flour and starch were prepared from six Thai banana cultivars: Kluai Hom, Kluai Khai,Kluai Lebmuenang, Kluai Namwa, Kluai Hakmuk and Kluai Hin, and their resistant starch (RS, invitro starch digestibility and physico-chemical properties were determined. The RS content of theflour is 52.2-68.1%, with flour from Kluai Hin containing the highest amount of RS, followed by thatfrom Kluai Hakmuk. The starch has a higher RS content (70.1-79.2%, the highest value comingfrom Kluai Hakmuk starch, followed by Kluai Hom starch. A significant linear relationship betweenapparent amylose and RS was observed. Interestingly, most of the flour showed a slower rate of invitro starch digestibility than that of the starch, with Kluai Hin flour exhibiting the slowest rate,followed by Kluai Namwa. Rapid viscosity analysis showed significantly higher peak viscosity of thestarch than the flour, the highest final and setback viscosity being obtained from Kluai Hin starch.Differential scanning calorimetry showed an endothermic transition enthalpy over a range of 17.4 J/gfor Kluai Lebmuenang starch to 18.6 J/g for Kluai Hin starch. X-ray diffractograms of the starchesexhibited a typical B-pattern with Kluai Hin showing the highest degree of relative crystallinity(31.3% with a sharp peak at 5.5. The overall results seemed to indicate an effect of the BBgenotype on the resistance of banana starch granules to enzymatic digestion due to amylosemolecules and the crystallinity of amylopectin.

  10. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  11. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications.

  12. Characterization of potato leaf starch.

    Science.gov (United States)

    Santacruz, Stalin; Koch, Kristine; Andersson, Roger; Aman, Per

    2004-04-07

    The starch accumulation-degradation process as well as the structure of leaf starch are not completely understood. To study this, starch was isolated from potato leaves collected in the early morning and late afternoon in July and August, representing different starch accumulation rates. The starch content of potato leaves varied between 2.9 and 12.9% (dry matter basis) over the night and day in the middle of July and between 0.6 and 1.5% in August. Scanning electron microscopy analyses of the four isolated starch samples showed that the granules had either an oval or a round shape and did not exceed 5 microm in size. Starch was extracted by successive washing steps with dimethyl sulfoxide and precipitated with ethanol. An elution profile on Sepharose CL-6B of debranched starch showed the presence of a material with a chain length distribution between that generally found for amylose and amylopectin. Amylopectin unit chains of low molecular size were present in a higher amount in the afternoon than in the morning samples. What remains at the end of the night is depleted in specific chain lengths, mainly between DP 15 and 24 and above DP 35, relative to the end of the day.

  13. Catalytic Transesterification of Starch with Plant Oils: A Sustainable and Efficient Route to Fatty Acid Starch Esters.

    Science.gov (United States)

    Söyler, Zafer; Meier, Michael A R

    2017-01-10

    The transesterification of maize starch with olive oil or high oleic sunflower oil was studied under homogeneous conditions in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst. Most importantly, this method used two renewable resources directly, without any pretreatment or derivatization, for the synthesis of polymeric materials with desirable properties. Moreover, the solvent, oils, and catalyst could be recovered through facile work-up and reused for further modifications. The obtained fatty acid starch esters (FASEs) were highly soluble in common organic solvents and were thoroughly characterized. Degrees of substitution (DS) were calculated using (31) P NMR spectroscopy, and DS values of approximately 1.3 were obtained. Differential scanning calorimetry analysis revealed thermal transitions of the modified starches at approximately 80-90 °C. Films were produced from these FASEs, and their hydrophobic surfaces were characterized using contact-angle measurements. Furthermore, mechanical properties were examined using tensile strength measurements and showed approximately 40 and 80 % elongation at break for modified maize starch and modified amylose from maize, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dual modification of taro starch by microwave and other heat moisture treatments.

    Science.gov (United States)

    Deka, Dhritiman; Sit, Nandan

    2016-11-01

    Effect of heat moisture treatment on the physicochemical properties of taro starch with 25% moisture (w/w) modified by single treatments of microwave (HMT1), autoclave (HMT2) and hot air oven (HMT3), and dual treatments of microwave followed by autoclave (HMT4) and microwave followed by hot air oven (HMT5) were investigated. Amylose contents of the modified starches increased except for HMT3. A loss of physical integrity of the starch granules were observed for dual modified starches. The swelling and solubility of all the modified starches increased. The peak viscosities of starches modified by HMT1 and HMT5 were found to be higher whereas for other modified starches it was lower than that of native starch. The holding and final viscosities of all the modified starches except HMT4 were higher than native starch. The freeze-thaw stabilities of the modified starches were also found to be better than that of native starch.

  15. Structural characterization of Peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure.

    Science.gov (United States)

    Rocha, Thais S; Cunha, Verena A G; Jane, Jay-Lin; Franco, Celia M L

    2011-04-27

    Structural characteristics of native and annealed Peruvian carrot (Arracacia xanthorrhiza) starches were determined and compared to those of cassava and potato starches. Peruvian carrot starch presented round and irregular shaped granules, low amylose content and B-type X-ray pattern. Amylopectin of this starch contained a large proportion of long (DP > 37) and short (DP 6-12) branched chains. These last ones may contribute to its low gelatinization temperature. After annealing, the gelatinization temperatures of all starches increased, but the ΔH and the crystallinity increased only in Peruvian carrot and potato starches. The annealing process promoted a higher exposure of Peruvian carrot amylose molecules, which were more quickly attacked by enzymes, whereas amylopectin molecules became more resistant to hydrolysis. Peruvian carrot starch had structural characteristics that differed from those of cassava and potato starches. Annealing affected the semicrystalline structure of this starch, enhancing its crystallinity, mainly due to a better interaction between amylopectin chains.

  16. Effect of enzyme activity on the starch structure and processing quality of selected rice varieties

    Science.gov (United States)

    Although most commercialized long grain rice varieties have intermediate amylose content (~22%), high amylose (>25%) varieties are important for the canning and parboiling industry. Research has shown that high amylose rice varieties that have the best processing quality have high setback and low br...

  17. Preparation of linear maltodextrins using a hyperthermophilic amylopullulanase with cyclodextrin- and starch-hydrolysing activities.

    Science.gov (United States)

    Li, Xiaolei; Li, Dan

    2015-03-30

    A novel method for the preparation of linear maltodextrins from cyclodextrins and starch was proposed. To accomplish this process, an amylopullulanase from hyperthermophilic archaeon Caldivirga maquilingensis (CMApu) was characterized and used. CMApu with an estimated molecular mass of 62.7 kDa by SDS-PAGE had a maximal pullulan-hydrolysing activity at 100°C and pH 5.0. It could also hydrolyse amylopectin (AP), starch, β-CD and amylose (AM), in a decreasing order of relative activities from 88.96% to 57.17%. TLC and HPAEC analysis revealed that CMApu catalyzed the debranching and degrading reactions to produce linear malto-oligosaccharides (≤ G8-G1) from G8-β-CD and/or normal CDs, amylodextrins (DP6-96) from AM, and amylodextrins (DP1-76) from AP and potato starch. Our results showed that CMApu had a great potential for the industrial preparation of linear maltodextrins from normal starch instead of waxy starch, malto-oligosaccharides or sucrose. And the high optimal temperature of CMApu facilitated the simultaneous gelatinization and hydrolysis of cereal starch.

  18. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  19. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects.

    Science.gov (United States)

    Zhang, Yi; Zeng, Hongliang; Wang, Ying; Zeng, Shaoxiao; Zheng, Baodong

    2014-07-15

    Lotus seed resistant starch (LRS) is a type of retrograded starch that is commonly known as resistant starch type 3 (RS3). The structural and crystalline properties of unpurified LRS (NP-LRS3), enzyme purified LRS after drying (GP-LRS3), and enzyme purified LRS (ZP-LRS3) were characterized. The result showed that the molecular weights of NP-LRS3, GP-LRS3, and ZP-LRS3 were 0.102 × 10(6), 0.014 × 10(6), and 0.025 × 10(6)Da, respectively. Compared with native starch and high amylose maize starch (HAMS), LRS lacked the polarization cross and the irregularly shaped LRS granules had a rougher surface, B-type crystal structure, and greater level of molecular order. The FT-IR measurements indicated no differences in the chemical groups. Analysis by (13)C NMR indicated an increased propensity for double helix formation and higher crystallinity in LRS than in the two other types of starch. Moreover, LRS was more effective than either glucose or HAMS in promoting the proliferation of bifidobacteria.

  20. Characterization of Chemical and Physical Properties of Hydroxypropylated and Cross-linked Arrowroot (Marantha arundinacea Starch

    Directory of Open Access Journals (Sweden)

    Rijanti Rahaju Maulani

    2013-12-01

    Full Text Available The modern food industry and a variety of food products require tolerant starch as raw material for processing in a broad range of techniques, from preparation to storage and distribution. Dual modification of arrowroot starch using hydroxypropylation and cross-linking was carried out to overcome the lack of native arrowroot starch in food processing application. The modifications applied were: combined propylene oxide (8%, 10%, and 12%; sodium tri meta phosphate/STMP (1%, 2%, and 3%; and sodium tri poly phosphate/STPP (4%, 5%, and 6%. These modifications significantly affected the composition of the amylose and amylopectin and the amount of phosphorus in the granules. Higher amounts of phosphate salt gave a higher phosphorus content, which increased the degree of substitution (DS and the degree of cross-link. Arrowroot starch that was modified using a concentration of 8-10% propylene oxide and 1-2% STMP : 3-5% STPP produced a starch with < 0.4% phosphorus content. A higher concentration of propylene oxide provided a higher degree of hydroxypropyl. The changed physical properties of the modified granular arrowroot starch were examined through SEM testing, and its changed crystalline patterns through X-ray diffraction measurements. Especially, provision of a high concentration of propylene oxide (12% combined with 3% STMP : 6% STPP affected the granular morphology and the crystallinity.

  1. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids

    NARCIS (Netherlands)

    Silva, E.; Birkenhake, M.; Scholten, E.; Sagis, L.M.C.; Linden, van der E.

    2013-01-01

    Incorporating high volume fractions of broccoli powder in starch noodle dough has a major effect on its shear modulus, as a result of significant swelling of the broccoli particles. Several hydrocolloids with distinct water binding capacity (locust bean gum (LBG), guar gum, konjac glucomannan (KG),

  2. Long-term performance and behavior of sows fed high levels of non-starch polysaccharides

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.

    2004-01-01

    The main objective of this thesis was to investigate the long-term effects of feeding sows high levels of dietary fermentable non-starch polysaccharides CNSP) (i.e., NSP from sugar beet pulp) restrictedly or ad libitum during gestation or ad libitum during lactation on behavior, reproductive perform

  3. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    Science.gov (United States)

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM.

  4. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... branching connecting larger chain segments. In case of high BE activity this transfer happened prior to hydration and phase separation. The starch substrates thereby became locked in their granular structure and blocked furher access of BE. Transferase-based modification of starch has today almost...... exclusively been conducted on gelatinized starch. This study provides a new concept for transferase-based modification of starches in granular state....

  5. Starch and Free Sugars during Kernel Development of Bomi Barley and its High-Lysine Mutant 1508

    DEFF Research Database (Denmark)

    Kreis, Michael

    1978-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...

  6. Limiting factors of starch hydrolysis.

    Science.gov (United States)

    Colonna, P; Leloup, V; Buléon, A

    1992-10-01

    Foods appear as complex structures, in which starch may be present in different forms. These, including the molecular characteristics and the crystalline organization, depend on processing conditions and compositions of ingredients. The main changes in starch macro- and microstructures are the increase of surface area to volume ratio in the solid phase, the modification of the crystallinity as affected by gelatinization and gelation, and the depolymerization of amylose and amylopectin. Starch modification may be estimated by different methodologies, which should be selected according to the level of structure considered. When amylose and amylopectin are in solution, rapid and total hydrolysis leads to the formation of a mixture of linear oligosaccharides and branched alpha-limit dextrins. However, starch usually occurs in foods as solid structures. Structural factors of starchy materials influence their enzymic hydrolysis. A better understanding of the enzymatic process enables the identification of the structural factors limiting hydrolysis: diffusion of enzyme molecules, porosity of solid substrates, adsorption of enzymes onto solid substrates, and the catalytic event. A mechanistic modelling should be possible in the future.

  7. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  8. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel;

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  9. Amylose Content and Grain Length of New Rice Transgressive Variants Derived from a Cross Between O. rufipogon and Malaysian Rice Cultivar MR219

    Directory of Open Access Journals (Sweden)

    Parviz Fasahat

    2012-01-01

    Full Text Available Amylose content is one of the important grain quality properties of rice. A total of 10 new rice genotypes (BC2F7 generation derived from a cross between O. rufipogon Griff. accession IRGC105491 and O. sativa subspecies indica cv. MR219 with high yield were evaluated for amylose content in three environments in Peninsular Malaysia. One of the parents, a popular high yielding Malaysian rice cultivar MR219 was used as a check. Based on the average amylose content across the environments, the genotype G13 showed significantly (p < 0.05 different amylose content (23.88 % in comparison to other genotypes. Two genotypes G13 (25.7% and G15 (25.6% were higher than MR219 (25.1% in terms of amylose content in Sungai Besar environment. There was a positive (r2=0.018 but no significant correlation between amylose content and grain length.

  10. Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization.

    Science.gov (United States)

    Li, Wenhao; Guo, Hongmei; Wang, Peng; Tian, Xiaoling; Zhang, Wei; Saleh, Ahmed S M; Zheng, Jianmei; Ouyang, Shaohui; Luo, Qingui; Zhang, Guoquan

    2015-10-20

    The changes in physicochemical and structural properties of Ultra high pressure (UHP) gelatinized mung bean starch were investigated during 0 to 196h retrogradation process by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). XRD analysis showed that the UHP-gelatinizated granules regenerated its original C-type crystallinity structures after retrogradation. The swelling power and solubility of native starch were increased with the increase in the assay temperatures from 50 to 90°C, while the changing trend of the retrogradated granules was more gradual over entire assay temperatures. In addition, retrogradated granules showed a progressive decrease in the light transmittance and an increase in the amount of resistant starch as the ageing time increased from 0 to 192h. DSC analysis suggested a slight increase in the transition temperatures (To, Tp and Tc) and the retrogradation enthalpy as the storage time increased. In contrast no endothermic transition peak could be observed using DSC after storage of heat-gelatinized mung bean starch gel.

  11. High phosphorylase activity is correlated with increased potato minituber formation and starch content during extended clinorotation

    Science.gov (United States)

    Nedukha, O. M.; Schnyukova, E. I.; Leach, J. E.

    2003-05-01

    The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.

  12. Extraction of high-quality RNA from germinating barley (Hordeum vulgare L.) seeds containing high levels of starch.

    Science.gov (United States)

    Comparative evaluation of gene expression levels can lead to improved understanding of the gene networks underlying traits of economic importance. Extraction of high-quality RNA from germinating barley seeds that contain high levels of starch is of vital importance for analysing the expression of ca...

  13. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    Science.gov (United States)

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (Pstarch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  14. Polymer composites prepared from heat-treated starch and styrene-butadiene latex

    Science.gov (United States)

    Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...

  15. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Soest, van J.J.G.; Jin, Z.; Sulmann, E.; Voragen, A.G.J.

    2007-01-01

    Starches from cowpea and chickpea seeds were isolated and their properties were compared with those of commercial yellow pea starch. Amylose contents were 25.8%, 27.2%, and 31.2%, and the volume mean diameter of granules, determined in the dry state, were 15.5, 17.9, and 33.8 ¿m for cowpea, chickpea

  16. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches

    NARCIS (Netherlands)

    Huang, J.; Schols, H.A.; Soest, van J.J.G.; Jin, Z.; Sulmann, E.; Voragen, A.G.J.

    2007-01-01

    Starches from cowpea and chickpea seeds were isolated and their properties were compared with those of commercial yellow pea starch. Amylose contents were 25.8%, 27.2%, and 31.2%, and the volume mean diameter of granules, determined in the dry state, were 15.5, 17.9, and 33.8 ¿m for cowpea, chickpea

  17. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner.

  18. 玉米淀粉的热力学性质与消化性%Thermodynamic Property and Digestibility of Corn Starches

    Institute of Scientific and Technical Information of China (English)

    黄强; 王婵; 罗发兴; 扶雄; 张斌

    2011-01-01

    对4种不同直链/支链淀粉含量的玉米淀粉(蜡质玉米淀粉、普通玉米淀粉、Hylon Ⅴ和Hylon Ⅶ)的热力学性质及体外消化性进行测定,进一步分析了淀粉热力学性质与消化性的关系.结果表明:高支(蜡质和普通)玉米淀粉与高链玉米淀粉(Hylon Ⅴ和Hylon Ⅶ)的热力学性质存在显著差异;高支玉米淀粉的起糊温度在70℃左右,而高链玉米淀粉( Hylon Ⅶ)在煮沸的情况下也难以糊化;4种淀粉的峰值黏度随直链含量升高显著下降;具有适当直链含量的普通玉米淀粉具有较高的膨胀度,普通玉米淀粉、Hylon Ⅴ和Hylon Ⅶ在90℃的膨胀度分别为13.07、5.63和4.54 g/g.差示扫描量热(DSC)分析结果表明:蜡质玉米淀粉只有单一的吸热峰,而普通玉米淀粉和高链玉米淀粉还有直链淀粉与脂质复合物吸热峰,但吸热焓值较蜡质玉米淀粉低;淀粉经蒸煮处理后,糊化温度较低且具有较高膨胀度的普通玉米淀粉的慢消化淀粉含量较高;而糊化温度较高、膨胀度较低的高链玉米淀粉中的抗性淀粉含量较高.%Four kinds of corn starches with different amylose/amylopectin contents, namely, waxy corn starch, normal corn starch, Hylon Vand Hylon Ⅶ, were investigated in the aspects of thermodynamic property and in vitro digestibility , and the relationship between the two properties was further analyzed. It is found that the thermodynamic property difference between the native high-amylopectin ( waxy and normal) corn starches and the high-amylose ( Hylon Ⅴand Hylon Ⅶ) ones is great, that the pasting temperatures of the high-amylopectin corn starches are a-bout 70℃, while the high-amylose corn starch ( Hylon Ⅶ) is resistant to gelatinization even in the boiling water, that the peak viscosities of four kinds of corn starches varieties significantly decrease with the increase of amylose content, that the normal corn starch with proper amylose content is of

  19. 高直链玉米淀粉全降解片材的制备%Preparation of Total Biodegradable Sheet with High Amylose Corn Starch

    Institute of Scientific and Technical Information of China (English)

    孙炳新; 谷宏; 韩春阳; 马涛

    2009-01-01

    以高直链玉米淀粉(HACS)为原料,通过与二氧化碳树脂共混塑炼制备全降解片材.探讨了淀粉与二氧化碳树脂不同配比和增塑剂邻苯二甲酸二辛酯(DOP)以及聚乙二醇(PEG)等添加剂的用量对材料性能的影响.结果表明,片材力学性能比普通淀粉效果要好,同时当DOP用量为1mL,PEG 6000用量为2g时,材料的性能指标最佳.

  20. Expression of an engineered granule-bound Escherichia coli glycogen branching enzyme in potato results in severe morphological changes in starch granules

    NARCIS (Netherlands)

    Huang, X.; Nazarian Firouzabadi, F.; Vincken, J.P.; Ji, Q.; Suurs, L.C.J.M.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    The Escherichia coli glycogen branching enzyme (GLGB) was fused to either the C- or N-terminus of a starch-binding domain (SBD) and expressed in two potato genetic backgrounds: the amylose-free mutant (amf) and an amylose-containing line (Kardal). Regardless of background or construct used, a large

  1. PERUBAHAN STRUKTUR PATI GARUT (Maranta arundinaceae SEBAGAI AKIBAT MODIFIKASI HIDROLISIS ASAM, PEMOTONGAN TITIK PERCABANGAN DAN SIKLUS PEMANASAN-PENDINGINAN [Structure Changes of Arrowroot (Maranta arundinaceae Starch as Influenced by Acid Hydrolysis, Debranching and Autoclaving-Cooling Cycle Modifications

    Directory of Open Access Journals (Sweden)

    Didah Nur Faridah1*

    2010-12-01

    Full Text Available The effects of lintnerization (2.2 N HCl, 2 hours, debranching with pullulanase (1.3 U/g and 10.4 U/g starch and/or three-auctoclaving-cooling cycles at 121oC for 15 minutes on the changes of arrowroot starch structures were studied. The structural modifications of amylose and amylopectin were measured by Gel Permiation Chromatography (GPC, and the distribution of degree of polimerization (DP was analyzed by Fluorophore-Assisted Capillary Electrophoresis (FACE. The GPC profile of native starch using Toyopearl HW-65S gel gave mainly two fractions. Fraction I (Fr. I was a high molecular weight component and Fraction II (Fr. II was a low molecular weight component. After acid modification, the carbohydrate content of Fr. II increased while that of Fr. I decreased. The amount of DP of 6 to 8 increased in all modified arrowroot starches. The GPC and FACE analyses showed that all starch modification techniques caused the structural changes of amylopectin molecules to form short chain amyloses.

  2. Amylose and Amylopectin Influence on Liquor Production%直支链淀粉对白酒生产的影响

    Institute of Scientific and Technical Information of China (English)

    李秋涛; 练顺才; 常亮; 廖勤俭; 叶华夏; 李杨华

    2013-01-01

    本文比较了不同直支链淀粉含量的大米、高粱的糊化情况和蒸煮香气,并进行了实验室和窖池发酵试验。结果发现酿酒微生物代谢出的酶既能水解支链淀粉也能水解直链淀粉;同一品种的粮食直链淀粉越高,淀粉结构越紧密,糊化时间越长,粮香越浓;不同品种的粮食淀粉颗粒大小、结构不同,糊化时间也不同。不管是直链淀粉还是支链淀粉,只要糊化得好,出酒率差别不大。%In this paper, by comparing different amylose and amylopectin starch content of pasting and cooking fragrance of rice, sorghum, and pits fermentation test lab. Found that wine out of microbial metabolism enzyme can hydrolysis of starch hydrolysis can also amylose; The same varieties of grain amylose is higher , the closer starch structure, gelatinization, the longer food is sweet grows; Different varieties of starch grain size, grain structure, gelatinization time is also different. Both amylose and amylopectin, well as long as gelatinization, liquor yield.

  3. ¬¬OPTIMASI PENGGUNAAN HIDROKOLOID TERHADAP PASTA MAKARONI BERBASIS BERAS BERAMILOSA TINGGI [Hydrocolloid Optimization on Maccaroni Pasta from High Amylose Rice

    Directory of Open Access Journals (Sweden)

    Eko Hari Purnomo

    2015-12-01

    Full Text Available Pasta is an extrusion product which is commonly produced from wheat flour. Gluten is key substance of wheat flour that affect quality of pasta, such as low cooking loss, low adhesiveness and firm pasta structure. However, gluten may cause health problem for consumers with celiac disease or gluten intolerance. Rice is safe for celiac disease sufferer, but it is technologically challenging to develop rice-based pasta. The objective of this research was to evaluate the effect of different ratio between xanthan gum and guar gum (2% on the physical characteristics of macaroni pasta from rice flour. This research consisted of several steps which include flour milling and characterization, formulation, and final product analysis. The result showed that different ratio of xanthan gum and guar gum had significant effect to cooking loss, adhesiveness, springiness and hue parameters (P0.05. The optimum formula was noodle by hydrocolloid ratio 2% of xanthan gum and 0 % of guar gum which had desirability value of 0.798. The selected formula was organoleptically accepted by panelists and containing 9.84 % of water, 1.65% of ash, 12.05% of protein, 1.41% of fat, 75.05% of carbohydrate, 24.49% of amylose, also 33.49 "μm" of pore size.

  4. Starch Accumulation and Activities of Key Enzymes Involved in Starch Synthesis in the Grains of Maize Inbred Lines with Different Starch Contents%淀粉含量不同的玉米自交系籽粒淀粉积累及其关键酶活性

    Institute of Scientific and Technical Information of China (English)

    张军杰; 胡育峰; 周会; 黄玉碧

    2007-01-01

    以2个高淀粉和2个低淀粉玉米自交系为材料,分析了玉米籽粒淀粉的动态积累规律,同时对高低淀粉玉米籽粒灌浆过程中淀粉生物合成关键酶活性的动态变化及其与淀粉积累动态的相关性进行讨论分析.研究结果表明:灌浆过程中4个自交系淀粉含量变化趋势均呈sigmoid型曲线.灌浆过程中ADPG-PPase(腺苷二磷酸葡萄糖焦磷酸化酶)、SSS(可溶性淀粉合成酶)、GBSS(颗粒结合淀粉合成酶)活性均呈单峰曲线变化,峰值都出现在20~30 DAP(授粉后天数).2个高淀粉自交系的Q酶(淀粉分支酶)活性也呈单峰曲线变化,峰值也出现在20DAP,而2个低淀粉自交系的Q酶活性则呈双峰曲线变化,2个峰值分别出现在15~20 DAP和30~35DAP.4个自交系籽粒淀粉的积累速率与各自交系ADPG-PPase、SSS和GBSS的活性变化呈极显著正相关.各自交系关键酶活性之间,ADPG-PPase、SSS和GBSS三者间活性变化呈极显著正相关,这3种酶活性变化与Q酶活性变化也呈不同程度的正相关.%Amylose,amylopectin and starch dynamic accumulation and key enzymes activities in the grains of 4 maize inbred lines (two high-starch ones and two lowstarch ones)were studied.The amounts of amylose.amylopectin and starch in the grains of 4 maize inbred lines increased as sigmoid curves during grain filling period.The changes in amylose,amylopectin and starch accumulation rates followed single-peaked curves,and reached theif peaks in the 25-30 days after pollination (DAP).Changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPG-PPase,EC 2.7.7.27),soluble starch synthase(sss,EC 2.4.1.21)and starch granule-bound synthase(GBSS,EC 2.4.1.21)in the grains of 4 inbred lines appeared single-peaked curves with the peaks appearing 20-30 DAP.Changes in activities of starch-branching enzyme(Q-enzyme,EC 2.4.1.18) in the grains of high-starch inbred lines appeared single-peaked curves with the peak values at 20 DAP

  5. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking.

    Science.gov (United States)

    Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong

    2017-03-15

    Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility.

  6. Residual feed intake is repeatable for lactating Holstein dairy cows fed high and low starch diets.

    Science.gov (United States)

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2015-07-01

    Residual feed intake (RFI) is a tool to quantify feed efficiency in livestock and is commonly used to assess feed efficiency independent of production level, body weight (BW), or BW change. Lactating Holstein cows (n=109; 44 primiparous and 65 multiparous), averaging (mean ± standard deviation, SD) 665±77kg of BW, 42±9kg of milk/d, and 120±30 d postpartum, were fed diets of high (HI) or low (LO) starch content in 4 crossover experiments with two 28-d treatment periods. The LO diets were ~40% neutral detergent fiber (NDF) and ~14% starch and the HI diets were ~26% NDF and ~30% starch. Individual dry matter intake (DMI) of a cow was modeled as a function of milk energy output, metabolic BW, body energy change, and fixed effects of parity, experiment, cohort nested within experiment, and diet nested within cohort and experiment; RFI for each cow was the residual error term. Cows were classified as high (>0.5 SD of the mean), medium (±0.5 SD of the mean), or low (feed, income over feed cost, and DMI were also highly repeatable (r=0.72, 0.84, and 0.92, respectively). We achieved significant changes in milk yield and component concentration as well as energy partitioning between HI and LO diets and still determined RFI to be repeatable across diets. We conclude that RFI is reasonably repeatable for a wide range of dietary starch levels fed to mid-lactation cows, so that cows that have low RFI when fed high corn diets will likely also have low RFI when fed diets high in nonforage fiber sources. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Characteristics of fluid composition of left displaced abomasum in beef cattle fed high-starch diets.

    Science.gov (United States)

    Ichijo, Toshihiro; Satoh, Hiroshi; Yoshida, Yuki; Murayama, Isao; Kikuchi, Tomoko; Sato, Shigeru

    2014-08-01

    To clarify the pathophysiology of left displaced abomasum (LDA), beef cattle fed high-starch diets were examined. The abomasal pH in beef cattle with LDA was lower than that in non-LDA reference animals (data from beef cattle at an abattoir), suggesting that it facilitated acidity. Bacteriological examinations of the abomasal fluid in cattle with LDA revealed the presence of Pseudomonas spp., Clostridium spp. and Candida spp., presumably reflecting the accelerated influx of ruminal fluid into the abomasum. Biochemical analyses of serum revealed that LDA cattle had higher lactic acid and lower vitamin A and E levels than non-LDA reference animals. These results indicate that beef cattle with LDA may suffer from vitamin A and E deficiencies due to maldigestion of starch and the high acidity of abomasal fluid.

  8. Preparation and Physical Properties of Starch Stearates of Low to High Degree of Substitution

    Science.gov (United States)

    Starch stearates of degree of substitution (DS) 0.07-2.40 were prepared by heating dry starch and vinyl stearate in the ionic liquid BMIM dca at 75 Degrees C. Starch stearate of low DS (0.07) was insoluble in water but formed a gel and absorbed over seven times its weight of water. Starch stearate...

  9. Molecular structure and physicochemical properties of potato and bean starches as affected by gamma-irradiation.

    Science.gov (United States)

    Chung, Hyun-Jung; Liu, Qiang

    2010-08-01

    In this study, potato and bean starches were treated by gamma-irradiation up to 50kGy. Molecular structure and physicochemical properties of irradiated potato and bean starches were investigated. Microscopic observation under scanning electron microscope (SEM) and polarized microscope showed that some of potato and bean starch granules were destroyed by gamma-irradiation and the breakage was much greater at a higher dose (50 kGy). Carboxyl content and amylose leaching increased, whereas the swelling factor and apparent amylose content decreased after irradiation in both potato and bean starches. The proportions of short (DP 6-12) and long (DP > or = 37) amylopectin chains as well as average chain length increased with increasing irradiation dose. However, the proportion of DP 13-24 decreased by irradiation. The relative crystallinity, the degree of granule surface order, and gelatinization enthalpy decreased with an increase in irradiation dose. The extent of decrease in potato starch was greater than that in bean starch. The exothermic peak around 90-110 degrees C was observed in DSC thermogram when the potato starch was irradiated at 50 kGy. The pasting viscosity significantly decreased with an increase in irradiation dose. The proportion of slowly digestible starch (SDS) decreased and resistant starch (RS) content increased by irradiation in both potato and bean starches. However, the rapidly digestible starch (RDS) of potato starch increased with increasing irradiation dose, whereas the bean starch showed the opposite trend to potato starch in RDS content.

  10. Effect of tapioca starch and amyloglucosidase concentration on very high gravity simultaneous saccharification and fermentation (VHG-SSF) of bioethanol

    Science.gov (United States)

    Sugih, A. K.; Santoso, I. V.; Kristijarti, A. P.

    2015-12-01

    Tapioca starch is isolated from the root of cassava plant (Manihot esculenta). It is produced in a large quantity in Indonesia and other south east Asian countries. Tapioca starch has been commonly used as a feedstock for food as well as non-food industries. Due to its high carbohydrate content, tapioca starch has the potentiality to be used as a raw material for bioethanol production. In this research, a novel approach (Very High Gravity Simultaneous Sacharification and Fermentation/ VHG-SSF) to synthesise highly concentrated ethanol from tapioca starch was investigated. Tapioca starch suspension was first gelatinised for two hours at 90°C and hydrolised at the same temperature for another two hours using commercial α- amylase (Liquozyme Supra, 0.16%-v/ w starch). The pretreated suspension was sterilised and mixed with nitrogenous supplement. In order to start the fermentation, Saccharomyces cereviseae NRRL Y-132 inoculum (10%-v/v; 107 cells/ ml) and commercial amyloglucosidase (Dextrozyme GA, 35-105 AGU/ g starch) were added to the mixture. The initial total carbohydrate, yeast extract, and peptone concentrations of the fermentation broths were 30-40 %-w/v, 1%-w/v, and 2%-w/v, respectively. VHG-SSF was allowed to proceed for 6 days at 30°C with rotary shaker speed of 100 rpm. The concentration of glucose and ethanol during fermentation was monitored using HPLC. The experimental result shows that tapioca starch has been successfully converted to ethanol with a final concentration of 10.12-16.14 %-w/v, which is corresponding to yield of 34.68-56.83 %-w ethanol/ w-converted sugar. The result suggests that VHG-SSF is a prospective method to synthesise bioethanol from tapioca starch.

  11. Possibilities and constraints of implementing starch consolidated high speed steel in prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Borgstroem, H. [Chalmers University of Technology, Goeteborg (Sweden)], E-mail: henrik.borgstrom@chalmers.se; Harlin, P.; Olsson, M. [Dalarna University, Borlaenge (Sweden); Paiar, T. [Universita di Trento, Trento (Italy); Wang, Y. [University of Karlstad (Sweden); Nyborg, L. [Chalmers University of Technology, Goeteborg (Sweden)

    2008-02-25

    In the starch consolidation (SC) process, a water-based slurry containing powder, starch, dispersant and thickener is used to fabricate near net-shape green bodies that are de-binded and further consolidated by sintering. In this study, gas atomized M3/2 as well as high and low carbon V-rich M4 type high speed steel powder (<150 {mu}m) are considered. Both material types undergo high volumetric shrinkage during super-solidus liquid phase sintering enabling them to reach near full density. The analyses and the review cover different process aspects like: recipe optimisation, post-gelatinization drying, de-binding and sintering. A SC recipe consisting of 58 vol.% powder, 3 vol.% starch, 1 vol.% dispersant and a thickener solution resulted in a density of >98% than what is theoretically stated after sintering. It is found that the success of the post-gelatinization drying procedure depends on the smoothness of mould material and controlling powder oxidation. The best combination was freeze drying the slurry in a silicon rubber mould. For V-rich alloys a total or partial control of eutectic carbides in the final microstructure could be realized for vacuum and nitrogen sintering atmospheres, respectively.

  12. Amylose-iodine complex. I. Sedimentation behavior.

    Science.gov (United States)

    Dintzis, F R; Beckwith, A C; Babcock, G E; Tobin, R

    1976-01-01

    Sedimentation measurements are reported on solutions of blue amylose-iodine complexes in the range of 0.001 to 0.007% amylose. Amylose fractions B and F2, of weight average molecular weight average molecular weight 4.0 X 10(5) and 3.4 X 10(4), respectively, were used in this study. Iodine complexes of these fractions formed polydisperse solutions of limited solubility and stability. Sedimentation coefficients increased as a function of potassium iodide concentration. Values for fraction B complexes varied from (16.3 +/- 1.0) X 10(-13) at 1.2 X 10(-3) M KI to (57.2 +/- 7.5) X 10(-13) at 8.3 X 10(-3) M KI; values for fraction F2 complexes varied from (10.0 +/- 1.2) X 10(-13) at 1.2 X 10(-13) M KI to (24.8 +/- 3.9) X 10(-13) at 9.5 X 10(-3) M KI. At constant potassium iodide concentration, sedimentation coefficients, within our experimental error of 10 to 15% standard deviation, are independent of amylose concentration. Time dependence of sedimentation coefficient values was observed for solutions either saturated or unsaturated with respect to the iodine-binding capacity of amylose. For iodine-saturated complex solutions, sedimentation coefficients extrapolated to zero potassium iodide concentration were two to three times greater than for the parent amylose. Measurements are evaluated in terms of possible polyelectrolytic charge effects and aggregation. Under conditions used in these experiments, aggregation of amylose-iodide complexes appears to be the mechanism responsible for the large increase in sedimentation coefficients.

  13. Genome-specific granule-bound starch synthase I (GBSSI) influences starch biochemical and functional characteristics in near-isogenic wheat ( Triticum aestivum L.) lines.

    Science.gov (United States)

    Ahuja, Geetika; Jaiswal, Sarita; Hucl, Pierre; Chibbar, Ravindra N

    2013-12-11

    Near-isogenic wheat ( Triticum aestivum L.) lines differing at the Waxy locus were studied for the influence of genome-specific granule-bound starch synthase I (GBSSI/Waxy; Wx-A, Wx-B, Wx-D) on starch composition, structure, and in vitro starch enzymatic hydrolysis. Grain composition, amylose concentration, amylopectin unit-chain length distribution, and starch granule size distribution varied with the loss of functional GBSSI. Amylose concentration was more severely affected in genotypes with GBSSI missing from two genomes (double nulls) than from one genome (single nulls). Unit glucan chains (DP 6-8) of amylopectin were reduced with the complete loss of GBSSI as compared to wheat starch with a full complement of GBSSI. Wx-A and Wx-B had an additive effect toward short-chain phenotype of waxy amylopectin. Loss of Wx-D isoprotein alone significantly (p starch hydrolysis as it increased the large A-type starch granule content (volume %) and reduced short chains (DP 6-8) in amylopectin. Factors such as small C-type starch granules, amylose concentration, and long chains of amylopectin (DP 23-45) also influenced wheat starch hydrolysis.

  14. Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri.

    Science.gov (United States)

    Hedin, Nicolas; Barchiesi, Julieta; Gomez-Casati, Diego F; Iglesias, Alberto A; Ballicora, Miguel A; Busi, María V

    2017-03-15

    Starch branching enzyme is a highly conserved protein from plants to algae. This enzyme participates in starch granule assembly by the addition of α-1,6-glucan branches to the α-1,4-polyglucans. This modification determines the structure of amylopectin thus arranging the final composition of the starch granule. Herein, we describe the function of the Ot01g03030 gene from the picoalgae Ostreococcus tauri. Although in silico analysis suggested that this gene codes for a starch debranching enzyme, our biochemical studies support that this gene encodes a branching enzyme (BE). The resulting 1058 amino acids protein has two in tandem carbohydrate binding domains (CBMs, from the CBM41 and CBM48 families) at the N-terminal (residues 64-403) followed by the C-terminal catalytic domain (residues 426-1058). Analysis of the BE truncated isoforms show that the CBMs bind differentially to whole starch, amylose or amylopectin. Furthermore, both CBMs seem to be essential for BE activity, as no catalytic activity was detected in the truncated enzyme comprising only by the catalytic domain. Our results suggest that the Ot01g03030 gene codifies for a functional BE containing two CBMs from CBM41 and CBM48 families which are critical for enzyme function and regulation. Copyright © 2017. Published by Elsevier Inc.

  15. Systematic Analysis of Pericarp Starch Accumulation and Degradation during Wheat Caryopsis Development.

    Science.gov (United States)

    Yu, Xurun; Li, Bo; Wang, Leilei; Chen, Xinyu; Wang, Wenjun; Wang, Zhong; Xiong, Fei

    2015-01-01

    Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.

  16. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch.

    Science.gov (United States)

    Li, Guantian; Zhu, Fan

    2017-05-15

    Structure-function relationships of starch components remain a subject of research interest. Quinoa starch has very small granules (∼2μm) with unique properties. In this study, nine quinoa starches varied greatly in composition, structure, and physicochemical properties were selected for the analysis of structure-function relationships. Pearson correlation analysis revealed that the properties related to gelatinization such as swelling power, water solubility index, crystallinity, pasting, and thermal properties are much affected by the amylopectin chain profile and amylose content. The parameters of gel texture and amylose leaching are much related to amylopectin internal structure. Other properties such as enzyme susceptibility and particle size distribution are also strongly correlated with starch composition and amylopectin structure. Interesting findings indicate the importance of amylopectin internal structure and individual unit chain profile in determining the physicochemical properties of starch. This work highlights some relationships among composition, amylopectin structure and physicochemical properties of quinoa starch.

  17. Significance of starch properties and quantity on sponge cake volume

    Science.gov (United States)

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  18. Characterization of normal and waxy corn starch for bioethanol production.

    Science.gov (United States)

    Yangcheng, Hanyu; Jiang, Hongxin; Blanco, Michael; Jane, Jay-lin

    2013-01-16

    Objectives of this study were to compare ethanol production between normal and waxy corn using a cold fermentation process and to understand effects of starch structures and properties on ethanol production. Ethanol yields positively correlated (p starch contents of kernels of the normal and waxy corn. The average starch-ethanol conversion efficiency of waxy corn (93.0%) was substantially greater than that of normal corn (88.2%). Waxy corn starch consisted of very little amylose and mostly amylopectin that had a shorter average branch chain length than normal corn amylopectin. Regression analyses showed that average amylopectin branch chain lengths and percentage of long branch chains (DP > 37) of waxy corn starch negatively correlated with the starch hydrolysis rate and the ethanol yield. These results indicated that starch structures and properties of the normal and waxy corn had significant effects on the ethanol yield using a cold fermentation process.

  19. Physical modification and characterization of starch using pregelatinization and co-process of various tubers from Yogyakarta as an excipient

    Science.gov (United States)

    Awaluddin, Rizki; Prasetya, Arif Widya; Nugraha, Yayan; Suweleh, Mohammad Fahmi; Kusuma, Aris Perdana; Indrati, Oktavia

    2017-03-01

    Starch is an economical excipient that is used in oral dosage form. It has poor compressibility and flowability. Pregelatinization and co-process as a physical modification technique have been conducted widely; nevertheless, the single modification shows a limitation. This study aims to assess and characterize the starch result of the modification of various tubers by a combination of modification methods. The starches from various tubers were extracted by sedimentation. Starch pregelatinization was conducted by manufacturing a starch suspension and was heated at 55°C for 70 minutes, and then it was mixed using concentrations HPMC k15 of 2, 3, and 4% (w/w) of the starch weight. The evaluations that were conducted are general identification, amylose concentration, physical properties, and physicochemical identification. The obtained starch of the extraction was 10-18% of the fresh tubers, with the concentration of amylose around 21-37%. The shape and particle size of the starch affected the amylose concentration. The starch modification showed an improvement of the granules physical properties by addition of HPMC. The amylose concentration of yam starch was 37.60% and showed the optimum modification result in the addition of HPMC 4%. There were no changes in the physicochemical properties of the result of IR and X-ray diffraction analysis. The melting point of yam starch-HPMC 4% was 151.24°C with reduction of the maximum weight at 328.52°C. This study indicated that the yam starch has the highest amylose concentration with optimum granules result of the modification in addition of HPMC 4% that could be used as an alternative excipient.

  20. Effect of waxy (Low Amylose) on Fungal Infection of Sorghum Grain.

    Science.gov (United States)

    Funnell-Harris, Deanna L; Sattler, Scott E; O'Neill, Patrick M; Eskridge, Kent M; Pedersen, Jeffrey F

    2015-06-01

    Loss of function mutations in waxy, encoding granule bound starch synthase (GBSS) that synthesizes amylose, results in starch granules containing mostly amylopectin. Low amylose grain with altered starch properties has increased usability for feed, food, and grain-based ethanol. In sorghum, two classes of waxy (wx) alleles had been characterized for absence or presence of GBSS: wx(a) (GBSS(-)) and wx(b) (GBSS(+), with reduced activity). Field-grown grain of wild-type; waxy, GBSS(-); and waxy, GBSS(+) plant introduction accessions were screened for fungal infection. Overall, results showed that waxy grains were not more susceptible than wild-type. GBSS(-) and wild-type grain had similar infection levels. However, height was a factor with waxy, GBSS(+) lines: short accessions (wx(b) allele) were more susceptible than tall accessions (undescribed allele). In greenhouse experiments, grain from accessions and near-isogenic wx(a), wx(b), and wild-type lines were inoculated with Alternaria sp., Fusarium thapsinum, and Curvularia sorghina to analyze germination and seedling fitness. As a group, waxy lines were not more susceptible to these pathogens than wild-type, supporting field evaluations. After C. sorghina and F. thapsinum inoculations most waxy and wild-type lines had reduced emergence, survival, and seedling weights. These results are valuable for developing waxy hybrids with resistance to grain-infecting fungi.

  1. Transcriptome Analysis Suggests That Starch Synthesis May Proceed via Multiple Metabolic Routes in High Yielding Potato Cultivars

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Høgh Petersen, Annabeth; Sønderkær, Mads

    2012-01-01

    Background: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP...... independent mechanism under special conditions. Nonetheless, glucose 6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. Principal Finding: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM) and normal...... to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P) in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. Significance: This could open entirely...

  2. Physicochemical properties of starches from two different yam (Dioscorea opposita Thunb. residues

    Directory of Open Access Journals (Sweden)

    Yugao Wang

    2011-04-01

    Full Text Available The starches obtained from two different yam residues, which were treated with alkali(starch-A or enzyme (starch-E, were studied and compared with yam starch isolated using ordinary method (starch-O for morphological, crystalline pattern, thermal, and pasting properties. The results revealed that the amylose content of three starches ranged from 19.47 to 22.17%. The granule surfaces of starch-A and starch-E were as smooth as that of starch-O. The crystalline pattern of the three starches was a C-type. The transition temperatures (To, Tp and Tc varied from 70.11 to 73.64, 79.23 to 81.74, and 84.30 to 86.65 ºC, respectively. The starch-E showed the highest Δ Hgel, followed by the starch-A, while it was lowest for the starch-O. According to the viscosity measurement, starch-O had the lowest pasting temperature, highest peak viscosity and breakdown viscosity, which were contrary to those of starch-E.

  3. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  4. Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in peas (Pisum sativum L.).

    Science.gov (United States)

    Skrabanja, V; Liljeberg, H G; Hedley, C L; Kreft, I; Björck, I M

    1999-05-01

    The formation of resistant starch (RS) and the rate of starch hydrolysis were evaluated in vitro in a wild type of green-seeded pea genotype RRRbRb BC3 (33-Am) with 32.7% amylose content and in two mutants RRrbrb BC3 (23-Am) and rrRbRb BC3 (65-Am) with amylose contents of 23.3 and 65.1%, respectively. Pea samples were intact or homogenized and subjected either to autoclaving or to boiling at atmospheric pressure. The amount of RS (total starch basis) varied from 6.2 to 12.9% in the 23-Am products and from 31.2 to 33.4% in the 65-Am products. The RS level of the 33-Am product with a regular amylose content was 11.0%. Both the 23-Am and the 65-Am products were abundant sources of dietary fiber (39 and 34%, dry matter basis, respectively) versus 23% in the regular pea product. The amylose/amylopectin ratio was an important determinant of the rate of starch hydrolysis. The hydrolysis indices (HI) and predicted glycemic indices were lowest in the 65-Am peas (HI range = 42-59) as compared to the 23-Am peas (HI range = 53-84). It is concluded that the pea genotypes covered a wide range in starch availability, which is likely to affect nutritional parameters such as glycemic responses and colonic delivery of starch.

  5. Relationship Between Variation in Activities of Key Enzymes Related to Starch Synthesis During Grain Filling Period and Quality of Eating and Cooking in Rice

    Institute of Scientific and Technical Information of China (English)

    SHEN Peng; QIAN Chun-rong; JIN Zheng-xun; LUO Qiu-xiang; JIN Xue-yong

    2006-01-01

    Four japonica rice varieties with significant differences in quality of eating and cooking were used in the experiment. The varieties showed differences in amylose and amyiopectin contents at different grain filling stages, which were attributed to the accumulative speed of starch at different grain filling stages. During grain filling period, the varieties had no difference in the time when the activities of ADPglocose pyrophosphorylase (AGPP) and soluble starch synthesis (SSS) reached a maximum, but had difference in the time when the activity of starch branching enzyme (SBE) reached a maximum, in which the inferior quality varieties were earlier than the high quality ones, and high quality varieties still kept high enzyme activities at the late stage of grain filling. The correlation and correlative degree between AGPP, SSS, SBE and amylose content, amylopectin content, taste meter value, and RVA properties varied with the different stages of grain filling. The correlation between SSS activity and taste meter value was not significant during the whole period of grain filling, but the activities of AGPP and SBE had significant or highly significant correlation with taste meter value. It was helpful for improving quality of eating and cooking of japonica rice to use the materials with low enzyme activity at the early stage of grain filling or high enzyme activity at the late stage as parents.

  6. Activities of the Enzymes Involved in Starch Synthesis and Starch Accumulation in the Grains of Wheat Cultivars, GC8901 and SN1391

    Institute of Scientific and Technical Information of China (English)

    LIU Xia; JIANG Chun-ming; ZHENG Ze-rong; ZHOU Zhu-nan; HE Ming-rong; WANG Zhen-lin

    2005-01-01

    Two wheat cultivars, GC8901 (hard winter wheat) and SN1391 (soft winter wheat), were used for investigating the changes of enzyme activities for sucrose metabolism and starch biosynthesis and the accumulation character of starch composition.The result showed that activities of sucrose (SS), sucrose-phosphate synthase (SPS), adenosine diphosphorate glucose pyrophrylase (AGPase) and soluble starch syntheses (SSS) of 1391, which have more starch, were significant higher than those of 8901, that with low starch content. But the changing of granule-bound starch synthase (GBSS) activity was consistent with the amylose content, which indicated that amylose contents in grain were determined by GBSS activity,especially the activity at later grain filling stages. Simulating with Richards equation showed that it was initiating time and accumulation rate, but not accumulation duration that determined the content of starch composition. Furthermore, changing of sucrose transport capacity was consistent with SSS and GBSS activities, starch accumulation rate was accordant to AGPase and SS/SPS ration, not SS, SPS, SSS or GBSS activities. The results suggested that there was no inevitable relation of starch accumulating rate and starch composition contents with the activity of single enzyme such as SS, SPS,SSS or GBSS, but closely related to AGPase activity and SS/SPS ratio, and it was SPS and AGPase that play a vital role in the biosynthetic pathway. Later polymerization reactions catalyzed by SSS and GBSS don't seem to control the rate of starch accumulation, but do affect starch structure.

  7. Starch poisoning

    Science.gov (United States)

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  8. Facile Preparation Method for Inclusion Complexes between Amylose and Polytetrahydrofurans

    NARCIS (Netherlands)

    Rachmawati, Rachmawati; Woortman, Albert J. J.; Loos, Katja

    Several methods were used to investigate the possibility of preparing inclusion complexes between amylose and polytetrahydrofurans (PTHF) via direct mixing. Potato amylose (M-v similar to 200 kg/mol) and synthetic amylose (M-n 42 kg/mol) were complexed with PTHF having different molecular weights

  9. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch.

    Science.gov (United States)

    Chung, Hyun-Jung; Hoover, Ratnajothi; Liu, Qiang

    2009-03-01

    Effect of single and dual hydrothermal modifications with annealing (ANN) and heat-moisture treatment (HMT) on molecular structure and physicochemical properties of corn starch was investigated. Normal corn starch was modified by ANN at 70% moisture at 50 degrees C for 24h and HMT at 30% moisture at 120 degrees C for 24h as well as by the combination of ANN and HMT. The apparent amylose content and swelling factor (SF) decreased on ANN and HMT, but amylose leaching (AML) increased. These changes were more pronounced on dual modification. The crystallinity (determined by X-ray diffraction), the gelatinization enthalpy (determined by differential scanning calorimetry) and ratio of 1047 cm(-1)/1022 cm(-1) (determined by Fourier transform infrared spectroscopy) slightly increased on ANN and decreased on HMT. The ANN and subsequent HMT (ANN-HMT) resulted in the lowest crystallinity, gelatinization enthalpy and ratio of 1047 cm(-1)/1022 cm(-1). The gelatinization temperature range decreased on ANN but increased on HMT. However, the gelatinization range of dually modified starches (ANN-HMT and HMT-ANN) was between ANN starch and HMT starch. Birefringence remained unchanged on ANN but slightly decreased on HMT as well as dual modification. Average chain length and amount of longer branch chains (DP> or =37) remained almost unchanged on ANN but decreased on HMT and dual modifications (ANN-HMT and HMT-ANN). HMT and dual modifications resulted in highly reduced pasting viscosity. ANN and HMT as well as dual modifications increased RDS content and decreased SDS and RS content.

  10. Effect of feeding exercised horses on high-starch or high-fat diets for 390 days.

    Science.gov (United States)

    Zeyner, A; Bessert, J; Gropp, J M

    2002-09-01

    Our hypothesis was that, because horses have not evolved as fat eaters, there may be negative metabolic long-term effects of feeding a high fat diet. The objective of the present study was to identify these long-term effects and compare them with the effects of isoenergetic long-term high starch feeding. This randomised block study with 20 exercised horses looked at the effect of feeding either a high starch (HS) or a high fat (HF) diet type in 3 periods during stabling (Stable 1), pasture, and stabling (Stable 2) over 390 days. The horses received a HS or HF concentrate, straw, hay and 6 h pasture/day in the pasture period. HF horses gained weight (2% of initial bwt) and, therefore, fat intake was reduced (from 1.43 to 0.88 g/kg bwt/day). Blood plasma glucose, total protein, albumins, gamma-globulins, free fatty acids, phospholipids and cholesterol concentrations were higher but urea concentration was lower with HF compared to HS feeding (Pdiet type. There were period effects (Pdisadvantages of feeding on high fat compared with high starch diets.

  11. An investigation of the action of porcine pancreatic alpha-amylase on native and gelatinised starches.

    Science.gov (United States)

    Slaughter, S L; Ellis, P R; Butterworth, P J

    2001-02-16

    The action of pancreatic alpha-amylase (EC 3.2.1.1) on various starches has been studied in order to achieve better understanding of how starch structural properties influence enzyme kinetic parameters. Such studies are important in seeking explanations for the wide differences reported in postprandial glycaemic and insulinaemic indices associated with different starchy foodstuffs. Using starches from a number of different sources, in both native and gelatinised forms, as substrates for porcine alpha-amylase, we showed by enzyme kinetic studies that adsorption of amylase to starch is of kinetic importance in the reaction mechanism, so that the relationship between reaction velocity and enzyme concentration [E0] is logarithmic and described by the Freundlich equation. Estimations of catalytic efficiencies were derived from measurements of kcat/Km performed with constant enzyme concentration so that comparisons between different starches were not complicated by the logarithmic relationship between E0 and reaction velocity. Such studies reveal that native starches from normal and waxy rice are slightly better substrates than those from wheat and potato. After gelatinisation at 100 degrees C, kcat/Km values increased by 13-fold (waxy rice) to 239-fold (potato). Phosphate present in potato starch may aid the swelling process during heating of suspensions; this seems to produce a very favourable substrate for the enzyme. Investigation of pre-heat treatment effects on wheat starch shows that the relationship between treatment and kcat/Km is not a simple one. The value of kcat/Km rises to reach a maximum at a pre-treatment temperature of 75 degrees C and then falls sharply if the treatment is conducted at higher temperatures. It is known that amylose is leached from starch granules during heating and dissolves. On cooling, the dissolved starch is likely to retrograde and become resistant to amylolysis. Thus the catalytic efficiency tends to fall. In addition, we find that

  12. 淀粉对方便鱼肉粉丝品质的影响%Effect of Starch on Properties of Instant Fish Vermicelli

    Institute of Scientific and Technical Information of China (English)

    李德宝; 朱志伟; 曾庆孝

    2009-01-01

    The effects of five different starches(corn starch,tapioca starch,sweet potato starch,potato starch and potato acetate starch)on the properties of instant fish vermicelli was investigated.The relation between the physical properties of the starch and the properties of instant fish vermicelli was also studied.The results showed that potato starch was the best.The content of amylose,transparency,retrogradation,swelling power and stability of cold and hot paste of starch affected the properties of the instant fish vermicelli remarkably.However,solubility and gel strength of the starch had no significant influence.The conclusion was the starch with low content of amylose,high transparency and swelling power,little retrogradation and good stability of cold and hot paste was suitable for manufacturing instant fish vermicelli.%通过对5种淀粉(玉米淀粉、木薯淀粉、甘薯淀粉、马铃薯淀粉和马铃薯酯化淀粉)的直链淀粉含量、透明度和膨润力等物理特性和其对应的方便鱼肉粉丝复水性、弹性和硬度的测定,研究了不同种类淀粉对方便鱼肉粉丝品质的影响,并分析了淀粉物理特性和方便鱼肉粉丝品质的相关性.结果表明:添加马铃薯淀粉加工的方便鱼肉粉丝品质最好;淀粉的直链淀粉含量、透明度、老化值、膨润力和冷、热糊稳定性和方便鱼肉粉丝的品质的相关性都达到了显著或极显著的水平,而淀粉的溶解性和凝胶性对方便鱼肉粉丝品质的影响较小.故利用直链淀粉含量少、透明度和膨润力高、老化值小以及冷、热糊稳定性好的淀粉来加工方便鱼肉粉丝,有利于改善方便鱼肉粉丝的品质.

  13. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars.

    Directory of Open Access Journals (Sweden)

    Kacper Piotr Kaminski

    Full Text Available BACKGROUND: Glucose-6-phosphate is imported into the amyloplast of potato tubers and thought to constitute the precursor for starch synthesis in potato tubers. However, recently it was shown that glucose-1-phosphate can also be imported into the amyloplast and incorporated into starch via an ATP independent mechanism under special conditions. Nonetheless, glucose-6-phosphate is believed to be the quantitatively important precursor for starch synthesis in potato. PRINCIPAL FINDING: Potato tubers of the high yielding cv Kuras had low gene expression of plastidial phophoglucomutase (PGM and normal levels of transcripts for other enzymes involved in starch metabolism in comparison with medium and low yielding cultivars as determined by DeepSAGE transcriptome profiling. The decrease in PGM activity in Kuras was confirmed by measuring the enzyme activity from potato tuber extracts. Contrary to expectations, this combination lead to a higher level of intracellular glucose-1-phosphate (G1P in Kuras suggesting that G1P is directly imported into plastids and can be quantitatively important for starch synthesis under normal conditions in high yielding cultivars. SIGNIFICANCE: This could open entirely new possibilities for metabolic engineering of the starch metabolism in potato via the so far uncharacterized G1P transporter. The perspectives are to increase yield and space efficiency of this important crop. In the light of the increasing demands imposed on agriculture to support a growing global population this presents an exciting new possibility.

  14. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  15. Processing stability of cross-linked starches in acid sauce applications and identification of some of the molecular factors involved

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.; Oudhuis, A.A.C.M.

    2011-01-01

    The thickening functionality of four acetylated di-starch adipates with variations in starch source and amylose and adipate contents was evaluated in a simplified small-scale model sauce system at fourteen processing conditions with variations in temperature, shear, and pH. A processing stability fa

  16. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  17. Resistant starches.

    Science.gov (United States)

    Jenkins, D J; Kendall, C W

    2000-03-01

    Initially, it was hoped that resistant starches (ie, starches that enter the colon) would have clear advantages in the reduction of colon cancer risk and possibly the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, to increase the molar ratio of butyrate in relation to other short-chain fatty acids, and to dilute fecal bile acids. However, reduction in fecal ammonia, phenols, and N-nitroso compounds have not been achieved. At this point the picture from the standpoint of colon cancer risk reduction is not clear. Nevertheless, there is a fraction of what has been termed resistant starch (RS1), which enters the colon and acts as slowly digested, or lente, carbohydrate. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiologic effects such as reduced postprandial insulin levels and higher high-density lipoprotein cholesterol levels. Consumption of low glycemic index foods has been shown to be related to a reduced risk of type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer, especially colon cancer deaths. If carbohydrate has a protective role in colon cancer prevention, it may lie in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, therefore, remain to be documented. However, there is reason for optimism about the possible health advantages of so-called resistant starches that are slowly digested in the small intestine.

  18. Gelatinization and solubility of corn starch during heating in excess water: new insights.

    Science.gov (United States)

    Ratnayake, Wajira S; Jackson, David S

    2006-05-17

    Starch gelatinization is associated with the disruption of granular structure causing starch molecules to disperse in water. This study was designed to examine starch granules as they were heated in water, and their resulting morphological, structural, and solubility traits. The results indicate that starch gelatinization is a more complex process than the previously suggested order-to-disorder transition. The energy absorbed by the granules facilitates the rearrangement or formation of new bonds among molecules prior to the temperatures normally associated with the melting of amylopectin crystallites during gelatinization. It is also evident that amylose plays an important role during the initial stages of corn starch gelatinization.

  19. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    Science.gov (United States)

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  20. PHYSICOCHEMICAL PROPERTIES OF STARCH FROM YOUNG GROWTHS OF BORASSUS AETHIOPUM

    Directory of Open Access Journals (Sweden)

    Niamke Arthur Michel

    2013-12-01

    Full Text Available The characterization of Borassus aethiopum starch showed that the crude protein (0.18 %, total lipid (0.21 %, ash (0.09 % and the moisture (1 % were typical of most starches The amylose content (26.31 % falls within the apparent amylose range 17-30 %. The granular structure of Borassus aethiopum young growths starch showed significant variations in size and shape. Most of the granules are oval, although spherical, round, elliptical. The starch exhibited swelling power and solubility behaviors which were dependent on temperature. The maximum solubility and swelling power were obtained at highest temperature of 95 °C. The syneresis of starch paste was 78.58 % the first day and increased to 83.14 % at the 28 th day while the clarity decreased from 56.53 to 25.07 % during the same period. The optimum pH of enzymatic hydrolysis of Borassus aethiopum starch by the digestive juice of snail Archachatina ventricosa was pH 5 while the optimum temperature was 45 °C. The influence of gelatinization time on the enzymatic hydrolysis of gelatinized starch showed that the hydrolysis extent increases with the time of gelatinization up to 4 minutes then it does not vary enough whereas the duration of gelatinization is prolonged. The hydrolysis extent of gelatinized starch by the digestive juice of snail Archachatina ventricosa was 70.6 % after 2 hours of incubation.

  1. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  2. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch.

    Science.gov (United States)

    Rafiq, Syed Insha; Jan, Kulsum; Singh, Sukhcharn; Saxena, D C

    2015-09-01

    Indian Horse chestnuts contain high content of starch which can be explored to be used in various applications in food industry as encapsulating agent, stabilizer, binder, thickener, gelling agents and many more. Horse chest nut is locally available and can be a boon for food industry if the inherent properties are explored. Hence, horse chest nut starch can be a better option for the replacement of conventional starches to meet the industrial demand of starch. Physicochemical, pasting, rheological, thermal and morphological properties of starch isolated from Indian Horse chestnut (HCN) were determined. Amylose content was found to be 26.10 %. Peak viscosity obtained from RVA profile was 4110 cP. Hardness, cohesiveness, adhesiveness and gumminess were determined by Texture Profile Analyser. Particle size analysis showed a typical Uni modal size distribution profile with particle distribution ranging from 7.52 to 27.44 μm. The shape of starch granules varied from round, irregular, oval, and elliptical with smooth surface. X- ray diffraction revealed that HCN starch showed a typical C-type pattern with characteristic peaks at 5.7, 15.0, 17.3 and 22.3°. The transition temperatures (To, Tp, and Tc) and enthalpy of gelatinization (ΔH) values were 53.35, 58.81, 63.57 °C and 8.76 J/g, respectively. The rheological properties were determined in terms of variation of storage modulus (G (/)), loss modulus (G (//)) and loss factor (tan δ) at different temperatures. Peak G (/), peak G (//) and peak tan δ values were observed as 10,400 Pa, 1,710 Pa, and 0.164, respectively.

  3. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    Science.gov (United States)

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  4. STDUY ON RETENTION AND DRAINAGE PROPERTIES OF THE HIGH SUBSTITUTED DEGREE CATIONIC STARCH

    Institute of Scientific and Technical Information of China (English)

    Qijie Chen; Fushan Chen; Gaosheng Wang; Huiren Hu

    2004-01-01

    This paper deals with the retention and drainage properties of the high substituted degree cationic starch (HCS) prepared by half-dry process. The experiments show that HCS has remarkable effects on filler retention and drainage in papermaking industry. With the degree of substitution (DS) of HCS increasing, the effects on filler retention and drainage increase. When the DS of HCS is 0.509 and the dosage is 0.08%, the freeness decreases about 12oSR and the filler retention is 79.82%.

  5. Impact of local hydrothermal treatment during bread baking on soluble amylose, firmness, amylopectin retrogradation and water mobility during bread staling.

    Science.gov (United States)

    Besbes, Emna; Le Bail, Alain; Seetharaman, Koushik

    2016-01-01

    The impact of hydrothermal processing undergone by bread dough during baking on the degree of starch granule disruption, on leaching of soluble amylose, on water mobility, on firmness and on amylopectin retrogradation during staling has been investigated. Two heating rates during baking have been considered (4.67 and 6.31 °C/min) corresponding respectively to baking temperature of 220 and 240 °C. An increase in firmness and in the amount of retrogradated amylopectin accompanied by a decrease in freezable water has been observed during staling. Although a lower heating rate yielded in larger amount of retrogradated amylopectin retrogradation, it resulted in a lower firmness. Additionally, the amount of soluble amylose and the relaxation times of water measured by Nuclear Magnetic Resonance NMR (T20, T21 and T22) decreased during staling. It was demonstrated that the amount of soluble amylose was higher for bread crumb baked at lower heating rate, indicating that an increasing amount of amylose is leached outside the starch granules. This was corresponding to a greater amount of retrograded amylopectin during staling. Moreover, it was found that the degree of gelatinization differs locally in a same bread slice between the top, the centre and the bottom locations in the crumb. This was attributed to the differences in kinetics of heating, the availability of water during baking and the degree of starch granule disruption during baking. Based on first order kinetic model, it was found that staling kinetics were faster for samples baked at higher heating rate.

  6. Relationship of Rice Grain Amylose, Gelatinization Temperature and Pasting Properties for Breeding Better Eating and Cooking Quality of Rice Varieties.

    Science.gov (United States)

    Pang, Yunlong; Ali, Jauhar; Wang, Xiaoqian; Franje, Neil Johann; Revilleza, Jastin Edrian; Xu, Jianlong; Li, Zhikang

    2016-01-01

    A total of 787 non-waxy rice lines- 116 hybrids and 671 inbreds-were used to study the apparent amylose content (AAC), gelatinization temperature (GT), and rapid visco analyzer (RVA) pasting viscosity properties of rice starch to understand their importance in breeding better rice varieties. The investigated traits showed a wide range of diversity for both hybrid (HG) and inbred (IG) groups. The combinations of the different categories of AAC and GT were random in HG but were non-random in IG. For inbred lines, the high level of AAC tended to combine with the low level of GT, the intermediate level of AAC tended to have high or intermediate GT, and the low level of AAC tended to have high or low GT. Some stable correlations of the AAC, GT, and RVA properties may be the results derived from the physicochemical relationships among these traits, which rice breeders could utilize for selection in advanced breeding generations. Through cluster analysis, IG and HG were divided into 52 and 31 sub-clusters, respectively. Identifying the cultivars having AAC, GT, and RVA properties similar to that of popular high-quality rice varieties seems to be an interesting strategy and could be directly used for adaptation trials to breed high-quality rice varieties in targeted areas in a more customized manner.

  7. Enzyme Kinetics: The Use of Amylose Azure.

    Science.gov (United States)

    Cusimano, Vincent J.

    1978-01-01

    Amylose azure can be used as a chromogenic substrate for alpha-amylase in studying the effects of temperature and pH enzyme action. This is a model system which students can use to measure the energy of activation using the Arrhenius plot. (Author/BB)

  8. ESR investigation of starch gelatinization using novel spin probes.

    Science.gov (United States)

    Robertson, James A; Sutcliffe, Leslie H

    2005-06-01

    The spin probes 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and the sodium salt of its sulfonate, 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS) were used to monitor the microviscosity changes of water during starch gelatinization. In cereal starch, which contains mainly A-type polymorphs, evidence was found for the amylopectin and amylose regions, the latter undergoing a transition at about 55 degrees C and a large increase in the microviscosity on cooling. Pea starch contains both A-and B-type polymorphs and this was also found to have two domains and the 55 degrees C transition was observed for the amylose phase: the less mobile amylopectin showed a reversible decrease in water microviscosity on heating. Copyright 2005 John Wiley & Sons, Ltd.

  9. Effect of popping on sorghum starch digestibility and predicted glycemic index.

    Science.gov (United States)

    Nathakattur Saravanabavan, Sanddhya; Manchanahally Shivanna, Meera; Bhattacharya, Sila

    2013-04-01

    Effect of popping on carbohydrate, protein, phytic acid and minerals of three varieties (pop sorghum, maldandi and red sorghum) of sorghum were studied. Significant changes (p ≤ 0.05) in the starch degradability including total and soluble amylose content, and resistant starch occurred due to popping; in-vitro protein digestibility along with the content of albumin proteins increased. Starch characteristics had substantial differences among these three varieties which are based on the nature of endosperm and amylose content. Phytic acid content had a reduction of 20%-25% after popping. Glycemic index (GI) determined from kinetic study of enzymatic hydrolysis of sorghum starch was between 85 and 92; the rate constant for hydrolysis for these three varieties were in the range of 0.025 and 0.029 min(-1). Popping helped to control phytic acid content in sorghum and enhanced protein as well as starch digestibility.

  10. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    Starch is a major energy source for all domains of life. Recent advances in structures of starch-degrading enzymes encompass the substrate complex of starch debranching enzyme, the function of surface binding sites in plant isoamylase, details on individual steps in the mechanism of plant...... disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...

  11. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    Starch is a major energy source for all domains of life. Recent advances in structures of starch-degrading enzymes encompass the substrate complex of starch debranching enzyme, the function of surface binding sites in plant isoamylase, details on individual steps in the mechanism of plant...... disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...... to the debranching enzyme, limit dextrinase using a new binding mode for cereal protein inhibitors....

  12. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Energy Technology Data Exchange (ETDEWEB)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  13. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    Science.gov (United States)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  14. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch.

    Science.gov (United States)

    Qiu, Shuang; Yadav, Madhav P; Chen, Hao; Liu, Yan; Tatsumi, Eizo; Yin, Lijun

    2015-01-22

    Corn fiber gum (CFG) was a novel arabinoxylan hydrocolloid and recent researches showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixing with 0.1%, 0.25%, 0.5%, 1.0% (w/w) CFG. The pasting and thermal properties, rheological properties, microstructure, leached amylose and swelling power characteristics were evaluated. Compared with the reference, CFG addition lowered peak viscosity and breakdown of the composite system, but increased final viscosity in RVA measurement. The swelling power and the amount of leached amylose of maize starch gels were reduced as the addition concentration of CFG increased. The thermal characteristics of maize starch/CFG mixtures varied insignificantly as determined in DSC heating process. Rheological parameters, such as storage modulus (G') and loss modulus (G"), of the maize starches were observed to increase when CFG was present, supporting the hypothesis that the interaction between CFG and amylose could happen in the composite system. Confocal laser scanning microscopy (CLSM) confirmed changes in gels microstructure as starch components tended to be inhibited from leaching out of the granules when CFG was added, and the morphology of starch granule was more compact when CFG was added.

  15. Utilization of potato starch processing wastes to produce animal feed with high lysine content.

    Science.gov (United States)

    Li, Ying; Liu, Bingnan; Song, Jinzhu; Jiang, Cheng; Yang, Qian

    2015-02-01

    This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40°C, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

  16. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    Science.gov (United States)

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation.

  17. Composition and physical properties of starch in microgravity-grown plants

    Science.gov (United States)

    Kuznetsov, O. A.; Brown, C. S.; Levine, H. G.; Piastuch, W. C.; Sanwo-Lewandowski, M. M.; Hasenstein, K. H.

    2001-01-01

    The effect of spaceflight on starch development in soybean ( Glycine max L., BRIC-03) and potato ( Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio Δκ/Δρ (Δκ - difference of magnetic susceptibilities, Δρ - difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm 3), the observed difference in Δκ/Δρ was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with α-amylase for 24 hours, 77±6% of the starch from the flight cotyledons was degraded compared to 58±12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and Δκ/Δρ suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, Δκ/Δρ and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity.

  18. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    Science.gov (United States)

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Source of Genes Related to Rice Grain Starch Synthesis Among Cultivated Varieties and Its Contribution to Quality

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-jie; TIAN Shun; ZHANG Zheng-qiu; HAN Yue-peng; CHEN Feng; LI Xin; GU Ming-hong

    2007-01-01

    The property of starch in rice grain endosperm is a very important determinant for rice quality, and it is essential to understand the genetic effect of the genes related to starch synthesis in high-yielding rice varieties for rice quality improvement. The physicochemical properties (e.g., amylose content, gel consistency, and RVA profile) were assessed on 53 rice varieties, including certain typical indica/japonica landraces and certain high-yielding modern varieties. And molecular markers for Sbel, Sbe3 developed on the basis of sequence diversities between the rice subspecies indica and japonica, together with PCR-Acc Ⅰ marker for Wx gene were used to investigate the genotypes of 53 rice cultivars. The result showed that the developed molecular markers for Wx, Sbel, Sbe3 could distinguish indica or japonica alleles at three loci. Among all the 53 rice cultivars, six genotypes were observed when Sbel, Sbe3, and Wx loci were considered together, while the genotypes of WxiSbeljSbe3i and WxiSbeljSbe3j were absent. In order to explore the genetic effects of the three genes, especially for starch branching enzyme genes, ANOVA and multiple comparison analysis were conducted.The results showed that rice cultivars with different genotypes exhibited different phenotypes, including amylose content,gel consistency and certain RVA characteristics, and the significant differences among the six genotypes were observed.It was concluded that these three genes had randomly recombined during the process of the rice variety development.And the genetic effects of indica and japonica alleles at three gene loci were different, of which, Wx gene plays a major role in determining the starch properties, followed by Sbel and Sbe3, and the genetic effects of Sbel and Sbe3 in different backgrounds (Wxi, Wxj) are different. The results have provided a clue for rice good quality variety development, and the molecular markers will benefit to the improvement in quality of rice.

  20. 黄姜渣提取淀粉的成分及颗粒结构分析%Analysis on the Composition and Structure of Starch Granules from Dioscorea zingibrensis

    Institute of Scientific and Technical Information of China (English)

    杨铖; 毛楠; 籍国东

    2011-01-01

    [Objective] The aim was to analyze the the composition and structure of starch granules from Dioscorea zingiberensis. [Method] High-quality Dioscorea zingiberensis starch was extracted from the residues of yellow ginger diosgenin processing by physical separation technology,and then the composition and structure of starch granules from Dioscorea zingiberensis was analyzed. [ Result ] The water content of Dioscorea zingiberensis starch was close to that of cassava starch; its starch purity was similar to those of cassava starch and potato starch in the market;its protein content was lower than that of cassava starch and potato starch,and lipid content was lower than that of potato starch, while its amylose content was higher than those of cassava starch and potato starch. So Dioscorea zingiberensis starch had better quality than cassava starch and potato starch. Dioscorea zingiberensis starch granules were caky ,had rough surface,larger and uniform sizes,and granules diameters were 15 -25 μm. Acid hydrolysis showed that the granule may be a hollow structure ,and the hollows alternately distributed in the crystalline region and amorphous region of the granule. [ Conclusion]The research provides reference for the application of Dioscorea zingiberensis in food industry.%[目的]分析黄姜渣提取淀粉的成分及颗粒结构.[方法]利用物理分离方法从黄姜生产皂素的废渣中提取优质黄姜淀粉,分析了其主要成分和颗粒结构.[结果]黄姜淀粉的含水量与木薯淀粉接近;其淀粉含量与木薯淀粉和马铃薯淀粉接近;其蛋白质含量低于其他2种淀粉;其脂肪含量低于马铃薯淀粉;其直链淀粉含量则高于其他2种淀粉,品质更优.SEM分析表明,黄姜淀粉颗粒呈饼状,表面较粗糙,颗粒较大且较均匀,粒径在15~25 μm.酸水解分析表明,黄姜淀粉颗粒可能为中空的,且在颗粒内部结晶区和无定形区是交替分布的.[结论]该研究为黄姜淀粉在食品行业的应用提供了参考.

  1. High-Level Butanol Production from Cassava Starch by a Newly Isolated Clostridium acetobutylicum.

    Science.gov (United States)

    Li, Shubo; Guo, Yuan; Lu, Fuzhi; Huang, Jiajian; Pang, Zongwen

    2015-10-01

    A new Clostridium acetobutylicum strain, exhibiting the ability to resist butanol stress and produce butanol, was identified and named GX01. Strain GX01 can use a wide variety of carbohydrates, especially cassava starch, to produce butanol. After the optimization of culture conditions, C. acetobutylicum GX01 could produce 27.3 g/L solvent, including 17.1 g/L butanol, 7.9 g/L acetone, and 2.3 g/L ethanol, from 100 g/L cassava flour and 3 g/L soybean meal. Furthermore, when its acetone-butanol-ethanol (ABE) fermentation was performed in 10- and 30-L bioreactors, the production of total solvent and butanol reached 29.2 and 18.3 g/L, respectively, and 28.8 and 18.8 g/L, respectively. Thus, the high level and stability of butanol production make strain GX01 a promising candidate for ABE fermentation using the low-cost cassava starch.

  2. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  3. Detection of honey adulteration with starch syrup by high performance liquid chromatography.

    Science.gov (United States)

    Wang, Shaoqing; Guo, Qilei; Wang, Linlin; Lin, Li; Shi, Hailiang; Cao, Hong; Cao, Baosen

    2015-04-01

    According to saccharide profile comparison between starch syrups and pure honeys analysed through high performance liquid chromatography (HPLC), a characteristic peak was found at 15.25 min retention time in HPLC chromatogram of syrup, but no peak was observed at the same retention time in chromatogram of pure honeys. This characteristic peak for syrup was identified as an overlapping peak of oligosaccharides with more than 5 degree of polymerisation (DP) based on HPLC chromatogram comparison between starch syrup and a series of standard mono-, di- and oligosaccharides of 3-7 DP. Additionally syrup content correlated linearly with the height of the characteristic peak of syrup under different slope in two ranges 2.5-7.5% and 10-100%, respectively. Therefore, the characteristic peak at 15.25 min retention time can serve as a syrup indicator in HPLC analysis of the adulterated honeys. This new HPLC method for honey adulteration detection was further applied in an authenticity inspection on more than 100 commercial honeys. In addition to the improved accuracy of honey adulteration detection, the proposed HPLC method was simple, low cost and easy practice for honey product quality control by government department considering the popularity of HPLC device and technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.

  5. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.

    Science.gov (United States)

    Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G

    2012-12-01

    Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and

  6. Preliminary Study on the Performance and Interaction of Recycling Hydrolytic-Aerobic Combined Process of High Concentration Starch Wastewater

    Institute of Scientific and Technical Information of China (English)

    李清彪; 廖鑫凯; 吴志旺; 邓旭; 黄益丽; 卢英华; 孙道华; 洪铭媛; 王琳

    2004-01-01

    A new recycling hydrolytic-aerobic combined process was developed to treat the high concentration organic wastewater. Simulated wastewater containing 10 g·L-1 starch with a CODcr value of 10000 mg·L-1 wasused. At first, the hydrolytic degradation and aerobic degradation process were examined in two batch reactors, respectively. In the stand-alone hydrolytic process, starch in the wastewater almost disappeared after 11 h treatment, but CODCr remained as high as 5803mg·L-1 after two days. In the aerobic process, the biodegradation rate of starch was much slower during the first 11 h than that in the hydrolytic process, although the CODCr removal efficiency reached 89.6% and more than 90% starch could be degraded after 37.5 h. To determine the interaction effects of the two processes, a series of hydrolytic-aerobic combinations were examined in details. Hydrolytic process played an important role in the whole recycle combination process as it could improve the biodegradability of the high concentration starch wastewater. However, from the other experiments, the negative effect of hydrolytic acidification was found in the hydrolytic-aerobic combination, which suggested that the aerobic microorganisms needed time to adapt themselves to the acidic environment. The effect of the degrading time, which was spent in the hydrolytic and aerobic unit, and the number of circulations, with which the wastewater went through the two units were investigated. It was found that a recycle combination of 6 h hydrolytic process with 12 h aerobic process was highly effective and potentially economical, in which the final removal efficiency of CODcr and efficiency of starch degradation reached 94.1% and 98.8%, respectively.

  7. Preparation and identification of ⅤⅠ-type slowly digestible starch%ⅤⅠ-型慢消化淀粉的制备与鉴定

    Institute of Scientific and Technical Information of China (English)

    沙晨希; 田耀旗; 金征宇

    2013-01-01

    以高直链玉米淀粉为原料,添加乳化剂(单硬脂酸甘油酯、月桂酸单甘酯、硬脂酰乳酸钙),分别采用蒸煮糊化法、HCl/KOH沉淀法和酒精碱法制备 Ⅴ-型高直链玉米淀粉-脂质络合物.对该络合物的晶体结构、络合率、慢消化淀粉含量及血糖指数及进行了分析测定,结果表明,以高直链玉米淀粉和单硬脂酸甘油酯为原料,采用酒精碱法制备的淀粉络合物,晶体类别为ⅤⅠ-型,适用于作为新型慢消化淀粉.同时发现,该条件下制备的ⅤⅠ-型慢消化淀粉,主客体络合率为66.7%,慢消化淀粉含量高达67.4%,预测血糖指数最低达45,符合低血糖指数(GI)健康食品范畴.%Ⅴ-amylose inclusion complexes were prepared from high amylose maize starch with glycerin monostearate (GMS),glycerol monolaurate (GML) and calcium stearoyl lactylate (CSL) by heating,alkaline synthesis methods and alcoholic-alkaline treatment.The crystalline structure,binding rate,content of slowly digestible starch and the glycol index of the prepared inclusion complexes were determined.The results showed that,ⅤⅠ-amylose inclusion prepared from high amylose maize starch and GMS by alcoholic-alkaline treatments could be the best way to prepare ⅤⅠ-type slowly digestible starch (SDS).The product had a maximum SDS content of 67.4%,with binding rate of 68.4% and the predicted blood sugar index of 45,fitting to the health standard

  8. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    OpenAIRE

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the (food) industry, for example for the production of beer or bio-ethanol. In industry, it is usually preceded by gelatinisation to make the starch molecules available for the enzymes. Both gelatinisation...

  9. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis......The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose...... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  10. Effect of acid hydrolysis on starch structure and functionality: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  11. Crosslinking of starch derivatives by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, H. [Gunma Univ., Dept. of Biological and Chemical Engineering, Kiryu, Gunma (Japan)

    2002-03-01

    The novel starch derivative hydrogel, caroxymethyl search (CMS) hydrogel, was synthesized by irradiation in high concentrated solution (in called so paste-like condition). The effect of the solution concentration on the crosslinking of CMS, the properties of formed hydrogel and the biodegradability estimated from CO{sub 2} formation in composting test were investigated. Furthermore, to elucidate the mechanism of CMS crosslinking by radiation, carboxymethyl amylopectin (CMAP) and carboxymethyl amylose (CMA) were also irradiated at paste-like condition, and the properties such as gel fraction and swelling ratio were measured. The crosslinking of CMS was induced by irradiation at concentration from 20 to 60 %. Among them, higher concentration (paste-like condition) was very effective for crosslinking of CMS by irradiation. 1g of the dry gel (formed from the solution at concentration of 15%) crosslinked at low dose, 3 kGy was able to absorb about 500g of distilled water. Crosslinked CMAP had higher gel fraction and water-uptake at high concentration than that of CMA. Hence, CMAP is the predominant component in crosslinking of CMS. Biodegradation of crosslinked CMS by controlled compost was about 24.0 % after 1 week. The biodegradation is faster than cellulose powder. (author)

  12. Propriedades físico-químicas do amido de aveia da variedade brasileira IAC 7 Physicochemical properties of IAC 7 oat starch from Brazilian cultivars

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2009-12-01

    Full Text Available Este estudo caracterizou o amido de aveia da variedade IAC-7 quanto às suas características químicas, reológicas, funcionais e térmicas. O amido de aveia apresentou 1,36% de lipídios, 32,23% de amilose e baixa capacidade retrogradante (9,19% após 30 dias de armazenagem. Embora o amido de aveia tenha apresentado alto teor de amilose, sua baixa retrogradação pode ser devida à presença dos lipídios que, por impedimento estérico, dificultariam a reaproximação das cadeias poliméricas. O comportamento reológico das pastas de amido de aveia foi caracterizado como sendo pseudoplático. A baixa temperatura de gelatinização (64,71 °C do amido de aveia também pode estar relacionada ao maior teor de lipídio deste amido.This study characterized the chemical, rheological, functional and thermal properties of oat starch of IAC-7 variety. The oat starch showed 1.36% of lipids, 32.23% of amylose and low retrogradation capacity (9.19% after 30 days of storage. Although the oat starch has presented high amylose content, its low retrogradation may be due to the presence of lipids that by steric impediment could make it difficult for the polymeric chains to approach. The rheological behavior of oat starch was characterized as pseudoplastic. The low gelatinization temperature (64.71 °C of the starch may be related to its higher lipid content.

  13. Effect of single-, dual-, and triple-retrogradation treatments on in vitro digestibility and structural characteristics of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Xie, Yao-Yu; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2014-08-15

    The effects of single-retrogradation (SR), dual-retrogradation (DR) and triple-retrogradation (TR) treatments on in vitro digestibility and structural characteristics of waxy wheat starch were investigated. The yield of slowly digestible starch in a DR-treated starch with retrogradation time interval of 48 h reached a maximum of 44.41%. The gelatinization temperature range and gelatinization enthalpy of DR-treated starch samples were the lowest. Moreover, compared with native starch, X-ray diffraction patterns of treated starches were altered from A-type to B-type and relative crystallinity was significantly decreased, which was responsible for the interaction between amylose-amylose and/or amylose-amylopectin chains that may generate more imperfect structures. Scanning electron micrographs revealed that compared with SR-treated and TR-treated starches, the surface of DR-treated starch with a retrogradation time interval of 48 h exhibited a net-like structure with numerous cavities. These results suggest that structural changes of waxy wheat starch by cycled retrogradation treatment significantly affect digestibility, and DR treatment can be used for preparing SDS product.

  14. Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats.

    Science.gov (United States)

    Aziz, Alfred A; Kenney, Laura S; Goulet, Benoit; Abdel-Aal, El-Sayed

    2009-10-01

    This study comprised 2 experiments that tested the hypothesis that a high-amylose starch diet (AMO) would improve body weight and glycemic control relative to a high-amylopectin starch diet (AMN) in rats with diet-induced obesity. After inducing obesity with a high-fat and -energy diet (Expt. 1), male Sprague-Dawley rats (n = 46) were divided into 4 groups and given free or restricted access to either an AMN or an AMO diet for 4 wk (Expt. 2). After 3 wk, rats from each group underwent an oral glucose tolerance test. At the end of the experiment, food-deprived rats were killed by decapitation and blood and tissues were collected for analyses. AMO led to lower total energy intake, weight gain, fat pad mass, and glycemic response but higher insulin sensitivity index than AMN, only when consumed ad libitum (AL) (P resistant starch content rather than its glycemic index. We conclude that starches high in AMO can be effective in weight and glycemic control in obesity.

  15. Multivariate model to characterise relations between maize mutant starches and hydrolysis kinetics.

    Science.gov (United States)

    Kansou, Kamal; Buléon, Alain; Gérard, Catherine; Rolland-Sabaté, Agnès

    2015-11-20

    The many studies about amylolysis have collected considerable information regarding the contribution of the starch physico-chemical properties. But the inherent elaborate and variable structure of granular starch and, consequently, the multifactorial condition of the system hinders the interpretation of the experimental results. The immediate benefit of multivariate statistical analysis approaches with that regard is twofold: considering the factors, possibly interrelated, all together and not independently, providing a first estimation of the magnitude and confidence level of the relations between factors and amylolysis kinetic parameters. Based on data of amylolysis of 13 starch samples from wild type, single and double mutants of maize by porcine pancreatic α-amylase (PPA), a multivariate analysis is proposed. Amylolysis progress-curves were fitted by a Weibull function, as proposed in a previous work, to extract three kinetic parameters: the reaction rate coefficient during the first time-unit, k, the reaction rate retardation over time, h, and the final hydrolysis extent, X∞. Multivariate models relate the macromolecular composition and the fractions of crystalline polymorphic types to the kinetic parameters. h and X∞ are found to be highly related to the measured properties. Thus the amylose content appears to be significantly correlated to the hydrolysis rate retardation, which sheds some light on the probable contribution of the amylose molecules contained in the granules. The multivariate models give correct prediction performances except for k whose a part of variability remains unexplained. A further analysis points out the extent of the characterisation effort of the granule structure needed to extend the fraction of explained variability.

  16. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  17. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    1991-01-01

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type seq

  18. Biodegradable amylose films reinforced by graphene oxide and polyvinyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongqiang [Department of Applied Chemistry, Yuncheng University, Yuncheng 044000 (China); School of Science, Tianjin University, Tianjin 300072 (China); Wang, Xingrui [School of Science, Tianjin University, Tianjin 300072 (China); Wu, Di [Huanhu Hospital, Tianjin 300060 (China); Gong, Qiaojuan [Department of Applied Chemistry, Yuncheng University, Yuncheng 044000 (China); Qiu, Haixia, E-mail: qhx@tju.edu.cn [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yue; Wu, Tao; Ma, Junkui [School of Science, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggaols@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2013-10-01

    Graphene oxide/amylose (GO/amylose) composite films with different amounts of graphene oxide (GO), glycerol and polyvinyl alcohol (PVA) were prepared by a solution casting method. The structure, morphologies, and properties of the films were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, UV–vis spectroscopy and tensile tests. The results indicated good dispersion of the GO nanosheets in the GO/amylose composite films and consequently a significant improvement in their mechanical properties. The addition of GO increased the tensile strength of the GO/amylose films, significantly. When glycerol was used as a plasticizer, the elongation at break of the films increased. When PVA was also added to the composite films, the films were mechanically strong and flexible. The incorporation of GO also decreased the moisture absorbability and UV transmittance of the films. The stability of the GO/amylose films in acidic and alkaline solutions was also studied and the films had excellent stability in both acidic and alkaline aqueous mediums. - Highlights: • GO/amylose composite films were prepared by a solution casting method. • GO/amylose composite films had good dispersion of GO in the composite. • GO/amylose composite films had a significant improvement in mechanical properties. • GO/amylose composite films were stable in both acidic and alkaline aqueous mediums.

  19. Changes in Starch Accumulation and Activity of Enzymes Associated with Starch Synthesis of Rice at Different N Supplying Dates

    Institute of Scientific and Technical Information of China (English)

    MA Jun; MING Dong-feng; MA Wen-bo; XU Feng-ying

    2004-01-01

    The changes in grain-filling, starch accumulation and activity of enzymes associated with starch synthesis in two different hybrid rice varieties were analyzed at different N supplying dates (earlier-date-emphasized, mean-date-emphasized and later-date-emphasized). The results showed that the N application of later-date-emphasized could promote grain-filling rate, increase grain weight and amylopectin content. The peak of activity in three enzymes of ADPglusoce pyriphosphorylase (ADPG), starch synthesis enzyme (SSS) and starch branching enzyme (SBE) in grains of two different rice varieties was not changed obviously, but the mean and maximum activity of these three enzymes changed, and the changes of SSS and ADPG were bigger than that of SBE as N supplying date changed. The N application of earlier-date-emphasized increased SSS activity and the N application of later-date-emphasized increased ADPG and SBE activities. The mean SSS activity during whole grain-filling period, and ADPG and SBE activities at middle and late period of grain-filling were significantly or very significantly correlated with grain-filling rate and accumulating rate of amylose and amylopectin. Both of ADPG and SBE played an equal important role in the changes of amylose and amylopectin content. The N application of later-date-emphasized increased amylose and amylopectin accumulating rate.

  20. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    NARCIS (Netherlands)

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the (foo

  1. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance.

    Science.gov (United States)

    Xiang, Bo; Fan, Wen; Yi, Xiaowei; Wang, Zuohua; Gao, Feng; Li, Yijiu; Gu, Hongbo

    2016-01-20

    In this work, three types of dithiocarbamate (DTC)-modified starch derivatives including DTC starch (DTCS), DTC enzymolysis starch (DTCES) and DTC mesoporous starch (DTCMS) were developed, which showed the significant heavy metal adsorption performance. The adsorption ability of these three DTC modified starch derivatives followed the sequences: DTCMS>DTCES>DTCS. In single metal aqueous solutions, the uptake amount of heavy metal ions onto the modified starches obeyed the orders: Cu(II)>Ni(II)>Cr(VI)>Zn(II)>Pb(II). The adsorption mechanism was proved by the chelating between DTC groups and heavy metal ions through the pH effect measurements. A monolayer adsorption of Langmuir isotherm model for the adsorption of Cu(II) onto DTCMS was well fitted rather than the multilayer adsorption of Freundlich isotherm model. The adsorption kinetics of Cu(II) onto starch derivatives was found to be fit well with the pseudo-second-order model. Additionally, in the presence of EDTA, the adsorption ability and uptake amount of heavy metal ions onto these three DTC modified starch derivatives is identical with the results obtained in the absence of EDTA.

  2. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    NARCIS (Netherlands)

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the

  3. Extra dietary starch in late-pregnant sows fed a high fibre diet: effect on litter weight at birth

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Verstegen, M.W.A.

    2002-01-01

    An experiment with 141 multiparous pregnant sows was conducted to investigate whether the supply of glucogenic energy at the end of pregnancy may be insufficient for an optimal growth of the foetuses in sows that are fed a diet with a high level of non-starch polysaccharides (NSP) and low level of

  4. Extra dietary starch in late-pregnant sows fed a high fibre diet: effect on litter weight at birth

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Verstegen, M.W.A.

    2002-01-01

    An experiment with 141 multiparous pregnant sows was conducted to investigate whether the supply of glucogenic energy at the end of pregnancy may be insufficient for an optimal growth of the foetuses in sows that are fed a diet with a high level of non-starch polysaccharides (NSP) and low level of s

  5. Relation of Certain Infrared Bands to Starch Crystallinity

    Institute of Scientific and Technical Information of China (English)

    XIONG; Jian

    2001-01-01

    Starch is a homoglycan composed of but a single type of sugar unit. Nature has chosen the starch granule as an almost universal from for packaging and sturing carbohydrate in green plants. In granule form, starch is quasi-crystalline, water-insoluble, and dense. In structure of amylose, a hydrogen bond exists between the hydroxyl group at C-2 of one α-D-glucopyranosyl unit and the C-3 hydroxyl group of the adjacent ct-D-glucopyranosyl unit with the C-3 hydroxyl group donating the hydrogen atom in the hydrogen bond. The starch chains within the amorphous region are presumable available for reaction. With extensive chemical derivatization of starch in which the granule crystal structure is maintained essentially inact.……

  6. Relation of Certain Infrared Bands to Starch Crystallinity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Starch is a homoglycan composed of but a single type of sugar unit. Nature has chosen the starch granule as an almost universal from for packaging and sturing carbohydrate in green plants. In granule form, starch is quasi-crystalline, water-insoluble, and dense. In structure of amylose, a hydrogen bond exists between the hydroxyl group at C-2 of one α-D-glucopyranosyl unit and the C-3 hydroxyl group of the adjacent ct-D-glucopyranosyl unit with the C-3 hydroxyl group donating the hydrogen atom in the hydrogen bond. The starch chains within the amorphous region are presumable available for reaction. With extensive chemical derivatization of starch in which the granule crystal structure is maintained essentially inact.

  7. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  8. HIGH STIFFNESS SURFACE COATING OPTIMIZATION THROUGH STARCH ENCAPSULATION OF PLATY KAOLIN

    Directory of Open Access Journals (Sweden)

    Roman Popil

    2010-11-01

    Full Text Available Modified fillers consisting of kaolin particles encapsulated by starch have recently been demonstrated in mill trials to achieve significant filler loading levels without accompanying strength losses. In this work, laboratory experiments were conducted to explore the potential advantages of using starch-treated pigment for strength increases by application of surface coating. It is found that a platy clay coating will produce a higher increase in strength per unit weight of application compared to a fine clay, and more-so if the clay is encapsulated in starch. Starch encapsulation of clay produces a greater increase in strength than an equivalent weight proportion addition of starch to a kaolin formulation blend. The observations and measurements of changes in various physical properties of the coated samples are explained by a proportionate loss of void volume in the coating from the encapsulation process and the increase of stress transfer through introduction of higher platelet aspect ratio.

  9. Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch.

    Science.gov (United States)

    Goldstein, Avi; Annor, George; Vamadevan, Varatharajan; Tetlow, Ian; Kirkensgaard, Jacob J K; Mortensen, Kell; Blennow, Andreas; Hebelstrup, Kim H; Bertoft, Eric

    2017-05-01

    This study investigated the influence of diurnal photosynthetic activity on the morphology, molecular composition, crystallinity, and gelatinization properties of normal barley starch (NBS) and waxy barley starch (WBS) granules from plants cultivated in a greenhouse under normal diurnal (16h light) or constant light photosynthetic conditions. Growth rings were observed in all starch samples regardless of lighting conditions. The size distribution of whole and debranched WBS analyzed by gel-permeation chromatography did not appear to be influenced by the different lighting regimes, however, a greater relative crystallinity measured by wide-angle X-ray scattering and greater crystalline quality as judged by differential scanning calorimetry was observed under the diurnal lighting regime. NBS cultivated under the diurnal photosynthetic lighting regime displayed lower amylose content (18.7%), and shorter amylose chains than its counterpart grown under constant light. Although the relative crystallinity of NBS was not influenced by lighting conditions, lower onset, peak, and completion gelatinization temperatures were observed in diurnally grown NBS compared to constant light conditions. It is concluded that normal barley starch is less influenced by the diurnal photosynthetic lighting regime than amylose-free barley starch suggesting a role of amylose to prevent structural disorder and increase starch granule robustness against environmental cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties.

    Science.gov (United States)

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-08-15

    In baking applications involving starch gelatinisation, surfactants such as sodium stearoyl lactylate (SSL) and monoacylglycerols (MAG) and Bacillus stearothermophilus maltogenic alpha-amylase (BStA) can be used jointly. We here showed that SSL but not MAG delays wheat starch hydrolysis by BStA. The effects were explained in terms of different degrees of adsorption of the surfactants on the starch granule surface, retarded and/or decreased water uptake and delayed availability of gelatinised starch for hydrolysis by BStA. Additional experiments with waxy maize starch led to the conclusion that SSL impacts swelling power and carbohydrate leaching more by covering the starch granule surface than by forming amylose-lipid complexes. SSL postponed starch hydrolysis by BStA, but this did not influence subsequent starch gelation. Finally, when adding SSL or MAG on top of BStA to starch suspensions, the effect of the surfactants on gel strength predominated over that of BStA.

  11. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  12. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal