WorldWideScience

Sample records for high amplitude reflector

  1. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    Science.gov (United States)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  2. High Amplitude Secondary Mass Drive

    Energy Technology Data Exchange (ETDEWEB)

    DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.

    2000-07-06

    In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.

  3. New Developments in Large High Performance Shaped Reflectors

    Science.gov (United States)

    Abegg, C.; Baril, S.

    2002-01-01

    The large shaped reflectors, currently designed and manufactured at EADS LAUNCH VEHICLES, belong to a new generation of highly precise, highly stable and low mass reflectors for C/Ku-band and up to Ka-band missions. The previous EADS LAUNCH VEHICLES flight proven design was the one presented in the past at IAF and especially in 1994 and 1995, which was already at his time the in-orbit largest (3.5m x 2.6m) rigid reflector in the world for C/Ku-band missions. Operators require higher and higher performances for telecommunication antenna. And since the antenna performances are very dependent on the reflector ones, several developments of a new generation of large shaped reflectors started in the late 1990's. The first development consists in a new concept which particularly enhances the manufacturing easiness, the manufacturing distortion performances, the in-orbit distortion performances, the mass, the versatility versus a late change of coverage and versus implementation on different platforms. An extensive qualification test campaign has been successfully achieved in 2001, with outstanding performances: 30% mass gain and 50% gain of manufacturing and in-orbit accuracy with respect to previous 1995's design for the largest 3.5m x 2.6m reflectors. In parallel, developments have been led at EADS LAUNCH VEHICLES for large Ka-band mission antenna reflectors. These developments include single and dual shell reflectors with diameters up to 1.8 m. Furthermore, antenna requirements have recently led to more and more shaped profiles to fulfil RF needs. EADS LAUNCH VEHICLES has then started a development to verify the capability to manufacture very small curvature radius around 30mm, in order to provide the best product for the satellite missions. All the necessary analyses and material/processes characterisation tests have been carried out for these developments. Qualification tests have been performed or are under progress in profile measurements, sine vibration, acoustic

  4. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-05-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  5. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    Science.gov (United States)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  6. Optimization design of an adaptive CFRC reflector for high order wave-front error control

    Science.gov (United States)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2017-04-01

    The trend in future space high precision reflectors is going towards large aperture, lightweight and actively controlled deformable antennas. An adaptive shape control system for a Carbon Fiber Reinforced Composite (CFRC) reflector is conducted by Piezoelectric Ceramic Transducer (PZT) actuators. This adaptive shape control system has been shown to effectively mitigate common low order wave-front error, but it is inevitably plagued by high order wave-front error control. In order to improve the controllability of the adaptive CFRC reflector control system for high order wave-front error, the design of adaptive CFRC reflector requires optimizing further. According to numerical and experimental results, the print-through error induced by manufacturing and PZT actuators actuation is a type of predominant high order wave-front error. This paper describes a design which some secondary rib elements are embedded within the triangular cells of the primary ribs. These small secondary ribs are designed to support the reflector surface's weak region. Controllability of this new adaptive CFRC reflector control system with small secondary ribs is evaluated by generalized Zernike functions. This new design scheme can reduce high order residual error and suppress the high order wave-front error such as print-through error. Finally, design parameters of the adaptive CFRC reflector control system with small secondary ribs, such as primary rib height, secondary rib height, cut-out height of primary rib, are optimized.

  7. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs

    DEFF Research Database (Denmark)

    Chung, Il-Sug

    2015-01-01

    A theoretical study of differences in broadband high-indexcontrast grating (HCG) reflectors for TM and TE polarizations is presented, covering various grating parameters and properties of HCGs. It is shown that the HCG reflectors for TM polarization (TM HCG reflectors) have much thicker grating...

  8. High-quality distributed Bragg reflectors for resonant-cavity light-emitting diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S.; Naranjo, F.B.; Calle, F.; Sanchez-Garcia, M.A.; Calleja, E. [ISOM, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Vennegues, P. [CHREA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France)

    2002-08-16

    Efficient distributed Bragg reflectors based on Al{sub x}Ga{sub 1} {sub -} {sub x}N/GaN multilayer stacks have been grown by plasma-assisted molecular-beam epitaxy on GaN/Al{sub 2}O{sub 3} templates. The final goal is to incorporate these reflectors as bottom mirrors in a backside (sapphire) resonant-cavity light-emitting diode at 510 nm. The reflectors have been characterised by atomic force microscopy, high-resolution X-ray diffraction and high-resolution transmission electron microscopy. Reflectivity measurements have also been performed, obtaining values between 30% and 50%, depending on the Al content used. The incorporation of the Al{sub x}Ga{sub 1} {sub -} {sub x}N/GaN Bragg reflector as bottom mirror in a RCLED structure improves the output power by a factor of 12 compared with conventional light-emitting diodes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  9. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  10. Inflection point caustic problems and solutions for high-gain dual-shaped reflectors

    Science.gov (United States)

    Galindo-Israel, Victor; Veruttipong, Thavath; Imbriale, William; Rengarajan, Sembiam

    1990-01-01

    The singular nature of the uniform geometrical theory of diffraction (UTD) subreflector scattered field at the vicinity of the main reflector edge (for a high-gain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the geometrical optics (GO) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi-integral, whereas the theta-integral is carried out numerically. Computational results from UTD and physical optics (PO) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO(theta)GO(phi) technique can be used to study the spillover or noise temperature characteristics of a high-gain reflector antenna efficiently and accurately.

  11. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs

    CERN Document Server

    Chung, Il-Sug

    2015-01-01

    A theoretical study of differences in broadband high-index-contrast grating (HCG) reflectors for TM and TE polarizations is presented, covering various grating parameters and properties of HCGs. It is shown that the HCG reflectors for TM polarization (TM HCG reflectors) have much thicker grating thicknesses and smaller grating periods than the TE HCG reflectors. This difference is found to originate from the different boundary conditions met for the electric field of each polarization. Due to this difference, the TM HCG reflectors have much shorter evanescent extension of HCG modes into low-refractive-index media surrounding the HCG. This enables to achieve a very short effective cavity length for VCSELs, which is essential for ultrahigh speed VCSELs and MEMS-tunable VCSELs. The obtained understandings on polarization dependences will be able to serve as important design guidelines for various HCG-based devices.

  12. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    Science.gov (United States)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-05-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  13. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  14. Subharmonic and fundamental high amplitude excitation of an axisymmetric jet

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effect of simultaneous excitation at the fundamental and subharmonic frequencies on the behavior of a circular jet shear layer is studied. Attention is given to the effect of the initial phase difference, the Strouhal number pair, and amplitudes of the fundamental and subharmonic tones. High-amplitude excitation devices which can provide a wide range of forcing conditions when used in conjunction with equipment that produces complex waveforms are used.

  15. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  16. High Amplitude \\delta-Scutis in the Large Magellanic Cloud

    CERN Document Server

    Garg, A; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    We present 2323 High-Amplitude \\delta-Scuti (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  17. High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer

    Science.gov (United States)

    Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Liu, Kai; Fei, Jiarui; Ren, Xiaomin

    2016-11-01

    A high-contrast grating (HCG) focusing reflector providing phase front control of reflected light and high reflectivity is proposed and fabricated. Basic design rules to engineer this category of structures are given in detail. A 1550 nm TM polarized incident light of 11.86 mm in focal length and 0.8320 in reflectivity is obtained in experiment. The wavelength dependence of the fabricated HCGs from 1530 nm to 1580 nm is also tested. The test results show that the focal length is in the range of 11.81-12 mm, which is close to the designed focal length of 15 mm. The reflectivity is almost above 0.56 within a bandwidth of 50 nm. At a distance of 11.86 mm, the light is focused to a round spot with the highest concentration, which is much smaller than the size of the incident beam. The FWHM of the reflected light beam decreases to 120 nm, and the intensity increases to 1.18. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274044, 61574019 and 61020106007), the National Basic Research Program of China (Grant No. 2010CB327600), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130005130001), the Natural Science Foundation of Beijing, China (Grant No. 4132069), the Key International Science and Technology Cooperation Project of China (Grant No. 2011RR000100), the 111 Project of China (Grant No. B07005), and the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT0609).

  18. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    Science.gov (United States)

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  19. High quality UV AlGaN/AlGaN distributed Bragg reflectors and microcavities

    Science.gov (United States)

    Mitrofanov, Oleg; Schmult, S.; Manfra, M. J.; Siegrist, T.; Weimann, N. G.; Sergent, A. M.; Molnar, R. J.

    2007-02-01

    We demonstrate high-reflectivity crack-free Al 0.18Ga 0.82N/Al 0.8Ga 0.2N distributed Bragg reflectors (DBR) and monolithic microcavities grown by molecular beam epitaxy on thick c-axis GaN templates. The elastic strain energy in the epilayer is minimized by compensating the compressive and tensile stress in every period of the DBR structure. A 25 period DBR mirror provides a 26nm-wide stop band centered at 347 nm with the maximum reflectivity higher than 99%. The high-reflectivity DBRs can be used to form high Q-factor monolithic AlGaN/AlGaN microcavities.

  20. Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence

    Science.gov (United States)

    Chen, Linfeng; Shi, Xiaodi; Li, Mingzhu; Hu, Junping; Sun, Shufeng; Su, Bin; Wen, Yongqiang; Han, Dong; Jiang, Lei; Song, Yanlin

    2015-08-01

    Fireflies have drawn considerable attention for thousands of years due to their highly efficient bioluminescence, which is important for fundamental research and photonic applications. However, there are few reports on the reflector layer (RL) of firefly lantern, which contributes to the bright luminescence. Here we presented the detailed microstructure of the RL consisting of random hollow granules, which had high reflectance in the range from 450 nm to 800 nm. Inspired by the firefly lantern, artificial films with high reflectance in the visible region were fabricated using hollow silica microparticles mimicking the structure of the RL. Additionally, the bioinspired structures provided an efficient RL for the chemiluminescence system and could substantially enhance the initial chemiluminescence intensity. The work not only provides new insight into the bright bioluminescence of fireflies, but also is importance for the design of photonic materials for theranostics, detection, and imaging.

  1. A high-quality factor hybrid plasmonic nanocavity based on distributed Bragg reflectors

    Science.gov (United States)

    Tu, Linlin; Zhang, Chi; Huang, Zhong; Yau, Jason; Zhan, Peng; Wang, Zhenlin

    2016-09-01

    Herein, we propose a high-quality (Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors (DBRs) with low propagation loss and extremely strong mode confinement. This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer. The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor (Fp) of up to nearly 20000 and a gain threshold approaching 266 cm-1 at 1550 nm, promising a greater potential in deep sub-wavelength lasing applications. Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2012CB921501 and 2013CB632703) and the National Natural Science Foundation of China (Grant Nos. 11274160, 91221206, and 51271092).

  2. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...... with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very...

  3. Simulation of transients of high amplitude in pipe systems

    NARCIS (Netherlands)

    Boersma, J.M.; Looijmans, K.N.H.

    1999-01-01

    Fast high-amplitude transients ask for a non-linear modelling approach in which large density variations and heat exchange can be considered. Operation of safety-valves, relief valves, the occurrence of valve failure and the start-up or shutdown of rotating equipment in industrial pipe systems can l

  4. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  5. Radial convection of finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Wiesenberger, M; Kendl, A

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in ...

  6. Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gyanender, E-mail: sing0550@umn.edu [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Fok, Alex [Minnesota Dental Research in Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, 515, Delaware St. SE, Minneapolis, MN 55455 (United States); Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Mantell, Susan [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States)

    2017-06-15

    Highlights: • Failure probability of VHTR reflector bricks predicted though crack modeling. • Criterion chosen for defining failure strongly affects the predictions. • Breaching of the CRC could be significantly delayed through crack arrest. • Capability to predict crack initiation and propagation demonstrated. - Abstract: Graphite is used in nuclear reactor cores as a neutron moderator, reflector and structural material. The dimensions and physical properties of graphite change when it is exposed to neutron irradiation. The non-uniform changes in the dimensions and physical properties lead to the build-up of stresses over the course of time in the core components. When the stresses reach the critical limit, i.e. the strength of the material, cracking occurs and ultimately the components fail. In this paper, an explicit crack modeling approach to predict the probability of failure of a VHTR prismatic reactor core reflector brick is presented. Firstly, a constitutive model for graphite is constructed and used to predict the stress distribution in the reflector brick under in-reactor conditions of high temperature and irradiation. Fracture simulations are performed as part of a Monte Carlo analysis to predict the probability of failure. Failure probability is determined based on two different criteria for defining failure time: A) crack initiation and B) crack extension to near control rod channel. A significant difference is found between the failure probabilities based on the two criteria. It is predicted that the reflector bricks will start cracking during the time range of 5–9 years, while breaching of the control rod channels will occur during the period of 11–16 years. The results show that, due to crack arrest, there is a significantly delay between crack initiation and breaching of the control rod channel.

  7. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    Science.gov (United States)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of

  8. Frequencies and amplitudes of high-degree solar oscillations

    Science.gov (United States)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  9. Active Reflectors: Possible Solutions Based on Reflectarrays and Fresnel Reflectors

    Directory of Open Access Journals (Sweden)

    Lorena Cabria

    2009-01-01

    Full Text Available An overview about some of the recent Spanish developments on active reflectors is presented. In the first part, a novel beamsteering active reflectarray is deeply studied. It is based on implementing in each elementary radiator an IQ modulator structure, in which amplitude and phase control of the scattered field is achieved. Finally, a special effort is made in offering solutions to overcome the active antenna integration problems. In the second part, the active concept is firstly extended to Fresnel reflectors. Thanks to the development of a proper simulator, this special structure can be easily analysed. This simulator allows the study of performance of this kind of reflectors and, applying evolutionary algorithms, to find optimal configurations of reflector in accordance with the given specifications for the conformal radiation pattern.

  10. CNGS Reflector installed

    CERN Multimedia

    2006-01-01

    A major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy, has been installed in its final position. The transport of the huge magnetic horn reflector through the CNGS access gallery. A team from CNGS and TS/IC, and the contractors DBS, transported the magnetic horn reflector on 5th December, in a carefully conducted operation that took just under two hours. The reflector is 7m long, 1.6m in diameter and 1.6 tonnes in weight. With only a matter of centimetres to spare on either side, the reflector was transported through the CNGS access gallery, before being installed in the experiment's target chamber. The larger of two magnetic horns, the reflector will help refocus sprays of high energy pions and kaons emitted after a 0.5MW stream of protons from the Super Proton Synchrotron (SPS) strikes nucleons in a graphite target. The horns are toroidal magnetic lenses and work with high pulsed currents: 150 kA f...

  11. Large-amplitude ULF waves at high latitudes

    Science.gov (United States)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  12. High-Quality Monolithic Distributed Bragg Reflector Cavities and Lasers in Alumina Channel Waveguides

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    2011-01-01

    The design, fabrication, and characterization of surface relief Bragg gratings integrated with aluminum oxide ridge waveguides are reported. The grating lengths varied between 1.25 mm and 4.75 mm and were used to create various distributed Bragg reflector (DBR) cavities. The measured grating induced

  13. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  14. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795

  15. Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.

    Science.gov (United States)

    Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi

    2015-01-01

    A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.

  16. The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise

    Institute of Scientific and Technical Information of China (English)

    Y.-H. KWEON; M. TSUCHIDA; Y. MIYAZATO; T. AOKI; H.-D. KIM; T. SETOGUCHI

    2005-01-01

    This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0. In the present study, a metal reflector and reflectors made of three different sound-absorbing materials (grass wool and polyurethane foam) were employed,and the reflector size was varied. Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency, amplitude of screech tone and overall sound pressure level (OASPL). A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet. The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size. It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB, compared with those of the metal reflector.

  17. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  18. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  19. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    Science.gov (United States)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  20. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    National Research Council Canada - National Science Library

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    ... (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F...

  1. Manufacturing of high performance, low cost dual mirror lamp reflector modules

    Science.gov (United States)

    Shen, Li

    The Lamp Reflector Module (LRM) is a key component in every micro display projection system, which has played a dominant role in the large-screen display market today. The goal of this research is to (1) improve the Dual Mirror prototype's light output performance, (2) investigate the underlying principles of its slow output deterioration so as to help develop effective and efficient LRM thermal management for maximized lifetime performance, and (3) improve/enable low cost mass LRM manufacturing for the projection display market. The first part of this research addresses the prototype's low output problem. More sophisticated 3D Optical Ray Tracing (ORT) models were generated to provide the output prediction depending on the arc gap, system collection etendue, etc. It was concluded that upgrading the manufacturing processes, particularly the reflector shape, surface and cold mirror coating, could effectively improve the output performance. Additionally, these theoretical models are shown to be used to design a LRM with 16% output gain for the consumer Rear Projection display market. The second part of this research focuses on the issue of lifetime performance. The electrode, arc attachment and envelope evolution were monitored by camera systems. The upgraded ORT models confirmed the arc length insensitivity property of the Dual Mirror LRM being one of the major reasons for its longer native lifetime. The third part of this research focuses on issues related to the entire LRM manufacturing. A series of quality control tools were developed to help implement manufacturing process optimization. LRMs made with the upgraded manufacturing processes showed about 25% output gain over the previous prototypes. Based on the imaging property of the Dual Mirror LRM, a lower cost lamp reflector alignment method, called cold alignment, was developed. In this method, the etendue efficiency is maintained and a slower degrading and more stable lifetime output performance are achieved

  2. The High Amplitude delta Scuti Star AD Canis Minoris

    Science.gov (United States)

    Axelsen, R. A.; Napier-Munn, T.

    2016-12-01

    The high amplitude delta Scuti star AD Canis Minoris was studied by photoelectric photometry (PEP) during one night in in February 2011 and by digital single lens reflex (DSLR) photometry during seven nights in January and February 2016. Nine light curve peaks were captured, eight of them by DSLR photometry. A review of the literature enabled us to tabulate 109 times of maximum since 1959, to which we added 9 times of maximum from our data, thus creating the largest dataset to date for this star. Assuming a linear ephemeris, the period of AD CMi was calculated to be 0.122974511 (+/- 0.000000004) d, almost identical to that quoted in earlier literature. We constructed an observed minus computed (O-C) diagram which exhibited a quasi-sinusoidal shape, and fitted a weighted model characterised by combined quadratic and trigonometric functions. The fit indicates that the shape of the O-C diagram is attributable to the effects of a slow increase in the pulsation period of AD CMi at a constant rate, and the light time effect of a binary pair, confirming the results from previous authors, and updating most of the coefficients of the equation for the fitted model. The values of all of the coefficients in the function are statistically significant. The rate of increase in the pulsation period of AD CMi was calculated from the entire dataset to be dP/dt = 6.17 (+/- 0.75) x 10-9 d yr-1 or dP/Pdt = 5.01 (+/- 0.61) x 10-8 yr-1.

  3. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  4. High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers

    Science.gov (United States)

    Franke, A.; Hoffmann, M. P.; Kirste, R.; Bobea, M.; Tweedie, J.; Kaess, F.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-10-01

    UV-C distributed Bragg reflectors (DBRs) for vertical cavity surface emitting laser applications and polariton lasers are presented. The structural integrity of up to 25 layer pairs of AlN/Al0.65Ga0.35N DBRs is maintained by balancing the tensile and compressive strain present between the single layers of the multilayer stack grown on top of an Al0.85Ga0.35N template. By comparing the structural and optical properties for DBRs grown on low dislocation density AlN and AlGaN templates, the criteria for plastic relaxation by cracking thick nitride Bragg reflectors are deduced. The critical thickness is found to be limited mainly by the accumulated strain energy during the DBR growth and is only negligibly affected by the dislocations. A reflectance of 97.7% at 273 nm is demonstrated. The demonstrated optical quality and an ability to tune the resonance wavelength of our resonators and microcavity structures open new opportunities for UV-C vertical emitters.

  5. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.

    Science.gov (United States)

    Bailey, M R; Blackstock, D T; Cleveland, R O; Crum, L A

    1999-08-01

    Dramatically different cavitation was produced by two separate acoustic pulses that had different shapes but similar duration, frequency content, and peak positive and negative pressure. Both pulses were produced by a Dornier HM-3 style lithotripter: one pulse when the ellipsoidal reflector was rigid, the other when the reflector was pressure release. The cavitation, or bubble action, generated by the conventional rigid-reflector pulse was nearly 50 times longer lived and 3-13 times stronger than that produced by the pressure-release-reflector pulse. Cavitation durations measured by passive acoustic detection and high-speed video agreed with calculations based on the Gilmore equation. Cavitation intensity, or destructive potential, was judged (1) experimentally by the size of pits in aluminum foil detectors and (2) numerically by the calculated amplitude of the shock wave emitted by a collapsing bubble. The results indicate that the trailing positive spike in the pressure-release-reflector waveform stifles bubble growth and mitigates the collapse, whereas the trough after the positive spike in the rigid-reflector waveform triggers inertially driven growth and collapse. The two reflectors therefore provide a tool to compare effects in weakly and strongly cavitating fields and thereby help assess cavitation's role in lithotripsy.

  6. Laser-induced damage of TiO2/SiO2 high reflector at 1064 nm

    Science.gov (United States)

    Yao, Jianke; Ma, Jianyong; Xiu, Cheng; Fan, Zhengxiu; Jin, Yunxia; Zhao, Yuanan; He, Hongbo; Shao, Jianda; Huang, Huolin; Zhang, Feng; Wu, Zhengyun

    2008-04-01

    A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064nm with a 12ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR.

  7. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    Energy Technology Data Exchange (ETDEWEB)

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. (Spectra Diode Labs., San Jose, CA (United States))

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  8. Research on High Frequency Amplitude Attenuation of Electric Fast Transient Generator

    Directory of Open Access Journals (Sweden)

    Huafu Zhang

    2013-01-01

    Full Text Available In order to solve the amplitude attenuation of electric fast transient (EFT generator operating in high frequency, the charging and discharging process of energy storage capacitor in EFT generator are analyzed, the main circuit voltage variation mathematical model is established, the parameters of main loop circuit and the parameters of switch driving waveform which affect burst amplitude are discussed. Through the simulation, this paper puts forward effective methods to overcome burst amplitude attenuation in high frequency. The simulation results show that when the frequency is low, the duty ratio of drive signal have little effect on energy storage capacitor voltage amplitude attenuation. when the charging resistance is less than 500 Ω, the duty ratio of drive signal is less than 0.125, the repetition frequency of burst reaches 1.2 MHz, the amplitude attenuation of energy storage capacitor voltage is less than 9%, the amplitude of burst satisfies IEC61000-4-4 standards.

  9. DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, Jankee; Navathe, C. P.

    2006-07-01

    A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.

  10. Solar thermal collectors using planar reflector

    Science.gov (United States)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  11. Design method for an offset dual-shaped reflector antenna with high efficiency and an elliptical beam

    Science.gov (United States)

    Aoki, K.; Makino, S.; Katagi, T.; Kagoshima, K.

    1993-04-01

    A newly developed method of design for a shaped reflector antenna is described. A conventional quadratic reflector configuration is assumed; the reflectors are then modified to yield the desired aperture shape and field distribution by introducing shaping functions. This method is useful for designing antennas with an arbitrary shaped beam, such as an elliptical-beam antenna, and has been verified through a 4.7 m x 2.3 m dual-band earth-station antenna for the Japanese domestic satellite system CS. The measured aperture efficiency is more than 76 percent, and the ratio of the major and minor axes of the elliptical beam is 2:1.

  12. Homology Parameters for Large Axisymmetric Shaped Dual-Reflector Antennas

    Science.gov (United States)

    Ban, You; Duan, Baoyan; Wang, Congsi; Wang, Wei; Feng, Shufei; Xiang, Binbin

    2017-05-01

    We extend the concept of best-fitting paraboloids for large single and dual reflectors with conic-section surfaces to best-fit shaped surface for large dual reflectors shaped for uniform amplitude distribution. The point focus of the paraboloidal main reflector is replaced by focal lines for the main reflector and the primary subreflector focus, whereas the secondary subreflector point focus at the feed is kept. The reflector surfaces are shaped, and all rays from the main-reflector aperture to the feed meet an equal-path-length condition. This condition may be represented by a set of "homology parameters" determined by a least-squares method. Finally, we calculate the homology parameters and the root mean square of surface errors for an 8-m dual-reflector system including gravity effects for the antenna pointed toward zenith and the horizon.

  13. External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations

    NARCIS (Netherlands)

    Gonzalez, Oscar J. Avella; van Aerde, Karlijn I.; van Elburg, Ronald A. J.; Poil, Simon-Shlomo; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus; van Pelt, Jaap; van Ooyen, Arjen

    2012-01-01

    Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with epi

  14. Brh V128 is a Double-Mode High-Amplitude delta Scuti Star

    Science.gov (United States)

    Bernhard, K.; Pejcha, O.; Proksch, W.; Quester, W.; van Cauteren, P.; Wils, P.

    2004-08-01

    CCD-V and unfiltered photometric data show that Brh V128 = GSC 1893-89 is a new high-amplitude double-mode Delta Scuti variable with a fundamental period of 0.1534 days and a period ratio of 0.767. The amplitude of the first overtone pulsation is slightly larger than that of the fundamental mode.

  15. Off-shell helicity amplitudes in high-energy factorization

    CERN Document Server

    van Hameren, Andreas; Kutak, Krzysztof

    2013-01-01

    In the Catani-Ciafaloni-Hautmann high-energy factorization approach a cross section is expressed as a convolution of unintegrated gluon densities and a gauge-invariant hard process, in which two incoming gluons are off-shell with momenta satisfying certain high-energy kinematics. We present two methods of evaluating the tree-level hard process with multiple final states. The first one assumes that only one of the gluons is off-shell and relies on the Slavnov-Taylor identities. Such asymmetric configuration of incoming gluons is phenomenologically important in small x probing by forward processes. The second method deals also with two off-shell gluons and is based on the analytic continuation of the off-shell gluons momenta to the complex space. The methods were implemented into Monte Carlo computer programs and used in phenomenological applications. The results of both methods are straightforwardly related to Lipatov's effective vertices in quasi-multi-regge kinematics.

  16. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  17. W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability

    Science.gov (United States)

    Zhang, J.; Chen, T. P.; Liu, Y. C.; Liu, Z.; Yang, H. Y.

    2017-05-01

    The W/Cu thin film structure is deposited by magnetron sputtering to form the infrared reflector for the TiNxOy based selective solar absorber (SSA) that can be used in the low- and middle-temperature applications. The structural, chemical, and optical properties of the SSA layers that experienced thermal annealing at different temperatures for various durations have been investigated with the characterization techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, spectroscopic ellipsometry, and spectrophotometry. Without a W layer, the reflectance in both visible and infrared ranges of the SSA increases as a result of the crystallization of the Cu layer at elevated temperatures. With a W layer with appropriate film thickness, the increase of the reflectance in the visible range can be suppressed to maintain a high solar absorptance, whereas a high infrared reflectance can be maintained to achieve a low thermal emittance. It is shown that for the SiO2-TiNxOy-W-Cu-Glass SSA with a 15 nm W thin film, thermal annealing can significantly reduce the thermal emittance to a low value (e.g., 4.4% at the temperature of 400 °C for annealing at 400 °C for 6 h), whereas the solar absorptance can be maintained at a high value (e.g., 92.2% for the annealing at 400 °C for 6 h).

  18. Freeform high-speed large-amplitude deformable Piezo Mirrors

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2013-01-01

    We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100\\mu m and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored "topological" displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.

  19. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  20. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  1. Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Seong; Seong, Tae-Yeon, E-mail: tyseong@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Han, Jaecheon [Department of LED Business, Chip Development Group, LG Innotek, Paju 413-901 (Korea, Republic of); Ha, Jun-Seok [School of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-04-28

    We report on the polarity dependence of the electrical properties of Ag reflectors for high-power GaN-based light-emitting diodes. The (0001) c-plane samples become ohmic after annealing in air. However, the (11–22) semi-polar samples are non-ohmic after annealing, although the 300 °C-annealed sample shows the lowest contact resistivity. The X-ray photoemission spectroscopy (XPS) results show that the Ga 2p core level for the c-plane samples experiences larger shift toward the valence band than that for the semi-polar samples. The XPS depth profile results show that unlike the c-plane samples, the semi-polar samples contain some amounts of oxygen at the Ag/GaN interface regions. The outdiffusion of Ga atoms is far more significant in the c-plane samples than in the semi-polar samples, whereas the outdiffusion of N atoms is relatively less significant in the c-plane samples. On the basis of the electrical and XPS results, the polarity dependence of the electrical properties is described and discussed.

  2. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [University of Arizona

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  3. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.

    Science.gov (United States)

    O'Grady, G; Du, P; Paskaranandavadivel, N; Angeli, T R; Lammers, W J E P; Asirvatham, S J; Windsor, J A; Farrugia, G; Pullan, A J; Cheng, L K

    2012-07-01

    Gastric slow waves propagate aborally as rings of excitation. Circumferential propagation does not normally occur, except at the pacemaker region. We hypothesized that (i) the unexplained high-velocity, high-amplitude activity associated with the pacemaker region is a consequence of circumferential propagation; (ii) rapid, high-amplitude circumferential propagation emerges during gastric dysrhythmias; (iii) the driving network conductance might switch between interstitial cells of Cajal myenteric plexus (ICC-MP) and circular interstitial cells of Cajal intramuscular (ICC-IM) during circumferential propagation; and (iv) extracellular amplitudes and velocities are correlated. An experimental-theoretical study was performed. High-resolution gastric mapping was performed in pigs during normal activation, pacing, and dysrhythmia. Activation profiles, velocities, and amplitudes were quantified. ICC pathways were theoretically evaluated in a bidomain model. Extracellular potentials were modeled as a function of membrane potentials. High-velocity, high-amplitude activation was only recorded in the pacemaker region when circumferential conduction occurred. Circumferential propagation accompanied dysrhythmia in 8/8 experiments was faster than longitudinal propagation (8.9 vs 6.9 mm s(-1) ; P = 0.004) and of higher amplitude (739 vs 528 μV; P = 0.007). Simulations predicted that ICC-MP could be the driving network during longitudinal propagation, whereas during ectopic pacemaking, ICC-IM could outpace and activate ICC-MP in the circumferential axis. Experimental and modeling data demonstrated a linear relationship between velocities and amplitudes (P propagation. Rapid circumferential propagation also emerges during a range of gastric dysrhythmias, elevating extracellular amplitudes and organizing transverse wavefronts. One possible explanation for these findings is bidirectional coupling between ICC-MP and circular ICC-IM networks. © 2012 Blackwell Publishing Ltd.

  4. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  5. High-index-contrast grating reflector with beam steering ability for the transmitted beam

    DEFF Research Database (Denmark)

    Carletti, Luca; Malureanu, Radu; Mørk, Jesper

    2011-01-01

    High-index contrast grating mirrors providing wave front control of the transmitted light as well as high reflectivity over a broad bandwidth are suggested and both numerically and experimentally investigated. General design rules to engineer these structures for different applications are derived...

  6. VizieR Online Data Catalog: VVV high amplitude NIR variable stars (Contreras Pena+, 2017)

    Science.gov (United States)

    Contreras Pena, C.; Lucas, P. W.; Minniti, D.; Kurtev, R.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Kumar, M. S. N.; Thompson, M. A.; Gledhill, T.; Terzi, R.; Froebrich, D.; Caratti o Garatti, A.

    2017-08-01

    We present the single epoch ZYJHKs photometry obtained from VVV catalogues for 816 high-amplitude variables. We also present the amplitude of the Ks light curve of the objects derived from 2010-2015 photometry. For each object we also provide a provisional classification derived from the shape of the light curve. For objects found to be likely associated with SFRs we present an spectral index derived from the object's spectral energy distribution. (2 data files).

  7. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly ...

  8. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System

    Science.gov (United States)

    Hussein, Z.; Hilland, J.

    2001-01-01

    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  9. High-index-contrast grating reflector with beam steering ability for the transmitted beam.

    Science.gov (United States)

    Carletti, Luca; Malureanu, Radu; Mørk, Jesper; Chung, Il-Sug

    2011-11-07

    High-index contrast grating mirrors providing wave front control of the transmitted light as well as high reflectivity over a broad bandwidth are suggested and both numerically and experimentally investigated. General design rules to engineer these structures for different applications are derived. Such grating mirrors would have a significant impact on low cost laser fabrication, since a more efficient integration of optoelectronic modules can be achieved by avoiding expensive external lens systems.

  10. Development of high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, J.; Sharma, M. L.; Ahuja, Aakash B.; Navathe, C. P.

    2014-06-01

    A high voltage pulse generator with variable amplitude (100-3000 V) and duration (100-2000 μs) has been designed and developed. The variable duration pulse has been generated by adopting a simple and novel technique of varying the turn off delay time of a high voltage Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based switch by varying external gate resistance. The pulse amplitude is made variable by adjusting biasing supply of the high voltage switch. The high voltage switch has been developed using a MOSFET based stack of 3 kV rating with switching time of 7 ns.

  11. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    Energy Technology Data Exchange (ETDEWEB)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  12. High-power distributed Bragg reflector lasers for green-light generation

    Science.gov (United States)

    Hu, Martin H.; Nguyen, Hong Ky; Song, Kechang; Li, Yabo; Visovsky, Nick J.; Liu, Xingsheng; Nishiyama, Nobuhiko; Coleman, Sean; Hughes, Lawrence C., Jr.; Gollier, Jacques; Miller, William; Bhat, Raj; Zah, Chung-En

    2006-02-01

    We report on the design, fabrication and performance of high-power and high-modulation-speed 1060-nm DBR lasers for green-light emission by second harmonic generation. Single-spatial-mode and single-wavelength power more than 450 mW of 1060-nm wavelength was achieved with a 3-section DBR laser with non-absorbing DBR and phase sections created by an impurity-free quantum-well intermixing technique. A thermally-induced wavelength tuning of 2.4 nm and a carrier-induced wavelength tuning of -0.85 nm were obtained by injecting current into the DBR section. The green power as high as 104.6 mW was demonstrated by coupling the DBR laser output to a second-harmonic-generation waveguide. Measured rise/fall times of 0.2 ns for direct intensity modulation and 0.6 ns for wavelength modulation make the DBR lasers suitable for >=50-MHz green-light-modulation applications. The detrimental thermally-induced patterning effect and a differential-phase modulation scheme as a solution are discussed.

  13. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  14. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  15. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuke, E-mail: huangshuke@163.com [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Huang, Wenrong; Liu, Jianhui [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Teng, Jin; Li, Ning; Wen, Yuhua [School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2013-01-10

    Fe-Mn damping alloy, which can decrease the vibrating and noise effectively, will be widely applied to household appliances, automobiles, industrial facilities, etc. In this paper, the internal friction mechanism of Fe-19Mn alloy at low strain amplitude (10{sup -5} range) and high strain amplitude (10{sup -4} range) was investigated. The internal friction was measured using multifunction internal friction equipment and reversal torsion pendulum. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of Fe-19Mn alloy after solution treating was related to strain amplitude. The internal friction mechanism was believed to the movements of four damping sources ({epsilon}-martensite variant boundaries, stacking fault boundaries in {epsilon}-martensite and {gamma}-austenite, {gamma}/{epsilon} interfaces), which could be explained using the interactive movements of Shockley partial dislocations and point defects. At low strain amplitude (10{sup -5} range), the bowing out movements of Shockley partial dislocations are the main moving mode of generating internal friction. At high strain amplitude (10{sup -4} range), however, the breaking away movements of Shockley partial dislocations are the high internal friction mechanism of Fe-19Mn alloy.

  17. The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster

    Science.gov (United States)

    Qin, Yu; Xie, Kan; Guo, Ning; Zhang, Zun; Zhang, Cen; Gu, Zengjie; Zhang, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2017-05-01

    The influence of gas flow, current level, and different shapes of anode on the oscillation amplitude and the characteristics of the hollow cathode discharge were investigated. The average plasma potential, temporal measurements of plasma potential, ion density, the electron temperature, as well as waveforms of plasma potential for test conditions were measured. At the same time, the time-resolved images of the plasma plume were also recorded. The results show that the potential oscillations appear at high discharge current or low flow rate. The potential oscillation boundaries, the position of maximum amplitude of plasma potential, and the position where the highest ion density was observed, were found. Both of the positions are affected by different shapes of anode configurations. This high amplitude of potential oscillations is ionization-like instabilities. The xenon ions ionized in space was analyzed for the fast potential rise and spatial dissipation of the space xenon ions was the reason for the gradual potential delay.

  18. High performance single-error-correcting quantum codes for amplitude damping

    CERN Document Server

    Shor, Peter W; Smolin, John A; Zeng, Bei

    2009-01-01

    We construct families of high performance quantum amplitude damping codes. All of our codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension. One family is built from nonlinear error-correcting codes for classical asymmetric channels, with which we systematically construct quantum amplitude damping codes with parameters better than any prior construction known for any block length n > 7 except n=2^r-1. We generalize this construction to employ classical codes over GF(3) with which we numerically obtain better performing codes up to length 14. Because the resulting codes are of the codeword stabilized (CWS) type, easy encoding and decoding circuits are available.

  19. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...

  20. In search of objective manometric criteria for colonic high-amplitude propagated pressure waves

    NARCIS (Netherlands)

    De Schryver, AMP; Samsom, M; Smout, AJPM

    2002-01-01

    The aims of this study were to explore all characteristics of high-amplitude propagated contractions (HAPCs) that would allow them to be distinguished from nonHAPC colonic pressure waves, and to develop computer algorithms for automated HAPC detection. Colonic manometry recordings obtained from 24 h

  1. Numerical modeling of dune progression in a high amplitude meandering channel

    Science.gov (United States)

    Laboratory experiments carried out by Abad and Garcia (2009) in a high-amplitude Kinoshita meandering channel show bed morphodynamics to comprise steady (local scour and deposition) and unsteady (migrating bedforms) components. The experiments are replicated with a numerical model. The sediment tran...

  2. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.

    Science.gov (United States)

    Rikanati, A; Oron, D; Sadot, O; Shvarts, D

    2003-02-01

    Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.

  3. Silicon reflectors for external cavity lasers based on ring resonators

    Science.gov (United States)

    Wang, Chao; Li, Xia; Jin, Hao; Yu, Hui; Yang, Jianyi; Jiang, Xiaoqing

    2017-01-01

    We propose and experimentally investigate types of silicon ring reflectors on Silicon-On-Insulator (SOI) platform. These reflectors are used for realizing the silicon hybrid external cavity lasers. A suspended edge coupler is used to connect the reflective semiconductor optical amplifier (RSOA) chip and the reflectors. The properties of the reflectors and the hybrid external cavity lasers with these reflectors are illustrated. The experimental results show that all of those reflectors have a high reflectivity and the highest reflectivity can up to be 95%. The lowest insertion loss can be as low as 0.4 dB. The output power of the hybrid external cavity lasers with these reflectors can reach mW magnitude and the highest output power is 6.1 mW. Over 30 dB side mode suppression ratio is obtained.

  4. Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors

    Science.gov (United States)

    Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.

    2016-04-01

    A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.

  5. The coating design of phase-shifting reflector array with high reflectance and specified reflection phase shifts for static Michelson interferometer

    Science.gov (United States)

    Zhang, Xuanni; Zhang, Hui; Wang, Yijun

    2016-02-01

    The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.

  6. Non-Linear High Amplitude Oscillations in Wave-shaped Resonators

    Science.gov (United States)

    Antao, Dion; Farouk, Bakhtier

    2011-11-01

    A numerical and experimental study of non-linear, high amplitude standing waves in ``wave-shaped'' resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible axisymmetric computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. Working fluids (Helium, Nitrogen and R-134a) at various operating pressures are studied. The experiments are performed in a constant cross-section cylindrical resonator in atmospheric pressure nitrogen and helium to provide model validation. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling. The work reported is supported by the US National Science Foundation under grant CBET-0853959.

  7. Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy

    Science.gov (United States)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-11-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  8. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  9. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  10. Analysis of the Petersen Diagram of Double-Mode High-Amplitude {\\delta} Scuti Stars

    CERN Document Server

    Furgoni, Riccardo

    2016-01-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude {\\delta} Scuti stars listed in the AAVSO's International Variable Star Index up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  11. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    OpenAIRE

    Etube, L. S.

    1998-01-01

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to 70OMPa. These steels are thought to exhib...

  12. High-resolution, high-reflectivity operation of lamellar multilayer amplitude gratings: identification of the single-order regime

    NARCIS (Netherlands)

    Kozhevnikov, I. V.; van der Meer, R.; Bastiaens, H. M. J.; Boller, K. J.; F. Bijkerk,

    2010-01-01

    High resolution while maintaining high peak reflectivities can be achieved for Lamellar Multilayer Amplitude Gratings (LMAG) in the soft-x-ray (SXR) region. Using the coupled waves approach (CWA), it is derived that for small lamellar widths only the zeroth diffraction order needs to be considered f

  13. Possible seismic reflector in the lower crust: Evidence from fabrics and experiments of seismic velocity on layered gabbro at high temperature and high pressure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lattice preferred orientations (LPO) of plagioclase and augite are measured on layered gabbro from the Panxi region, Sichuan Province. The LPO concentration [010] of plagioclase and [100] of augite are perpendicular to the foliation, which indicates a kind of growth fabric associated with crystallizing habits of minerals when the magma is solidifying under the compaction. Calculated seismic velocities based on LPO data of minerals give rise to rather strong anisotropy 5.81% and 5.54% for compressional seismic wave (Vp) and shear seismic wave (Vs), respectively. The experiments at high temperature and high pressure show that the P-wave velocity of layered gabbro is 6.44-6.97 km/s with the maximum Vp anisotropy 5.22% and the Poisson's ratio is between 0.28-0.31. According to the comparison of fabrics with seismic velocities of layered gabbro, it is uggested that the large-scale layered intrusive body or the similar layered geological body may exist in the lower crust of this area. Such a layered intrusive body which has strong seismic anisotropy may be the seismic reflector in the lower crust.

  14. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Science.gov (United States)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  15. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    Science.gov (United States)

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  16. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  17. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    Science.gov (United States)

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  18. Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)

    Science.gov (United States)

    Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.

    2009-08-01

    Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.

  19. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  20. High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters

    CERN Document Server

    Valuch, D

    2004-01-01

    Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...

  1. Effects of thrust amplitude and duration of high velocity low amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    OBJECTIVE Mechanical characteristics of high velocity low amplitude spinal manipulations (HVLA-SM) can be variable. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether an HVLA-SM’s thrust amplitude or duration altered neural responsiveness of lumbar muscle spindles to either vertebral movement or position. METHODS Anesthetized cats (n=112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3mm) they received. Cats in each cohort received 8 thrust durations (0–250ms). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (MIF) during the baseline period preceding the ramps (ΔMIFresting), during ramp movements (ΔMIFmovement), and with the vertebra held in the new position (ΔMIFposition) were compared. RESULTS Thrust duration had a small but statistically significant effect on ΔMIFresting at all six thrust amplitudes compared to control (0ms thrust duration). The lowest amplitude thrust displacement (1mm) increased ΔMIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ΔMIFresting was not consistent and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ΔMIFmovement and ΔMIFposition were not significantly different from control. Conclusion Relatively low amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was

  2. Effects of thrust amplitude and duration of high-velocity, low-amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement.

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R; Long, Cynthia R; Kawchuk, Gregory N; Pickar, Joel G

    2013-02-01

    Mechanical characteristics of high-velocity, low-amplitude spinal manipulations (HVLA-SMs) can vary. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor's local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether variation in an HVLA-SM's thrust amplitude and duration alters the neural responsiveness of lumbar muscle spindles to either vertebral movement or position. Anesthetized cats (n = 112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3 mm) they received. Cats in each cohort received 8 thrust durations (0-250 milliseconds). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (∆MIF) during the baseline period preceding the ramps (∆MIFresting), during ramp movement (∆MIFmovement), and with the vertebra held in the new position (∆MIFposition) were compared. Thrust duration had a small but statistically significant effect on ∆MIFresting at all 6 thrust amplitudes compared with control (0-millisecond thrust duration). The lowest amplitude thrust displacement (1 mm) increased ∆MIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ∆MIFresting was not consistent, and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ∆MIFmovement and ∆MIFposition were not significantly different from control. Relatively low-amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust

  3. First Results with a Fast Phase and Amplitude Modulator for High Power RF Application

    CERN Document Server

    Frischholz, Hans; Valuch, D; Weil, C

    2004-01-01

    In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.

  4. Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation Systems

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen; Wang Yao; Lajos Hanzo

    2010-01-01

    A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.

  5. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  6. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure.

    Science.gov (United States)

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-06

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  7. High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III-nitride distributed Bragg reflectors

    Science.gov (United States)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao; Gao, Shumei

    2017-03-01

    Separate absorption and multiplication AlGaN solar-blind avalanche photodiodes with dual-periodic III-nitride distributed Bragg reflectors (DBRs) are numerically demonstrated. The designed devices exhibit an improved solar-blind characteristic with a maximum spectral responsivity of 0.184 A/W at λ = 284 nm owing to the optimized optical properties of the dual-periodic III-nitride DBRs. Compared with their conventional counterparts, an increased multiplication gain and a reduced breakdown voltage are achieved by using p-type Al0.15Ga0.85N layers with a lower Al content and multiplication layers. These improvements are attributed to the high p-doping efficiency and large hole ionization coefficient.

  8. Insight into high-reflectivity AlN/GaN Bragg reflectors with spontaneously formed (Al,Ga)N transient layers at the interfaces

    Science.gov (United States)

    Gačević, Ž.; Eljarrat, A.; Peiró, F.; Calleja, E.

    2013-05-01

    This work gives a detailed insight into how the formation of (Al,Ga)N transient layers (TLs) at the interfaces of AlN/GaN Bragg reflectors modifies their structural and optical properties. While abrupt AlN/GaN interfaces are typically characterized with a network of microcracks, those with TLs are characterized with a network of nanocracks. Transmission electron microscopy reveals a strong correlation between strain and the TLs thickness, identifying thus the strain as the driving force for TLs formation. The AlN/GaN intermixing preserves the targeted stopband position (˜410 nm), whereas the peak reflectivity and the stopband width are both reduced, but still significantly high: >90% and >30 nm, respectively. To model their optical properties, a reduced refractive index contrast approximation is used, a novel method which yields an excellent agreement with the experiment.

  9. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    Science.gov (United States)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  10. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    Science.gov (United States)

    Perton, M.; Blouin, A.; Monchalin, J.-P.

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  11. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well...

  12. Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field

    Science.gov (United States)

    Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team

    2016-11-01

    The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).

  13. Thermal effects on seeded finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Held, M; Madsen, J; Kendl, A

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that a temperature perturbation increases the maximal blob velocity and that a finite Larmor radius contributes to highly compact blob structures with finite poloidal motion. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the ion diamagnetic to the perpendicular vorticity, exceeds unity. The maximal blob velocities excellently agree with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the radial transport and verify the here presented empirical scaling law for the maximal radia...

  14. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  15. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  16. Squeeze Film Dampers Executing Small Amplitude Circular-Centered Orbits in High-Speed Turbomachinery

    Directory of Open Access Journals (Sweden)

    Sina Hamzehlouia

    2016-01-01

    Full Text Available This work represents a pressure distribution model for finite length squeeze film dampers (SFDs executing small amplitude circular-centered orbits (CCOs with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.

  17. Mechanical behaviour of tape springs used in the deployment of reflectors around a solar panel

    Science.gov (United States)

    Dewalque, Florence; Collette, Jean-Paul; Brüls, Olivier

    2016-06-01

    In order to increase the production of power on small satellites, solar panels are commonly deployed and, in some cases, reflectors are added to improve the concentration factor on solar cells. In this work, reflectors are deployed by the means of compliant mechanisms known as tape springs. Their attractive characteristics are, among others, their passive behaviour, their self-locking capacity, their elastic deformations and their robustness. However, their mechanical behaviour is highly nonlinear and requires thorough analyses in order to develop predictive numerical models. It is shown here through parametric studies that the nonlinear behaviour of a tape spring is mainly governed by its geometry. Thus, for each specific application, its dimensions can be determined in order to minimise two critical features: the maximum stress affecting the structure and the maximum motion amplitude during deployment. In this paper, an optimisation procedure is proposed to meet these requirements.

  18. APPLICATION OF VISION METROLOGY TO IN-ORBIT MEASUREMENT OF LARGE REFLECTOR ONBOARD COMMUNICATION SATELLITE FOR NEXT GENERATION MOBILE SATELLITE COMMUNICATION

    Directory of Open Access Journals (Sweden)

    M. Akioka

    2016-06-01

    Full Text Available Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1 Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order

  19. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  20. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    Science.gov (United States)

    Etube, Linus Sone

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast

  1. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs.

    Science.gov (United States)

    Liu, Kai; Cheng, Chun; Cheng, Zhenting; Wang, Kevin; Ramesh, Ramamoorthy; Wu, Junqiao

    2012-12-12

    Various mechanisms are currently exploited to transduce a wide range of stimulating sources into mechanical motion. At the microscale, simultaneously high amplitude, high work output, and high speed in actuation are hindered by limitations of these actuation mechanisms. Here we demonstrate a set of microactuators fabricated by a simple microfabrication process, showing simultaneously high performance by these metrics, operated on the structural phase transition in vanadium dioxide responding to diverse stimuli of heat, electric current, and light. In both ambient and aqueous conditions, the actuators bend with exceedingly high displacement-to-length ratios up to 1 in the sub-100 μm length scale, work densities over 0.63 J/cm(3), and at frequencies up to 6 kHz. The functionalities of actuation can be further enriched with integrated designs of planar as well as three-dimensional geometries. Combining the superior performance, high durability, diversity in responsive stimuli, versatile working environments, and microscale manufacturability, these actuators offer potential applications in microelectromechanical systems, microfluidics, robotics, drug delivery, and artificial muscles.

  2. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  3. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    Science.gov (United States)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  4. Pulsation analysis of the high amplitude δ Scuti star CW Serpentis

    Science.gov (United States)

    Niu, Jia-Shu; Fu, Jian-Ning; Zong, Wei-Kai

    2013-10-01

    Time-series photometric observations were made for the high amplitude δ Scuti star CW Ser between 2011 and 2012 at the Xinglong Station of National Astronomical Observatories, Chinese Academy of Sciences. After performing the frequency analysis of the light curves, we confirmed the fundamental frequency of f = 5.28677 c d-1, together with seven harmonics of the fundamental frequency, which are newly detected. No additional frequencies were detected. The O — C diagram, produced with the 21 newly determined times of maximum light combined with those provided in the literature, helps to obtain a new ephemeris formula of the times of maximum light with the pulsation period of 0.189150355 ± 0.000000003 d.

  5. New principle for unpolarized wideband reflectors

    CERN Document Server

    Niraula, Manoj

    2016-01-01

    There is immense scientific interest in the properties of resonant thin films embroidered with periodic nanoscale features. This device class possesses considerable innovation potential. Accordingly, we report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with numerical methods, our elemental gratings consist of a partially-etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band that exceeds those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500-nm-wide wavelength band in the near-infrared domain. Moreover, the resonant unpolarized broadband accommodates an ultra-high-reflection band spanning ~85 nm and exceedin...

  6. Noninvasive respiratory support of juvenile rabbits by high-amplitude bubble continuous positive airway pressure.

    Science.gov (United States)

    Diblasi, Robert M; Zignego, Jay C; Tang, Dennis M; Hildebrandt, Jack; Smith, Charles V; Hansen, Thomas N; Richardson, C Peter

    2010-06-01

    Bubble continuous positive airway pressure (B-CPAP) applies small-amplitude, high-frequency oscillations in airway pressure (DeltaPaw) that may improve gas exchange in infants with respiratory disease. We developed a device, high-amplitude B-CPAP (HAB-CPAP), which provides greater DeltaPaw than B-CPAP provides. We studied the effects of different operational parameters on DeltaPaw and volumes of gas delivered to a mechanical infant lung model. In vivo studies tested the hypothesis that HAB-CPAP provides noninvasive respiratory support greater than that provided by B-CPAP. Lavaged juvenile rabbits were stabilized on ventilator nasal CPAP. The animals were then supported at the same mean airway pressure, bias flow, and fraction of inspired oxygen (FiO2) required for stabilization, whereas the bubbler angle was varied in a randomized crossover design at exit angles, relative to vertical, of 0 (HAB-CPAP0; equivalent to conventional B-CPAP), 90 (HAB-CPAP90), and 135 degrees (HAB-CPAP135). Arterial blood gases and pressure-rate product (PRP) were measured after 15 min at each bubbler angle. Pao2 levels were higher (p<0.007) with HAB-CPAP135 than with conventional B-CPAP. PaCO2 levels did not differ (p=0.073) among the three bubbler configurations. PRP with HAB-CPAP135 were half of the PRP with HAB-CPAP0 or HAB-CPAP90 (p=0.001). These results indicate that HAB-CPAP135 provides greater respiratory support than conventional B-CPAP does.

  7. Measuring the Energy Release of Low Amplitude Impact of High Explosive Events

    Science.gov (United States)

    Straight, J. W.; Idar, D. J.; Smith, L.; Osborn, M. A.; Viramontes, L. E.; Chavez, P. J.

    2004-07-01

    Predicting the degree of violence of high explosive (HE) reactions for a given event is desirable for risk assessments and a goal for computational models. Historically, different types of low amplitude impact tests on HE specimens have been performed to determine the critical impact-velocity threshold for high explosive violent reactions (HEVR). Additionally, the energy release relative to a steady-state detonation is also desirable for assessing the potential outcome of an accidental event. Traditionally, blast gauge measurements have been used to measure the overpressure of the HEVR event at a defined distance. This paper summarizes the use of this active technique coupled with a passive technique to derive average energy release curves for Modified Steven tests. A classic ballistic pendulum design was employed with the traditional blast gauge method. Calibration of the ballistic pendulum involved three elements. First, two mechanical measurements were related to the actual peak swing of the pendulum. Second, the general nature of the swing versus energy release curve was estimated. Two different approaches were used to estimate the momenta as a function of HE energy release using the Gurney relationships for an unsymmetrical sandwich. Finally, both techniques were simultaneously benchmarked with PBX 9501 calibration charges. Test results demonstrate the utility of using coupled diagnostic methods for low amplitude insult testing. Each set of data was fit to derive a working curve for the determination of the average energy release for HEVR event based on mass relative to a steady-state detonation. These tests results and working curve derivations are presented.

  8. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    Science.gov (United States)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of gas-switch and available capacitor recovery time.

  9. Substantiation of the Structural-Layout Scheme of the Mirror-Space-Antenna Reflector with a High Shape Stability and a Low Density per Unit Length

    Science.gov (United States)

    Reznik, S. V.; Prosuntsov, P. V.; Azarov, A. V.

    2015-05-01

    Problems of designing space-antenna reflectors from composite materials for promising telecommunication satellites are considered. Selection of designs is based on the numerical modeling of heat-transfer and mechanics processes corresponding to orbital-flight conditions.

  10. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  11. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.

    Science.gov (United States)

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-04-15

    Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    Science.gov (United States)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  13. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    Science.gov (United States)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-08-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  14. A study of daily variation in cosmic ray intensity during high/low amplitude days

    Indian Academy of Sciences (India)

    Rajesh K Mishra; Rekha Agarwal Mishra

    2007-03-01

    A detailed study has been conducted on the long-term changes in the diurnal, semi-diurnal and tri-diurnal anisotropies of cosmic rays in terms of the high/low amplitude anisotropic wave train events (HAE/LAE) during the period 1981-94 using the neutron monitor data from Deep River Neutron Monitoring Station. In all, 38 HAE and 28 LAE cases have been studied. An inter-comparison of the first three harmonics during these events has been made so as to understand the basic reason for the occurrence of these types of events. It has been observed that the phase of diurnal anisotropy shifts towards earlier hours for HAEs and it shifts towards earlier hour as compared to 18-h direction for LAEs. For semi-diurnal anisotropy, phase remains statistically the same for both HAE and LAE. In the case of tri-diurnal anisotropy, phase is evenly distributed for both types of events. The interplanetary magnetic field (IMF) and solar wind plasma (SWP) parameters during these events are also investigated. It has also been observed that HAE/LAEs are weakly dependent on high-speed solar wind velocity. The two types of solar wind streams (corotating streams and flare-generated streams) produce significant deviations in cosmic ray intensity during HAE/LAE.

  15. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  16. Short-lived high-amplitude cooling on Svalbard during the Dark Ages

    Science.gov (United States)

    van der Bilt, Willem; D`Andrea, William; Bakke, Jostein; Balascio, Nicholas; Werner, Johannes; Hoek, Wim

    2016-04-01

    As the paradigm of a stable Holocene climate has shifted, an increasing number of high-resolution proxy timeseries reveal dynamic conditions, characterized by high-amplitude climate shifts. Some of these events occurred during historical times and allow us to study the interaction between environmental and cultural change, providing valuable lessons for the near future. These include the Dark Ages Cold Period (DACP) between 300 and 800 AD, a period marked by political upheaval and climate instability that remains poorly investigated. Here, we present two temperature reconstructions from the High Arctic Svalbard Archipelago. To this end, we applied the established alkenone-based UK37 paleothermometer on sediments from two lakes on western Spitsbergen, Lake Hajeren and Lake Hakluyt. The Arctic is presently warming twice as fast as the global average and proxy data as well as model simulations suggest that this amplified response is characteristic for regional climate. The Arctic therefore provides a uniquely sensitive environment to study relatively modest climate shifts, like the DACP, that may not be adequately captured at lower-latitude sites. Owing to undisturbed sediments, a high sampling resolution and robust chronological control, the presented reconstructions resolve the attendant sub-centennial-scale climate shifts. Our findings suggest that the DACP marks a cold spell within the cool Neoglacial period, which started some 4 ka BP on Svalbard. Close investigation reveals a distinct temperature minimum around 500 AD that is reproduced in another alkenone-based temperature reconstruction from a nearby lake. At ± 1.75 °C, cooling underlines the sensitivity of Arctic climate as well as the magnitude of the DACP.

  17. Deployment simulation of a deployable reflector for earth science application

    Science.gov (United States)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  18. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  19. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  20. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    Science.gov (United States)

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.

  1. Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster.

    Science.gov (United States)

    Rousseau, K; Atcha, Z; Denton, J; Cagampang, F R A; Ennos, A R; Freemont, A J; Loudon, A S I

    2005-09-01

    Recent studies have suggested that the adipocyte-derived hormone, leptin, plays a role in the regulation of metabolism. Here, we tested this hypothesis in the seasonally breeding Siberian hamster, as this species exhibits profound seasonal changes in adiposity and circulating leptin concentrations driven by the annual photoperiodic cycle. Male hamsters were kept in either long (LD) or short (SD) photoperiods. Following exposure to short photoperiods for 8 weeks animals exhibited a significant weight-loss and a 16-fold reduction of serum leptin concentrations. At Week 9, animals in both photoperiods were infused with leptin or PBS via osmotic mini-pump for 14 days. Chronic leptin infusion mimicked LD-like concentrations in SD-housed animals and caused a further decline in body weight and adipose tissue. In LD-housed animals, leptin infusion resulted in a significant elevation of serum concentrations above natural LD-like levels, but had no discernable effect on body weight or overall adiposity. Both bending and compression characteristics and histomorphometric measurements of trabecular bone mass were unaltered by leptin treatment or photoperiod. Our data therefore show that despite a high natural amplitude cycle of leptin, this hormone has no apparent role in the regulation of bone metabolism, and therefore do not support recent propositions that this hormone is an important component in the metabolism of bone tissue.

  2. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Corinne Jud

    Full Text Available Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1. We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.

  3. Freeform reflectors for architectural lighting.

    Science.gov (United States)

    Zhu, Ruidong; Hong, Qi; Zhang, Hongxia; Wu, Shin-Tson

    2015-12-14

    We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

  4. Environmental Degradation of Solar Reflectors

    Science.gov (United States)

    Bouquet, F. L.

    1985-01-01

    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  5. Cold Crystal Reflector Filter Concept

    CERN Document Server

    Muhrer, G

    2014-01-01

    In this paper the theoretical concept of a cold crystal reflector filter will be presented. The aim of this concept is to balance the shortcoming of the traditional cold polycrystalline reflector filter, which lies in the significant reduction of the neutron flux right above (in energy space) or right below (wavelength space) the first Bragg edge.

  6. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been...

  7. The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime

    Science.gov (United States)

    Featherstone, Nicholas A.; Hindman, Bradley W.

    2016-02-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.

  8. Reflector Surface Error Compensation in Dual-Reflector Antennas

    Science.gov (United States)

    Jamnejad, Vahraz; Imbriale, William

    2010-01-01

    By probing the field on a small subreflector at a minimal number of points, the main reflector surface errors can be obtained and subsequently used to design a phase-correction subreflector that can compensate for main reflector errors. The compensating phase-error profile across the subreflector can be achieved either by a surface deformation or by the use of an array of elements such as patch antennas that can cause a phase shift between the incoming and outgoing fields. The second option is of primary interest here, but the methodology can be applied to either case. The patch array is most easily implemented on a planar surface. Therefore, the example of a flat subreflector and a parabolic main reflector (a Newtonian dual reflector system) is considered in this work. The subreflector is assumed to be a reflector array covered with patch elements. The phase variation on a subreflector can be detected by a small number of receiving patch elements (probes). By probing the phase change at these few selected positions on the subreflector, the phase error over the entire surface can be recovered and used to change the phase of all the patch elements covering the subreflector plane to compensate for main reflector errors. This is accomplished by using a version of sampling theorem on the circular aperture. The sampling is performed on the phase-error function on the circular aperture of the main reflector by a method developed using Zernike polynomials. This method is based upon and extended from a theory previously proposed and applied to reflector aperture integration. This sampling method provides for an exact retrieval of the coefficients of up to certain orders in the expansion of the phase function, from values on a specifically calculated set of points in radial and azimuthal directions in the polar coordinate system, on the circular reflector aperture. The corresponding points on the subreflector are then obtained and, by probing the fields at these points, a

  9. Quantifying the high-velocity, low-amplitude spinal manipulative thrust: a systematic review.

    Science.gov (United States)

    Downie, Aron S; Vemulpad, Subramanyam; Bull, Peter W

    2010-09-01

    The purpose of this study was to systematically review studies that quantify the high-velocity, low-amplitude (HVLA) spinal thrust, to qualitatively compare the apparatus used and the force-time profiles generated, and to critically appraise studies involving the quantification of thrust as an augmented feedback tool in psychomotor learning. A search of the literature was conducted to identify the sources that reported quantification of the HVLA spinal thrust. MEDLINE-OVID (1966-present), MANTIS-OVID (1950-present), and CINAHL-EBSCO host (1981-present) were searched. Eligibility criteria included that thrust subjects were human, animal, or manikin and that the thrust type was a hand-delivered HVLA spinal thrust. Data recorded were single force, force-time, or displacement-time histories. Publications were in English language and after 1980. The relatively small number of studies, combined with the diversity of method and data interpretation, did not enable meta-analysis. Twenty-seven studies met eligibility criteria: 17 studies measured thrust as a primary outcome (13 human, 2 cadaver, and 2 porcine). Ten studies demonstrated changes in psychomotor learning related to quantified thrust data on human, manikin, or other device. Quantifiable parameters of the HVLA spinal thrust exist and have been described. There remain a number of variables in recording that prevent a standardized kinematic description of HVLA spinal manipulative therapy. Despite differences in data between studies, a relationship between preload, peak force, and thrust duration was evident. Psychomotor learning outcomes were enhanced by the application of thrust data as an augmented feedback tool. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  10. Amplitude-integrated electroencephalographic activity is suppressed in preterm infants with high scores on illness severity

    NARCIS (Netherlands)

    ter Horst, Hendrik J.; Jongbloed-Pereboom, Marjolein; van Eykern, Leo A.; Bos, Arend F.

    2011-01-01

    Background: The neonatal acute physiology score. SNAP-II, reflects the severity of illness in newborns. In term newborns, amplitude integrated EEG (aEEG), is depressed following asphyxia. In preterm infants aEEG is discontinuous, and therefore more difficult to assess compared to term infants. Aims:

  11. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations

    Science.gov (United States)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2014-12-01

    The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations.

  12. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Held, Magnus; Wiesenberger, M.; Madsen, Jens

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic...

  13. A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers

    DEFF Research Database (Denmark)

    Wienberg, M; Glenthøj, Birte Yding; Jensen, K S

    2009-01-01

    processing. The present study was designed to replicate and further extent the results of our initial study on the effects of a low dose of escitalopram (10 mg) on MMN, PN and P300 amplitude. In a randomised, double-blind, cross-over experiment, 20 healthy male volunteers received either a single, orally...... administered dose of 15 mg escitalopram (a highly selective serotonin reuptake inhibitor (SSRI)) or placebo, after which their PN, MMN and P300 amplitude were assessed. Similar to our initial study with 10 mg escitalopram, 15 mg escitalopram significantly increased MMN, while it did not affect P300 amplitude....... In contrast to our initial study, however, the currently higher dose of escitalopram did not increase PN. Results support the view that a broad range of increased serotonergic activity enhances MMN, while the relationship between serotonin and PN seems more complex. The current study does not support...

  14. A proposal to use mercury as a reflector material for decoupled moderator system

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    It is important for a decoupled moderator system to obtain neutron pulses of a higher intensity with a narrower pulse width and a faster decay. To satisfy these requirements we propose to use mercury as a reflector material and report the neutronic performance of a mercury reflector system. The peak intensity is almost comparable to or even higher than that of the optimized lead reflector system and higher than the optimized Be reflector one. Furthermore the pulse shape is almost the same as that of optimized Be reflector system with a decoupling energy of several tens eV. A mercury reflector system does not require decouplers with a higher decoupling energy, liners nor cooling water, since mercury has a reasonably high neutron absorption cross section and could be used also as a coolant. Thus, the idea of the mercury reflector could bring about a higher neutronic performance with some engineering merits for a decoupled moderator system. (author)

  15. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also

  16. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William

    2012-01-01

    We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...

  17. Reflectors for SAR performance testing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  18. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    Science.gov (United States)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  19. Proton radiation effects on optical constants of Al film reflector

    Institute of Scientific and Technical Information of China (English)

    Liu Hai; Wei Qiang; He Shi-Yu; Zhao Dan

    2006-01-01

    The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film,the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800 nm on the Al film reflector.

  20. Performance of a PV module augmented by a plane reflector

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, G. E; Hussein, H. M. S; Mohamad, M. A [Dokki, Giza (Egypt)

    2000-07-01

    This paper presents a comparative experimental study on the performance of a PV module augmented by a south facing titled plane reflector and another identical one without reflector. The tilt angles of the two PV modules and reflector overhang are selected to be according to a previous theoretical study by the authors. The reflector tilt angle has been changed once a month so that the reflected beams from the plane reflector cover the total surface area of the PV module all days of every month during the high solar radiation period (i.e. three hours before and after solar noon). The study has been carried out on the two PV modules for a complete year under the actual atmospheric conditions of Cairo, Egypt. The measuring system used in the study comprises a data acquisition system, a computer, an electronic load and weather station. The experimental results indicate that the plane reflector enhances the yearly output energy of the PV module y about 22%. [Spanish] Este articulo presenta un estudio comparativo experimental sobre el rendimiento de un modulo de PV aumentado por un reflector plano inclinado mirando hacia el sur y otro identico sin reflector. Los angulos de inclinacion de los dos modulos y el reflector sobresaliente se seleccionan para que esten de acuerdo con un estudio teorico previo hecho por los autores. El angulo de inclinacion del reflector se cambio una vez al mes de manera que los rayos reflejados por el reflector plano cubrieran el area total de la superficie del modulo de PV todos los dias de cada mes durante el periodo de radiacion alto (o sea tres horas antes y despues del medio dia solar). El estudio ha sido llevado a cabo en dos modulos de PV durante un ano completo bajo condiciones atmosfericas reales de El Cairo, Egipto. El sistema de medicion usado en el estudio comprende un sistema de adquisicion de datos, una computadora, una memoria electronica y una estacion climatologica. Los resultados experimentales indican que el reflector plano

  1. Dielectric rod feed for compact range reflector

    CERN Document Server

    Balabukha, Nikolay P; Shapkina, Natalia E

    2014-01-01

    A dielectric rod feed with a special radiation pattern of a tabletop form used for the compact range reflector is developed and analyzed. Application of this feed increases the size of the compact range quiet zone generated by the reflector. The feed consists of the dielectric rod made of polystyren, the rod is inserted into the circular waveguide with a corrugated flange. The waveguide is excited by the H11-mode. The rod is covered by the textolite biconical bushing and has a fluoroplastic insert in the vicinity of the bushing. Mathematical modeling was used to obtain the parameters of the feed for the optimal tabletop form of the radiation pattern. The problem of the electromagnetic radiation was solved for metal-dielectric bodies of rotation by method of integral equations with further solving of the problem of the synthesis for feed parameters. The dielectric rod feed was fabricated for the X-frequency range. Feed amplitude and phase patterns were measured in the frequency range 8.2-12.5 GHz. Presented re...

  2. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  3. Preliminary research on overmoded high-power millimeter-wave Cerenkov generator with dual-cavity reflector in low guiding magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Wu, Ping [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China); Chen, Changhua; Ning, Hui; Tan, Weibing; Teng, Yan; Shi, Yanchao; Song, Zhimin; Cao, Yibing; Du, Zhaoyu [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China)

    2015-12-15

    This paper presents preliminary research on a V-band overmoded Cerenkov generator with dual-cavity reflector operating in a low guiding magnetic field. It is found that the fluctuation of the electron envelope in the low guiding magnetic field can be predicted using an equivalent coaxial model of a foilless diode, and a dual-cavity reflector based on the model matching method can provide strong reflection at the front end of the overmoded structures so that any microwave power that leaks into the diode region can be effectively suppressed. Numerical simulations indicate that the control of the beam envelope and the use of the dual-cavity reflector ease generator operation in the low guiding magnetic field. In the experimental research, the fluctuation of the annular electron beam with the outer radius of 7.5 mm measures approximately 0.7 mm, which is in good agreement with the theoretical results. The disturbance caused by power leaking from the overmoded slow wave structure is eliminated by the dual-cavity reflector. With accurate fabrication and assembly processes, an operating frequency of 61.6 GHz is attained by the fifth harmonic heterodyne method, and the output power is measured to be approximately 123 MW by the far-field measurement method at a diode voltage of 445 kV, a beam current of 4.45 kA, and under a guiding magnetic field of 1.45 T. The output mode is measured using an array of neon flash bulbs, and the pulse shortening phenomenon is both observed and analyzed.

  4. Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration

    Energy Technology Data Exchange (ETDEWEB)

    Togami, T.C.; Bateman, V.I.; Brown, F.A.

    1997-11-01

    A split Hopkinson bar technique has been developed to evaluate the performance of accelerometers that measure large amplitude pulses. An evaluation of this technique has been conducted in the Mechanical Shock Laboratory at Sandia National Laboratories (SNL) to determine its use in the practical calibration of accelerometers. This evaluation consisted of three tasks. First, the quartz crystal was evaluated in a split Hopkinson bar configuration to evaluate the quartz gage`s sensitivity and frequency response at force levels of 18,000, 35,000 and 53,000 N at ambient temperature, {minus}48 C and +74 C. Secondly, the fly away technique was evaluated at shock amplitudes of 50,000, 100,000, 150,000 and 200,000 G (1 G = 9.81 m/s{sup 2}) at ambient temperature, {minus}48 C and +74 C. Lastly, the technique was performed using a NIST calibrated reference accelerometer. Comparisons of accelerations calculated from the quartz gage data and the measured acceleration data have shown very good agreement. Based on this evaluation, the authors expect this split Hopkinson fly away technique to be certified by the SNL Primary Standards Laboratory.

  5. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    Science.gov (United States)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954

  6. Short duration high amplitude flares detected on the M dwarf star KIC 5474065

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Garcia-Alvarez, David; Brooks, Adam; Barclay, Thomas; Still, Martin

    2013-01-01

    Using data obtained during the RATS-Kepler project we identified one short duration flare in a 1 hour sequence of ground based photometry of the dwarf star KIC 5474065. Observations made using GTC show it is a star with a M4 V spectral type. Kepler observations made using 1 min sampling show that KIC 5474065 exhibits large amplitude (deltaF/F>0.4) optical flares which have a duration as short as 10 mins. We compare the energy distribution of flares from KIC 5474065 with that of KIC 9726699, which has also been observed using 1 min sampling, and ground based observations of other M dwarf stars in the literature. We discuss the possible implications of these short duration, relatively low energy flares would have on the atmosphere of exo-planets orbiting in the habitable zone of these flare stars.

  7. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...

  8. Using domain walls to perform non-local measurements with high spin signal amplitudes

    Science.gov (United States)

    Savero Torres, W.; Pham, V.-T.; Zahnd, G.; Laczkowski, P.; Nguyen, V.-D.; Beigné, C.; Notin, L.; Jamet, M.; Marty, A.; Vila, L.; Attané, J.-P.

    2016-07-01

    Standard non-local measurements require lateral spin-valves with two different ferromagnetic electrodes, to create and to detect the spin accumulation. Here we show that non-local measurements can also be performed in a cross-shaped nanostructure, made of a single ferromagnetic wire connected to an orthogonal non-magnetic wire. A magnetic domain wall located underneath the ferromagnetic/non-magnetic interface is used to control the magnetizations of the injection and detection zones. As these zones can be very close, our results display spin signals possessing amplitudes larger than those obtained in conventional non-local measurements. We also show that this method can be used as a domain wall detection technique.

  9. The Spectral Amplitude of Stellar Convection and its Scaling in the High-Rayleigh-Number Regime

    CERN Document Server

    Featherstone, Nicholas A

    2015-01-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely-hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique testbed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation due to this apparent overestimation. We present a series of 3-dimensional (3-D) stellar convection simulations designed to examine how the amplitude and spectral distribution of ...

  10. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.

    Science.gov (United States)

    Rajaei Jafarabadi, M; Rouhi, G; Kaka, G; Sadraie, S H; Arum, J

    2016-12-01

    This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm(2), 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.

  11. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-11-16

    We have detected 90 objects with periods and lightcurve structure similar to those of field {delta} Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d{sup -1}) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  12. Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure

    Science.gov (United States)

    Watanabe, Tomohiko; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2017-01-01

    The present paper studies amplitude death in high-dimensional maps coupled by time-delay connections. A linear stability analysis provides several sufficient conditions for an amplitude death state to be unstable, i.e., an odd number property and its extended properties. Furthermore, necessary conditions for stability are provided. These conditions, which reduce trial-and-error tasks for design, and the convex direction, which is a popular concept in the field of robust control, allow us to propose a design procedure for system parameters, such as coupling strength, connection delay, and input-output matrices, for a given network topology. These analytical results are confirmed numerically using delayed logistic maps, generalized Henon maps, and piecewise linear maps.

  13. The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope

    Science.gov (United States)

    Sun, Z. X.; Chen, L.; Wang, J. Q.

    2016-01-01

    In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.

  14. Acoustic minor losses in high amplitude resonators with single-sided junctions

    Science.gov (United States)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  15. Jet screech reduction with perforated flat reflector

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Teramoto, Kenbu; Matsuo, Shigeru; Setoguchi, Toshiaki

    2008-09-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area) exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally, the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  16. Jet Screech Reduction with Perforated Flat Reflector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area)exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally,the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  17. High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Science.gov (United States)

    Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-01-01

    Developing wide-area cryogenic light detectors with baseline resolution better than 20 eV is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. The potential of this technique was proved by the CALDER project that reached a baseline resolution of 154 ± 7 eV RMS by sampling a 2 × 2 cm2 Silicon substrate with 4 Aluminum KIDs. In this paper, we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82 ± 4 eV by sampling the same substrate with a single Aluminum KID.

  18. Resolving longitudinal amplitude and phase information of two continuous data streams for high-speed and real-time processing

    Directory of Open Access Journals (Sweden)

    A. Guntoro

    2009-05-01

    Full Text Available Although there is an increase of performance in DSPs, due to its nature of execution a DSP could not perform high-speed data processing on a continuous data stream. In this paper we discuss the hardware implementation of the amplitude and phase detector and the validation block on a FPGA. Contrary to the software implementation which can only process data stream as high as 1.5 MHz, the hardware approach is 225 times faster and introduces much less latency.

  19. Surrogate data modeling the relationship between high frequency amplitudes and Higuchi fractal dimension of EEG signals in anesthetized rats.

    Science.gov (United States)

    Spasic, Sladjana; Kalauzi, Aleksandar; Kesic, Srdjan; Obradovic, Milica; Saponjic, Jasna

    2011-11-21

    We used spectral analysis and Higuchi fractal dimension (FD) to correlate the EEG spectral characteristics of the sensorimotor cortex, hippocampus, and pons with their corresponding EEG signal complexities in anesthetized rats. We have explored the quantitative relationship between the mean FDs and EEG wide range high frequency (8-50 Hz) activity during ketamine/xylazine versus nembutal anesthesia at surgical plane. Using FD we detected distinct inter-structure complexity pattern and uncovered for the first time that the polygraphically and behaviorally defined anesthetized state at surgical plane as equal during experiment in two anesthetic regimens, is not the same with respect to the degree of neuronal activity (degree of generalized neuronal inhibition achieved) at different brain levels. Using the correlation of certain brain structure EEG spectral characteristics with their corresponding FDs, and the surrogate data modeling, we determined what particular frequency band contributes to EEG complexities in ketamine/xylazine versus nembutal anesthesia. In this study we have shown that the quantitative relationship between higher frequency EEG amplitude and EEG complexity is the best-modeled by surrogate data as a 3rd order polynomial. On the base of our EEG amplitude/EEG complexity relationship model, and the evidenced spectral differences in ketamine versus nembutal anesthesia we have proved that higher amplitudes of sigma, beta, and gamma frequency in ketamine anesthesia yields to higher FDs.

  20. Surface Optimization Techniques for Deployable Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this and several other programs, CTD has developed TEMBOREG deployable solid-surface reflectors (TEMBOREG Reflectors) to provide future NASA and Air Force...

  1. Transport of the CNGS reflector.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The CNGS magnetic horn reflectorwas transported on 5 December 2005 through the facility's access gallery. The reflector - a major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy - is 7m long, 1.6m in diameter and 1.6 tonnes in weight.

  2. Polarization losses in reflector antennas

    Science.gov (United States)

    Safak, M.; Yazgan, E.

    1985-08-01

    Various definitions for polarization-loss efficiency of Cassegrainian and front-fed reflectors are compared. The effects of flare angle, feed taper and the feed pattern asymmetry on the polarization-loss efficiency are investigated. The definitions based on aperture fields are shown to be inadequate and far fields must be used for calculating the polarization losses.

  3. Form-finding methods for deployable mesh reflector antennas

    Institute of Scientific and Technical Information of China (English)

    Li Tuanjie; Jiang Jie; Deng Hanqing; Lin Zhanchao; Wang Zuowei

    2013-01-01

    Deployable high-frequency mesh reflector antennas for future communications and obser-vations are required to obtain high gain and high directivity. In order to support these new missions, reflectors with high surface accuracy are widely required. The form-finding analysis of deployable mesh reflector antennas becomes more vital which aims to determine the initial surface profile formed by the equilibrium prestress distribution in cables to satisfy the surface accuracy requirement. In this paper, two form-finding methods for mesh reflector antennas, both of which include two steps, are pro-posed. The first step is to investigate the prestress design only for the cable net structure as the circum-ferential nodes connected to the supporting truss are assumed fixed. The second step is to optimize the prestress distribution of the boundary cables connected directly to the supporting truss considering the elastic deformation of the antenna structure. Some numerical examples are carried out and the simu-lation results demonstrate the proposed form-finding methods can warrant the deformed antenna reflector surface matches the one by design and the cable tension forces fall in a specified range.

  4. Study of back reflectors for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Mai, Y. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Wan, M. [Department of Chemistry and Material Science, Hunan Institute of Humanities, Science and Technology, Loudi 417000 (China); Gao, J.; Wang, Y.; He, T.; Feng, Y.; Yin, J.; Du, J.; Wang, J.; Sun, R. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Huang, Y., E-mail: y.huang@btw-solarfilms.com [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China)

    2013-07-31

    In this study, the reflection properties of transparent conductive oxide (TCO) films i.e. aluminum doped zinc oxide (ZnO:Al) and boron doped zinc oxide (ZnO:B) films plus aluminum (Al) films or white polyvinyl butyral (PVB) foils, which are usually used as the combined back reflectors of thin film silicon solar cells, are investigated. Sputtered ZnO:Al films were etched in diluted hydrochloric acid (1%) to achieve rough surface structures while textured ZnO:B films were directly prepared by a low pressure chemical vapor deposition technique. It is found that the rough TCO/Al reflectors show a low total reflection, which is mainly due to the parasitic absorption by the surface plasmons at the rough TCO/Al interfaces as well as the absorption in the TCO films. Differently, the rough TCO/white PVB foil reflectors display a slightly high light reflection regardless of the influence of the rough interface without the excitation of surface plasmons. Thus, the TCO/white PVB foil back reflectors could be a good candidate with respect to light utilization when they are applied in thin film silicon solar cells. - Highlights: • White polyvinyl butyral and transparent conductive oxide materials are used. • The reflection properties of TCO/Al and TCO/white PVB foil reflectors are studied. • The ZnO:Al and ZnO:B films are used as two types of TCO materials. • TCO/white PVB foil reflector shows a high reflection compared to TCO/Al reflector.

  5. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    Science.gov (United States)

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  6. High Energy Asymptotics of the Scattering Amplitude for the Schrödinger Equation

    Indian Academy of Sciences (India)

    D Yafaev

    2002-02-01

    We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy. Moreover, the same function gives all diagonal singularities of the kernel of the scattering matrix in the angular variables.

  7. Tunable reflector with active magnetic metamaterials.

    Science.gov (United States)

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented.

  8. Beam-Steerable Flat-Panel Reflector Antenna

    Science.gov (United States)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  9. Inline microring reflector for photonic applications

    Science.gov (United States)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation

  10. Study of High and Low Amplitude Wave Trains of Cosmic Ray Diurnal Variation during Solar Cycle 23

    Indian Academy of Sciences (India)

    Ambika Singh; Anil Kumar Tiwari; S. P. Agrawal

    2010-06-01

    A detailed study has been conducted on the long-term changes in the diurnal variation of cosmic rays in terms of high and low amplitude wave trains event (HAEs/LAEs) during the period 1996–2008 (solar cycle 23), using the neutron monitor data from Kiel neutron monitoring station. As such, 17 HAE and 48 LAE cases have been detected and analyzed. These HAEs appear quite dominantly during the declining phase as well as near the maximum of the solar activity cycle 23. In contrast, the low amplitude events (LAEs) are inversely correlated with solar activity cycle. In fact, LAEs appear quite dominantly during the minimum phase of the solar activity. When we compare our results for diurnal phase with that observed on an annual average basis, we notice no significant diurnal phase shift for HAEs as well as for LAEs. Moreover, we find that the high-speed solar wind streams (HSSWS) do not play any significant role in causing these variations. These results are discussed on the basis of that observed in earlier cycles.

  11. High amplitude vortex-induced pulsations in a gas transport system

    NARCIS (Netherlands)

    Kriesels, P.C.; Peters, M.C.A.M.; Hirschberg, A.; Wijnands, A.P.J.; Iafrati, A.; Riccardi, G.; Piva, R.; Bruggeman, J.C.

    1995-01-01

    High Reynolds number, low Mach number gas flows in pipe systems with closed side branches exhibit spectacular low frequency self-sustained pulsations driven by periodic vortex shedding at specific values of the Strouhal number. A detailed study is presented of the behaviour of the flow in a system w

  12. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  13. Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas

    Science.gov (United States)

    Squire, J.; Schekochihin, A. A.; Quataert, E.

    2017-05-01

    This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.

  14. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.

    Science.gov (United States)

    Saltzman, Erica J; Schweizer, Kenneth S

    2008-05-01

    Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.

  15. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  16. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  17. Corner Reflector Mathematics

    Science.gov (United States)

    Popelka, Susan R.

    2011-01-01

    Tiny prisms in reflective road signs and safety vests have interesting geometrical properties that can be discussed at any level of high school mathematics. At the beginning of the school year, the author teaches a unit on these reflective materials in her precalculus class so that students can review and strengthen their geometry and trigonometry…

  18. Corner Reflector Mathematics

    Science.gov (United States)

    Popelka, Susan R.

    2011-01-01

    Tiny prisms in reflective road signs and safety vests have interesting geometrical properties that can be discussed at any level of high school mathematics. At the beginning of the school year, the author teaches a unit on these reflective materials in her precalculus class so that students can review and strengthen their geometry and trigonometry…

  19. KuDGR- Dual Gridded Carbon Fiber Reinforced Plastic Reflector

    Science.gov (United States)

    Ihle, Alexander; Reichmann, O.; Lori, M.; Nathrath, N.; Pereira, C.; Linke, S.; Rinous, P.

    2014-06-01

    In the frame of an ESA-funded TRP activity HPS GmbH, together with INVENT GmbH and INEGI, has developed an advanced concept for dual gridded reflectors. The target frequency band is the Ku-band requiring high in-orbit thermo-elastic stability. It is a follow-on of the previous KaDGR [1] activity. The concept concerns the polarisation grid of the front and rear reflector. The grids are connected by a full CFRP monolithic peripheral ring. The demonstrator has an overall diameter of 1.4 x 1.2 m and a weight of only 4.23 kg. The design of this concept allows for smaller and larger reflectors.In the following we will present the results of the different development steps and current status of the TRP activity.

  20. High-amplitude THz and GHz strain waves, generated by ultrafast screening of piezoelectric fields in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; van Capel, P.J.S.; Turchinovich, Dmitry

    2010-01-01

    Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening.......Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening....

  1. Synthesis of offset dual reflector antennas transforming a given feed illumination pattern into a specified aperture distribution

    Science.gov (United States)

    Mittra, R.; Galindo-Israel, V.; Hyjazie, F.

    1982-01-01

    The problem of transforming a given primary feed pattern into a desired aperture field distribution through two reflections by an offset dual reflector system is investigated using the concepts of geometrical optics. A numerically rigorous solution for the reflector surfaces is developed which realizes an exact aperture phase distribution and an aperture amplitude distribution that is accurate to within an arbitrarily small numerical tolerance. However, this procedure does not always yield a smooth solution, i.e., the reflector surfaces thus realized may not be continuous or their slopes may vary too rapidly. In the event of nonexistence of a numerically rigorous smooth solution, an approximate solution that enforces the smoothness of the reflector surfaces can be obtained. In the approximate solution, only the requirement for the aperture amplitude distribution is relaxed, and the condition on the aperture phase distribution is continued to be satisfied exactly.

  2. Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states.

    Science.gov (United States)

    Yuan, Bin-Ke; Wang, Jue; Zang, Yu-Feng; Liu, Dong-Qiang

    2014-01-01

    Recent studies employing rapid sampling techniques have demonstrated that the resting state fMRI (rs-fMRI) signal exhibits synchronized activities at frequencies much higher than the conventional frequency range (high-frequency fluctuations between different resting states. Here, we acquired rs-fMRI data at a high sampling rate (TR = 400 ms) from subjects with both eyes open (EO) and eyes closed (EC), and compared the amplitude of fluctuation (AF) between EO and EC for both the low- and high-frequency components. In addition to robust AF differences in the conventional low frequency band (high-frequency (primarily in 0.1-0.35 Hz) differences. The high-frequency results without covariates regression exhibited noisy patterns. For the data with nuisance covariates regression, we found a significant and reproducible reduction in high-frequency AF between EO and EC in the bilateral PSMC and the supplementary motor area (SMA), and an increase in high-frequency AF in the left middle occipital gyrus (MOG). Furthermore, we investigated the effect of sampling rate by down-sampling the data to effective TR = 2 s. Briefly, by using the rapid sampling rate, we were able to detect more regions with significant differences while identifying fewer artifactual differences in the high-frequency bands as compared to the down-sampled dataset. We concluded that (1) high-frequency fluctuations of rs-fMRI signals can be modulated by different resting states and thus may be of physiological importance; and (2) the regression of covariates and the use of fast sampling rates are superior for revealing high-frequency differences in rs-fMRI signals.

  3. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Science.gov (United States)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1993-01-01

    Part 1 of this report continues the investigation, initiated in previous reports, of scattering from rectangular plates coated with lossy dielectrics. The hard polarization coefficients given in the last report are incorporated into a model, which includes second- and third-order diffractions, for the coated plate. Computed results from this model are examined and compared to measured data. A breakdown of the contribution of each of the higher-order terms to the total radar cross section (RCS) is given. The effectiveness of the uniform theory of diffraction (UTD) model in accounting for the coating effect is investigated by examining a Physical Optics (PO) model which incorporates the equivalent surface impedance approximation used in the UTD model. The PO, UTD, and experimental results are compared. Part 2 of this report presents a RCS model, based on PO and the Method of Equivalent Currents (MEC), for a trihedral corner reflector. PO is used to account for the reflected fields, while MEC is used for the diffracted fields. Single, double, and triple reflections and first-order diffractions are included in the model. A detailed derivation of the E(sub theta)-polarization, monostatic RCS is included. Computed results are compared with finite-difference time-domain (FDTD) results for validation. The PO/MEC model of this report compares very well with the FDTD model, and it is a much faster model in terms of computational speed.

  4. Optical reflector and high Q filter based on two-dimensional photonic-crystal waveguide1Sponsored by National Natural Science Foundation of China (No. 90206002) and Natural Science Key Project of Anhui Province (2004kj364zd).refid="fn1">1

    Science.gov (United States)

    Peijun, Yao; Xiyao, Chen; Bo, Chen; Yonghua, Lu; Pei, Wang; Xiaojin, Jiao; Hai, Ming; Jianping, Xie

    2004-06-01

    In this paper, we investigated the reflectivity of the reflector based on two-dimensional photonic crystal waveguide on defect's position, defect's radius and defect's index by finite difference time domain method. It is found that the reflectivity of the reflector strongly depends on the position of the defect, the reflectivity increases when the defect moves away from the grid point along the direction perpendicular to the waveguide, and we can obtain reflectivity of almost 100% in some suitable position. Meanwhile, we discuss that the reflectivity change with the defect's radius and its refractive index. Moreover, we have designed and simulated a high quality factor ( Q) filter constructed by one-defect reflectors in a simple structure. In our design, the Q will be increased by three times without any more constructional complexity.

  5. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  6. Investigations of Bragg reflectors in nanowire lasers

    CERN Document Server

    Svendsen, Guro Kristin; Skaar, Johannes

    2011-01-01

    The reflectivity of various Bragg reflectors in connection to waveguide structures, including nanowires, has been investigated using modal reflection and transmission matrices. A semi-analytical model was applied yielding increased understanding of the diffraction effects present in such gratings. Planar waveguides and nanowire lasers are considered in particular. Two geometries are compared; Bragg reflectors within the waveguides are shown to have significant advantages compared to Bragg reflectors in the substrate, when diffraction effects are significant.

  7. Springback-Compensated, Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inconsistent radius of curvature of replicated, composite reflector panels limit application of composites to large, segmented telescope apertures. This project...

  8. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G.; Lee, Taehwa; Jay Guo, L.

    2015-08-01

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  9. Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium

    CERN Document Server

    Martínez-Gómez, David; Terradas, Jaume

    2016-01-01

    Ideal MHD provides an accurate description of low-frequency Alfv\\'en waves in fully ionized plasmas. However, higher frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low and the high frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall's term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations we check that at high frequencies ions of different species are not as strongly coupled as in the low frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high frequency waves since an appreciable damping is obtained. Furthermore, Coulomb collisions be...

  10. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation.

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G; Lee, Taehwa; Guo, L Jay

    2015-09-14

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  11. Cherenkov radiation oscillator without reflectors

    Science.gov (United States)

    Li, D.; Wang, Y.; Hangyo, M.; Wei, Y.; Yang, Z.; Miyamoto, S.

    2014-05-01

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  12. Design and Fabrication of Integrated Fabry-Perot Type Color Reflector for Reflective Displays.

    Science.gov (United States)

    Cho, Seong M; Cheon, Sang Hoon; Kim, Tae-Youb; Ah, Chil Seong; Song, Juhee; Ryu, Hojun; Chu, Hye Yong

    2016-05-01

    A Fabry-Perot type integrated color reflector, with red/blue/green colors as subpixels, was designed and fabricated with Si substrate. Ag films were used as reflective mirror layers, SiO2 films were used as Fabry-Perot cavity layers and W films were used as partially reflective layers for the cavity. To minimize the effects of the thickness variation of the oxide cavity layers, the structure of the color reflector was optimized, and the differential deposition scheme was devised and applied in the fabrication process. The integrated color reflector was successfully fabricated with the proposed fabrication scheme. The measured white reflectance was > 45% in the visible spectrum range and -49% at 550 nm wavelength. The fabricated reflector had moderate color gamut of 17% of the National Television System Committee (NTSC) standard and it showed very high white reflectivity. The fabricated color reflector is expected to be applicable to reflective displays.

  13. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Science.gov (United States)

    Held, M.; Wiesenberger, M.; Madsen, J.; Kendl, A.

    2016-12-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the \\boldsymbol{E}× \\boldsymbol{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted.

  14. Application of parabolic reflector on Raman analysis of gas samples

    Science.gov (United States)

    Yu, Anlan; Zuo, Duluo; Gao, Jun; Li, Bin; Wang, Xingbing

    2016-05-01

    Studies on the application of a parabolic reflector in spontaneous Raman scattering for low background Raman analysis of gas samples are reported. As an effective signal enhancing sample cell, photonic bandgap fiber (HC-PBF) or metallined capillary normally result in a strong continuous background in spectra caused by the strong Raman/fluorescence signal from the silica wall and the polymer protective film. In order to obtain enhanced signal with low background, a specially designed sample cell with double-pass and large collecting solid angle constructed by a parabolic reflector and a planar reflector was applied, of which the optical surfaces had been processed by diamond turning and coated by silver film and protective film of high-purity alumina. The influences of optical structure, polarization characteristic, collecting solid-angle and collecting efficiency of the sample cell on light propagation and signal enhancement were studied. A Raman spectrum of ambient air with signal to background ratio of 94 was acquired with an exposure time of 1 sec by an imaging spectrograph. Besides, the 3σ limits of detection (LOD) of 7 ppm for H2, 8 ppm for CO2 and 12 ppm for CO were also obtained. The sample cell mainly based on parabolic reflector will be helpful for compact and high-sensitive Raman system.

  15. Monolithic resonant optical reflector laser diodes

    Science.gov (United States)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  16. Shaped cassegrain reflector antenna. [design equations

    Science.gov (United States)

    Rao, B. L. J.

    1973-01-01

    Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.

  17. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Institute of Scientific and Technical Information of China (English)

    Pongsak Khokhuntod; Jian-Ning Fu; Chayan Boonyarak; Kanokwan Marak; Li Chen; Shi-Yang Jiang

    2007-01-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006.High-quality photometric data provided in the literature were used to analyze the pulsation of the star,with the derived multiple frequencies fitted to our new data.Besides the dominant frequency and its harmonics,one low frequency(2.27402 cd-1)is discovered,which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light.Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature.we analyzed the long-term variability of AD CMi with the O-C technique.The results provide the updated value of period of 0.122974478 days.and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system.of which some parameters are hereby deduced.

  18. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  19. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Science.gov (United States)

    Khokhuntod, Pongsak; Fu, Jian-Ning; Boonyarak, Chayan; Marak, Kanokwan; Chen, Li; Jiang, Shi-Yang

    2007-06-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006. High-quality photometric data provided in the literature were used to analyze the pulsation of the star, with the derived multiple frequencies fitted to our new data. Besides the dominant frequency and its harmonics, one low frequency (2.27402 c d-1) is discovered, which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light. Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature, we analyzed the long-term variability of AD CMi with the O-C technique. The results provide the updated value of period of 0.122974478 days, and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system, of which some parameters are hereby deduced.

  20. The Kep-Cont Mission: Continuing the observation of high-amplitude variable stars in the Kepler field of view

    CERN Document Server

    Molnár, L; Kolenberg, K; Borkovits, T; Antoci, V; Vida, K; Ngeow, C C; Guzik, J A; Plachy, E; Castanheira, B

    2013-01-01

    As a response to the Kepler white paper call, we propose to keep Kepler pointing to its current field of view and continue observing thousands of large amplitude variables (Cepheid, RR Lyrae and delta Scuti stars among others) with high cadence in the Kep-Cont Mission. The degraded pointing stability will still allow observation of these stars with reasonable (better than millimag) precision. The Kep-Cont mission will allow studying the nonradial modes in Blazhko-modulated and first overtone RR Lyrae stars and will give a better view on the period jitter of the only Kepler Cepheid in the field. With continued continuous observation of the Kepler RR Lyrae sample we may get closer to the origin of the century-old Blazhko problem. Longer time-span may also uncover new dynamical effects like apsidal motion in eclipsing binaries. A continued mission will have the advantage of providing unprecedented, many-years-long homogeneous and continuous photometric data of the same targets. We investigate the pragmatic detai...

  1. Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review.

    Science.gov (United States)

    Goertz, C M; Pohlman, K A; Vining, R D; Brantingham, J W; Long, C R

    2012-10-01

    Low back pain (LBP) is a well-recognized public health problem with no clear gold standard medical approach to treatment. Thus, those with LBP frequently turn to treatments such as spinal manipulation (SM). Many clinical trials have been conducted to evaluate the efficacy or effectiveness of SM for LBP. The primary objective of this paper was to describe the current literature on patient-centered outcomes following a specific type of commonly used SM, high-velocity low-amplitude (HVLA), in patients with LBP. A systematic search strategy was used to capture all LBP clinical trials of HVLA using our predefined patient-centered outcomes: visual analogue scale, numerical pain rating scale, Roland-Morris Disability Questionnaire, and the Oswestry Low Back Pain Disability Index. Of the 1294 articles identified by our search, 38 met our eligibility criteria. Like previous SM for LBP systematic reviews, this review shows a small but consistent treatment effect at least as large as that seen in other conservative methods of care. The heterogeneity and inconsistency in reporting within the studies reviewed makes it difficult to draw definitive conclusions. Future SM studies for LBP would benefit if some of these issues were addressed by the scientific community before further research in this area is conducted.

  2. Asteroseismology of KIC\\,11754974: a high-amplitude SX\\,Phe pulsator in a 343-day binary system

    CERN Document Server

    Murphy, S J; Kurtz, D W; Suarez, J C; Handler, G; Balona, L A; Smalley, B; Uytterhoeven, K; Szabo, R; Thygesen, A O; Elkin, V; Breger, M; Grigahcene, A; Guzik, J A; Nemec, J M; Southworth, J

    2013-01-01

    The candidate SX Phe star KIC 11754974 shows a remarkably high number of combination frequencies in the Fourier amplitude spectrum: 123 of the 166 frequencies in our multi-frequency fit are linear combinations of independent modes. Predictable patterns in frequency spacings are seen in the Fourier transform of the light curve. We present an analysis of 180 d of short-cadence Kepler photometry and of new spectroscopic data for this evolved, late A-type star. We infer from the 1150-d, long-cadence light curve, and in two different ways, that our target is the primary of a 343-d, non-eclipsing binary system. According to both methods, the mass function is similar, f(M)=0.0207 +/- 0.0003 Msun. The observed pulsations are modelled extensively, using separate, state-of-the-art, time-dependent convection (TDC) and rotating models. The models match the observed temperature and low metallicity, finding a mass of 1.50-1.56 Msun. The models suggest the whole star is metal-poor, and that the low metallicity is not just a...

  3. A novel high amplitude piezoceramic actuator for applications in magnetic resonance elastography: a compliant mechanical amplifier approach

    Science.gov (United States)

    Arani, Arvin; Eskandari, Amiraslan; Ouyang, Puren; Chopra, Rajiv

    2017-08-01

    Piezoceramic actuators are capable of precise positioning with high force, but suffer from limited displacement range, which has hindered their application in the field of magnetic resonance elastography (MRE). The objective of this study was to investigate the feasibility of using a mechanical amplifier in combination with a piezoceramic actuator for the application of endorectal prostate MRE. A five-bar symmetric structure was designed in ANSYS® and manufactured out of brass. Laser vibrometer measurements were used to characterize the amplitude of the CMA actuator while attached to masses in the 0-325 g range and over operating frequencies of 90-500 Hz. The response of the CMA was investigated while mechanically coupled to a balloon type endorectal coil. The resonant frequency of the prototype CMA actuator was predicted within 10% error using ANSYS simulations. The amplification ratio of the CMA actuator was measured to be 10 with the laser vibrometer and 7.6 ± 1.7 (max: 9.2, min: 6.5) using MRE, at a vibration frequency of 200 Hz. Laser vibrometer data also showed that the CMA actuator’s performance did not change whether it was connected to an empty or inflated endorectal. The feasibility of performing endorectal prostate MRE with a CMA actuator was successfully demonstrated in a human volunteer.

  4. A photometric monitoring of bright high-amplitude delta Scuti stars. II. Period updates for seven stars

    CERN Document Server

    Derekas, A; Székely, P; Alfaro, E J; Csák, B; Mészáros, S; Rodríguez, E; Rolland, A; Sarneczky, K; Szabó, G M; Szatmary, K; Varadi, M; Kiss, C; Meszaros, Sz.; Szabo, Gy.M.; Kiss, Cs.

    2003-01-01

    We present new photometric data for seven high-amplitude delta Scuti stars. The observations were acquired between 1996 and 2002, mostly in the Johnson photometric system. For one star (GW UMa), our observations are the first since the discovery of its pulsational nature from the Hipparcos data.The primary goal of this project was to update our knowledge on the period variations of the target stars. For this, we have collected all available photometric observations from the literature and constructed decades-long O-C diagrams of the stars. This traditional method is useful because of the single-periodic nature of the light variations. Text-book examples of slow period evolution (XX Cyg, DY Her, DY Peg) and cyclic period changes due to light-time effect (LITE) in a binary system (SZ Lyn) are updated with the new observations. For YZ Boo, we find a period decrease instead of increase. The previously suggested LITE-solution of BE Lyn (Kiss & Szatmary 1995) is not supported with the new O-C diagram. Instead o...

  5. Protostring scattering amplitudes

    Science.gov (United States)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  6. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations in a Young, Extremely Red L-type Brown Dwarf

    Science.gov (United States)

    Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.

    2016-10-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.

  7. Integrated 222-GHz corner-reflector antennas

    Science.gov (United States)

    Gearhart, Steven S.; Ling, Curtis C.; Rebeiz, Gabriel M.

    1991-01-01

    A high-gain monolithic millimeter-wave antenna has been designed, fabricated, and tested at 222 GHz. The structure consists of a traveling-wave antenna integrated on a 1.2-micron dielectric membrane and suspended in a longitudinal cavity etched in a silicon wafer. A new traveling-wave antenna design yields a wideband input impedance and a low cross-polarization component in the E- and quasi-H-plane patterns. A directivity of 17.7 dB and a main-beam efficiency of 88.5 percent are calculated from the 222-GHz pattern measurements. The integrated corner-reflector antenna is well suited for millimeter- and submillimeter-wave imaging applications in large f-number systems.

  8. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    Science.gov (United States)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  9. Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida.

    Science.gov (United States)

    Grémiaux, Alexandre; Girard, Sébastien; Guérin, Vincent; Lothier, Jérémy; Baluška, František; Davies, Eric; Bonnet, Pierre; Vian, Alain

    2016-01-15

    It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks. We performed exposures at two different development stages (rooted cuttings bearing an axillary bud and 5-leaf stage plants), using two high frequency (900MHz) field amplitudes (5 and 200Vm(-1)). We achieved a tight control on the experimental conditions using a state-of-the-art stimulation device (Mode Stirred Reverberation Chamber) and specialized culture-chambers. After the exposure, we followed the shoot growth for over a one-month period. We observed no growth modification whatsoever exposure was performed on the 5-leaf stage plants. When the exposure was performed on the rooted cuttings, no growth modification was observed on Axis I (produced from the elongation of the axillary bud). Likewise, no significant modification was noted on Axis II produced at the base of Axis I, that came from pre-formed secondary axillary buds. In contrast, Axis II produced at the top of Axis I, that came from post-formed secondary buds consistently displayed a delayed and significant reduced growth (45%). The measurements of plant energy uptake from HF-EMF in this exposure condition (SAR of 7.2 10(-4)Wkg(-1)) indicated that this biological response is likely not due to thermal effect. These results suggest that exposure to electromagnetic field only affected development of post-formed organs.

  10. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls.

    LENUS (Irish Health Repository)

    Whelan, R

    2012-02-01

    OBJECTIVE: To quantify latency, amplitude and topographical differences in event-related potential (ERP) components between multiple sclerosis (MS) patients and controls and to compare ERP findings with results from the paced auditory serial addition test (PASAT). METHODS: Fifty-four subjects (17 relapsing remitting (RRMS) patients, 16 secondary progressive (SPMS) patients, and 21 controls) completed visual and auditory oddball tasks while data were recorded from 134 EEG channels. Latency and amplitude differences, calculated using composite mean amplitude measures, were tested using an ANOVA. Topographical differences were tested using statistical parametric mapping (SPM). RESULTS: In the visual modality, P2, P3 amplitudes and N2 latency were significantly different across groups. In the auditory modality, P2, N2, and P3 latencies and N1 amplitude were significantly different across groups. There were no significant differences between RRMS and SPMS patients on any ERP component. There were topographical differences between MS patients and controls for both early and late components for the visual modality, but only in the early components for the auditory modality. PASAT score correlated significantly with auditory P3 latency for MS patients. CONCLUSIONS: There were significant ERP differences between MS patients and controls. SIGNIFICANCE: The present study indicated that both early sensory and later cognitive ERP components are impaired in MS patients relative to controls.

  11. Neural responses to the mechanical parameters of a high velocity, low amplitude spinal manipulation: effect of preload parameters

    Science.gov (United States)

    Reed, William. R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2014-01-01

    Objective The purpose of this study was to determine how the preload that precedes a high velocity low amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. Methods Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. HVLA-SM of the L6 vertebra was preceded either by no preload or by systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point (DIP). Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM’s thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and following the HVLA-SM. Results The smaller compared to the larger preload magnitude and the longer compared to the shorter preload duration significantly increased (P=0.02 and P=0.04) respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration and DIP often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle following the manipulation. Conclusion Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention’s therapeutic benefit in both clinical efficacy studies and in clinical practice. PMID:24387888

  12. Control of active reflector system for radio telescope

    Science.gov (United States)

    Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao

    2016-10-01

    According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.

  13. The radar cross section of non-orthogonal corner reflectors, symmetrically illuminated

    Science.gov (United States)

    Williams, J. M.

    The monostatic radar cross section of a nonorthogonal corner reflector, for symmetrical illumination, is shown to be a function of a single dimensionless group at high frequency. The function is calculated for the triangular and square trihedrals and the dihedral.

  14. Observations on the linear programming formulation of the single reflector design problem.

    Science.gov (United States)

    Canavesi, Cristina; Cassarly, William J; Rolland, Jannick P

    2012-02-13

    We implemented the linear programming approach proposed by Oliker and by Wang to solve the single reflector problem for a point source and a far-field target. The algorithm was shown to produce solutions that aim the input rays at the intersections between neighboring reflectors. This feature makes it possible to obtain the same reflector with a low number of rays - of the order of the number of targets - as with a high number of rays, greatly reducing the computation complexity of the problem.

  15. Calculation of thermal noise in grating reflectors

    CERN Document Server

    Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro

    2013-01-01

    Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.

  16. Performance Study of a Double-Pass Thermoelectric Solar Air Collector with Flat-Plate Reflectors

    Science.gov (United States)

    Lertsatitthanakorn, C.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2012-06-01

    In this paper the results of the influence of flat-plate reflectors made of aluminum foil on the performance of a double-pass thermoelectric (TE) solar air collector are presented. The proposed TE solar collector with reflectors was composed of transparent glass, an air gap, an absorber plate, TE modules, a rectangular fin heat sink, and two flat-plate reflectors. The flat-plate reflectors were placed on two sides of the TE solar collector (east and west directions). The TE solar collector was installed on a one-axis sun-tracking system to obtain high solar radiation. Direct and reflected incident solar radiation heats up the absorber plate so that a temperature difference is created across the TE modules to generate a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. Ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel, where it receives additional heating from the absorber plate. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the double-pass collector system with reflectors and TE technology. It was found that the optimum position of the reflectors is 60°, which gave significantly higher thermal energy and electrical power outputs compared with the TE solar collector without reflectors.

  17. Critical parameters and universal amplitude ratios of two-dimensional spin-S Ising models using high- and low-temperature expansions

    CERN Document Server

    Butera, P

    2003-01-01

    For the study of Ising models of general spin S on the square lattice, we have combined our recently extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting, Guttmann and Jensen. We have computed for the first time various critical parameters and improved the estimates of others. Moreover the properties of hyperscaling and of universality (spin S independence) of exponents and of various dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates of the corresponding amplitudes for the spin S Ising model on the triangular, honeycomb, and kagome` lattices.

  18. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering Faradaic processes at glassy carbon and at boron-doped diamond electrodes.

    Science.gov (United States)

    Zhang, Jie; Guo, Si-Xuan; Bond, Alan M; Marken, Frank

    2004-07-01

    Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.

  19. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  20. A new delirium phenotype with rapid high amplitude onset and nearly as rapid reversal: Central Coast Australia Delirium Intervention Study

    Directory of Open Access Journals (Sweden)

    Regal PJ

    2015-02-01

    , and 45%/80% for the Delirium Index. General medicine and geriatric medicine groups had similar outcomes.Conclusion: This delirium phenotype selects for a rapid high amplitude critical decline in attention, executive function, IADL, and apathy that recovers almost as rapidly.Keywords: delirium, inattention, executive function, dementia

  1. Perfect Multi-Channel Flat Reflectors

    CERN Document Server

    Asadchy, V S; Elsakka, A; Albooyeh, M; Tretyakov, S A

    2016-01-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here we introduce a concept of multi-channel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions or polarization states simultaneously and independently. In particular, we reveal a possibility to create perfect multi-channel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three fundamental classes of multi-channel mirrors. Together they form a basis of all possible reflection functionalities achievable with flat periodically modulated reflectors. To demonstrate the potential of the introduced concept, we design and experimentally test one of the basis multi-channel reflectors, confirming the desired multi-channel response. Furthermore, by extending the concept to reflectors suppor...

  2. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  3. Flexible-Robotic Reflector for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Nir Shvalb

    2015-01-01

    Full Text Available Existing dish based antennas tend to have geometric morphologic distortion in the surface due to drastic thermal changes common in the space environment. In this paper we present a new concept for a dynamic antenna specially designed for communication satellites. The suggested flexible-robotic antenna is based on a dual-reflector structure, where the subreflector has a complex surface shaping robotic mechanism allowing it to fix most of the morphologic errors in the main reflector. We have implemented a set of searching algorithms allowing the hyper redundant robotic subreflector to adapt its surface to the morphologic distortions in the main reflector. The suggested new antenna was constructed and tested in an RF room in which it was able to fix the loss caused by distortion in the main reflector to the original gain in less than an hour.

  4. Handbook of reflector antennas and feed systems v.3 applications of reflectors

    CERN Document Server

    Rao, Sudhakar; Sharma, Satish K

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume III focuses on the range of reflector antenna applications, including space, terrestrial, and radar. The intent of this book volume is to provide practical applications and design information on reflector antennas used fo

  5. Easily Assembled Reflector for Solar Concentrators

    Science.gov (United States)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Reflectors for concentrating solar collectors are assembled quickly and inexpensively by method that employs precontoured supports, plastic film, and adhesive to form a segmented glass mirror. New method is self-focusing, and does not require skilled labor at any stage. Contoured ribs support film and mirror segments of reflector. Nine mirror segments are bonded to sheet. Combined mirror surface closely approximates a spherical surface with a radius of curvature of 36 inches (0.91 m).

  6. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  7. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    Science.gov (United States)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  8. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations In a Young, Extremely Red L-type Brown Dwarf

    CERN Document Server

    Lew, Ben W P; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J; Karalidi, Theodora; Yang, Hao; Marley, Mark S; Cowan, N B; Bedin,; R., L; Metchev, Stanimir A; Radigan, Jacqueline; Lowrance, Patrick J

    2016-01-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$\\pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentativ...

  9. Terrace retro-reflector array for poloidal polarimeter on ITER.

    Science.gov (United States)

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  10. Hidden focal EEG seizures during prolonged suppressions and high-amplitude bursts in early infantile epileptic encephalopathy.

    Science.gov (United States)

    Al-Futaisi, Amna; Banwell, Brenda; Ochi, Ayako; Hew, Justine; Chu, Bill; Oishi, Makoto; Otsubo, Hiroshi

    2005-05-01

    We report on a 27-month-old female with atypical early infantile epileptic encephalopathy (EIEE), who developed tonic spasms, partial seizures and myoclonic jerks along with episodic bradycardia at 5 days. We recorded digital electroencephalography (EEG) using either an 11-channel neonatal montage or 19 channel scalp electrodes, at 200 Hz sampling rate, and a single reference for a minimum of 30 min. At 18 days EEG showed suppression-burst (SB) patterns during wakefulness and sleep. Tonic spasms concomitant with bursts recorded as brief, low-amplitude fast waves. EEG at 8 months showed increased amplitude of bursts to 1 mV and extension of suppression periods to 65 s. By increasing recording sensitivity, we detected focal epileptiform discharges of slow rhythmic sharp and slow waves building to 30 microV during suppression periods. Status epilepticus occurred at 16 months. EEG at 27 months returned to the previous SB pattern with rare partial seizures. This report is the first to demonstrate clinically silent focal EEG seizures during prolonged suppression periods in atypical EIEE by off-line digital EEG. Digital EEG sensitivity can reveal covert electrical activity during suppression periods in epileptic neonates and infants.

  11. Space Reflector Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  12. Mesoporous Bragg reflectors: block-copolymer self-assembly leads to building blocks with well defined continuous pores and high control over optical properties

    KAUST Repository

    Guldin, S.

    2011-08-19

    Mesoporous distributed Bragg re ectors (MDBRs) exhibit porosity on the sub-optical length scale. This makes them ideally suited as sensing platforms in biology and chemistry as well as for light management in optoelectronic devices. Here we present a new fast forward route for the fabrication of MDBRs which relies on the self-assembling properties of the block copolymer poly(isoprene-block -ethylene oxide) (PI-b -PEO) in combination with sol-gel chemistry. The interplay between structure directing organic host and co-assembled inorganic guest allows the ne tuning of refractive index in the outcome material. The refractive index dierence between the high and low porosity layer can be as high as 0.4, with the optical interfaces being well dened. Following a 30 min annealing protocol after each layer deposition enables the fast and reliable stacking of MDBRs which exhibit a continuous TiO2 network with large accessible pores and high optical quality.

  13. Porous silicon as an internal reflector in thin epitaxial solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuzma-Filipek, I.; Duerinckx, F.; Nieuwenhuysen, K. van; Beaucarne, G.; Poortmans, J.; Mertens, R. [IMEC vzw, Leuven (Belgium)

    2007-05-15

    Thin film epitaxial silicon solar cells are considered a near future alternative to bulk silicon solar cells. However due to the limited thickness of the active layer they require efficient light trapping. Therefore we propose the development and implementation of such light confinement by means of a porous silicon (PS) intermediate reflector at the epi/substrate interface. The formation of the reflector is done by electrochemical etching of a highly doped Si substrate into a multilayer stack (Bragg-optical reflector), and is followed by epitaxial deposition of the active layer. The implementation of the PS reflector however requires detailed analysis of many problematic issues, foremost the optical optimisation of the stack for internal reflection at the Si/PS/Si interface. Other topics include the pore rearrangement during high-temperature CVD as well as the quality of the epitaxial layer grown on porous silicon. Another challenge is the resistance within the PS layers. For that purpose, SRP (Spreading Resistance Probe) and resistance measurements were performed to determine the conductive properties of rearranged PS. First cells with a 9-layer porous silicon reflector gave a very promising efficiency of 13.5% which is 1.5% higher compared to cells without internal reflector. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. A review of crustacean sensitivity to high amplitude underwater noise: Data needs for effective risk assessment in relation to UK commercial species.

    Science.gov (United States)

    Edmonds, Nathan J; Firmin, Christopher J; Goldsmith, Denise; Faulkner, Rebecca C; Wood, Daniel T

    2016-07-15

    High amplitude anthropogenic noise is associated with adverse impacts among a variety of organisms but detailed species-specific knowledge is lacking in relation to effects upon crustaceans. Brown crab (Cancer pagurus), European lobster (Homarus gammarus) and Norway lobster (Nephrops norvegicus) together represent the most valuable commercial fishery in the UK (Defra, 2014). Critical evaluation of literature reveals physiological sensitivity to underwater noise among N. norvegicus and closely related crustacean species, including juvenile stages. Current evidence supports physiological sensitivity to local, particle motion effects of sound production in particular. Derivation of correlative relationships between the introduction of high amplitude impulsive noise and crustacean distribution/abundance is hindered by the coarse resolution of available data at the present time. Future priorities for research are identified and argument for enhanced monitoring under current legislative frameworks outlined. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    strength. This can be implemented by employing a high-contrast grating (HCG) as the coupling reflector in a system of two coupled vertical cavities, and engineering both the HCG reflection phase and amplitude response. Several examples of HCG-based coupled cavities with novel features are discussed...

  16. Reflector cells in the skin of Octopus dofleini.

    Science.gov (United States)

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid.

  17. Analysis of a generalized dual reflector antenna system using physical optics

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  18. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  19. Scanning properties of large dual-shaped offset and symmetric reflector antennas

    Science.gov (United States)

    Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.

    1992-01-01

    Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.

  20. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  1. Advanced deployable reflectors for communications satellites

    Science.gov (United States)

    Lowe, Elvin; Josephs, Michael; Hedgepeth, John

    1993-02-01

    This paper discusses a concept for a deployable mesh reflector for large spacecraft antennas and the processes used in design, fabrication and testing. A set of overall reflector requirements such as stowed volume, deployed diameter and RF loss derived from system specifications are presented. The development of design and analysis tools to allow parametric studies such as facet size, number of ribs and number of rib segments is discussed. CATIA (a commercially available three-dimensional design and analysis tool) is used to perform kinematic analyses as well as to establish the database to be used by the several groups participating in the development is examined. Results of trade studies performed to reduce cost with minimum risk to product delivery are included. A thirty foot reflector has been built and tested.

  2. Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement.

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang

    2016-05-01

    Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

  3. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    2016-12-01

    Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  4. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  5. Surface roughness estimation of a parabolic reflector

    CERN Document Server

    Casco, Nicolás A

    2010-01-01

    Random surface deviations in a reflector antenna reduce the aperture efficiency. This communication presents a method for estimating the mean surface deviation of a parabolic reflector from a set of measured points. The proposed method takes into account systematic measurement errors, such as the offset between the origin of reference frame and the vertex of the surface, and the misalignment between the surface rotation axis and the measurement axis. The results will be applied to perform corrections to the surface of one of the 30 m diameter radiotelescopes at the Instituto Argentino de Radioastronom\\'ia (IAR).

  6. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  7. Handbook of reflector antennas and feed systems v.1 theory and design of reflectors

    CERN Document Server

    Sharma, Satish K; Shafai, Lotfollah

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa

  8. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  9. Periodic orbits for space-based reflectors in the circular restricted three-body problem

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2017-05-01

    The use of space-based orbital reflectors to increase the total insolation of the Earth has been considered with potential applications in night-side illumination, electric power generation and climate engineering. Previous studies have demonstrated that families of displaced Earth-centered and artificial halo orbits may be generated using continuous propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the circular restricted three body problem, such that, the space mirror attitude reflects sunlight in the direction of Earth's center, increasing the total insolation. Using the Lindstedt-Poincaré and differential corrector methods, a family of halo orbits at artificial Sun-Earth L_2 points are found. It is shown that the third order approximation does not yield real solutions after the reflector acceleration exceeds 0.245 mm s^{-2}, i.e. the analytical expressions for the in- and out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and applying the differential corrector method, a family of displaced periodic orbits close to the Earth are therefore found, with a solar reflector acceleration of 2.686 mm s^{-2}.

  10. Periodic orbits for space-based reflectors in the circular restricted three-body problem

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2016-11-01

    The use of space-based orbital reflectors to increase the total insolation of the Earth has been considered with potential applications in night-side illumination, electric power generation and climate engineering. Previous studies have demonstrated that families of displaced Earth-centered and artificial halo orbits may be generated using continuous propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the circular restricted three body problem, such that, the space mirror attitude reflects sunlight in the direction of Earth's center, increasing the total insolation. Using the Lindstedt-Poincaré and differential corrector methods, a family of halo orbits at artificial Sun-Earth L_2 points are found. It is shown that the third order approximation does not yield real solutions after the reflector acceleration exceeds 0.245 mm s^{-2} , i.e. the analytical expressions for the in- and out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and applying the differential corrector method, a family of displaced periodic orbits close to the Earth are therefore found, with a solar reflector acceleration of 2.686 mm s^{-2}.

  11. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff;

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  12. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  13. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  14. Reflector Surface Modelling : A European Collaboration

    NARCIS (Netherlands)

    Albani, M; Balling, P.; Ettorre, M.; Gerini, G.; Maci, S.; Pontoppidan, K.; Sipus, Z.; Sjöberg, D.; Vecchi, G.; Vipiana, F.

    2007-01-01

    The topic of this paper is the work carried out in Work Package 2.3-2 of the EU network ACE. This work package is concerned with the modelling of the surfaces of modern reflector antennas. In particular the problems associated with homogenisation of periodic structures are described together with an

  15. Development of NRU reflector wall inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, R.H.; Luloff, B.V.; Zahn, N.; Simpson, N., E-mail: lumsdenr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    In 2009 May, the National Research Universal (NRU) calandria leaked. During the next year, the calandria was inspected with six new Non-Destructive Evaluation (NDE) techniques to determine the extent of the corrosion, repaired, and finally the repair was inspected with four additional new NDE techniques before the reactor was returned to service. The calandria is surrounded by a light-water reflector vessel fabricated from the same material as the calandria vessel. Concerns that the same corrosion mechanism had damaged the reflector vessel led to the development of a system to inspect the full circumference of the reflector wall for corrosion damage. The inspection region could only be accessed through 64 mm diameter ports, was 10 m below the port, and had to be inspected from the corroded surface. The ultrasonic technique was designed to produce a closely spaced wall thickness (WT) grid over an area of approximately 5 m2 on the corroded surface using a very small probe holder. This paper describes the Reflector Wall Inspection (RWI) development project and the system that resulted. (author)

  16. Multimode Analysis of Bragg Reflectors for Cyclotron Maser Applications

    Science.gov (United States)

    1991-02-16

    exponentially with distance in the reflector. The spatial dependance of the TMI I mode is oscillatory. Figure 3 shows the frequency dependence of the...mode reflector for a CARM oscillator resonator. Figure 4 shows the frequency dependance of the reflection and mode conversion in the reflector. In order

  17. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    DUHui-ping

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dval parabolic cylindrical ones discussed by Sanad and Shafai[1].The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  18. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dual parabolic cylindrical ones discussed by Sanad and Shafai[1]. The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  19. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  20. Passionflower Extract Induces High-amplitude Rhythms without Phase Shifts in the Expression of Several Circadian Clock Genes in Vitro and in Vivo.

    Science.gov (United States)

    Toda, Kazuya; Hitoe, Shoketsu; Takeda, Shogo; Shimizu, Norihito; Shimoda, Hiroshi

    2017-06-01

    Circadian rhythms play key roles in the regulation of physiological and behavioral systems including wake-sleep cycles. We evaluated the effects of passionflower (aerial parts of Passiflora incarnata Linnaeus) extract (PFE) on circadian rhythms using NIH3T3 cells and mice. PFE (100 μg/mL) induced high-amplitude rhythms in the expression of period circadian protein (Per) 2, cryptochrome (Cry) 1, superoxide dismutase (SOD) 1, and glutathione peroxidase (GPx) in vitro from 12 h after a treatment with serum-rich medium. Isovitexin 2"-O-glucoside, isoschaftoside, and homoorientin, which were purified from PFE, also significantly enhanced Per2 mRNA expression at 20 h. An oral treatment with PFE (100 mg/kg/day) at zeitgeber time (ZT) 0 h for 15 days improved sleep latencies and sleeping times in the pentobarbital-induced sleep test in mice, similar to muscimol (0.2 mg/kg, i.p.). PFE induced high-amplitude rhythms without obvious phase shifts in serum corticosterone levels and the expression of Per1, Per2, and Cry1 in the liver as well as NIH3T3 cells. However, in the cerebrum, PFE enhanced the circadian expression of brain-muscle ARNT-like protein (Bmal) 1, circadian locomotor output cycles kaput (Clock), and Per1. Regarding this difference, we suggest the involvement of several neurotransmitters that influence the circadian rhythm. Indeed, PFE significantly increased dopamine levels at ZT 18 h, and then affected the mRNA expression of the synthetic and metabolic enzymes such as monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and glutamic acid decarboxylase (GAD). The results obtained show that PFE positively modulates circadian rhythms by inducing high-amplitude rhythms in the expression of several circadian clock genes.

  1. APPLICATION OF QUATERNIONS FOR REFLECTOR PARAMETER

    Directory of Open Access Journals (Sweden)

    I. A. Konyakhin

    2016-09-01

    Full Text Available Subject of Research. The paper deals with application of quaternions for optimization of reflector parameters at autocollimation measurements in comparison with a matrix method. Computer-based results on the quaternionic models are presented that have given the possibility to determine conditions of measurement error reduction in view of apriori information on the rotation axis position. The practical synthesis technique for tetrahedron reflector parameters using found ratios is considered. Method. Originally, received conditions for reduction of autocollimation system measurement error are determined with the use of a matrix method for definition of an angular object position as a set of three equivalent consecutive turns about coordinate axes. At realization of these conditions the numerous recalculation of orientation parameters between various systems of coordinates is necessary that increases complexity and reduces resulting accuracy of autocollimation system at practical measurements. The method of quaternions gives the possibility to analyze the change of an absolute angular position in space, thus, there are conditions of accuracy increase regardless of the used systems of coordinates. Main Results. Researches on the mathematical model have shown, that the orthogonal arrangement of two basic constant directions for autocollimator tetrahedron reflector is optimal with respect to criterion of measurement error reduction at bisection arrangement of actual turn axis against them. Practical Relevance. On the basis of the found ratios between tetrahedron reflector angles and angles of its initial orientation parameters we have developed a practical method of reflector synthesis for autocollimation measurements in case of apriori information on an actual turn axis at monitoring measurements of the shaft or pipelines deformations.

  2. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  3. Photoluminescence and X-ray Diffraction of Distributed Bragg Reflector

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LI Yong-da; LIU Wen-li; LU Bin; JU Guo-xian; ZHANG Yong-ming; HAO Yong-qin; SU Wei; ZHONG Jing-chang

    2004-01-01

    Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double- crystal X- ray diffraction measurement. The expected high quality epitaxial DBR structure was verified. In the X- ray double- crystal rocking curves of DBR the zeroth- order peak, the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed. The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.

  4. Amplitude Equalization of 40 Gb/s RZ-DPSK Signals using Saturation of Four-Wave Mixing in a Highly Nonlinear Fiber

    DEFF Research Database (Denmark)

    Geng, Yan; Peucheret, Christophe; Jeppesen, Palle

    2006-01-01

    We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal......We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal...

  5. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  6. A nonlinear equivalent circuit method for analysis of passive intermodulation of mesh reflectors

    Directory of Open Access Journals (Sweden)

    Jiang Jie

    2014-08-01

    Full Text Available Passive intermodulation (PIM has gradually become a serious electromagnetic interference due to the development of high-power and high-sensitivity RF/microwave communication systems, especially large deployable mesh reflector antennas. This paper proposes a field-circuit coupling method to analyze the PIM level of mesh reflectors. With the existence of many metal–metal (MM contacts in mesh reflectors, the contact nonlinearity becomes the main reason for PIM generation. To analyze these potential PIM sources, an equivalent circuit model including nonlinear components is constructed to model a single MM contact so that the transient current through the MM contact point induced by incident electromagnetic waves can be calculated. Taking the electric current as a new electromagnetic wave source, the far-field scattering can be obtained by the use of electromagnetic numerical methods or the communication link method. Finally, a comparison between simulation and experimental results is illustrated to verify the validity of the proposed method.

  7. Three Heavy Reflector Experiments in the IPEN/MB-01 Reactor: Stainless Steel, Carbon Steel, and Nickel

    Science.gov (United States)

    dos Santos, A.; de Andrade e Silva, G. S.; Mura, L. F.; Fuga, R.; Jerez, R.; Mendonça, A. G.

    2014-04-01

    The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28×26-fuel-rod configuration. The heavy reflector, either Stainless Steel, Carbon Steel or Nickel plates, was placed at the west face of this reactor. 32 plates around 3.0 mm thick were used in all the experiments. The aim was to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check to the SS-304 reflector measurements. The experimental data comprise a set of critical control bank positions, temperatures and reactivities as a function of the number of the plates. The competition between the effect of thermal neutron capture in the heavy reflector and the effect of fast neutrons back scattering to the core is highlighted by varying the reflector thickness. For the Carbon Steel case the reactivity gain when all the 32 plates are inserted is the smallest one, thus demonstrating that Carbon Steel or essentially iron does not have the same reflector properties as the Stainless Steel or Nickel plates do. Nickel has the highest reactivity gain, thus demonstrating that this material is better reflector than Iron and Stainless Steel. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  8. 采用ALD方法制备TiO2/Al2O3布拉格反射镜并配合金属反射镜来增强背镀结构的反射效率%High Reflectance of Backside Reflector with a Hybrid Metallic Mirror and ALD-TiO2/Al2O3 DBR

    Institute of Scientific and Technical Information of China (English)

    陈洪钧; 郭浩; 张雄; 崔一平

    2013-01-01

    首次采用原子层沉积法制备TiO2/Al2O3布拉格反射镜并配合金属反射镜来制备了高反射率的背反射镜.制备的多层布拉格反射镜加Al镜和多层布拉格反射镜加Ag镜有很好的平整度和厚度的精确性,并且反射率高于96%.此外,TiO2/Al2O3布拉格反射镜和Al与蓝宝石衬底都有良好的粘合性,这样可以节省制备步骤并且可以得到高质量的背反射镜.利用原子层沉积技术和TiO2/Al2O3布拉格反射镜,我们得到了高反射率,角度依赖性小,更加稳定以及均一性更好的背反射镜,可以满足高亮度LED的需求.%High reflectivity backside reflectors combining TiO2/Al2O3 distributed Bragg reflector (DBR)by atomic layer deposition (ALD)with metallic mirror have been demonstrated for the first time.Multi-pair-DBRs/Al and multi-pair-DBRs/Ag stacks with excellent uniformity and thickness accuracy have exhibited high reflectivities above 96%.Besides,TiO2/Al2O3 DBR has good adhesion with both sapphire substrate and Al mirror,we simplified the fabrication process and achieved more stabilized backside reflector.By combining ALD deposition with TiO2/Al2O3DBR,high reflectivity,less angle dependency,more stabilized and excellent film uniformity backside reflector is achieved to meet the requirements of high brightness light-emitting diodes(LEDs).

  9. Mechanism associated with the Space Shuttle main engine oxidizer valve/duct system anomalous high amplitude discrete acoustical excitation

    Science.gov (United States)

    Schutzenhofer, L. A.; Jones, J. H.; Jewell, R. E.; Ryan, R. S.

    1980-01-01

    Anomalous high frequency pressure fluctuations in the Space Shuttle main engine have been experienced during hot firings. Through diagnostic analysis of hot firing engine data, it was determined that this excitation originated at the main oxidizer valve. The intensity of these fluctuations was such that the main oxidizer valve was partially consumed in fire, experienced fretting, and had seal damage. Delineated in this paper are the associated dynamical phenomena and the methodologies leading toward understanding the excitation mechanism. The results presented demonstrate that the source of the anomalous frequencies was suppressed by a simple fix and all main oxidizer valve damage was terminated.

  10. Frequency and amplitude characteristics of a high-repetition-rate hybrid TEA-CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.L.; Lavigne, P.; Verreault, M.; Otis, G.

    1978-02-01

    The envelope and frequency characteristics of the output pulse of a high-repetition-rate hybrid TEA-CO/sub 2/ laser are presented. Both the intrapulse and interpulse laser frequency stability are experimentally determined at repetition rates up to 300 Hz. The recovery of the CW laser signal following the generation of the TEA laser pulse is analyzed theoretically and experimentally. Short term reproducibilities of + or - 2 MHz are observed at a pulse repetition rate of 300 Hz with initial chirp rates of about 1.5 MHz/microsec. Improvements and limits on power and repetition rate are discussed.

  11. Ellisoidal reflector for measuring otoacoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Heiskanen, Vesa; Pulkki, Ville Topias

    2016-01-01

    Otoacoustic emissions (OAEs) are low-intensity sounds present in the ear canal, generated by mechanical processing in the cochlear in the inner ear. OAEs provide a noninvasive technique to sense the mechanical processing of sound in the inner ear. These signals are commonly measured by placing......, and especially SOAE at these low frequencies. In addition, blocking of the ear canal changes the impedance of the middle ear, potentially changing the transmission of acoustical energy from the inner ear to the ear canal, hampering the interpretation of the data in terms of normal listening conditions with open...... ear canal. This study presents the design and evaluation of a truncated prolate ellipsoidal reflector in combination with a large-diaphragm low-noise microphone to measure OAEs in the open ear canal of human listeners. The reflector was designed to gain information about BM processing at low...

  12. An investigation into shape and vibration control of space antenna reflectors

    Science.gov (United States)

    Susheel, C. K.; Kumar, Rajeev; Chauhan, Vishal S.

    2016-12-01

    A study into the shape and active vibration control of antenna reflectors, an important member of the space structures, is carried out in this paper. Geometric nonlinear analysis is considered for performance evaluation of antenna reflectors, as very high precision is an important aspect of space structures. An effort has been made to demonstrate the importance of functionally graded materials in space structures. Piezolaminated structures have been used for shape and vibration control applications for many years. However, due to the problems like debonding and delamination, the reliability of these materials in space structures is still uncertain. To overcome these problems, patches made of functionally graded piezoelectric material (FGPM) are used for shape and vibration control of antenna reflectors in this investigation. FGPM patches are also used to demonstrate the beam-shaping and beam-steering application of antenna reflectors. For the active vibration control application, a fuzzy-logic controller (FLC) is designed and validated with the experimental results. An experimental study has been conducted for comparing the performance of different controllers in the context of vibration reduction. The FLC is then used for active vibration control of an antenna reflector under the application of thermal impact and sinusoidal loading.

  13. Generation of Tunable Amplitude-Squeezed Light by Injection Locking of a Laser Diode

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-Min; HE Ling-Xiang; ZHANG Tian-Cai; XIE Chang-De; PENG Kun-Chi

    2000-01-01

    Tunable amplitude squeezing around the D2 line of cesium has been experimentally accomplished at room temperature in a quantum-well laser diode with light injection from a single-mode distributed Bragg-Reflector laser diode. While the master laser frequency is tuned, amplitude squeezing of the output light from the slave laser can be maintained at about 0.9dB throughout a tunabIe range of~l.7 GHz around the cesium D2 line.

  14. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  15. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    Science.gov (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  16. Simulation of parabolic reflectors for ultraviolet phototherapy

    Science.gov (United States)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  17. Simulation of parabolic reflectors for ultraviolet phototherapy.

    Science.gov (United States)

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  18. High-amplitude supergiant V5112 Sgr: enrichment of the envelope with heavy s-process metals

    CERN Document Server

    Klochkova., V G

    2013-01-01

    High-resolution (R=60000) echelle spectroscopy of the post-AGB supergiant V5112 Sgr performed in 1996-2012 with the 6-m telescope BTA has revealed peculiarities of the star optical spectrum and has allowed the variability of the velocity field in the stellar atmosphere and envelope to be studied in detail. An asymmetry and splitting of strong absorption lines with a low lower-level excitation potential have been detected for the first time. The effect is maximal in BaII lines whose profile is split into three components. The profile shape and positions of the split lines change with time. The blue components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. The envelope expansion velocities have been estimated to be 20 and 30 km/s. The mean radial velocity from diffuse bands in the spectrum of V5112 Sgr coincides with that from the short-wavel...

  19. Ultraviolet reflector materials for solar detoxification of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  20. Broadband Metamaterial Reflectors for Polarization Manipulation Based on Cross/Ring Resonators

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2016-09-01

    Full Text Available We presented the investigation of broadband metamaterial reflector for polarization manipulation based on cross/ring resonators. It is demonstrated that the meta¬material reflector can convert the linearly polarized inci¬dent wave to its cross polarized wave or circularly polar¬ized wave. Due to the multiple resonances at neighboring frequencies, the proposed reflector presents broadband property and high efficiency. The measured fraction band¬width of cross polarization conversion is 55.5% with effi¬ciency higher than 80%. Furthermore, a broadband circu¬lar polarizer is designed by adjusting the dimension para¬meters and the measured fraction bandwidth exceeds 30%.

  1. 用于光电子器件的低成本、高反射率SOR衬底%Low-Cost, High-Reflectivity Silicon-on-Reflector for Optoelectronic Device Application

    Institute of Scientific and Technical Information of China (English)

    李成; 杨沁青; 王红杰; 王启明

    2001-01-01

    A silicon-on-reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si-based sol-gel sticking and smart-cut techniques. The reflectivity of the SOR substrate is close to unity at 1.3μm's wavelength under the normal incidence.%报道了一种包含一薄层单晶硅和隐埋Si/SiO2布拉格反射器的SOR衬底.这种可用于光电子器件的衬底是由硅基乳胶粘接和智能剥离技术研制而成的.在垂直光照条件下,这种SOR衬底在1.3μm处的反射率接近100%。

  2. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Science.gov (United States)

    Huang, Robin K.; Wang, Christine A.; Connors, Michael K.; Turner, George W.; Dashiell, Michael

    2004-11-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The "hybrid" back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant short-circuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  3. Thoracic compression myelopathy due to the progression of dystrophic scoliosis, the presence of a paraspinal tumor, and high and excessive amplitude movement of the shoulder.

    Science.gov (United States)

    Kurosawa, Takashi; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Uno, Koki; Kurosaka, Masahiro; Nishida, Kotaro

    2017-01-01

    The authors present a case of 45-year-old man with neurofibromatosis type 1 (NF-1) and thoracic scoliosis, previously undergoing fusion surgery, who developed myelopathy. This patient further complained of lightning pain when he extended and horizontally abducted the convex-side shoulder. Radiological examination revealed the progression of dystrophic scoliosis with opened spinal canals and the presence of a neurofibroma behind the spinal cord at the apical levels. Delayed development of spinal instability can occur due to dystrophy even postoperatively in patients with NF-1. After tumor resection, he had rapid recovery from myelopathy and no recurrence of radiating pain despite shoulder movement. These findings provide a speculation that high, intense amplitude movement of the shoulder toward the spinal canal causes the impingement on the neurofibroma, resulting in indirect compression of the exposed spinal cord. This is the first report describing thoracic compression myelopathy associated with paraspinal displacement of the scapula.

  4. Nuclear Jacobi and Poincaré transitions at high spins and temperatures: Account of dynamic effects and large-amplitude motion

    Science.gov (United States)

    Mazurek, K.; Dudek, J.; Maj, A.; Rouvel, D.

    2015-03-01

    We present a theoretical analysis of the competition between the so-called nuclear Jacobi and Poincaré shape transitions as a function of spin at high temperatures. The latter condition implies the method of choice, a realistic version of the nuclear liquid drop model, here the Lublin-Strasbourg drop model. We address specifically the fact that the Jacobi and Poincaré shape transitions are accompanied by the flattening of the total nuclear energy landscape as a function of the relevant deformation parameters, which enforces large-amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schrödinger equation whose solutions are used to calculate the most probable deformations associated with the nuclear Jacobi and Poincaré transitions. We discuss selected aspects of the new description focusing on the critical-spin values for both types of these transitions.

  5. Search for high-amplitude Delta Scuti and RR Lyrae stars in Sloan Digital Sky Survey Stripe 82 using principal component analysis

    CERN Document Server

    Süveges, M; Váradi, M; Mowlavi, N; Becker, A C; Ivezić, Ž; Beck, M; Nienartowicz, K; Rimoldini, L; Dubath, P; Bartholdi, P; Eyer, L

    2012-01-01

    We propose a robust principal component analysis (PCA) framework for the exploitation of multi-band photometric measurements in large surveys. Period search results are improved using the time series of the first principal component due to its optimized signal-to-noise ratio.The presence of correlated excess variations in the multivariate time series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude Delta Scuti variables. We found also 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., 2010, extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample comprises also 25 multiperiodic or Blazhko RR Lyrae stars.

  6. Nuclear Jacobi and Poincar\\'e Transitions at High Spins and Temperatures: Account~of~Dynamic~Effects~and~Large-Amplitude Motion

    CERN Document Server

    Mazurek, K; Maj, A; Rouvel, D

    2013-01-01

    We present a theoretical analysis of the competition between so-called nuclear Jacobi and Poincar\\'e shape transitions in function of spin - at high temperatures. The latter condition implies the method of choice - a realistic version of the nuclear Liquid Drop Model (LDM), here: the Lublin-Strasbourg Drop (LSD) model. We address specifically the fact that the Jacobi and Poincar\\'e shape transitions are accompanied by the flattening of total nuclear energy landscape as function of the relevant deformation parameters what enforces large amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schr\\"odinger equation whose solutions are used to calculate the most probable deformations associated with both types of transitions and discuss the physical consequences in terms of the associated critical-spin values and transitions themselves.

  7. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.; RamaRao, P.

    stream_size 75666 stream_content_type text/plain stream_name J_Geophys_Res_B_Solid_Earth_118_2258a.pdf.txt stream_source_info J_Geophys_Res_B_Solid_Earth_118_2258a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset... below the base of gas hydrate stability zone is interpreted in the vicinity of fault system (F1). 1. Introduction Gas hydrate represents a solid crystalline form of lighter hydrocarbon gases trapped within the cages of water molecules...

  8. Real topological string amplitudes

    Science.gov (United States)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  9. Radar polarimeter measures orientation of calibration corner reflectors

    Science.gov (United States)

    Zebker, Howard A.; Norikane, Lynne

    1987-01-01

    Radar polarimeter signals from a set of trihedral corner reflectors located in the Goldstone Dry Lake in California were analyzed, and three types of scattering behavior were observed: (1) Bragg-like slightly rough surface scattering that represents the background signal from the dry lake, (2) trihedral corner reflector scattering that returns the incident polarization, and (3) two-bounce corner reflector scattering resulting from a particular alignment of a trihedral reflector. A radar calibration approach using trihedral corner reflectors should be designed such that precise alignment of the reflectors is ensured, as three-bounce and two-bounce geometries lead to very different cross sections and hence very different inferred calibration factors.

  10. Properties of wideband resonant reflectors under fully conical light incidence

    Science.gov (United States)

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-03-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

  11. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    CERN Document Server

    Bretz, Thomas

    2013-01-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators in front of the photo sensor, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase sp...

  12. Preliminary design of large reflectors with flat facets

    Science.gov (United States)

    Agrawal, P. K.; Anderson, M. S.; Card, M. F.

    1981-01-01

    A concept for approximating curved antenna surfaces using flat facets is discussed. A preliminary design technique for determining the size of the reflector surface facets necessary to meet antenna surface accuracy requirements is presented. A proposed large microwave radiometer satellite (MRS) is selected as an application, and the far-field electromagnetic response of a faceted reflector surface is compared with that from a spherical reflector surface.

  13. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  14. Inflatable Reflector For Solar Power And Radio Communication

    Science.gov (United States)

    Sercel, Joel; Gilchriest, Carl; Ewell, Rich; Herman, Martin; Rascoe, Daniel L.; Nesmith, Bill J.

    1995-01-01

    Report proposes installation of lightweight inflatable reflector structure aboard spacecraft required to both derive power from sunlight and communicate with Earth by radio when apparent position of Earth is at manageably small angle from line of sight to Sun. Structure contains large-aperture paraboloidal reflector aimed toward Sun and concentrates sunlight onto photovoltaic power converter and acts as main reflector of spacecraft radio-communication system.

  15. Thermal distortion analysis of a deployable parabolic reflector

    Science.gov (United States)

    Bruck, L. R.; Honeycutt, G. H.

    1973-01-01

    A thermal distortion analysis of the ATS-6 Satellite parabolic reflector was performed using NASTRAN level 15.1. The same NASTRAN finite element method was used to conduct a one g static load analysis and a dynamic analysis of the reflector. In addition, a parametric study was made to determine which parameters had the greatest effect on the thermal distortions. The method used to model the construction of the reflector is described and the results of the analyses are presented.

  16. Properties of wideband resonant reflectors under fully conical light incidence

    OpenAIRE

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors ...

  17. Development of optical ground verification method for μm to sub-mm reflectors

    Science.gov (United States)

    Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.

    2004-06-01

    develop and realise suitable verification tools based on infrared interferometry and other optical techniques for testing large reflector structures, telescope configurations and their performances under simulated space conditions. The first one is an IR-phase shifting interferometer with high spatial resolution. This interferometer shall be used specifically for the verification of high precision IR, FIR and sub-mm reflector surfaces and telescopes under both ambient and thermal vacuum conditions. The second one presented hereafter is a holographic method for relative shape measurement. The holographic solution proposed makes use of a home built vacuum compatible holographic camera that allows displacement measurements from typically 20 nanometres to 25 microns in one shot. An iterative process allows the measurement of a total of up to several mm of deformation. Uniquely the system is designed to measure both specular and diffuse surfaces.

  18. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  19. Jacobi-Bessel analysis of reflector antennas with elliptical apertures

    Science.gov (United States)

    Rahmat-Samii, Yahya

    1987-01-01

    Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.

  20. Solgel grating waveguides for distributed Bragg reflector lasers.

    Science.gov (United States)

    Fardad, M A; Luo, H; Beregovski, Y; Fallahi, M

    1999-04-01

    Solgel grating waveguides and their application to the fabrication of external-cavity distributed Bragg reflector (DBR) lasers are demonstrated. A new composition of aluminosilicate material is developed for the fabrication of single-mode waveguides and Bragg reflectors. An average loss of <0.2 dB/cm is measured in the single-mode waveguides at 1550 nm. The reflectors show filtering greater than 97% near 1530 nm, with a bandwidth of ~0.6 nm . The Bragg reflectors are used as feedback resonators for DBR lasers. Single-mode lasing with a sidemode suppression of better than 25 dB is demonstrated.

  1. High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection.

    Science.gov (United States)

    Lin, Gong-Ru; Kang, Jung-Jui; Lee, Chao-Kuei

    2010-04-26

    The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

  2. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    Science.gov (United States)

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  3. Studies of beam expansion and distributed Bragg reflector lasers for fiber optics and optical signal processing

    Science.gov (United States)

    Garmire, E. M.

    1981-03-01

    Separate studies were performed on beam expansion and on distributed Bragg Reflector (DBR) lasers preliminary to monolithic integration on GaAs substrates. These components are proposed for use in optical signal processing, for fiber optic sources and for high brightness lasers.

  4. Association among parental substance use disorder, p300 amplitude, and neurobehavioral disinhibition in preteen boys at high risk for substance use disorder.

    Science.gov (United States)

    Habeych, Miguel E; Sclabassi, Robert J; Charles, Prophete J; Kirisci, Levent; Tarter, Ralph E

    2005-06-01

    The P300 amplitude of the event-related potential as a mediator of the association between parental substance use disorder (SUD) and child's neurobehavioral disinhibition was assessed. The P300 amplitude was recorded using an oddball task in sons of fathers having either lifetime SUD (n = 105) or no psychiatric disorder (n = 160). Neurobehavioral disinhibition was assessed using measures of affect regulation, behavior control, and executive cognitive function. Parental SUD and child's P300 amplitude accounted for, respectively, 16.6% and 16.8% of neurobehavioral disinhibition variance. Controlling for parental and child psychopathology, an association between parental SUD and child's P300 amplitude was not observed. It was concluded that the P300 amplitude does not mediate the association between parental SUD and child's neurobehavioral disinhibition.

  5. Bright color reflective displays with interlayer reflectors

    Science.gov (United States)

    Kitson, Stephen; Geisow, Adrian; Rudin, John; Taphouse, Tim

    2011-08-01

    A good solution to the reflective display of color has been a major challenge for the display industry, with very limited color gamuts demonstrated to date. Conventional side-by-side red, green and blue color filters waste two-thirds of incident light. The alternative of stacking cyan, magenta and yellow layers is also challenging -- a 10% loss per layer compounds to nearly 50% overall. Here we demonstrate an architecture that interleaves absorbing-to-clear shutters with matched wavelength selective reflectors. This increases color gamut by reducing losses and more cleanly separating the color channels, and gives much wider choice of electro-optic colorants.

  6. Manufacturing of neutron reflector frame for JMTR

    OpenAIRE

    2010-01-01

    Beryllium has been used as the neutron reflector in the Japan Materials Testing Reactor (JMTR). A beryllium frame is arranged in the JMTR core and the frame consists of 3 sections (North, East and West). Each section has 7 stories of the beryllium blocks. Each block is connected by the aluminum joints. The capsule or the beryllium plug is located in the inside of the beryllium frame. The first criticality achieved in 1968 and the frame has been replaced 6 times and now the 7th frame is being ...

  7. Optical and Durability Evaluation for Silvered Polymeric Mirrors and Reflectors: Cooperative Research and Development Final Report, CRADA Number, CRD-08-316

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.

    2014-08-01

    3M is currently developing silvered polymeric mirror reflectors as low-cost replacements for glass mirrors in concentrating solar power (CSP) systems. This effort is focused on development of reflectors comprising both metallized polymeric mirror films based on improved versions of ECP-305+ or other durable mirror film concepts and appropriate mechanically robust substrates. The objectives for this project are to reduce the system capital and operating costs and to lower the levelized cost of energy for CSP installations. The development of mirror reflectors involves work on both full reflectors and mirror films with and without coatings. Mirror reflectors must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. Mirror films must demonstrate long-term durability and maintain high reflectivity. 3M would like to augment internal capabilities to validate product performance with methods and tools developed at NREL to address these areas.

  8. High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.

    2015-12-01

    The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that

  9. The Effect of Booster-Mirror Reflector on the Thermal Performance of a Truncated Pyramid Solar Thermal Cooker

    Directory of Open Access Journals (Sweden)

    I. L. Mohammed

    2014-05-01

    Full Text Available In this paper, the results and analysis of the performance of a truncated pyramid solar thermal cooker under two conditions are presented: booster-mirror reflector covered with black cloth, and booster-mirror reflector exposed to solar radiation. Results of the thermal performance tests show respective stagnation absorber plate temperatures of 145 oC and 137 oC. First/Second Figures of Merit are 0.120/0.346 and 0.125/0.400 respectively. The total heating times of 5.2 kg of water when reflector is covered with black cloth and when exposed to solar radiation are respectively 195 and 190 minutes. There is a nominal time reduction of 5 minutes in favour of the case when reflector is exposed to solar radiation, but in reality the time reduction could be as high as 30.5 minutes. In a similar vein, the difference in pot wall temperatures for corresponding water temperatures during sensible heating could be about 6 oC higher, and at boiling point this could be up to 11.6 oC. Thus, the overall thermal performance of the cooker when reflector is exposed to solar radiation is superior to its thermal performance when reflector is covered with black cloth. This superiority is manifested in improved values of the First and Second Figures of Merit, reduction in the overall heating and boiling times, and higher values of pot wall temperatures.

  10. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  11. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  12. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells.

    Science.gov (United States)

    Ceccarelli, Gabriele; Benedetti, Laura; Galli, Daniela; Prè, Deborah; Silvani, Giulia; Crosetto, Nicola; Magenes, Giovanni; Cusella De Angelis, Maria Gabriella

    2014-05-01

    Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vibration (HFV) at the cellular and tissue levels in muscle. We developed a system to produce vibrations adapted to test several parameters in vitro and in vivo. For in vivo experiments, we used newborn CD1 wild-type mice, for in vitro experiments, we isolated satellite cells from 6-day-old CD1 mice, while for proliferation studies, we used murine cell lines. Animals and cells were treated with high frequency vibration at 30 Hz. We analyzed the effects of mechanical stimulation on muscle hypertrophy/atrophy pathways, fusion enhancement of myoblast cells and modifications in the proliferation rate of cells. Results demonstrated that mechanical vibration strongly down-regulates atrophy genes both in vivo and in vitro. The in vitro experiments indicated that mechanical stimulation promotes fusion of satellite cells treated directly in culture compared to controls. Finally, proliferation experiments indicated that stimulated cells had a decreased growth rate compared to controls. We concluded that vibration treatment at 30 Hz is effective in suppressing the atrophy pathway both in vivo and in vitro and enhances fusion of satellite muscle cells.

  13. Large Amplitude Variations of an L/T Transition Brown Dwarf: Multi-Wavelength Observations of Patchy, High-Contrast Cloud Features

    CERN Document Server

    Radigan, Jacqueline; Lafrenière, David; Artigau, Etienne; Marley, Mark; Saumon, Didier

    2012-01-01

    We present multiple-epoch photometric monitoring in the $J$, $H$, and $K_s$ bands of the T1.5 dwarf 2MASS J21392676+0220226 (2M2139), revealing persistent, periodic ($P=7.72\\pm$0.05 hr) variability with a peak-to-peak amplitude as high as 26% in the $J$-band. The light curve shape varies on a timescale of days, suggesting that evolving atmospheric cloud features are responsible. Using interpolations between model atmospheres with differing cloud thicknesses to represent a heterogeneous surface, we find that the multi-wavelength variations and the near-infrared spectrum of 2M2139 can be reproduced by either (1)cool, thick cloud features sitting above a thinner cloud layer, or (2)warm regions of low condensate opacity in an otherwise cloudy atmosphere, possibly indicating the presence of holes or breaks in the cloud layer. We find that temperature contrasts between thick and thin cloud patches must be greater than 175 K and as high as 425 K. We also consider whether the observed variability could arise from an ...

  14. Optical Reflectance Measurements for Commonly Used Reflectors

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  15. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs...

  16. Study variants of hard CFRP reflector for intersatellite communication

    Science.gov (United States)

    Prosuntsov, PV; Reznik, SV; Mikhailovsky, KV; Novikov, AD; Aung, Zaw Ye

    2016-10-01

    The paper deals with the justification of space antennas reflector layout for advanced telecommunication satellites. The selection of design decisions is based on numerical simulations of heat transfer and mechanics processes characteristic of the geostationary orbit conditions. The advantages of parabolic shell of small thickness reflector scheme reinforced with star-shaped ribs on the convex side are demonstrated.

  17. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...

  18. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which ...

  19. A course in amplitudes

    Science.gov (United States)

    Taylor, Tomasz R.

    2017-05-01

    This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.

  20. ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; National Security; Inst. of Physics and Power Engineering

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation

  1. Excitation of high-radial-order Laguerre–Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre–Gaussian (LG p or LG{}p,0) modes with radial order p = 1–4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  2. Scattering patterns of dihedral corner reflectors with impedance surface impedances

    Science.gov (United States)

    Balanis, Constantine A.; Griesser, Timothy; Liu, Kefeng

    The radar cross section patterns of lossy dihedral corner reflectors are calculated using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third order reflections are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with a moment method technique for a dielectric/ferrite absorber coating on a metallic corner reflector. The analysis of the dihedral corner reflector is important because it demonstrates many of the important scattering contributors of complex targets including both interior and exterior wedge diffraction, half-plane diffraction, and dominant multiple reflections and diffractions.

  3. Properties of wideband resonant reflectors under fully conical light incidence

    CERN Document Server

    Ko, Yeong Hwan; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applic...

  4. Broad spectrum moderators and advanced reflector filters using 208Pb

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    2015-01-01

    thermalizing property of 208Pb to design a broad spectrum moderator, i.e. a moderator which emits thermal and cold neutrons from the same position. Using 208Pb as a reflector filter material is shown to be slightly less efficient than a conventional beryllium reflector filter. However, when surrounding...... the reflector filter by a cold moderator it is possible to regain the neutrons with wavelengths below the Bragg edge, which are suppressed in the beryllium reflector filter. In both the beryllium and lead case surrounding the reflector filter with a cold moderator increases the cold brightness significantly......Cold and thermal neutrons used in neutrons scattering experiments are produced in nuclear reactors and spallation sources. The neutrons are cooled to thermal or cold temperatures in thermal and cold moderators, respectively. The present study shows that it is possible to exploit the poor...

  5. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    Science.gov (United States)

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  6. The selection of artificial corner reflectors based on RCS analysis

    Science.gov (United States)

    Li, Chengfan; Yin, Jingyuan; Zhao, Junjuan; Zhang, Guifang; Shan, Xinjian

    2012-02-01

    Artificial corner reflectors (ACRs) are widely applicable in monitoring terrain change via interferometric synthetic aperture radar (InSAR) remote sensing techniques. Many different types are available. The choice of the most appropriate ones has recently attracted scholarly attentions. Based on physical optics methods, via calculating the radar cross section (RCS) values (the higher the value, the better the detectability), the current study tested three ACRs, i.e., triangular pyramidal, rectangular pyramidal and square trihedral ACRs. Our calculation suggests that the square trihedral ACR produces the largest RCS but least tolerance towards incident radar ray's deviation from optimal angle. The triangular pyramidal trihedral ACR is the most geometrically stable ACR, and has the highest tolerance towards incident radar ray's deviation. Its RCS values, however, are the least of the three. Due to the high cost of deploying ACRs in the fields, the physical optics method seems to provide a viable way to choose appropriate ACRs.

  7. Multiphysics modeling and uncertainty quantification for an active composite reflector

    Science.gov (United States)

    Peterson, Lee D.; Bradford, S. C.; Schiermeier, John E.; Agnes, Gregory S.; Basinger, Scott A.

    2013-09-01

    A multiphysics, high resolution simulation of an actively controlled, composite reflector panel is developed to extrapolate from ground test results to flight performance. The subject test article has previously demonstrated sub-micron corrected shape in a controlled laboratory thermal load. This paper develops a model of the on-orbit performance of the panel under realistic thermal loads, with an active heater control system, and performs an uncertainty quantification of the predicted response. The primary contribution of this paper is the first reported application of the Sandia developed Sierra mechanics simulation tools to a spacecraft multiphysics simulation of a closed-loop system, including uncertainty quantification. The simulation was developed so as to have sufficient resolution to capture the residual panel shape error that remains after the thermal and mechanical control loops are closed. An uncertainty quantification analysis was performed to assess the predicted tolerance in the closed-loop wavefront error. Key tools used for the uncertainty quantification are also described.

  8. Composite technology in radar equipment. Dopler Meteo radar reflector device

    Directory of Open Access Journals (Sweden)

    A. V. Shumov

    2014-01-01

    Full Text Available The article is devoted features of the application composite materials in radar technology for example adjustment of the development technology of the reflector antenna device DMRL-S - radar for monitoring meteorological conditions.Russian and foreign analogues DMRL-S are made of aluminum, which no longer meets modern requirements for strength and weight. Also aluminum reflectors are not temperature stable. Composite materials are characterized by higher values of specific characteristics: temporary resistance, endurance limit, stiffness, elastic modulus, and less prone to cracking. The use of such materials improves the strength, rigidity and durability.For the manufacture of the DMRL-C reflector used composite materials based on epoxy resins reinforced with fiberglass (both unidirectional and woven. To increase the rigidity and weight reflector is made in the form of three-layer sandwich fiberglass panels with honeycomb core variable height. Design work was carried out in a CAD Siemens NX8.0 / Unigraphics, through which was established mathematical model layered reflector, as well as all accessories used in the manufacture. With the program NX Nastran was held strength calculation and analysis of stiffness on the finite element method.After the manufacture of the product, we measured the standard deviation of the working surface of the reflector from the theoretical surface using a three-dimensional laser scanner. Measurements were made at different angular positions of the reflector, and when loading. It is shown that the maximum strain in the operating modes of operation across the surface of the product does not exceed 4%, which will provide the most accurate operation of the product in any position of the antenna system.As a result of this work reflector design was developed, created and verified by experimental data calculation model. Reflector antenna device of the DMRL-S was manufactured and tested. The reflector was made of reinforced

  9. Autocollimation system for measuring angular deformations with reflector designed by quaternionic method

    Science.gov (United States)

    Hoang, Phong V.; Konyakhin, Igor A.

    2017-06-01

    Autocollimators are widely used for angular measurements in instrument-making and the manufacture of elements of optical systems (wedges, prisms, plane-parallel plates) to check their shape parameters (rectilinearity, parallelism and planarity) and retrieve their optical parameters (curvature radii, measure and test their flange focusing). Autocollimator efficiency is due to the high sensitivity of the autocollimation method to minor rotations of the reflecting control element or the controlled surface itself. We consider using quaternions to optimize reflector parameters during autocollimation measurements as compared to the matrix technique. Mathematical model studies have demonstrated that the orthogonal positioning of the two basic unchanged directions of the tetrahedral reflector of the autocollimator is optimal by the criterion of reducing measurement errors where the axis of actual rotation is in a bisecting position towards them. Computer results are presented of running quaternion models that yielded conditions for diminishing measurement errors provided apriori information is available on the position of rotation axis. A practical technique is considered for synthesizing the parameters of the tetrahedral reflector that employs the newly-retrieved relationships. Following the relationships found between the angles of the tetrahedral reflector and the angles of the parameters of its initial orientation, an applied technique was developed to synthesize the control element for autocollimation measurements in case apriori information is available on the axis of actual rotation during monitoring measurements of shaft or pipeline deformation.

  10. Measurement of Aluminum Content In Reflector Materials For The PICO Dark Matter Detector

    Science.gov (United States)

    Borsodi, Haley; PICO Collaboration

    2015-04-01

    The PICO collaboration uses a bubble chamber technique to search for dark matter particles. Bubbles are registered with cameras, pressure sensors and acoustic transducers. To increase the visual contrast between bubbles and liquid, retro-reflectors are used to diffuse light from LEDs evenly throughout the inner chamber. One must, however, be careful that reflector materials not contribute radioactive background. Light nuclei, such as aluminum, can absorb alpha particles from radioactive contaminants and produce high energy neutron background in the inner volume of the chamber. Since aluminum oxides are a common reflector material and since commercial compositions are trade secrets, we had to demonstrate that the amounts of aluminum in the reflectors was small enough to allow them to be used in the chambers. After acid digesting candidate material strips, they were analyzed using Microwave Plasma Atomic Emission Spectroscopy. All of the proposed materials were found to have less than 1% Aluminum content (by mass), making them safe for use by the experiment. Indiana University South Bend.

  11. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector

    Institute of Scientific and Technical Information of China (English)

    Xueliang Zhang; Zhou Meng; Zhengliang Hu

    2011-01-01

    A sensing system, with Michelson-type fiber optical interferometer based on single fiber Bragg grating (FBG) as the reflector, is demonstrated. The system used a frequency-matched ring fiber optical laser as the source. The closed Michelson-type fiber optical interferometer system will be helpful in simplifying the developed interferometric sensor by replacing the double reflectors with only one FBG reflecting the double-side light. The basic sensing properties of the system are demonstrated, with a fiber optic piezoelectric ceramic transducer embedded in the arm of the interferometer simulating the sensing signal.%As a simple fiber optic component,fiber Bragg grating (FBG) has been used frequently as a sensor,filter or reflector[1-4],etc.Meanwhile,the Michelson-type fiber optical interferometric sensor has achieved a high level of development in the acoustic,electric,and magnetic field sensors because of its simple and low-cost structure as well as multiplexing advantages.The Michelsontype interferometer has been widely applied with Faraday rotating mirrors (FRMs) or polarization maintaining fiber reflectors particularly in the fiber optic hydrophone system[5,6].At present,further research is aimed at simplifying fiber optical interferometric sensors.

  12. Array feed synthesis for correction of reflector distortion and Vernier beamsteering

    Science.gov (United States)

    Blank, Stephen J.; Imbriale, William A.

    1988-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  13. Effect of Sampling Rates on the Quantification of Forces, Durations, and Rates of Loading of Simulated Side Posture High-Velocity, Low-Amplitude Lumbar Spine Manipulation☆

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-01-01

    Objective Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Methods Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. Results The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. Conclusions The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. PMID:23790603

  14. Effect of sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture high-velocity, low-amplitude lumbar spine manipulation.

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-06-01

    Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  15. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    Science.gov (United States)

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  16. Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    CERN Document Server

    Mamedov, F

    2002-01-01

    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.

  17. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  18. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  19. Quantitative Seismic Amplitude Analysis

    OpenAIRE

    Dey, A. K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...

  20. Diffuse reflectors for improving light management in solar cells: a review and outlook

    Science.gov (United States)

    Barugkin, Chog; Beck, Fiona J.; Catchpole, Kylie R.

    2017-01-01

    Pigment based diffuse reflectors (DRs) have several advantages over metal reflectors such as good stability, high reflectivity, and low parasitic absorption. As such, DRs have the potential to be applied on high efficiency silicon solar cells and further increase the power conversion efficiency. In this paper, we perform a thorough review on the notable achievements to date of DRs’ application for photovoltaics. We outline unique attributes of these technologies and discuss the theoretical and laboratory development working towards overcoming the challenges of transferring to high efficiency silicon solar cells. In order to understand the potential of DRs for high efficiency silicon solar cells, we provide a qualitative analysis of the impact of front reflection, rear absorption and the angular distribution on the useful light absorption in silicon wafers. By including this discussion, we provide an outlook for the application of DR in reaching maximum photo-current for high efficiency silicon solar cells.

  1. System overview on electromagnetic compensation for reflector antenna surface distortion

    Science.gov (United States)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  2. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-07-21

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  3. Validation of the cat as a model for the human lumbar spine during simulated high-velocity, low-amplitude spinal manipulation.

    Science.gov (United States)

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2010-07-01

    High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of approximately 25% bodyweight for 0.5 s and peak forces that rose to 50-100% bodyweight within approximately 125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further

  4. Laser Ranging to the Lost Lunokhod~1 Reflector

    CERN Document Server

    Murphy, T W; Battat, J B R; Hoyle, C D; Johnson, N H; McMillan, R J; Michelsen, E L; Stubbs, C W; Swanson, H E

    2011-01-01

    In 1970, the Soviet Lunokhod 1 rover delivered a French-built laser reflector to the Moon. Although a few range measurements were made within three months of its landing, these measurements---and any that may have followed---are unpublished and unavailable. The Lunokhod 1 reflector was, therefore, effectively lost until March of 2010 when images from the Lunar Reconnaissance Orbiter (LRO) provided a positive identification of the rover and determined its coordinates with uncertainties of about 100 m. This allowed the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) to quickly acquire a laser signal. The reflector appears to be in excellent condition, delivering a signal roughly four times stronger than its twin reflector on the Lunokhod 2 rover. The Lunokhod 1 reflector is especially valuable for science because it is closer to the Moon's limb than any of the other reflectors and, unlike the Lunokhod 2 reflector, we find that it is usable during the lunar day. We report the selenographic positi...

  5. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  6. Amplitude image processing by diffractive optics.

    Science.gov (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  7. Design Method for a Low-Profile Dual-Shaped Reflector Antenna with an Elliptical Aperture by the Suppression of Undesired Scattering

    Science.gov (United States)

    Inasawa, Yoshio; Kuroda, Shinji; Kusakabe, Kenji; Naito, Izuru; Konishi, Yoshihiko; Makino, Shigeru; Tsuchiya, Makio

    A design method is proposed for a low-profile dual-shaped reflector antenna for the mobile satellite communications. The antenna is required to be low-profile because of mount restrictions. However, reduction of its height generally causes degradation of antenna performance. Firstly, an initial low-profile reflector antenna with an elliptical aperture is designed by using Geometrical Optics (GO) shaping. Then a Physical Optics (PO) shaping technique is applied to optimize the gain and sidelobes including mitigation of undesired scattering. The developed design method provides highly accurate design procedure for electrically small reflector antennas. Fabrication and measurement of a prototype antenna support the theory.

  8. Incidental Reflector Comparison of Containerized Dry Fire Extinguishing Agents

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-14

    This document addresses the incidental reflector reactivity worth of containerized fire extinguishing agents authorized for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze dry fire extinguishing agent that remains in a container and is not actively being used in a fire emergency. The incidental reflector reactivity worth is determined by comparison to various thicknesses of close fitting water reflection which is commonly used to bound incidental reflectors in criticality safety evaluations. The conclusion is that even in unlimited quantities, when containerized the authorized dry fire extinguishing agents are bound by 0.4 inches of close fitting water.

  9. Identifying Reflectors in Seismic Images via Statistic and Syntactic Methods

    Directory of Open Access Journals (Sweden)

    Carlos A. Perez

    2010-04-01

    Full Text Available In geologic interpretation of seismic reflection data, accurate identification of reflectors is the foremost step to ensure proper subsurface structural definition. Reflector information, along with other data sets, is a key factor to predict the presence of hydrocarbons. In this work, mathematic and pattern recognition theory was adapted to design two statistical and two syntactic algorithms which constitute a tool in semiautomatic reflector identification. The interpretive power of these four schemes was evaluated in terms of prediction accuracy and computational speed. Among these, the semblance method was confirmed to render the greatest accuracy and speed. Syntactic methods offer an interesting alternative due to their inherently structural search method.

  10. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  11. Final Technical Report: Development of an Abrasion-Resistant Antisoiling Coating for Front-Surface Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Randy C. [Sundog Solar Technology, Arvada, CO (United States)

    2017-07-18

    A high-performance reflective film has been successfully developed for Concentrating Solar Power (CSP) solar concentrators. Anti-soiling properties and abrasion resistance have been incorporated into the reflector to reduce reflector cleaning costs and to enhance durability. This approach has also resulted in higher reflectance and improved specularity. From the outset of this project we focused on the use of established high-volume roll-to-roll manufacturing techniques to achieve low manufacturing costs on a per ubit area basis. Roll-to-roll manufacturng equipment has a high capital cost so there is an entire industry devoted to roll-to-roll “toll” manufacturing, where the equipment is operated “around the clock” to produce a multitude of products for a large variety of uses. Using this approach, the reflective film can be manufactured by toll coaters/converters on an as-needed basis.

  12. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    CERN Document Server

    Baryshevsky, V G

    2005-01-01

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  13. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  14. The Novel Y-Branch With Two Reflectors

    Institute of Scientific and Technical Information of China (English)

    Ruei-Chang Lu; Yu-Pin Liao

    2003-01-01

    A novel Y-branch waveguide with two reflectors is proposed. The normalized transmitted power for the branching angle of 50°is greater than 70%, which is higher than conventional Y-branch with such wide angle.

  15. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  16. Thermomechanical analysis of large deployable space reflector antenna

    Directory of Open Access Journals (Sweden)

    Ponomarev Viktor S.

    2015-01-01

    Full Text Available In this article results of large reflector thermal condition forecast using modern numerical simulation methods are presented. The results of thermal analysis are complemented with stress-strain analysis results of the whole structure under thermal loads.

  17. Friction-Sensing Reflector Array Patches (FRAP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research Support Instruments, Inc. (RSI) proposes to develop the Friction-Sensing Reflector Array Patches (FRAP), a technology that will measure the shear stress...

  18. Backscattering reduction of corner reflectors using SCS technique

    Science.gov (United States)

    Ajaikumar, V.; Jose, K. A.; Aanandan, C. K.; Mohanan, P.; Nair, K. G.

    1992-10-01

    The paper reports the use of a simulated corrugated surface (SCS) to reduce radar cross section of dihedral corner reflectors. The focus is on 90-deg corner reflectors, since they are involved in many targets and normally show an enhancement in RCS. The backscattering cross section of the dihedral corner reflector, which is large due to the mutual perpendicularity of the two flat surfaces, is found to be greatly reduced for TE polarization. This simple method is determined to be very effective in reducing the RCS of corner reflectors for any corner angle by suitably selecting the parameters of SCS. This may find potential use in strategic RCS reduction of targets in defense and space applications.

  19. RCS analysis and reduction for lossy dihedral corner reflectors

    Science.gov (United States)

    Griesser, Timothy; Balanis, Constantine A.; Liu, Kefeng

    1989-05-01

    The radar-cross-section (RCS) patterns of lossy dihedral corner reflectors are calculated, using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third-order reflections and diffractions are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with the results of a moment-method technique for a dielectric/ferrite absorber coating on a metallic corner reflector.

  20. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the

  1. Evaluation of the Benefits of Reflectorized Sign Posts to Drivers

    Directory of Open Access Journals (Sweden)

    Erdinç Öner

    2013-03-01

    Full Text Available In United States Federal Highway Administration (FHWA provides departments of transportation (DOTs the option of using retroreflective material on sign posts when the DOTs determine that there is a need to draw attention to the sign, especially at night. The State of Ohio Department of Transportation (ODOT required all Stop, Yield, Do Not Enter, and Wrong Way sign posts to be reflectorized with RED reflective sheeting material and all Chevron, Stop Ahead, and One/Two Large Directional Arrow sign posts to be reflectorized with YELLOW (sign background color reflective sheeting material as part of ODOT Comprehensive Highway Safety Plan and FHWA' recommendations.In this study, a photometric analysis and a human factors analysis were conducted to estimate the benefits of reflectorized sign posts to driver visual perception, driver guidance and driver comprehension. The study showed that the reflectorized sign posts improve detection, recognition, and comprehension of traffic signs for drivers, especially in nighttime driving conditions.

  2. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    Science.gov (United States)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  3. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    Science.gov (United States)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  4. Study on Segmented Reflector Lamp Design Based on Error Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper discusses the basic principle and design m ethod for light distribution of car lamp, introduces an important development: h igh efficient and flexible car lamp with reflecting light distribution-segmente d reflector (multi-patch) car lamp, and puts out a design method for segmented reflector based on error analysis. Unlike classical car lamp with refractive lig ht distribution, the method of reflecting light distribution gives car lamp desi gn more flexibility. In the case of guarantying the li...

  5. Reflectors for SAR performance testing-second edition

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  6. Measurement of small antenna reflector losses for radiometer calibration budget

    OpenAIRE

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation. This paper describes how such measurements are carried out as well as a suitable experimental setup. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle

  7. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiat...... radiation. The paper describes how such measurements are carried out as well as a suitable experimental set-up. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle...

  8. Fabrication of SiC membrane HCG blue reflector using nanoimprint lithography

    Science.gov (United States)

    Lai, Ying-Yu; Matsutani, Akihiro; Lu, Tien-Chang; Wang, Shing-Chung; Koyama, Fumio

    2015-02-01

    We designed and fabricated a suspended SiC-based membrane high contrast grating (HCG) reflectors. The rigorous coupled-wave analysis (RCWA) was employed to verify the structural parameters including grating periods, grating height, filling factors and air-gap height. From the optimized simulation results, the designed SiC-based membrane HCG has a wide reflection stopband (reflectivity (R) HCG reflectors were fabricated by nanoimprint lithography and two-step etching technique. The corresponding reflectivity was measured by using a micro-reflectivity spectrometer. The experimental results show a high reflectivity (R<90%), which is in good agreement with simulation results. This achievement should have an impact on numerous III-N based photonic devices operating in the blue wavelength or even ultraviolet region.

  9. Differential correction method applied to measurement of the FAST reflector

    Science.gov (United States)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  10. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  11. Light Readout Optimisation using Wavelength Shifter - Reflector Combinations

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokoridis, Konstantinos, E-mail: k.mavrokoridis@liverpool.ac.uk [Department of Physics, University of Liverpool, Oliver Lodge Lab, Oxford Street, Liverpool, L69 7ZE (United Kingdom)

    2011-07-25

    The use of reflectors coated with a wavelength shifter (WLS) along with standard bialkali PMTs is an economical method for an efficient readout system for vacuum ultra violet (VUV) light produced in large liquid argon detectors. Various thicknesses of tetraphenyl butadiene (TPB) were deposited by spraying and vacuum evaporation onto both specular 3M{sup TM}-foil and diffuse Tetratex{sup TM} (TTX) reflectors. 128 nm VUV light generated in 1 bar argon gas by a 5.4 MeV {alpha} source was detected by a 3-inch bialkali borosilicate PMT within a 1 m tube lined internally with a TPB coated reflector. The light collection was recorded as a function of separation between source and PMT for each combination of coating and reflector for distances up to 1m. Reflection coefficients of TPB coated reflectors were measured using a spectroradiometer. WLS coating on the PMT window was also studied. The optimum coating and reflector combination was TPB evaporated on TTX. Measurements with coating thicknesses of 0.2 mg/cm{sup 2} and 1.0 mg/cm{sup 2} yielded a similar performance. The best PMT window coating is obtained by TPB evaporation of 0.05 mg/cm{sup 2}.

  12. Large deployable reflectors for telecom and earth observation applications

    Science.gov (United States)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; van `t Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  13. Scattering characteristics computation method for corner reflectors in arbitrary illumination conditions

    OpenAIRE

    Sukharevsky, Oleg I.; Vasilets, Vitaly A.; Nechitaylo, Sergey V.

    2015-01-01

    The calculation method for obtaining scattering characteristics of corner reflectors is proposed. The method allows calculating the radar cross-section of corner reflectors for arbitrary aspect angles. The method proposes separating the smooth part of reflectors and some neighborhood of their edges (including that of inner edges). The method accounts for multiple reflections between smooth parts of the reflector surface. In addition, the reflector surface can have a radar absorbing or dielect...

  14. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    OpenAIRE

    Hiroshi Tanaka

    2015-01-01

    Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then abs...

  15. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  16. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Computational Electromagnetic Studies for Low-Frequency Compensation of the Reflector Impulse-radiating Antenna

    Science.gov (United States)

    2015-03-26

    VHF antennas are character- 3 ized by physically large and unwieldy, or highly resonant structures that exhibit the ring-down effect previously...noise radar. • Multiple Resonance Antennas. These are antennas formed of multiple narrow-band radiating elements, each covering a portion of the desired...reflector, which is intended to suppress spurious currents and reduce the late-time response. The typical conically symmetric feed structure in a realized

  18. Development of a Solar Fresnel Reflector and Its Tracking Stand Using Local Material

    Directory of Open Access Journals (Sweden)

    Manukaji John

    2015-01-01

    Full Text Available Solar collectors are the engines that drive all solar energy heating systems. Although solar heating collectors have settled upon a few basic designs, they are still manufactured in an array of configurations.Solar collectors are generally classified by the temperatures that can be produced under normal amounts of solar radiation. The collector’s end-use application can be determined by their temperature classification such as Low-temperature collectors, Medium-temperature collectors and High-temperature concentrators that track the sun and produces the highest temperatures.Reflectorsthat are axially symmetrical and shaped like a parabola, has the property of bringing parallel rays of light (such as sunlight to a pointfocus and so any object that is located at its focus receives highly concentrated sunlight, and therefore becomes very hot. This is the basis for the use of this kind of reflector for high solar energy generation. Energy supply for domestic activities had been a major problem faced by both rural and city dwellers for a long time now in Africa. It was therefore desirable to design and construct a solar Fresnel reflector and a tracking stand that can be used to generate heat from the sun for cooking, baking and distillation purposes. The reflector and the tracking stand designed and constructed was able to concentrate solar energy within a regional diameter of 10cm and could be used to raise the temperature of any object placed at its focal region. It was discovered that the heat generated is directly proportional to both the perfection of the collector design, its construction, the quality of the reflectors e.g plain mirror, the area exposed to the sun and the solar intensity of the day.

  19. A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Science.gov (United States)

    Balanis, Constantine A.; Polycarpou, Anastasis C.

    1993-07-01

    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.

  20. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  1. Utilization of HTR reflector graphite as embedding matrix for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fachinger, J., E-mail: fachinger@fnag.eu [Furnaces Nuclear Applications Grenoble, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany); Grosse, K.H. [Furnaces Nuclear Applications Grenoble, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany); Hrovat, M.; Seemann, R. [ALD, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The reflector graphite of an HTR reactor has to be handled as radioactive waste after the operational period of the reactor. However the waste management of irradiated graphite from Magnox reactors shows, that waste management of even low contaminated graphite could be expensive and requires special retrieval, treatment and disposal technologies for safe long term storage as low or medium radioactive waste. However the reflector graphite could be transferred into long term stable embedding matrix for high level radioactive waste especially for HTR fuel elements. This can be achieved by closing the pore system of the graphite with a stable inorganic binder, e.g. glass. First investigations proved the sealing of the pore system and the potential for embedding HTR fuel pebbles.

  2. Integrated Thermal-structural-electromagnetic Design Optimization of Large Space Antenna Reflectors

    Science.gov (United States)

    Adelman, H. M.; Padula, S. L.

    1986-01-01

    The requirements for low mass and high electromagnetic (EM) performance in large, flexible space antenna structures is motivating the development of a systematic procedure for antenna design. In contrast to previous work which concentrated on reducing rms distortions of the reflector surface, thereby indirectly increasing antenna performance, the current work involves a direct approach to increasing electromagnetic performance using mathematical optimization. The thermal, structural, and EM analyses are fully integrated in the context of an optimization procedure, and consequently, the interaction of the various responses is accounted for directly and automatically. Preliminary results are presented for sizing cross-sectional areas of a tetrahedral truss reflector. The results indicate potential for this integrated procedure from the standpoint of mass reduction, performance increase, and efficiency of the design process.

  3. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  4. Colloidal plasmonic back reflectors for light trapping in solar cells

    Science.gov (United States)

    Mendes, Manuel J.; Morawiec, Seweryn; Simone, Francesca; Priolo, Francesco; Crupi, Isodiana

    2014-04-01

    A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.

  5. DAZZLE project: UAV to ground communication system using a laser and a modulated retro-reflector

    Science.gov (United States)

    Thueux, Yoann; Avlonitis, Nicholas; Erry, Gavin

    2014-10-01

    The advent of the Unmanned Aerial Vehicle (UAV) has generated the need for reduced size, weight and power (SWaP) requirements for communications systems with a high data rate, enhanced security and quality of service. This paper presents the current results of the DAZZLE project run by Airbus Group Innovations. The specifications, integration steps and initial performance of a UAV to ground communication system using a laser and a modulated retro-reflector are detailed. The laser operates at the wavelength of 1550nm and at power levels that keep it eye safe. It is directed using a FLIR pan and tilt unit driven by an image processing-based system that tracks the UAV in flight at a range of a few kilometers. The modulated retro-reflector is capable of a data rate of 20Mbps over short distances, using 200mW of electrical power. The communication system was tested at the Pershore Laser Range in July 2014. Video data from a flying Octocopter was successfully transmitted over 1200m. During the next phase of the DAZZLE project, the team will attempt to produce a modulated retro-reflector capable of 1Gbps in partnership with the research institute Acreo1 based in Sweden. A high speed laser beam steering capability based on a Spatial Light Modulator will also be added to the system to improve beam pointing accuracy.

  6. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    Science.gov (United States)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    and 10 kHz respectively. Meanwhile, triangle and cosine amplitude-modulated (AM) dynamic strain applied on the fiber are successfully discriminated. The artificial reflectors based on FC/PCs were easily assembled and maintained, and the method of vibration transmission closely resembled the real circumstance than PZT. Therefore, these advantages will extend the potential of this Φ-OTDR technology in structure health monitoring.

  7. Studies of beam expansion and distributed Bragg reflector lasers for fiber optics and optical signal processing. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Garmire, E.M.

    1981-03-03

    Separate studies were performed on beam expansion and on Distributed Bragg Reflector (DBR) lasers preliminary to monolithic integration on GaAs substrates. These components are proposed for use in optical signal processing, for fiber optic sources and for high-brightness lasers.

  8. 77 FR 76959 - Energy Conservation Program: Request for Exclusion of 100 Watt R20 Short Incandescent Reflector...

    Science.gov (United States)

    2012-12-31

    ... characteristic that is required to prevent high heat from damaging the cement that joins the glass envelope and... commented that single-ended and double-ended halogen burners are frequently used in small diameter reflector... MOLs exceeding 3 and \\5/8\\ inches, can accommodate single-ended halogen burners, R20 short lamps could...

  9. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  10. Application of the OPTEX method for computing reflector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hebert, A. [Ecole Polytechnique de Montreal, C.P. 6079 suce. Centre-Ville, Montreal QC. H3C 3A7 (Canada); Leroyer, H. [EDF - R and D, SINETICS, 1 Avenue du General de Gaulle, 92141 Clamart (France)

    2013-07-01

    We are investigating the OPTEX reflector model for obtaining few-group reflector parameters consistent with a reference power distribution in the core. In our study, the reference power distribution is obtained using a 142,872-region calculation defined over a 2D eighth-of-core pressurized water reactor and performed with the method of characteristics. The OPTEX method is based on generalized perturbation theory and uses an optimization algorithm known as parametric linear complementarity pivoting. The proposed model leads to few-group diffusion coefficients or P1-weighted macroscopic total cross sections that can be used to represent the reflector in full-core calculations. These few-group parameters can be spatially heterogeneous in order to correctly represent steel baffles present in modern pressurized water reactors. The optimal reflector parameters are compared to those obtained with a flux-volume weighting of the reflector cross sections recovered from the reference calculation. Important improvements in full-core power distribution are observed when the optimal parameters are used. (authors)

  11. Solar Thermal Vacuum Test of Deployable Astromesh Reflector

    Science.gov (United States)

    Stegman, Matthew D.

    2009-01-01

    On September 10, 2008, a 36-hour Solar Thermal Vacuum Test of a 5m deployable mesh reflector was completed in JPL's 25' Space Simulator by the Advanced Deployable Structures Group at JPL. The testing was performed under NASA's Innovative Partnership Program (IPP) as a risk reduction effort for two JPL Decadal Survey Missions: DESDynI and SMAP. The 5.0 m aperture Astromesh reflector was provided by Northrop Grumman Aerospace Systems (NGAS) Astro Aerospace, our IPP industry partner. The testing utilized a state-of-the-art photogrammetry system to measure deformation of the reflector under LN2 cold soak, 0.25 Earth sun, 0.5 sun and 1.0 sun. An intricate network of thermocouples (approximately 200 in total) was used to determine the localized temperature across the mesh as well as on the perimeter truss of the reflector. Half of the reflector was in a fixed shadow to maximize thermal gradients. A mobility system was built for remotely actuating the cryo-vacuum capable photogrammetry camera around the circumference of the Solar Simulator. Photogrammetric resolution of 0.025 mm RMS (0.001") was achieved over the entire 5 meter aperture for each test case. The data will be used for thermo-elastic model correlation and validation, which will benefit the planned Earth Science Missions.

  12. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; Hermle, Martin; Lee, Benjamin G.; Goldschmidt, Jan Christoph

    2016-08-01

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rear side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. The short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm2, compared to a non-reflecting black rear side and up to 0.8 mA/cm2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.

  13. HI Survey Science with the Canadian Large Adaptive Reflector

    CERN Document Server

    Côté, S; Dewdney, P E

    2002-01-01

    The Canadian Large Adaptive Reflector (CLAR) is a proposed prototype of a new concept for large, filled-aperture radio telescopes. The prototype would have a 300-metre aperture, working up to frequencies of at least 1.4 GHz, and would be equipped with a multi-beam phased array providing a field-of-view of 0.8deg at that frequency. The largest fully-steerable radio telescope in the world, and endowed with a large field-of-view, the CLAR will be uniquely suited for deep spectral imaging over large areas of the sky. Conducted over a period of three to four years, a CLAR Northern-Sky Survey would allow us to simultaneously: survey at arcminute scales the distribution and kinematics of the faint HI in the halo of the Milky Way and High Velocity Clouds; chart the large scale distribution of galaxies in HI out to redshift close to 1; reveal the structure and dynamics of the cosmic web responsible for wide-spread Lyman $\\alpha$ absorption systems; image the signal of the reionization of the Universe over a large area...

  14. Microtrap on a concave grating reflector for atom trapping

    Science.gov (United States)

    Zhang, Hui; Li, Tao; Yin, Ya-Ling; Li, Xing-Jia; Xia, Yong; Yin, Jian-Ping

    2016-08-01

    We propose a novel scheme of optical confinement for atoms by using a concave grating reflector. The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination. Especially, the light intensity at the focal point is about 100 times higher than that of the incident light. Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms. We discuss the feasibility of the structure serving as an optical dipole trap. Our results are as follows. (i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms. (ii) The maximum trapping potential is ˜ 1.14 mK in the optical trap, which is high enough to trap cold 87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK, and the maximum photon scattering rate is lower than 1/s. (iii) Such a microtrap array can also manipulate and control cold molecules, or microscopic particles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374100, 91536218, and 11274114) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 13ZR1412800).

  15. Comparison of Degradation on Aluminum Reflectors for Solar Collectors due to Outdoor Exposure and Accelerated Aging

    Directory of Open Access Journals (Sweden)

    Johannes Wette

    2016-11-01

    Full Text Available Reflectors for concentrated solar thermal technologies need to withstand 20 or even 30 years of outdoor exposure without significant loss of solar specular reflectance. In order to test the durability of innovative reflectors within a shorter period of time, an accelerated aging methodology is required. The problem with accelerated testing is that poor correlation between laboratory and field test results has been achieved in the past. This is mainly because unrealistic degradation mechanisms are accelerated in the weathering chambers. In order to define a realistic testing procedure, a high number of accelerated aging tests have been performed on differently coated aluminum reflectors. The degradation mechanisms of the accelerated tests have been classified and systematically compared to samples that have been exposed at nine different exposure sites outdoors. Besides the standardized aging tests, innovative aging procedures have been developed in such way that the agreement to the degradation pattern observed outdoors is increased. Although degradation depends on materials and location, five generic degradation mechanisms were detected. Standardized tests only reproduced one or two of the five mechanisms detected outdoors. Additionally, several degradation effects that were not observed outdoors appeared. The innovative accelerated aging tests of artificially soiled samples were able to reproduce three of the five mechanisms observed outdoors, presenting a much more realistic overall degradation pattern.

  16. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    Science.gov (United States)

    Angel, Roger P; Olbert, Blain H

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  17. Design and Optimization of a Compact Wideband Hat-Fed Reflector Antenna for Satellite Communications

    Science.gov (United States)

    Geterud, Erik G.; Yang, Jian; Ostling, Tomas; Bergmark, Pontus

    2013-01-01

    We present a new design of the hat-fed reflector antenna for satellite communications, where a low reflection coefficient, high gain, low sidelobes and low cross-polar level are required over a wide frequency band. The hat feed has been optimized by using the Genetic Algorithm through a commercial FDTD solver, QuickWave-V2D, together with an own developed optimization code. The Gaussian vertex plate has been applied at the center of the reflector in order to improve the reflection coefficient and reduce the far-out sidelobes. A parabolic reflector with a ring-shaped focus has been designed for obtaining nearly 100% phase efficiency. The antenna's reflection coefficient is below -17 dB and the radiation patterns satisfy the M-x standard co- and cross-polar sidelobe envelopes for satellite ground stations over a bandwidth of 30%. A low-cost monolayer radome has been designed for the antenna with satisfactory performance. The simulations have been verified by measurements; both of them are presented in the paper.

  18. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  19. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  20. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings have resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.

  1. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings have resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017,

  2. Fabrication of porous silicon based tunable distributed Bragg reflectors by anodic etching of irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vendamani, V.S. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Department of Physics, Pondicherry University, Puducherry 605014 (India); Dang, Z.Y. [Department of Physics, Centre for Ion Beam Applications (CIBA), National University of Singapore, Singapore 117542 (Singapore); Ramana, P.; Pathak, A.P. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Ravi Kanth Kumar, V.V. [Department of Physics, Pondicherry University, Puducherry 605014 (India); Breese, M.B.H. [Department of Physics, Centre for Ion Beam Applications (CIBA), National University of Singapore, Singapore 117542 (Singapore); Nageswara Rao, S.V.S., E-mail: svnsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-09-01

    Highlights: • Fabrication of tunable distributed Bragg reflectors (DBRs) by gamma/ion irradiation of Si and subsequent formation of porous silicon multilayers has been described. • The central wavelength and the width of the stop band are found to decrease with increase in irradiation fluence. • The Si samples irradiated with highest fluence of 2 × 10{sup 13} ions/cm{sup 2} (100 MeV Ag ions) and 60 kGy (gamma) showed a central reflection at λ = 476 nm and 544 nm respectively, in contrast to un-irradiated sample, where λ = 635 nm. • The observed changes in the central wavelengths are attributed to the density of defects generated by gamma and ion irradiation in c-Si. • This study is expected to provide useful information for fabricating tunable wave reflectors for optical communication and other device applications. - Abstract: We report a study on the fabrication of tunable distributed Bragg reflectors (DBRs) by gamma/ion irradiation of Si and subsequent formation of porous silicon multilayers. Porous Si multilayers with 50 bilayers were designed to achieve high intensity of reflection. The reflection spectra appear to have a broad continuous band between 400 and 800 nm with a distinct central wavelength corresponding to different wave reflectors. The central wavelength and the width of the stop band are found to decrease with increase in irradiation fluence. The Si samples irradiated with highest fluence of 2 × 10{sup 13} ions/cm{sup 2} (100 MeV Ag ions) and 60 kGy (gamma) showed a central reflection at λ = 476 nm and 544 nm respectively, in contrast to un-irradiated sample, where λ = 635 nm. The observed changes are attributed to the density of defects generated by gamma and ion irradiation in c-Si. These results suggest that the gamma irradiation is a convenient and alternative method to tune the central wavelength of reflection without creating high density of defects by high energy ion implantation. This study is expected to provide useful

  3. Graviton amplitudes from collinear limits of gauge amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2015-05-11

    We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.

  4. On the Period-Amplitude and Amplitude-Period Relationships

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  5. Square Van Atta reflector with conducting mounting flame

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø

    1970-01-01

    the antenna elements and the reradiation from the elements as well as from the conducting plate have been taken into account. The influence of the conducting plate on the induced dipole currents has been treated using the theory of images. The scattering cross section of Van Atta reflectors with or without......A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs...... by transmission lines of equal electrical length. The dipoles are placed in a plane which is parallel to the conducting plate when this is present. In the theory, each pair of antenna elements with the interconnecting transmission line is represented by an equivalent circuit. The mutual impedance between...

  6. Semitransparent Polymer Solar Cells Based on Liquid Crystal Reflectors

    Directory of Open Access Journals (Sweden)

    Shaopeng Yang

    2014-01-01

    Full Text Available The effects of liquid crystal (LC reflectors on semitransparent polymer solar cells (PSCs were investigated in this paper. By improving the cathode, we manufactured semitransparent PSCs based on the conventional PSCs. We then incorporated the LC reflector into the semitransparent PSCs, which increased the power conversion efficiency (PCE from 2.11% to 2.71%. Subsequently adjusting the concentration and spinning speed of the active layer material changed its thickness. The maximum light absorption for the active layer was obtained using the optimum thickness, and the PCE eventually reached 3.01%. These results provide a reference for selecting LC reflectors that are suitable for different active layer materials to improve the PCE of semitransparent PSCs.

  7. An active reflector antenna using a laser angle metrology system

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Jie Zhang; De-Hua Yang; Guo-Hua Zhou; Ai-Hua Li; Guo-Ping Li

    2012-01-01

    An active reflector is one of the key technologies for constructing large telescopes,especially for millimeter/sub-millimeter radio telescopes.This article introduces a new efficient laser angle metrology system for an active reflector antenna on large radio telescopes.Our experiments concentrate on developing an active reflector for improving the detection precisions and the maintenance of the surface shape in real time on the 65-meter prototype radio telescope constructed by Nanjing Institute of Astronomical Optics and Technology (NIAOT; http://65m.shao.cas.cn/).The test results indicate that the accuracy of the surface shape segmentation and maintenance has the dimensions of microns,and the time-response can be on the order of minutes.Our efforts proved to be workable for sub-millimeter radio telescopes.

  8. Gas hydrate, fluid flow and free gas: Formation of the bottom-simulating reflector

    Science.gov (United States)

    Haacke, R. Ross; Westbrook, Graham K.; Hyndman, Roy D.

    2007-09-01

    Gas hydrate in continental margins is commonly indicated by a prominent bottom-simulating seismic reflector (BSR) that occurs a few hundred metres below the seabed. The BSR marks the boundary between sediments containing gas hydrate above and free gas below. Most of the reflection amplitude is caused by the underlying free gas. Gas hydrate can occur without a BSR, however, and the controls on its formation are not well understood. Here we describe two complementary mechanisms for free gas accumulation beneath the gas hydrate stability zone (GHSZ). The first is the well-recognised hydrate recycling mechanism that generates gas from dissociating hydrate when the base of the GHSZ moves upward relative to hydrate-bearing sediment. The second is a recently identified mechanism in which the relationship between the advection and diffusion of dissolved gas with the local solubility curve allows the liquid phase to become saturated in a thick layer beneath the GHSZ when hydrate is present near its base. This mechanism for gas production (called the solubility-curvature mechanism) is possible in systems where the influence of diffusion becomes important relative to the influence of advection and where the gas-water solubility decreases to a minimum several hundred metres below the GHSZ. We investigate a number of areas in which gas hydrate occurs to determine where gas formation is dominated by the solubility-curvature mechanism and where it is dominated by hydrate recycling. We show that the former is dominant in areas with low rates of upward fluid flow (such as old, rifted continental margins), low rates of seafloor uplift, and high geothermal gradient and/or pressure. Conversely, free-gas formation is dominated by hydrate recycling where there are rapid rates of upward fluid flow and seabed uplift (such as in subduction zone accretionary wedges). Using these two mechanisms to investigate the formation of free gas beneath gas hydrate in continental margins, we are able

  9. Effect of phototherapy with alumunium foil reflectors on neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Tony Ijong Dachlan

    2016-07-01

    Full Text Available Background Neonatal hyperbilirubinemia (NH is one of the most common problems in neonates, but it can be treated with blue light phototherapy. Developing countries with limited medical equipment and funds have difficulty providing effective phototherapy to treat NH, leading to increased risk of bilirubin encephalopathy. Phototherapy with white reflecting curtains can decrease the duration of phototherapy needed to reduce bilirubin levels. Objective To compare the duration of phototherapy needed in neonates with NH who underwent phototherapy with and without aluminum foil reflectors. Methods This open clinical trial was conducted from July to August 2013 at Dr. Hasan Sadikin Hospital, Bandung, Indonesia. The inclusion criteria were term neonates with uncomplicated NH presenting in their first week of life. Subjects were randomized into two groups, those who received phototherapy with or without aluminum foil reflectors. Serum bilirubin is taken at 12th, 24th, 48th hours, then every 24 hours if needed until phototherapy can be stopped according to American Academy of Pediatrics guidelines. The outcome measured was the duration of phototherapy using survival analysis. The difference between the two groups was tested by Gehan method. Results Seventy newborns who fulfilled the inclusion criteria and had similar characteristics were randomized into two groups. The duration of phototherapy needed was significantly less in the group with aluminum foil reflectors than in the group without reflectors [72 vs. 96 hours, respectively, (P<0.01]. Conclusion The required duration of phototherapy with aluminum foil reflectors is significantly less than that of phototherapy without reflectors, in neonates with NH.

  10. A better trihedral corner reflector for low grazing angles

    Science.gov (United States)

    Doerry, A. W.; Brock, B. C.

    2012-06-01

    Trihedral corner reflectors are the preferred canonical target for SAR performance evaluation for many radar development programs. The conventional trihedrals have problems with substantially reduced Radar Cross Section (RCS) at low grazing angles, unless they are tilted forward, but in which case other problems arise mainly due to multipath effects. Consequently there is a need for better low grazing angle performance for trihedrals. This is facilitated by extending the bottom plate of the trihedral reflector. A relevant analysis of RCS for an infinite ground plate is presented. Practical aspects are also discussed.

  11. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  12. Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors

    CERN Document Server

    Murphy, T W; Johnson, N H; Goodrow, S D

    2013-01-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  13. Tensile-strained germanium microdisks with circular Bragg reflectors

    Science.gov (United States)

    El Kurdi, M.; Prost, M.; Ghrib, A.; Elbaz, A.; Sauvage, S.; Checoury, X.; Beaudoin, G.; Sagnes, I.; Picardi, G.; Ossikovski, R.; Boeuf, F.; Boucaud, P.

    2016-02-01

    We demonstrate the combination of germanium microdisks tensily strained by silicon nitride layers and circular Bragg reflectors. The microdisks with suspended lateral Bragg reflectors form a cavity with quality factors up to 2000 around 2 μm. This represents a key feature to achieve a microlaser with a quasi-direct band gap germanium under a 1.6% biaxial tensile strain. We show that lowering the temperature significantly improves the quality factor of the quasi-radial modes. Linewidth narrowing is observed in a range of weak continuous wave excitation powers. We finally discuss the requirements to achieve lasing with these kind of structures.

  14. Lunar eclipse observations reveal anomalous thermal performance of Apollo reflectors

    Science.gov (United States)

    Murphy, T. W.; McMillan, R. J.; Johnson, N. H.; Goodrow, S. D.

    2014-03-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ∼50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  15. An Optical Reflector System for the CANGAROO-II Telescope

    CERN Document Server

    Kawachi, A

    1999-01-01

    We have developed light and durable mirrors made of CFRP (Carbon Fiber Reinforced Plastics) laminates for the reflector of the new CANGAROO-II 7 m telescope. The reflector has a parabolic shape (F/1.1) with a 30 m^2 effective area which consists of 60 small spherical mirrors. The attitude of each mirror can be remotely adjusted by stepping motors. After the first adjustment work, the re ector offers a point image of about 0.14 degree (FWHM) on the optic axis. The telescope has been in operation since May 1999 with an energy threshold of ~ 300 GeV.

  16. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...

  17. Closed string amplitudes as single-valued open string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2014-04-15

    We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.

  18. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications

    Science.gov (United States)

    Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Rolo, M.; Silva, J. C.; Silva, R.; Varela, J.

    2016-03-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with 320 pF capacitance the circuit has 24 (30) dB SNR, 75(39) ps r.m.s. resolution, and 4(8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  19. Amplitude Modulations of Acoustic Communication Signals

    Science.gov (United States)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  20. Surface Wave Amplitude Anomalies in the Western United States

    Science.gov (United States)

    Eddy, C.; Ekstrom, G.

    2011-12-01

    We determine maps of local surface wave amplitude factors across the Western United States for Rayleigh and Love waves at discrete periods between 25 and 125s. Measurements of raw amplitude anomalies are made from data recorded at 1161 USArray stations for minor arc arrivals of earthquakes with Mw>5.5 occurring between 2006 and 2010. We take the difference between high-quality amplitude anomaly measurements for events recorded on station pairs less than 2 degrees apart. The mean of these differences for each station pair is taken as the datum. Surface wave amplitudes are controlled by four separate mechanisms: focusing due to elastic structure, attenuation due to anelastic structure, source effects, and receiver effects. By taking the mean of the differences of amplitude anomalies for neighboring stations, we reduce the effects of focusing, attenuation, and the seismic source, thus isolating amplitude anomalies due to near-receiver amplitude effects. We determine local amplitude factors for each USArray station by standard linear inversion of the differential data set. The individual station amplitude factors explain the majority of the variance of the data. For example, derived station amplitude factors for 50s Rayleigh waves explain 92% of the variance of the data. We explore correlations between derived station amplitude factors and local amplitude factors predicted by crust and upper mantle models. Maps of local amplitude factors show spatial correlation with topography and geologic structures in the Western United States, particularly for maps derived from Rayleigh wave amplitude anomalies. A NW-SE trending high in amplitude factors in Eastern California is evident in the 50s map, corresponding to the location of the Sierra Nevada Mountains. High amplitude factors are observed in Colorado and New Mexico in the 50s-125s maps in the location of the highest peaks of the Rocky Mountains. High amplitude factors are also seen in Southern Idaho and Eastern Wyoming in

  1. Prevention of corrosion of silver reflectors for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, N; Siekhaus, W; Farmer, J; Gregg, H; Erlandson, A; Marshall, C; Wolfe, J; Fix, J; Ahre, D

    1999-07-01

    A durable protected silver coating was designed and fabricated for possible use on flashlamp reflectors in the National Ignition Facility (NIF) to avoid tarnishing under corrosive conditions and intense visible light (10 J/cm{sup 2}, 360 {micro}s). This coating provides a valuable alternative for mirror coatings where high reflectance and durability are important requirements. This paper describes a protected silver coating having high reflectance from 400 mn to 10,000 mu. The specular reflectance is between 95% and 98% in the visible region and 98% or better in the infrared region.

  2. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  3. Advanced reflector characterization with ultrasonic phased arrays in NDE applications.

    Science.gov (United States)

    Wilcox, Paul D; Holmes, Caroline; Drinkwater, Bruce W

    2007-08-01

    Ultrasonic arrays are increasingly widely used in nondestructive evaluation (NDE) due to their greater flexibility and potentially superior performance compared to conventional monolithic probes. The characterization of small defects remains a challenge for NDE and is of great importance for determining the impact of a defect on the integrity of a structure. In this paper, a technique for characterizing reflectors with subwavelength dimensions is described. This is achieved by post-processing the complete data set of time traces obtained from an ultrasonic array using two algorithms. The first algorithm is used to obtain information about reflector orientation and the second algorithm is used to distinguish between point-like reflectors that reflect uniformly in all directions and specular reflectors that have distinct orientations. Experimental results are presented using a commercial 64-element, 5-MHZ array on two aluminum test specimens that contain a number of machined slots and side-drilled holes. The results show that the orientation of 1-mm-long slots can be determined to within a few degrees and that the signals from 1-mm-long slots can be distinguished from that from a 1-mm-diameter circular hole. Techniques for quantifying both the orientation and the specularity of measured signals are presented and the effect of processing parameters on the accuracy of results is discussed.

  4. Large-scale Optimization of Contoured Beam Reflectors and Reflectarrays

    DEFF Research Database (Denmark)

    Borries, Oscar; Sørensen, Stig B.; Jørgensen, Erik;

    2016-01-01

    Designing a contoured beam reflector or performing a direct optimization of a reflectarray requires a mathematical optimization procedure to determine the optimum design of the antenna. A popular approach, used in the market-leading TICRA software POS, can result in computation times on the order...

  5. Consequences of nonorthogonality on the scattering properties of dihedral reflectors

    Science.gov (United States)

    Anderson, W. C.

    1987-10-01

    Small deviations from orthogonality can reduce drastically the backscattering radar cross section (RCS) of dihedral corner reflectors. The method of physical optics is used to calculate the magnitude of the reductions in RCS which result from modest departures from orthogonality. The theoretical results are then compared with experimental measurements which are found to be in very good agreement.

  6. Classification of Surface Quality of Automobile Lamp—Reflector

    Institute of Scientific and Technical Information of China (English)

    袁旭军; 贺莉清; 等

    2002-01-01

    This paper introduces an installation for quickly classifying automobile's metal reflectors based on their roughness.The measuring principle and the mechanical structure are presented.Schematics of circuits and experimental results are given.Elimination and reduction of the effect of background lights or different bulbs on the measuring results are also described in detail.

  7. Leaky Wave Enhanced Feeds for Multi-Beam Reflector Systems

    NARCIS (Netherlands)

    Neto, A.; Gerini, G.; Llombart, N.; Ettorre, M.; Maagt, P. de

    2011-01-01

    Abstract—This paper discusses the use of dielectric superlayers to shape the radiation pattern of focal plane feeds of a multi-beam reflector system. The shaping of the pattern is obtained by exciting a pair (TE/TM) of leaky waves that radiate incrementally as they propagate between the ground plane

  8. Optical Phased Array Using Guided Resonance with Backside Reflectors

    Science.gov (United States)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  9. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  10. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be sui

  11. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  12. EBG Enhanced Reflector Feeds for Wide Angle Scanning Applications

    NARCIS (Netherlands)

    Neto, A.; Ettorre, M.; Gerini, G.; Maagt, P.J. de

    2008-01-01

    This work is an extension of a series of works on the use of dielectric super-layers to shape the radiation pattern of each feed composing a focal plane imaging array. Using dielectric super-layers, the spill over from the reflectors are reduced without increasing the dimensions of each aperture. Th

  13. Computer program aids dual reflector antenna system design

    Science.gov (United States)

    Firnett, P.; Gerritsen, R.; Jarvie, P.; Ludwig, A.

    1968-01-01

    Computer program aids in the design of maximum efficiency dual reflector antenna systems. It designs a shaped cassegrainian antenna which has nearly 100 percent efficiency, and accepts input parameters specifying an existing conventional antenna and produces as output the modifications necessary to conform to a shaped design.

  14. Beam spoiling a reflector antenna with conducting shim.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    A horn-fed dish reflector antenna has characteristics including beam pattern that are a function of its mechanical form. The beam pattern can be altered by changing the mechanical configuration of the antenna. One way to do this is with a reflecting insert or shim added to the face of the original dish.

  15. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  16. Positive Amplitudes In The Amplituhedron

    CERN Document Server

    Arkani-Hamed, Nima; Trnka, Jaroslav

    2014-01-01

    The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by an "amplitude form" with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural "bosonization" of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a "dual amplituhedron" formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting...

  17. Model selection for amplitude analysis

    CERN Document Server

    Guegan, Baptiste; Stevens, Justin; Williams, Mike

    2015-01-01

    Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.

  18. Design of a plasmonic back reflector for silicon nanowire decorated solar cells.

    Science.gov (United States)

    Ren, Rui; Guo, Yongxin; Zhu, Rihong

    2012-10-15

    This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum J(sc) of 28.4 mA/cm(2). A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

  19. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan

    2011-07-06

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microcavities with distributed Bragg reflectors based on ZnSe/MgS superlattice grown by MOVPE

    Science.gov (United States)

    Tawara, T.; Yoshida, H.; Yogo, T.; Tanaka, S.; Suemune, I.

    2000-12-01

    Monolithic II-VI semiconductor microcavities for the blue-green region grown by metal-organic vapor-phase epitaxy have been demonstrated. ZnSe/MgS-superlattice (ZnSe/MgS-SL) layers were used for the distributed Bragg reflectors (DBRs). The DBR with only 5 periods showed the high reflectivity of 92% at the wavelength of 510 nm due to the large difference of refractive indices between ZnSe and MgS layers. In a monolithic II-VI microcavity structure based on these DBRs, a clear cavity resonance mode was observed in the blue-green region for the first time.

  1. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis E. (Livermore, CA); Hackel, Lloyd (Livermore, CA)

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  2. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen [Shanghai Institute of Laser Plasma, P.O. BOX 800-229, Shanghai 201800 (China)

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  3. A 16x1 wavelength division multiplexer with integrated distributed Bragg reflector lasers and electroabsorption modulators

    Science.gov (United States)

    Young, M. G.; Koren, U.; Miller, B. I.; Newkirk, M. A.; Chien, M.; Zirngibl, M.; Dragone, C.; Tell, B.; Presby, H. M.; Raybon, G.

    1993-08-01

    We demonstrate the integrated operation of a 16x1 wavelength-division multiplexed (WDM) source with distributed Bragg reflector (DBR) lasers and electroabsorption modulators. By using repeated holographic exposures and wet chemical etching, 16 different wavelengths from 1.544 to 1.553 micron with an average channel spacing of 6 angstroms are obtained. A high-performance combiner is used to obtain a very uniform coupling into the single-output waveguide, and with the integration of an optical amplifier an average optical power of -8 dBm per channel is coupled into a single-mode fiber.

  4. 3D printed 20/30-GHz dual-band offset stepped-reflector antenna

    DEFF Research Database (Denmark)

    Menendez, Laura G.; Kim, Oleksiy S.; Persson, Frank

    2015-01-01

    with a peak directivity of 36.7 dB and 40.4 dB at 20 and 30 GHz, respectively; this corresponds to an aperture efficiency of 61 % and 64 %, respectively. These results demonstrate that 3D printing is a viable manufacturing technology for medium-sized high-frequency antennas.......This paper documents the manufacturing by selective laser sintering of a 20/30 GHz dual-band circularly polarized offset stepped-reflector antenna for K- and Ka-band satellite communication. The manufactured antenna has been measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  5. Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC Reflector(C < 1

    Directory of Open Access Journals (Sweden)

    Yuehong Su

    2012-04-01

    Full Text Available Evacuated tube solar water heater systems are widely used in China due to their high thermal efficiency, simple construction requirements, and low manufacturing costs. CPC evacuated tube solar water heaters with a geometrical concentration ratio C of less than one are rare. A comparison of the experimental rig of evacuated tube solar water heater systems with and without a mini-CPC reflector was set up, with a series of experiments done in Hefei (31°53'N, 117°15'E, China. The first and second laws of thermodynamics were used to analyze and contrast their thermal performance. The water in the tank was heated from 26.9 to 55, 65, 75, 85, and 95 °C. Two types of solar water heater systems were used, and the data gathered for two days were compared. The results show that when attaining low temperature water, the evacuated tube solar water heater system without a mini-CPC reflector has higher thermal and exergy efficiencies than the system with a mini-CPC reflector, including the average and immediate values. On the other hand, when attaining high temperature water, the system with a mini-CPC reflector has higher thermal and exergy efficiencies than the other one. The comparison presents the advantages of evacuated tube solar water heater systems with and without a mini-CPC reflector, which can be offered as a reference when choosing which solar water system to use for actual applications.

  6. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2015-11-01

    Full Text Available Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then absorbed on the collector. The performance was analyzed for three typical days at a latitude of 30°N. Solar radiation absorbed on the collector can be increased by the bottom reflector even if there is a gap between the collector and reflector. The optimum inclinations of both the collector and reflector are almost the same while the gap length is less than the lengths of the collector and reflector. However, the range of inclination of the reflector that can increase the solar radiation absorbed on the collector decreases with an increase in gap length, and the solar radiation absorbed on the collector rapidly decreased with an increase in the gap length when the reflector and/or collector were not set at a proper angle.

  7. Particle Distribution Modification by Low Amplitude Modes

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  8. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    Science.gov (United States)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  9. 稳定的保幅高阶广义屏地震偏移成像方法研究%The method of preserved-amplitude seismic migration imaging with stable generalized high order screen

    Institute of Scientific and Technical Information of China (English)

    刘定进; 杨瑞娟; 罗申玥; 王鹏燕; 郑小鹏; 宋林

    2012-01-01

    Wave equation preserved-amplitude seismic migration imaging has a special function that can give true amplitudes as well as the correct locations based on advanced wave theories. The author first starts from the unstable phase shift expression of preserved-amplitude one way wave equation. Based on perturbation theory which is often used in reversed question solution, the author uses the progressive expansion of single square root operator to drive a high-order generalized screen form of preserved-amplitude prestack depth migration equation. To solve the unstable problem in lateral variable speed media caused by computation items of the scattering wavefield, the author proposes a strategy which can effectively improve the stability by math approximation. Then this strategy is applied to the wavefield recursion extrapolation, so a kind of stable preserved-amplitude prestack depth migration operators of high-order generalized screen are obtained. Theoretical model testing and real data processing indicate that this method can not only make scattering energy be focused and migrated to the correct position to improve imaging accuracy but also output the amplitude information which reflects the correct subsurface reflection coefficients. So this method has clearer AVO response and can enhance analytic precision for AVO data.%以先进的波动理论为基础的波动方程保幅地震偏移成像是在给出正确位置的同时也给出真实振幅的一种特殊完善.作者从保幅单程波动方程的非稳态相移公式出发,基于反问题求解中常用的摄动理论,利用单平方根算子的渐进展开,从而推导出保幅叠前深度偏移方程的高阶广义屏形式;针对散射波场计算项对于横向变速介质的不稳定性,通过数学近似提出一个有效提高稳定性的策略,应用到波场递归外推过程中,从而得到一种稳定的保幅高阶广义屏叠前深度偏移算子.理论模型试算和实际资料处理表明,该

  10. Computing Maximally Supersymmetric Scattering Amplitudes

    Science.gov (United States)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  11. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  12. The electromagnetic problem of interpanel gaps in reflector antennas

    Science.gov (United States)

    Hüschelrath, Jens

    2005-07-01

    In recent years, the performance and quality of computer simulations grew constantly, together with the availability of high-performance computers. This also affected the area of antenna simulations where the possibility to analyze complex structures using a computer model became a fundamental tool for the design process. Having the means to assess precisely the performance of an antenna available before its final construction is inevitable for a cost-effective design and operation of an antenna today. The more detailed a computer model describes the real application, the better the predictions for the real performance will be. In order to obtain the highest level of complexity and accuracy that today's computers can achieve, more and more details are added to the simulation models. Concerning this matter, the European Space Agency (ESA) became interested in assessing the degradation added to the output patterns of reflector antennas when their surfaces are constructed by single panels, exhibiting gaps between them. Up to now the surfaces of such antennas were assumed to consist of single shaped surfaces to simplify the computations. It is the scope of this study to present the applications of interest for the analysis of interpanel gaps and to propose methods for solving the problem, that can be integrated into existing simulation codes. During the study, a canonical model is derived that is capable of computing highly accurate results in short time. Simulations based on this model are performed for different gap configurations, selected using the experience from real applications. It is shown that the simple canonical model for the gaps covers a wide range of real-world applications with high accuracy, but that it also has its limits. For applications with gap-configurations that are out-of-range to apply the simple model, solutions are indicated being valid for arbitrary gap-configurations, but being also more resources-consuming. The work presented is the

  13. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2007-01-01

    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the

  14. The transient scattering mechanism of dipole array with reflector

    Institute of Scientific and Technical Information of China (English)

    Zhang Xue-Qin; Wang Jun-Hong; Li Zeng-Rui

    2008-01-01

    The transient backscattering mechanisms of a dipole array with reflector have been investigated from different aspects:time-domain,frequency-domain,and combined time-frequency domain,using 4×8 dipole arrays with reflector as an example.The data of scattering from the arrays under the incidence of Gaussian pulses are obtained by finite differential time domain method.The influences of the array structural parameters,incident wave parameters,and incident angles on the waveforms,spectrum,and time-frequency representations of the backseattered fields of the arrays are analysed and conclusions are drawn.From these characteristics and conclusions,it is possible to deduce the array structure inversely from the backscattered field.

  15. RATAN-600 - The world's biggest reflector at the 'cross roads'

    Science.gov (United States)

    Parijskij, Yurij N.

    1993-08-01

    The RATAN-600 new-technology telescope (NTT), which supplies about one-quarter of the observational material in Russia in the field of radio astronomy and more than 80 percent in the central, centimeter-decimeter range, is described. The RATAN-600 is the first multielement reflector radio telescope without any structure linking the surface elements. The functions normally performed by such structure are executed by the earth's surface. It is also the first radio telescope with a controlled-shape surface. In observations at different elevations about the horizon, the shape of its surface varies, remaining in the family of second-order surfaces. The RATAN-600 is also the first aperture-synthesis reflector-type telescope. The location of the radio telescope, its design, its modes of operation, and its future prospects are discussed.

  16. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  17. Design of polarization-maintaining retro-reflector for folded-path applications

    Institute of Scientific and Technical Information of China (English)

    Zhen Guo; Lianshan Yan; Wei Pan; Bin Luo; KunhuaWen; X. Steve Yao

    2011-01-01

    A design of polarization-maintaining retro-reflectors (PMRRs) for folded-path applications is proposed and analyzed.The prism-based scheme enables the output light,which is parallel to the input,to have an identical state of polarization.The principle of the design is theoretically verified,and the related error is analyzed due to possible manufacturing imperfection.The maximum spatial angle error is ±2.75°.The effect on the extinction ratio and insertion loss is also discussed,which further proves the design's feasibility in practical applications.Polarization maintaining reflectors play an essential role in physical optics and optical communications.However,the phase shift induced by the reflection may affect the state of polarization (SOP) of signals.The SOP is essential information in optical sensors and ellipsometers[1-5].Thus,maintaining the reflecting polarization is crucial and has attracted much attention.However,most of these applications are based on the coating technology[6-9] and the design of photonic crystal[10-13],which are not appropriate in practical applications because of the special equipment or high precision required.Clearly,the most efficient approach to overcome the effect is to employ no-shift instruments[14-16],which are easy to fabricate and implement in practical applications.%A design of polarization-maintaining retro-reflectors (PMRRs) for folded-path applications is proposed and analyzed. The prism-based scheme enables the output light, which is parallel to the input, to have an identical state of polarization. The principle of the design is theoretically verified, and the related error is analyzed due to possible manufacturing imperfection. The maximum spatial angle error is ±2.75°. The effect on the extinction ratio and insertion loss is also discussed, which further proves the design's feasibility in practical applications.

  18. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  19. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  20. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  1. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  2. Prestack exploding reflector modeling and migration in TI media

    KAUST Repository

    Wang, H.

    2014-01-01

    Prestack depth migration in anisotropic media, especially those that exhibit tilt, can be costly using reverse time migration (RTM). We present two-way spectral extrapolation of prestack exploding reflector modeling and migration (PERM) in acoustic transversely isotropic (TI) media. We construct systematic ways to evaluate phase angles and phase velocities in dip oriented TI (DTI), vertical TI (VTI) and tilted TI (TTI) media. Migration results from the Marmousi VTI model and the BP2007 TTI model show the feasibility of our approach.

  3. Parabolic dish reflectors for solar applications approximated by simple surfaces

    OpenAIRE

    Broman, Lars; Broman, Arne

    1996-01-01

    Two different concentrating mirrors have been constructed that resemble parabolic dish reflectors. Both mirrors are made of slightly curved strips of flat, bendable material. The strips of the most simplified mirror have only large-radius circles and straight lines as boundaries. The necessary equations for making the mirrors have been derived. Also a simple way to make a stiff, lightweight frame and support for the mirror strips has been developed. Models of the mirrors have been built and s...

  4. Grating-assisted silicon-on-insulator racetrack resonator reflector.

    Science.gov (United States)

    Boeck, Robert; Caverley, Michael; Chrostowski, Lukas; Jaeger, Nicolas A F

    2015-10-05

    We experimentally demonstrate a grating-assisted silicon-on-insulator (SOI) racetrack resonator reflector with a reflect port suppression of 10.3 dB and no free spectral range. We use contra-directional grating couplers within the coupling regions of the racetrack resonator to enable suppression of all but one of the peaks within the reflect port spectrum as well as all but one of the notches within the through port spectrum.

  5. Design and testing for novel joint for wave reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J. [SPOK ApS, Copenhagen (Denmark); Friis-Madsen, E. [Loewenmark, Copenhagen (Denmark); Frigaard, P. [Aalborg Univ., Aalborg (Denmark)

    2005-07-01

    Construction of a novel joint between the main platform and the wave reflectors of the Wave Dragon has begun. This paper describes the design and testing process behind this. Tests conducted in the facilities at Aalborg University highlighted large motions, and similar force magnitudes to the previous design. This testing has influenced the design and allowed construction to begin on refitting the joint to the 1:4.5 scale prototype Wave Dragon. (au)

  6. Theoretical analysis of a parabolic torus reflector antenna with multibeam

    Institute of Scientific and Technical Information of China (English)

    杜彪; 杨可忠; 钟顺时

    1995-01-01

    The parametric equations and the formulas of unit normal vector and surface element for aparabolic torus reflector antenna are derived and the mechanism of producing multibeam is proposed, Based on physical optics, the radiation pattern formulas for the antenna are given, with which the effects of geometric parameters on the antenna are studied. The good agreement between the calculated patterns and the measured ones shows that the theory is helpful for designing parabolic torus antennas.

  7. Surface Optimization Techniques for Deployable Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing communications systems for spacecraft provide a choice between either large aperture (>3m) or high frequency (>X-band), but not both. These systems...

  8. Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    CERN Document Server

    Jonker, P G; Méndez, M; Van der Klis, M

    2007-01-01

    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0....

  9. A SAW resonator with two-dimensional reflectors.

    Science.gov (United States)

    Solal, Marc; Gratier, Julien; Kook, Taeho

    2010-01-01

    It is known that a part of the loss of leaky SAW resonators is due to radiation of acoustic energy in the bus-bars. Many researchers are working on so-called phononic crystals. A 2-D grating of very strong reflectors allows these devices to fully reflect, for a given frequency band, any incoming wave. A new device based on the superposition of a regular SAW resonator and a 2-D periodic grating of reflectors is proposed. Several arrangements and geometries of the reflectors were studied and compared experimentally on 48 degrees rotated Y-cut lithium tantalate. In particular, a very narrow aperture (7.5 lambda) resonator was manufactured in the 900 MHz range. Because of its small size, this resonator has a resonance Q of only 575 when using the standard technology, whereas a resonance Q of 1100 was obtained for the new device without degradation of the other characteristics. Because of the narrow aperture, the admittance of the standard resonator showed a very strong parasitic above the resonance frequency, whereas this effect is drastically reduced for the new device. These results demonstrate the feasibility of the new approach.

  10. Shape control of distributed parameter reflectors using sliding mode control

    Science.gov (United States)

    Andoh, Fukashi; Washington, Gregory N.; Utkin, Vadim

    2001-08-01

    Sliding mode control has become one of the most powerful control methods for variable structure systems, a set of continuous systems with an appropriate switching logic. Its robustness properties and order reduction capability have made sliding mode control one of the most efficient tools for relatively higher order nonlinear plants operating under uncertain conditions. Piezo-electric materials possess the property of creating a charge when subjected to a mechanical strain, and of generating a strain when subjected to an electric field. Piezo-electric actuators are known to have a hysteresis due to the thermal motion and Coulomb interaction of Weiss domains. Because of the thermal effect the hysteresis of piezo-electric actuators is reproducible only with some uncertainty in experiments. The robustness of sliding mode control under uncertain conditions has an advantage in handling the hysteresis of piezo-electric actuators. In this research sliding mode control is used to control the shape of one- and two-dimensionally curved adaptive reflectors with piezo-electric actuators. Four discrete linear actuators for the one-dimensionally curved reflector and eight actuators for the two-dimensionally curved reflector are assumed.

  11. Design of Ring-Focus Elliptical Beam Reflector Antenna

    Directory of Open Access Journals (Sweden)

    Jun-Mo Wu

    2016-01-01

    Full Text Available A new method for the design of elliptical beam reflector antenna is presented in this paper. By means of the basic principles of ring-focus antenna, a circularly symmetric feed and two specially shaped reflectors are used to form an elliptical beam antenna. Firstly, the design process of this ring-focus elliptical beam antenna is studied in detail. Transition function is defined and used in the design process. Then, combining the needs of practical engineering, a ring-focus elliptical beam reflector antenna is manufactured and tested. The gain at center frequency (12 GHz is 37.7 dBi with an aperture efficiency of 74.6%. 3 dB beam-width in φ=0° and φ=90° plane is 2.6° and 1.4°, respectively. Ratio of the elliptical beam (ratio of 3 dB beam-width in φ=0° and φ=90° plane is 2.6/1.4=1.85, substantially equal to designed ratio 2. Simulating and testing results match well, which testify the effectiveness of this design method.

  12. Method of differential-phase/absolute-amplitude QAM

    Science.gov (United States)

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  13. Improved Monoblock laser brightness using external reflector.

    Science.gov (United States)

    Hays, A D; Nettleton, John; Barr, Nick; Hough, Nathaniel; Goldberg, Lew

    2014-03-01

    The Monoblock laser has become the laser of choice in long-range, eye-safe laser range finders. It is eye-safe with emission at 1570 nm, high pulse energy, simple construction, and high efficiency when pumped by a laser-diode stack. Although the output beam divergence of a typical Monoblock with a 3  mm×3  mm cross section is relatively large (10-12 mrad), it can be reduced to 2.5× reduction from the unmodified laser. Performance using this technique with various feedback and etalon spacings is presented.

  14. Quantitative laryngeal electromyography: turns and amplitude analysis.

    Science.gov (United States)

    Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C

    2010-10-01

    Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.

  15. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    Science.gov (United States)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  16. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    Science.gov (United States)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  17. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits.

  18. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  19. Employing Helicity Amplitudes for Resummation

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...

  20. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire