WorldWideScience

Sample records for high amplitude anisotropic

  1. Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes

    Institute of Scientific and Technical Information of China (English)

    韩式方

    2008-01-01

    Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.

  2. High Amplitude Secondary Mass Drive

    Energy Technology Data Exchange (ETDEWEB)

    DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.

    2000-07-06

    In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.

  3. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  4. 基于虚拟偏移距方法的各向异性转换波保幅叠前时间偏移%Anisotropic converted wave amplitude-preserving prestack time migration by the pseudo-offset method

    Institute of Scientific and Technical Information of China (English)

    张丽艳; 刘洋

    2008-01-01

    In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.

  5. Unusually low-amplitude anisotropic wave-train events of cosmic ray intensity during 1981-1994

    Indian Academy of Sciences (India)

    Rajesh K Mishra; Rekha Agarwal Mishra

    2005-02-01

    Investigation has been made for unusually low-amplitude anisotropic wave train events (LAE) for cosmic ray intensity data of Deep River neutron monitoring station during the period 1981-94. It has been observed that the phase of diurnal anisotropy remains in the same co-rotational direction for most of the LAEs while the phase shifts to early hours for some of the LAEs in diurnal anisotropy. During minimum solar activity, LAEs have been observed to be dominant. Solar wind plasma (SWP) parameters, interplanetary magnetic field and various features at solar disk have also been studied. The amplitude remains low continuously for most of the days while the phase shifts to earlier hours. Occurrence of LAE is independent of the nature of interplanetary magnetic field (IMF).

  6. Plasma resonance in anisotropic layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Sakai, Shigeki; Pedersen, Niels Falsig

    1999-01-01

    The plasma resonance is described theoretically by the inductive coupling model for a large stacked Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high- T-c superconductors. Eigenmodes of the plasma oscillation are analytically described and a numerical...

  7. Anisotropic particle production and azimuthal correlations in high-energy pA collisions

    CERN Document Server

    Dumitru, Adrian; Skokov, Vladimir

    2015-01-01

    We summarize some recent ideas relating to anisotropic particle production in high-energy collisions. Anisotropic gluon distributions lead to anisotropies of the single-particle azimuthal distribution and hence to disconnected contributions to multi-particle cumulants. When these dominate, the four-particle elliptic anisotropy $c_2\\{4\\}$ changes sign. On the other hand, connected diagrams for $m$-particle cumulants are found to quickly saturate with increasing $m$, a ``coherence'' quite unlike conventional ``non-flow'' contributions such as decays. Finally, we perform a first exploratory phenomenological analysis in order to estimate the amplitude ${\\cal A}$ of the $\\cos(2\\varphi)$ anisotropy of the gluon distribution at small $x$, and we provide a qualitative prediction for the elliptic asymmetry from three-particle correlations, $c_2\\{3\\}$.

  8. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  9. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  10. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...

  11. Subharmonic and fundamental high amplitude excitation of an axisymmetric jet

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effect of simultaneous excitation at the fundamental and subharmonic frequencies on the behavior of a circular jet shear layer is studied. Attention is given to the effect of the initial phase difference, the Strouhal number pair, and amplitudes of the fundamental and subharmonic tones. High-amplitude excitation devices which can provide a wide range of forcing conditions when used in conjunction with equipment that produces complex waveforms are used.

  12. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  13. High Amplitude \\delta-Scutis in the Large Magellanic Cloud

    CERN Document Server

    Garg, A; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    We present 2323 High-Amplitude \\delta-Scuti (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  14. Anisotropic phantom to calibrate high-q diffusion MRI methods

    Science.gov (United States)

    Komlosh, M. E.; Benjamini, D.; Barnett, A. S.; Schram, V.; Horkay, F.; Avram, A. V.; Basser, P. J.

    2017-02-01

    A silicon oil-filled glass capillary array is proposed as an anisotropic diffusion MRI phantom. Together with a computational/theoretical pipeline these provide a gold standard for calibrating and validating high-q diffusion MRI experiments. The phantom was used to test high angular resolution diffusion imaging (HARDI) and double pulsed-field gradient (d-PFG) MRI acquisition schemes. MRI-based predictions of microcapillary diameter using both acquisition schemes were compared with results from optical microscopy. This phantom design can be used for quality control and quality assurance purposes and for testing and validating proposed microstructure imaging experiments and the processing pipelines used to analyze them.

  15. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...... with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very...

  16. Simulation of transients of high amplitude in pipe systems

    NARCIS (Netherlands)

    Boersma, J.M.; Looijmans, K.N.H.

    1999-01-01

    Fast high-amplitude transients ask for a non-linear modelling approach in which large density variations and heat exchange can be considered. Operation of safety-valves, relief valves, the occurrence of valve failure and the start-up or shutdown of rotating equipment in industrial pipe systems can l

  17. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  18. Radial convection of finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Wiesenberger, M; Kendl, A

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in ...

  19. Frequencies and amplitudes of high-degree solar oscillations

    Science.gov (United States)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  20. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-03-01

    Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ∝ -2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density

  1. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    CERN Document Server

    Heine, G

    1999-01-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 sub b. The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single cry...

  2. Large-amplitude ULF waves at high latitudes

    Science.gov (United States)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  3. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.

    Science.gov (United States)

    Kwon, Soonshin; Zheng, Jianlin; Wingert, Matthew C; Cui, Shuang; Chen, Renkun

    2017-03-28

    Amorphous Si (a-Si) nanostructures are ubiquitous in numerous electronic and optoelectronic devices. Amorphous materials are considered to possess the lower limit to the thermal conductivity (κ), which is ∼1 W·m(-1) K(-1) for a-Si. However, recent work suggested that κ of micrometer-thick a-Si films can be greater than 3 W·m(-1) K(-1), which is contributed to by propagating vibrational modes, referred to as "propagons". However, precise determination of κ in a-Si has been elusive. Here, we used structures of a-Si nanotubes and suspended a-Si films that enabled precise in-plane thermal conductivity (κ∥) measurement within a wide thickness range of 5 nm to 1.7 μm. We showed unexpectedly high κ∥ in a-Si nanostructures, reaching ∼3.0 and 5.3 W·m(-1) K(-1) at ∼100 nm and 1.7 μm, respectively. Furthermore, the measured κ∥ is significantly higher than the cross-plane κ on the same films. This unusually high and anisotropic thermal conductivity in the amorphous Si nanostructure manifests the surprisingly broad propagon mean free path distribution, which is found to range from 10 nm to 10 μm, in the disordered and atomically isotropic structure. This result provides an unambiguous answer to the century-old problem regarding mean free path distribution of propagons and also sheds light on the design and performance of numerous a-Si based electronic and optoelectronic devices.

  4. A study of daily variation in cosmic ray intensity during high/low amplitude days

    Indian Academy of Sciences (India)

    Rajesh K Mishra; Rekha Agarwal Mishra

    2007-03-01

    A detailed study has been conducted on the long-term changes in the diurnal, semi-diurnal and tri-diurnal anisotropies of cosmic rays in terms of the high/low amplitude anisotropic wave train events (HAE/LAE) during the period 1981-94 using the neutron monitor data from Deep River Neutron Monitoring Station. In all, 38 HAE and 28 LAE cases have been studied. An inter-comparison of the first three harmonics during these events has been made so as to understand the basic reason for the occurrence of these types of events. It has been observed that the phase of diurnal anisotropy shifts towards earlier hours for HAEs and it shifts towards earlier hour as compared to 18-h direction for LAEs. For semi-diurnal anisotropy, phase remains statistically the same for both HAE and LAE. In the case of tri-diurnal anisotropy, phase is evenly distributed for both types of events. The interplanetary magnetic field (IMF) and solar wind plasma (SWP) parameters during these events are also investigated. It has also been observed that HAE/LAEs are weakly dependent on high-speed solar wind velocity. The two types of solar wind streams (corotating streams and flare-generated streams) produce significant deviations in cosmic ray intensity during HAE/LAE.

  5. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  6. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    Science.gov (United States)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  7. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  8. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    National Research Council Canada - National Science Library

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-01

    ... (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F...

  9. The High Amplitude delta Scuti Star AD Canis Minoris

    Science.gov (United States)

    Axelsen, R. A.; Napier-Munn, T.

    2016-12-01

    The high amplitude delta Scuti star AD Canis Minoris was studied by photoelectric photometry (PEP) during one night in in February 2011 and by digital single lens reflex (DSLR) photometry during seven nights in January and February 2016. Nine light curve peaks were captured, eight of them by DSLR photometry. A review of the literature enabled us to tabulate 109 times of maximum since 1959, to which we added 9 times of maximum from our data, thus creating the largest dataset to date for this star. Assuming a linear ephemeris, the period of AD CMi was calculated to be 0.122974511 (+/- 0.000000004) d, almost identical to that quoted in earlier literature. We constructed an observed minus computed (O-C) diagram which exhibited a quasi-sinusoidal shape, and fitted a weighted model characterised by combined quadratic and trigonometric functions. The fit indicates that the shape of the O-C diagram is attributable to the effects of a slow increase in the pulsation period of AD CMi at a constant rate, and the light time effect of a binary pair, confirming the results from previous authors, and updating most of the coefficients of the equation for the fitted model. The values of all of the coefficients in the function are statistically significant. The rate of increase in the pulsation period of AD CMi was calculated from the entire dataset to be dP/dt = 6.17 (+/- 0.75) x 10-9 d yr-1 or dP/Pdt = 5.01 (+/- 0.61) x 10-8 yr-1.

  10. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    NARCIS (Netherlands)

    Blauw, M.A.

    2004-01-01

    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based

  11. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  12. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  13. Research on High Frequency Amplitude Attenuation of Electric Fast Transient Generator

    Directory of Open Access Journals (Sweden)

    Huafu Zhang

    2013-01-01

    Full Text Available In order to solve the amplitude attenuation of electric fast transient (EFT generator operating in high frequency, the charging and discharging process of energy storage capacitor in EFT generator are analyzed, the main circuit voltage variation mathematical model is established, the parameters of main loop circuit and the parameters of switch driving waveform which affect burst amplitude are discussed. Through the simulation, this paper puts forward effective methods to overcome burst amplitude attenuation in high frequency. The simulation results show that when the frequency is low, the duty ratio of drive signal have little effect on energy storage capacitor voltage amplitude attenuation. when the charging resistance is less than 500 Ω, the duty ratio of drive signal is less than 0.125, the repetition frequency of burst reaches 1.2 MHz, the amplitude attenuation of energy storage capacitor voltage is less than 9%, the amplitude of burst satisfies IEC61000-4-4 standards.

  14. DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, Jankee; Navathe, C. P.

    2006-07-01

    A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.

  15. External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations

    NARCIS (Netherlands)

    Gonzalez, Oscar J. Avella; van Aerde, Karlijn I.; van Elburg, Ronald A. J.; Poil, Simon-Shlomo; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus; van Pelt, Jaap; van Ooyen, Arjen

    2012-01-01

    Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with episodes of high amplitude alternating with epi

  16. Brh V128 is a Double-Mode High-Amplitude delta Scuti Star

    Science.gov (United States)

    Bernhard, K.; Pejcha, O.; Proksch, W.; Quester, W.; van Cauteren, P.; Wils, P.

    2004-08-01

    CCD-V and unfiltered photometric data show that Brh V128 = GSC 1893-89 is a new high-amplitude double-mode Delta Scuti variable with a fundamental period of 0.1534 days and a period ratio of 0.767. The amplitude of the first overtone pulsation is slightly larger than that of the fundamental mode.

  17. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...

  18. Design of anisotropic focusing metasurface and its application for high-gain lens antenna

    Science.gov (United States)

    Guo, Wenlong; Wang, Guangming; Li, Haipeng; Li, Tangjing; Ge, Qichao; Zhuang, Yaqiang

    2017-03-01

    In this paper, we propose an anisotropic focusing metasurface with function of focusing orthogonally polarized waves in refraction and reflection modes respectively. By employing four layered metallic patches spaced by triple layered dielectric spacers, an anisotropic phase element is designed with capability of transmitting x-polarized waves but reflecting y-polarized beams efficiently. Composed of 21 × 21 cells and with size of 105 × 105 mm2, a focusing metasurface operating at 15 GHz is designed with the same focal length of 30 mm for x- and y-polarized waves. By setting a patch antenna at the focal point, the metasurface sample is employed to enhance gain of the radiation source. For verification, the metasurface sample is fabricated and measured. The antenna performance, in terms of realized boresight gain and operating bandwidth under x- and y-polarized waves illumination, is presented. Results show that the 1 dB gain bandwidths are respectively from 14.7 to 15.3 GHz and 14.7 to 15.2 GHz, and the gain are enhanced by 14.1 dB, 15.1 dB in refraction and reflection modes when the metasurface is impinged by x- and y-polarized spherical waves. The proposed anisotropic metasurface may afford an alternative for designing anisotropic planar lens or high-gain antenna.

  19. Off-shell helicity amplitudes in high-energy factorization

    CERN Document Server

    van Hameren, Andreas; Kutak, Krzysztof

    2013-01-01

    In the Catani-Ciafaloni-Hautmann high-energy factorization approach a cross section is expressed as a convolution of unintegrated gluon densities and a gauge-invariant hard process, in which two incoming gluons are off-shell with momenta satisfying certain high-energy kinematics. We present two methods of evaluating the tree-level hard process with multiple final states. The first one assumes that only one of the gluons is off-shell and relies on the Slavnov-Taylor identities. Such asymmetric configuration of incoming gluons is phenomenologically important in small x probing by forward processes. The second method deals also with two off-shell gluons and is based on the analytic continuation of the off-shell gluons momenta to the complex space. The methods were implemented into Monte Carlo computer programs and used in phenomenological applications. The results of both methods are straightforwardly related to Lipatov's effective vertices in quasi-multi-regge kinematics.

  20. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  1. Freeform high-speed large-amplitude deformable Piezo Mirrors

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2013-01-01

    We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100\\mu m and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored "topological" displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.

  2. Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers

    Directory of Open Access Journals (Sweden)

    Masanari Saigusa

    2015-01-01

    Full Text Available This paper reports the facile and high-throughput fabrication method of anisotropic Au nanoparticles with a highly sensitive local surface plasmon resonance (LPR using cylindrical nanofibers as substrates. The substrates consisting of nanofibers were prepared by the electrospinning of poly(vinylidene fluoride (PVDF. The Au nanoparticles were deposited on the surface of electrospun nanofibers by vacuum evaporation. Scanning electron microscopy revealed the formation of a curved Au island structure on the surface of cylindrical nanofibers. Polarized UV-visible extinction spectroscopy showed anisotropy in their LPR arising from the high surface curvature of the nanofiber. The LPR of the Au nanoparticles on the thinnest nanofiber with a diameter of ~100 nm showed maximum refractive index (RI sensitivity over 500 nm/RI unit (RIU. The close correlation between the fiber diameter dependence of the RI sensitivity and polarization dependence of the LPR suggests that anisotropic Au nanoparticles improve RI sensitivity.

  3. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  4. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.

    Science.gov (United States)

    O'Grady, G; Du, P; Paskaranandavadivel, N; Angeli, T R; Lammers, W J E P; Asirvatham, S J; Windsor, J A; Farrugia, G; Pullan, A J; Cheng, L K

    2012-07-01

    Gastric slow waves propagate aborally as rings of excitation. Circumferential propagation does not normally occur, except at the pacemaker region. We hypothesized that (i) the unexplained high-velocity, high-amplitude activity associated with the pacemaker region is a consequence of circumferential propagation; (ii) rapid, high-amplitude circumferential propagation emerges during gastric dysrhythmias; (iii) the driving network conductance might switch between interstitial cells of Cajal myenteric plexus (ICC-MP) and circular interstitial cells of Cajal intramuscular (ICC-IM) during circumferential propagation; and (iv) extracellular amplitudes and velocities are correlated. An experimental-theoretical study was performed. High-resolution gastric mapping was performed in pigs during normal activation, pacing, and dysrhythmia. Activation profiles, velocities, and amplitudes were quantified. ICC pathways were theoretically evaluated in a bidomain model. Extracellular potentials were modeled as a function of membrane potentials. High-velocity, high-amplitude activation was only recorded in the pacemaker region when circumferential conduction occurred. Circumferential propagation accompanied dysrhythmia in 8/8 experiments was faster than longitudinal propagation (8.9 vs 6.9 mm s(-1) ; P = 0.004) and of higher amplitude (739 vs 528 μV; P = 0.007). Simulations predicted that ICC-MP could be the driving network during longitudinal propagation, whereas during ectopic pacemaking, ICC-IM could outpace and activate ICC-MP in the circumferential axis. Experimental and modeling data demonstrated a linear relationship between velocities and amplitudes (P propagation. Rapid circumferential propagation also emerges during a range of gastric dysrhythmias, elevating extracellular amplitudes and organizing transverse wavefronts. One possible explanation for these findings is bidirectional coupling between ICC-MP and circular ICC-IM networks. © 2012 Blackwell Publishing Ltd.

  5. Direct Imaging of Highly Anisotropic Photogenerated Charge Separations on Different Facets of a Single BiVO4 Photocatalyst.

    Science.gov (United States)

    Zhu, Jian; Fan, Fengtao; Chen, Ruotian; An, Hongyu; Feng, Zhaochi; Li, Can

    2015-07-27

    Spatially resolved surface photovoltage spectroscopy (SRSPS) was employed to obtain direct evidence for highly anisotropic photogenerated charge separation on different facets of a single BiVO4 photocatalyst. Through the controlled synthesis of a single crystal with preferentially exposed {010} facets, highly anisotropic photogenerated hole transfer to the {011} facet of single BiVO4 crystals was observed. The surface photovoltage signal intensity on the {011} facet was 70 times stronger than that on the {010} facets. The influence of the built-in electric field in the space charge region of different facets on the anisotropic photoinduced charge transfer in a single semiconductor crystal is revealed.

  6. Highly anisotropic metasurface: a polarized beam splitter and hologram.

    Science.gov (United States)

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications.

  7. Vortex-lattice pinning and critical current density in anisotropic high-temperature superconductors

    Science.gov (United States)

    Li, Yingxu; Li, Xiangyu; Kang, Guozheng; Gao, Yuanwen

    2016-10-01

    The anisotropy of critical current density is an impressive manifestation in the physics of high-temperature superconductors. We develop an analytical characterization of anisotropic flux-lattice pinning and critical current density in a system of random point defects. The effect of superconducting anisotropy on the pinning force and critical current density is formulated. The in-plane/out-of-plane anisotropy and microscopic characteristic lengths are incorporated in the field and angular dependence of the critical current density. This is helpful in understanding the physical essence of the scaling behavior in the experiments for critical current anisotropy. We discuss the role of strong and weak point defects in the anisotropic flux-lattice pinning. Relevance of the theory to the critical-state model is dictated as well.

  8. VizieR Online Data Catalog: VVV high amplitude NIR variable stars (Contreras Pena+, 2017)

    Science.gov (United States)

    Contreras Pena, C.; Lucas, P. W.; Minniti, D.; Kurtev, R.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Kumar, M. S. N.; Thompson, M. A.; Gledhill, T.; Terzi, R.; Froebrich, D.; Caratti o Garatti, A.

    2017-08-01

    We present the single epoch ZYJHKs photometry obtained from VVV catalogues for 816 high-amplitude variables. We also present the amplitude of the Ks light curve of the objects derived from 2010-2015 photometry. For each object we also provide a provisional classification derived from the shape of the light curve. For objects found to be likely associated with SFRs we present an spectral index derived from the object's spectral energy distribution. (2 data files).

  9. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly ...

  10. Development of high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, J.; Sharma, M. L.; Ahuja, Aakash B.; Navathe, C. P.

    2014-06-01

    A high voltage pulse generator with variable amplitude (100-3000 V) and duration (100-2000 μs) has been designed and developed. The variable duration pulse has been generated by adopting a simple and novel technique of varying the turn off delay time of a high voltage Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based switch by varying external gate resistance. The pulse amplitude is made variable by adjusting biasing supply of the high voltage switch. The high voltage switch has been developed using a MOSFET based stack of 3 kV rating with switching time of 7 ns.

  11. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Internal friction mechanism of Fe-19Mn alloy at low and high strain amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shuke, E-mail: huangshuke@163.com [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Huang, Wenrong; Liu, Jianhui [Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Teng, Jin; Li, Ning; Wen, Yuhua [School of Manufacturing Science and Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2013-01-10

    Fe-Mn damping alloy, which can decrease the vibrating and noise effectively, will be widely applied to household appliances, automobiles, industrial facilities, etc. In this paper, the internal friction mechanism of Fe-19Mn alloy at low strain amplitude (10{sup -5} range) and high strain amplitude (10{sup -4} range) was investigated. The internal friction was measured using multifunction internal friction equipment and reversal torsion pendulum. The microstructure was observed using scanning electron microscopy. The phase transformation temperatures were determined using differential scanning calorimetry. The results indicated that the internal friction of Fe-19Mn alloy after solution treating was related to strain amplitude. The internal friction mechanism was believed to the movements of four damping sources ({epsilon}-martensite variant boundaries, stacking fault boundaries in {epsilon}-martensite and {gamma}-austenite, {gamma}/{epsilon} interfaces), which could be explained using the interactive movements of Shockley partial dislocations and point defects. At low strain amplitude (10{sup -5} range), the bowing out movements of Shockley partial dislocations are the main moving mode of generating internal friction. At high strain amplitude (10{sup -4} range), however, the breaking away movements of Shockley partial dislocations are the high internal friction mechanism of Fe-19Mn alloy.

  13. Single-crystal study of highly anisotropic CeNiGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A P; Kaczorowski, D; Bukowski, Z; Plackowski, T; Gofryk, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)

    2004-09-01

    High quality single crystals of CeNiGe{sub 2} have been investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity and thermoelectric power measurements, carried out along all three principal crystallographic directions. The compound is an antiferromagnetic Kondo system that orders magnetically at T{sub N} = 3.9 K and undergoes a spin structure rearrangement at T{sub 1} = 3.2 K. The magnetic behaviour is strongly anisotropic with the easy magnetic direction parallel to the crystallographic a-axis. The Kondo temperature and the total crystal field splitting are of the order of 20 and 100 K, respectively.

  14. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    OpenAIRE

    2009-01-01

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contracti...

  15. Highly anisotropic temperature balance equation and its asymptotic-preserving resolution

    CERN Document Server

    Lozinski, Alexei; Negulescu, Claudia

    2012-01-01

    This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge-Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter $0 < \\eps <1$, and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.

  16. Anisotropic high-field terahertz response of free-standing carbon nanotubes

    Science.gov (United States)

    Lee, Byounghwak; Mousavian, Ali; Paul, Michael J.; Thompson, Zachary J.; Stickel, Andrew D.; McCuen, Dalton R.; Jang, Eui Yun; Kim, Yong Hyup; Kyoung, Jisoo; Kim, Dai-Sik; Lee, Yun-Shik

    2016-06-01

    We demonstrate that unidirectionally aligned, free-standing multi-walled carbon nanotubes (CNTs) exhibit highly anisotropic linear and nonlinear terahertz (THz) responses. For the polarization parallel to the CNT axis, strong THz pulses induce nonlinear absorption in the quasi-one-dimensional conducting media, while no nonlinear effect is observed in the perpendicular polarization configuration. Time-resolved measurements of transmitted THz pulses and a theoretical analysis of the data reveal that intense THz fields enhance permittivity in carbon nanotubes by generating charge carriers.

  17. The analysis of high amplitude of potential oscillations near the hollow cathode of ion thruster

    Science.gov (United States)

    Qin, Yu; Xie, Kan; Guo, Ning; Zhang, Zun; Zhang, Cen; Gu, Zengjie; Zhang, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2017-05-01

    The influence of gas flow, current level, and different shapes of anode on the oscillation amplitude and the characteristics of the hollow cathode discharge were investigated. The average plasma potential, temporal measurements of plasma potential, ion density, the electron temperature, as well as waveforms of plasma potential for test conditions were measured. At the same time, the time-resolved images of the plasma plume were also recorded. The results show that the potential oscillations appear at high discharge current or low flow rate. The potential oscillation boundaries, the position of maximum amplitude of plasma potential, and the position where the highest ion density was observed, were found. Both of the positions are affected by different shapes of anode configurations. This high amplitude of potential oscillations is ionization-like instabilities. The xenon ions ionized in space was analyzed for the fast potential rise and spatial dissipation of the space xenon ions was the reason for the gradual potential delay.

  18. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  19. High performance single-error-correcting quantum codes for amplitude damping

    CERN Document Server

    Shor, Peter W; Smolin, John A; Zeng, Bei

    2009-01-01

    We construct families of high performance quantum amplitude damping codes. All of our codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension. One family is built from nonlinear error-correcting codes for classical asymmetric channels, with which we systematically construct quantum amplitude damping codes with parameters better than any prior construction known for any block length n > 7 except n=2^r-1. We generalize this construction to employ classical codes over GF(3) with which we numerically obtain better performing codes up to length 14. Because the resulting codes are of the codeword stabilized (CWS) type, easy encoding and decoding circuits are available.

  20. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...

  1. In search of objective manometric criteria for colonic high-amplitude propagated pressure waves

    NARCIS (Netherlands)

    De Schryver, AMP; Samsom, M; Smout, AJPM

    2002-01-01

    The aims of this study were to explore all characteristics of high-amplitude propagated contractions (HAPCs) that would allow them to be distinguished from nonHAPC colonic pressure waves, and to develop computer algorithms for automated HAPC detection. Colonic manometry recordings obtained from 24 h

  2. Numerical modeling of dune progression in a high amplitude meandering channel

    Science.gov (United States)

    Laboratory experiments carried out by Abad and Garcia (2009) in a high-amplitude Kinoshita meandering channel show bed morphodynamics to comprise steady (local scour and deposition) and unsteady (migrating bedforms) components. The experiments are replicated with a numerical model. The sediment tran...

  3. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.

    Science.gov (United States)

    Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K

    2014-09-01

    Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C.

  4. Kinetic freeze-out from an anisotropic fluid in high-energy heavy-ion collisions: particle spectra, Hanbury Brown-Twiss radii, and anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Borghini, Nicolas; Feld, Steffen; Lang, Christian [Universitaet Bielefeld, Fakultaet fuer Physik, Postfach 100131, Bielefeld (Germany)

    2015-06-15

    Dissipative relativistic fluid-dynamical descriptions of the extended fireball formed in high-energy heavy-ion collisions are quite successful; yet they require a prescription for converting the fluid into particles. We present arguments in favour of using a locally anisotropic momentum distribution for the particles emitted from the fluid, so as to smooth out discontinuities introduced by the usual conversion prescriptions. Building on this ansatz, we investigate the effect of the asymmetry on several observables of heavy-ion physics. (orig.)

  5. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    Directory of Open Access Journals (Sweden)

    Yuki Fujitsuka

    2012-01-01

    Full Text Available A functional carbon-nanotube (CNT-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC field was hypothesized to increase the electrical conductivity and give the paper an anisotropic characteristic. Experimental results showed that a nonionic surfactant was not suitable as a CNT dispersant for fabricating aligned-CNT composite paper and that catechin with its six-membered rings and hydrophilic groups was suitable. Observation by scanning electron microscopy of samples prepared using catechin showed that the CNTs were aligned in the direction of the AC field on the paper fibers. Measurement of the electric conductivity showed that the surface resistance was different between the direction of the aligned CNTs (high conductivity and that of verticality (low. The conductivity of the aligned-CNT-composite paper samples was higher than that of nonaligned samples. This unique and functional paper, which has high and anisotropic conductivity, is applicable to a conductive material to control the direction of current.

  6. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.

    Science.gov (United States)

    Rikanati, A; Oron, D; Sadot, O; Shvarts, D

    2003-02-01

    Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.

  7. Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors

    Science.gov (United States)

    Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.

    2016-04-01

    A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.

  8. Non-Linear High Amplitude Oscillations in Wave-shaped Resonators

    Science.gov (United States)

    Antao, Dion; Farouk, Bakhtier

    2011-11-01

    A numerical and experimental study of non-linear, high amplitude standing waves in ``wave-shaped'' resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible axisymmetric computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. Working fluids (Helium, Nitrogen and R-134a) at various operating pressures are studied. The experiments are performed in a constant cross-section cylindrical resonator in atmospheric pressure nitrogen and helium to provide model validation. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling. The work reported is supported by the US National Science Foundation under grant CBET-0853959.

  9. Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching and Their Field Emission Current Characteristics

    Science.gov (United States)

    Kanechika, Masakazu; Mitsushima, Yasuichi

    2000-12-01

    A new process to fabricate a silicon needle, whose tip radius is about 5 nm and aspect ratio is about 7, was developed. The silicon needles were fabricated by highly selective anisotropic dry etching. The etching mask was oxygen precipitation, which was formed by nitrogen ion implantation and the subsequent oxidation. The process is simple enough to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits. The density of the silicon needle can be controlled by adjusting the dose for nitrogen ion implantation. The position of the silicon needle can be controlled by adjusting the position for nitrogen ion implantation, because silicon needles are formed only in the nitrogen ion implantation area. Furthermore, using these silicon needles as micro emitters, a field emission diode was fabricated. The Fowler-Nordheim plot shows that the field around the tip of the silicon needles was highly enhanced.

  10. Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy

    Science.gov (United States)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-11-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  11. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  12. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  13. Analysis of the Petersen Diagram of Double-Mode High-Amplitude {\\delta} Scuti Stars

    CERN Document Server

    Furgoni, Riccardo

    2016-01-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude {\\delta} Scuti stars listed in the AAVSO's International Variable Star Index up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  14. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    OpenAIRE

    Etube, L. S.

    1998-01-01

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to 70OMPa. These steels are thought to exhib...

  15. High-resolution, high-reflectivity operation of lamellar multilayer amplitude gratings: identification of the single-order regime

    NARCIS (Netherlands)

    Kozhevnikov, I. V.; van der Meer, R.; Bastiaens, H. M. J.; Boller, K. J.; F. Bijkerk,

    2010-01-01

    High resolution while maintaining high peak reflectivities can be achieved for Lamellar Multilayer Amplitude Gratings (LMAG) in the soft-x-ray (SXR) region. Using the coupled waves approach (CWA), it is derived that for small lamellar widths only the zeroth diffraction order needs to be considered f

  16. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Science.gov (United States)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  17. High-resolution NMR of anisotropic samples with spinning away from the magic angle

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, Dimitris; Meriles, Carlos A.; Martin, Rachel W.; Pines, Alexander

    2003-03-31

    High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.

  18. Nanostructured SnS with inherent anisotropic optical properties for high photoactivity

    Science.gov (United States)

    Patel, Malkeshkumar; Chavda, Arvind; Mukhopadhyay, Indrajit; Kim, Joondong; Ray, Abhijit

    2016-01-01

    In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the potential to tap the solar energy by unlocking the functional properties at the nanoscale. Tin(ii) sulfide is a fascinating solar energy material due to its anisotropic material properties. In this manuscript, we report on exploiting the 2D structure modulated optical properties of nanocrystalline SnS thin film synthesized by chemical spray pyrolysis using ambient transport in the harvesting of solar energy. We obtained the nanostructured SnS with well-preserved dimensions and morphologies with one step processing. The work demonstrates that the intrinsically ordered SnS nanostructure on FTO coated glass can tap the incident radiation in an efficient manner. The structure-property relationship to explain the photo-response in nanocrystalline-SnS is verified experimentally and theoretically. The novel design scheme for antireflection coating along with the anisotropic properties of SnS is conceived for realizing a PEC cell. The developed PEC cell consists of a SnS photoanode which shows considerably high photocurrent density of 7 mA cm-2 with aqueous media under AM 1.5G, 100 mW cm-2 exposure with notably stable operation. Electrochemical impedance spectroscopy revealed that a non-ideal capacitive behavior as well as drift assisted transport across the solid-state interface is responsible for such a high photo-current density in the nanocrystalline-SnS photoanode.In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the

  19. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    Science.gov (United States)

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  20. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.

  1. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    Science.gov (United States)

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  2. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  3. Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)

    Science.gov (United States)

    Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.

    2009-08-01

    Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.

  4. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  5. High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters

    CERN Document Server

    Valuch, D

    2004-01-01

    Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...

  6. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  7. Effects of thrust amplitude and duration of high velocity low amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2013-01-01

    OBJECTIVE Mechanical characteristics of high velocity low amplitude spinal manipulations (HVLA-SM) can be variable. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether an HVLA-SM’s thrust amplitude or duration altered neural responsiveness of lumbar muscle spindles to either vertebral movement or position. METHODS Anesthetized cats (n=112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3mm) they received. Cats in each cohort received 8 thrust durations (0–250ms). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (MIF) during the baseline period preceding the ramps (ΔMIFresting), during ramp movements (ΔMIFmovement), and with the vertebra held in the new position (ΔMIFposition) were compared. RESULTS Thrust duration had a small but statistically significant effect on ΔMIFresting at all six thrust amplitudes compared to control (0ms thrust duration). The lowest amplitude thrust displacement (1mm) increased ΔMIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ΔMIFresting was not consistent and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ΔMIFmovement and ΔMIFposition were not significantly different from control. Conclusion Relatively low amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was

  8. Effects of thrust amplitude and duration of high-velocity, low-amplitude spinal manipulation on lumbar muscle spindle responses to vertebral position and movement.

    Science.gov (United States)

    Cao, Dong-Yuan; Reed, William R; Long, Cynthia R; Kawchuk, Gregory N; Pickar, Joel G

    2013-02-01

    Mechanical characteristics of high-velocity, low-amplitude spinal manipulations (HVLA-SMs) can vary. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor's local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether variation in an HVLA-SM's thrust amplitude and duration alters the neural responsiveness of lumbar muscle spindles to either vertebral movement or position. Anesthetized cats (n = 112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3 mm) they received. Cats in each cohort received 8 thrust durations (0-250 milliseconds). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (∆MIF) during the baseline period preceding the ramps (∆MIFresting), during ramp movement (∆MIFmovement), and with the vertebra held in the new position (∆MIFposition) were compared. Thrust duration had a small but statistically significant effect on ∆MIFresting at all 6 thrust amplitudes compared with control (0-millisecond thrust duration). The lowest amplitude thrust displacement (1 mm) increased ∆MIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ∆MIFresting was not consistent, and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ∆MIFmovement and ∆MIFposition were not significantly different from control. Relatively low-amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust

  9. First Results with a Fast Phase and Amplitude Modulator for High Power RF Application

    CERN Document Server

    Frischholz, Hans; Valuch, D; Weil, C

    2004-01-01

    In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.

  10. Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation Systems

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen; Wang Yao; Lajos Hanzo

    2010-01-01

    A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.

  11. Thermal Characterization of Anisotropic Materials at High Temperature Through Integral Methods and Localized Pulsed Technique

    Science.gov (United States)

    Souhar, Youssef; Rémy, Benjamin; Degiovanni, Alain

    2013-02-01

    New applications in aerospace or energy industries require the development of new materials at high temperature exhibiting high anisotropic properties. Their thermal characterization requires the development of specific experimental benches. In this article, a new experiment is presented which allows one to estimate through only one experiment the three diffusivities of an orthotropic material at high temperatures without the need of vacuum. The estimation procedure is very fast and accurate due to using, on the one hand, integral transforms that allows one to get rid of the spatial distribution of the flash energy, and on the other hand, an infrared camera that provides a large amount of experimental data. And thanks to the use of a nonlinear parameter estimation and estimations made directly on Fourier transforms of the temperature field, the heat flux stimulation is no longer necessary to be Dirac in time. To validate the method and the experimental facility, measurements were performed on a Ti-6Al-4V alloy from room temperature up to 1000 ^{circ }{ C }. In addition, particular attention has been paid to the thermal coupling that can appear between the low conducting materials and the air, and a criterion has been established to determine if the in-plane thermal diffusivity measurements can be affected or not.

  12. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  13. Phase field model for strong anisotropy of kinetic and highly anisotropic interfacial energy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; HOU Hua; CHENG Jun

    2006-01-01

    A phase-field model was established for simulating pure materials, which was calculated effectively and taken into account the strong anisotropy of kinetic and highly anisotropic interfacial energy. The anisotropy (strong kinetic and highly interfacial energy) of various degrees was simulated with numerical calculation. During a variety of interfacial anisotropy coefficient, equilibrium crystal shape varies from smoothness to corner. There has a critical value during the course of the transformation. When the anisotropy coefficenct is lower than the critical value, the growth velocity v increases monotonically with the increase of it. Whereas the anisotropy coefficent is higher than the critical value, the growth velocity decreases with the increases of it. During a variety of degree of supercooling, the growth velocity is under control from thermal diffusion to kinetics. Under the control of thermal diffusion, the growth velocity increases with the increase of degree of supercooling and tip radius R decreases with the increase of temperature. Under the control of kinetics, with the increase of degree of supercooling both V and R, which can not fit the traditional microcosmic theory.

  14. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    Science.gov (United States)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  15. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    Science.gov (United States)

    Perton, M.; Blouin, A.; Monchalin, J.-P.

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  16. Observation of an Even-odd Anisotropic Transport in High Landau Levels

    Science.gov (United States)

    Liu, Guangtong; Yang, Changli; Wang, Qin; Zhu, Yuying; Pang, Yuan; Fan, Jie; Jing, Xiunian; Ji, Zhongqing; Lu, Li; Du, Rui-Rui; Pfeiffer, Loren; West, Ken; Insititute of Physics, Chinese Academy of Sciences Team; International CenterQuantum Materials, Peking University, Beijing 100871, China Collaboration; Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA Collaboration

    Magnetotransport experiments (including tilt fields) were performed on ultrahigh mobility L-shaped Hall-bar samples of GaAs/AlGaAs quantum wells. The low-temperature longitudinal resistance Rxx data demonstrate that a striking even-odd anisotropic transport exists only along the [110] direction at half filling in N >= 2 high Landau levels. Although the origin for the peculiar even-odd anisotropy remains unclear, we propose that the coupling strength between electrons within the same Landau level and between the neighboring two Landau levels should be considered in future studies. The tilt field data show that the in-plane field can suppress the formation of both bubble and stripe phases. The work at IOP was supported by the National Basic Research Program of China under the Grant No. 2014CB920904 and 2011CB921702. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420.

  17. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    Energy Technology Data Exchange (ETDEWEB)

    Detmold, Will; Detmold, William; Orginos, Konstantinos; R. Beane, Silas; C. Luu, Thomas; Parreno, Assumpta; J. Savage, Martin; Torok, Aaron; Walker-Loud, Andre

    2009-01-01

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of $\\Nprops$ sets of measurements are made using $\\Ncfgs$ gauge configurations of size $20^3\\times 128$ with an anisotropy parameter $\\xi= b_s/b_t = 3.5$, a spatial lattice spacing of $b_s=0.1227\\pm 0.0008~{\\rm fm}$, and pion mass of $\\mpi\\sim 390~{\\rm MeV}$. Ground state baryons masses are extracted with fully quantified uncertainties that are at or below the $\\sim 0.2\\%$-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the $N\\pi$ threshold and, therefore, the isos

  18. Analysis and simulation of high strain compression of anisotropic open-cell elastic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to the periodicity and symmetry of the model in the whole space.Using the half-strut element and elastic deflection theory to analyze the mechanical behavior as were adopted in the previous studies,this paper obtained the theoretical expressions for the compressive stress and strain as well as the corresponding curves in the rise and transverse directions.In addition,the theoretical results were examined by the finite element simulation.Results indicated that the theoretical analysis was very close to the finite element simulation when the strain was not too high,which confirmed the validity of theoretical analysis.At the same time,the anisotropy was shown to have a significant effect on the mechanical properties of open-cell foams.As the anisotropy ratio increased,the compressive stress was improved in the rise direction but dropped in the transverse direction under the same strain.

  19. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Sirbu, L.; Enachi, M.; Tiginyanu, I. M.; Skuratov, V. A.

    2015-04-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index neff and compared to effective media approximations.

  20. Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field

    Science.gov (United States)

    Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team

    2016-11-01

    The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).

  1. Thermal effects on seeded finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Held, M; Madsen, J; Kendl, A

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that a temperature perturbation increases the maximal blob velocity and that a finite Larmor radius contributes to highly compact blob structures with finite poloidal motion. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the ion diamagnetic to the perpendicular vorticity, exceeds unity. The maximal blob velocities excellently agree with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the radial transport and verify the here presented empirical scaling law for the maximal radia...

  2. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  3. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  4. Squeeze Film Dampers Executing Small Amplitude Circular-Centered Orbits in High-Speed Turbomachinery

    Directory of Open Access Journals (Sweden)

    Sina Hamzehlouia

    2016-01-01

    Full Text Available This work represents a pressure distribution model for finite length squeeze film dampers (SFDs executing small amplitude circular-centered orbits (CCOs with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.

  5. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    Science.gov (United States)

    Etube, Linus Sone

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast

  6. The research of high-directive anisotropic magnetic metamaterial antenna loaded with frequency-selective surface

    Institute of Scientific and Technical Information of China (English)

    Sun Yong-Zhi; Ran Li-Xin; Peng Liang; Wang Wei-Guang; Li Ting; Zhao Xu; Chen Qiu-Lin

    2009-01-01

    This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10GHz, achieving a 2.1 degree increment in half power beam width, and a 7.3dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.

  7. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs.

    Science.gov (United States)

    Liu, Kai; Cheng, Chun; Cheng, Zhenting; Wang, Kevin; Ramesh, Ramamoorthy; Wu, Junqiao

    2012-12-12

    Various mechanisms are currently exploited to transduce a wide range of stimulating sources into mechanical motion. At the microscale, simultaneously high amplitude, high work output, and high speed in actuation are hindered by limitations of these actuation mechanisms. Here we demonstrate a set of microactuators fabricated by a simple microfabrication process, showing simultaneously high performance by these metrics, operated on the structural phase transition in vanadium dioxide responding to diverse stimuli of heat, electric current, and light. In both ambient and aqueous conditions, the actuators bend with exceedingly high displacement-to-length ratios up to 1 in the sub-100 μm length scale, work densities over 0.63 J/cm(3), and at frequencies up to 6 kHz. The functionalities of actuation can be further enriched with integrated designs of planar as well as three-dimensional geometries. Combining the superior performance, high durability, diversity in responsive stimuli, versatile working environments, and microscale manufacturability, these actuators offer potential applications in microelectromechanical systems, microfluidics, robotics, drug delivery, and artificial muscles.

  8. Maslov Shear-Waveforms in Highly Anisotropic Shales and Implications for Shear-Wave Splitting Analyses Formes d'onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de biréfringence des ondes transversales

    Directory of Open Access Journals (Sweden)

    Caddick J.

    2006-12-01

    Full Text Available Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platey nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslov asymptotic theory (MAT. This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding where ray theory amplitudes are unstable. Asymptotic ray theory (ART is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Raypaths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line. One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. Les argiles sont les roches sédimentaires les plus répandues dans l'environnement des hydrocarbures, et forment souvent la roche mère et la roche des pièges pétrolifères. En raison de la structure en plaques des grains, les argiles sont g

  9. Modeling anisotropic plasticity: Eulerian hydrocode applications of high strain-rate deformation processes

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, S.P.; Burkett, M.W.; Maudlin, P.J.

    1997-05-01

    Previously developed constitutive models and solution algorithms for anisotropic elastoplastic material strength are implemented in the two-dimensional MESA hydrodynamics code. Quadratic yield functions fitted from polycrystal simulations for a metallic hexagonal-close-packed structure are utilized. An associative flow strength formulation incorporating these yield functions is solved using a geometric normal return method. A stretching rod problem is selected to investigate the effects of material anisotropy on a tensile plastic instability (necking). The rod necking rate and topology are compared for MESA simulations performed for both isotropic and anisotropic cases utilizing the Mechanical Threshold Stress flow stress model.

  10. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  11. High Capacity Phase/Amplitude Modulated Optical Communication Systems and Nonlinear Inter-Channel Impairments

    Science.gov (United States)

    Tavassoli, Vahid

    This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.

  12. Pulsation analysis of the high amplitude δ Scuti star CW Serpentis

    Science.gov (United States)

    Niu, Jia-Shu; Fu, Jian-Ning; Zong, Wei-Kai

    2013-10-01

    Time-series photometric observations were made for the high amplitude δ Scuti star CW Ser between 2011 and 2012 at the Xinglong Station of National Astronomical Observatories, Chinese Academy of Sciences. After performing the frequency analysis of the light curves, we confirmed the fundamental frequency of f = 5.28677 c d-1, together with seven harmonics of the fundamental frequency, which are newly detected. No additional frequencies were detected. The O — C diagram, produced with the 21 newly determined times of maximum light combined with those provided in the literature, helps to obtain a new ephemeris formula of the times of maximum light with the pulsation period of 0.189150355 ± 0.000000003 d.

  13. Highly anisotropic rhenium(IV) complexes: new examples of mononuclear single-molecule magnets.

    Science.gov (United States)

    Martínez-Lillo, José; Mastropietro, Teresa F; Lhotel, Elsa; Paulsen, Carley; Cano, Joan; De Munno, Giovanni; Faus, Juan; Lloret, Francesc; Julve, Miguel; Nellutla, Saritha; Krzystek, J

    2013-09-18

    The rhenium(IV) complex (NBu4)2[ReBr4(ox)] (1) (ox = oxalate and NBu4(+) = tetra-n-butylammonium cation) has been prepared and its crystal structure determined by X-ray diffraction. The structure is made up of discrete [ReBr4(ox)](2-) anions and bulky NBu4(+) cations. Each [ReBr4(ox)](2-) anion is surrounded by six NBu4(+) cations, which preclude any significant intermolecular contact between the anionic entities, the shortest rhenium···rhenium distance being 9.373(1) Å. Variable temperature dc and ac magnetic susceptibility measurements and field-dependent magnetization experiments on polycrystalline samples of 1 reveal the occurrence of highly anisotropic magnetically isolated Re(IV) centers (S(Re) = 3/2), which exhibit slow relaxation of the magnetization at very low temperatures in a dc field. Ac measurements conducted on a polycrystalline sample of the complex (NBu4)2[ReCl4(ox)] (2) [compound isostructural to 1 whose structure and dc magnetic susceptibility study were previously reported in Tomkiewicz, A.; Bartczak, T. J.; Kruszyński, R.; Mroziński, J. J. Mol. Struct. 2001, 595, 225] show a similar behavior, both complexes thus constituting new examples of mononuclear single-molecule magnets. High-frequency and -field electron paramagnetic resonance on polycrystalline samples of 1 and 2 and on single crystals of 2 allowed for the determination for the first time of the negative sign and confirmed a significant magnitude and rhombicity (E/D) of the zero-field splitting tensor of the [ReCl4(ox)](2-) and [ReBr4(ox)](2-) centers, originating from a combination of spin-orbit coupling and low molecular symmetry. D and E values of 1 and 2 were estimated through magnetization measurements and theoretically calculated through complete active space and density functional theory methodologies.

  14. High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A

    2010-01-19

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.

  15. High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting

  16. Noninvasive respiratory support of juvenile rabbits by high-amplitude bubble continuous positive airway pressure.

    Science.gov (United States)

    Diblasi, Robert M; Zignego, Jay C; Tang, Dennis M; Hildebrandt, Jack; Smith, Charles V; Hansen, Thomas N; Richardson, C Peter

    2010-06-01

    Bubble continuous positive airway pressure (B-CPAP) applies small-amplitude, high-frequency oscillations in airway pressure (DeltaPaw) that may improve gas exchange in infants with respiratory disease. We developed a device, high-amplitude B-CPAP (HAB-CPAP), which provides greater DeltaPaw than B-CPAP provides. We studied the effects of different operational parameters on DeltaPaw and volumes of gas delivered to a mechanical infant lung model. In vivo studies tested the hypothesis that HAB-CPAP provides noninvasive respiratory support greater than that provided by B-CPAP. Lavaged juvenile rabbits were stabilized on ventilator nasal CPAP. The animals were then supported at the same mean airway pressure, bias flow, and fraction of inspired oxygen (FiO2) required for stabilization, whereas the bubbler angle was varied in a randomized crossover design at exit angles, relative to vertical, of 0 (HAB-CPAP0; equivalent to conventional B-CPAP), 90 (HAB-CPAP90), and 135 degrees (HAB-CPAP135). Arterial blood gases and pressure-rate product (PRP) were measured after 15 min at each bubbler angle. Pao2 levels were higher (p<0.007) with HAB-CPAP135 than with conventional B-CPAP. PaCO2 levels did not differ (p=0.073) among the three bubbler configurations. PRP with HAB-CPAP135 were half of the PRP with HAB-CPAP0 or HAB-CPAP90 (p=0.001). These results indicate that HAB-CPAP135 provides greater respiratory support than conventional B-CPAP does.

  17. Measuring the Energy Release of Low Amplitude Impact of High Explosive Events

    Science.gov (United States)

    Straight, J. W.; Idar, D. J.; Smith, L.; Osborn, M. A.; Viramontes, L. E.; Chavez, P. J.

    2004-07-01

    Predicting the degree of violence of high explosive (HE) reactions for a given event is desirable for risk assessments and a goal for computational models. Historically, different types of low amplitude impact tests on HE specimens have been performed to determine the critical impact-velocity threshold for high explosive violent reactions (HEVR). Additionally, the energy release relative to a steady-state detonation is also desirable for assessing the potential outcome of an accidental event. Traditionally, blast gauge measurements have been used to measure the overpressure of the HEVR event at a defined distance. This paper summarizes the use of this active technique coupled with a passive technique to derive average energy release curves for Modified Steven tests. A classic ballistic pendulum design was employed with the traditional blast gauge method. Calibration of the ballistic pendulum involved three elements. First, two mechanical measurements were related to the actual peak swing of the pendulum. Second, the general nature of the swing versus energy release curve was estimated. Two different approaches were used to estimate the momenta as a function of HE energy release using the Gurney relationships for an unsymmetrical sandwich. Finally, both techniques were simultaneously benchmarked with PBX 9501 calibration charges. Test results demonstrate the utility of using coupled diagnostic methods for low amplitude insult testing. Each set of data was fit to derive a working curve for the determination of the average energy release for HEVR event based on mass relative to a steady-state detonation. These tests results and working curve derivations are presented.

  18. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    Science.gov (United States)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of gas-switch and available capacitor recovery time.

  19. MHz Gravitational Waves from Short-term Anisotropic Inflation

    CERN Document Server

    Ito, Asuka

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around $10^{-26}$ ~ $10^{-27}$ are copiously produced in high-frequency bands 10MHz~100MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  20. MHz gravitational waves from short-term anisotropic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Department of Physics, Kobe University,Kobe 657-8501 (Japan)

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  1. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  2. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    Energy Technology Data Exchange (ETDEWEB)

    Will Detmold,Konstantinos Orginos,Silas R. Beane,Will Detmold,William Detmold,Thomas C. Luu,Konstantinos Orginos,Assumpta Parreno,Martin J. Savage,Aaron Torok,Andre Walker-Loud

    2009-06-01

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge configurations of size 20^3 x 128 with an anisotropy parameter \\xi= b_s/b_t = 3.5, a spatial lattice spacing of b_s=0.1227\\pm 0.0008 fm, and pion mass of m_\\pi ~ 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N\\pi threshold and, therefore, the isospin-1/2 \\pi N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

  3. High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A

    2009-03-23

    We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using 1194 gauge configurations of size 20{sup 3} x 128 with an anisotropy parameter {zeta} = b{sub s}/b{sub t} = 3.5, a spatial lattice spacing of b{sub s} = 0.1227 {+-} 0.0008 fm, and pion mass of M{sub {pi}} {approx} 390 MeV. Ground state baryons masses are extracted with fully quantified uncertainties that are at or below the {approx} 0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N{pi} threshold and, therefore, the isospin-1/2 {pi}N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.

  4. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  5. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  6. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.

    Science.gov (United States)

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-04-15

    Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. ARTc: Anisotropic reflectivity and transmissivity calculator

    Science.gov (United States)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  8. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    Science.gov (United States)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-08-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  9. Gaseous bubble oscillations in anisotropic non-Newtonian fluids under influence of high-frequency acoustic field

    Science.gov (United States)

    Golykh, R. N.

    2016-06-01

    Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.

  10. Metal-organic pathways for anisotropic growth of a highly symmetrical crystal structure: example of the fcc Ni.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Collière, Vincent; Amiens, Catherine; Fau, Pierre; Kahn, Myrtil L

    2013-11-05

    The control of the metallic nanocrystal shape is of prime importance for a wide variety of applications. We report a detailed research work on metal-organic chemical routes for the synthesis of a highly symmetrical crystal structure. In particular, this study shows the key parameters ensuring the anisotropic growth of nickel nanostructures (fcc crystal). Numerous reaction conditions are investigated (precursors, solvents, temperature, reducing agents, reaction time, and types and ratios of surfactants, such as alkyl amines, carboxylic acids, and phosphine oxides), and their effects on the size and shape of the final product are reported. The role of the growth modifiers and the structuring of the reaction media on the anisotropic growth are demonstrated. This metal-organic approach generates several novel anisotropic nanostructures in a wide size range depending on the reaction conditions. In this way, nanomaterials with reproducible size, shape, and composition are obtained with good yield. Transmission electron microscopy techniques (TEM and HRTEM) are the principal methods for monitoring the morphology.

  11. A staggered-grid high-order finite-difference modeling for elastic wave field in arbitrary tilt anisotropic media

    Institute of Scientific and Technical Information of China (English)

    PEI Zheng-lin; WANG Shang-xu

    2005-01-01

    The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D),three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its staggered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of numerical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.

  12. Effect of Interplanetary Transients on Cosmic Ray Anisotropic Variations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present work the cosmic ray intensity data recorded with ground-based neutron monitor at Deep River has investigated taking into account the associated interplanetary magnetic field and solar wind plasma data during 1981-1994. A large number of days having abnormally high/low amplitudes for successive number of five or more days as compared to annual average amplitude of diurnal anisotropy have been taken as high/low amplitude anisotropic wave train events (HAE/LAE). The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth. The High-Speed Solar Wind Streams (HSSWS) do not play any significant role in causing these types of events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic ray decreases. Hα solar flares have a good positive correlation with both amplitude and direction of the anisotropy for HAEs,whereas PMSs have a good positive correlation with both amplitude and direction of the anisotropy for LAEs.The source responsible for these unusual anisotropic wave trains in CR has been proposed.

  13. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  14. Short-lived high-amplitude cooling on Svalbard during the Dark Ages

    Science.gov (United States)

    van der Bilt, Willem; D`Andrea, William; Bakke, Jostein; Balascio, Nicholas; Werner, Johannes; Hoek, Wim

    2016-04-01

    As the paradigm of a stable Holocene climate has shifted, an increasing number of high-resolution proxy timeseries reveal dynamic conditions, characterized by high-amplitude climate shifts. Some of these events occurred during historical times and allow us to study the interaction between environmental and cultural change, providing valuable lessons for the near future. These include the Dark Ages Cold Period (DACP) between 300 and 800 AD, a period marked by political upheaval and climate instability that remains poorly investigated. Here, we present two temperature reconstructions from the High Arctic Svalbard Archipelago. To this end, we applied the established alkenone-based UK37 paleothermometer on sediments from two lakes on western Spitsbergen, Lake Hajeren and Lake Hakluyt. The Arctic is presently warming twice as fast as the global average and proxy data as well as model simulations suggest that this amplified response is characteristic for regional climate. The Arctic therefore provides a uniquely sensitive environment to study relatively modest climate shifts, like the DACP, that may not be adequately captured at lower-latitude sites. Owing to undisturbed sediments, a high sampling resolution and robust chronological control, the presented reconstructions resolve the attendant sub-centennial-scale climate shifts. Our findings suggest that the DACP marks a cold spell within the cool Neoglacial period, which started some 4 ka BP on Svalbard. Close investigation reveals a distinct temperature minimum around 500 AD that is reproduced in another alkenone-based temperature reconstruction from a nearby lake. At ± 1.75 °C, cooling underlines the sensitivity of Arctic climate as well as the magnitude of the DACP.

  15. Force balance and deformation characteristics of anisotropic Arctic sea ice (a high resolution study)

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.; Tsamados, M.

    2016-12-01

    The spatial distribution of Arctic sea ice arises from its deformation, driven by external momentum forcing, thermodynamic growth and melt. The deformation of Arctic sea ice is observed to have structural alignment on a broad range of length scales. By considering the alignment of diamond-shaped sea ice floes, an anisotropic rheology (known as the Elastic Anisotropic Plastic, EAP, rheology) has been developed for use in a climate sea ice model. Here we present investigations into the role of anisotropy in determining the internal ice stress gradient and the complete force balance of Arctic sea ice using a state-of-the-art climate sea ice model. Our investigations are focused on the link between external imposed dynamical forcing, predominantly the wind stress, and the emergent properties of sea ice, including its drift speed and thickness distribution. We analyse the characteristics of deformation events for different sea ice states and anisotropic alignment over different regions of the Arctic Ocean. We present the full seasonal stress balance and sea ice state over the Arctic ocean. We have performed 10 km basin-scale simulations over a 30-year time scale, and 2 km and 500 m resolution simulations in an idealised configuration. The anisotropic EAP sea ice rheology gives higher shear stresses than the more customary isotropic EVP rheology, and these reduce ice drift speed and mechanical thickening, particularly important in the Archipelago. In the central Arctic the circulation of sea ice is reduced allowing it to grow thicker thermodynamically. The emergent stress-strain rate correlations from the EAP model suggest that it is possible to characterise the internal ice stresses of Arctic sea ice from observable basin-wide deformation and drift patterns.

  16. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  17. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    Science.gov (United States)

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation.

  18. Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster.

    Science.gov (United States)

    Rousseau, K; Atcha, Z; Denton, J; Cagampang, F R A; Ennos, A R; Freemont, A J; Loudon, A S I

    2005-09-01

    Recent studies have suggested that the adipocyte-derived hormone, leptin, plays a role in the regulation of metabolism. Here, we tested this hypothesis in the seasonally breeding Siberian hamster, as this species exhibits profound seasonal changes in adiposity and circulating leptin concentrations driven by the annual photoperiodic cycle. Male hamsters were kept in either long (LD) or short (SD) photoperiods. Following exposure to short photoperiods for 8 weeks animals exhibited a significant weight-loss and a 16-fold reduction of serum leptin concentrations. At Week 9, animals in both photoperiods were infused with leptin or PBS via osmotic mini-pump for 14 days. Chronic leptin infusion mimicked LD-like concentrations in SD-housed animals and caused a further decline in body weight and adipose tissue. In LD-housed animals, leptin infusion resulted in a significant elevation of serum concentrations above natural LD-like levels, but had no discernable effect on body weight or overall adiposity. Both bending and compression characteristics and histomorphometric measurements of trabecular bone mass were unaltered by leptin treatment or photoperiod. Our data therefore show that despite a high natural amplitude cycle of leptin, this hormone has no apparent role in the regulation of bone metabolism, and therefore do not support recent propositions that this hormone is an important component in the metabolism of bone tissue.

  19. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Corinne Jud

    Full Text Available Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1. We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.

  20. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A

    2009-05-05

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}} {approx} 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the {Xi}{sup 0}{Xi}{sup 0}n system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {Xi}{sup 0}{Xi}{sup 0}n} = 3877.9 {+-} 6.9 {+-} 9.2 {+-} 3.3 MeV corresponding to an energy-shift due to interactions of {delta}E{sub {Xi}{sup 0}{Xi}{sup 0}n} = E{sub {Xi}{sup 0}{Xi}{sup 0}n} - 2M{sub {Xi}{sup 0}} - M{sub n} = 4.6 {+-} 5.0 {+-} 7.9 {+-} 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  1. High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Andre Walker-Loud, Will Detmold, William Detmold, Aaron Torok, Konstantinos Orginos, Silas Beane, Tom Luu, Martin Savage, Assumpta Parreno

    2009-10-01

    We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{\\Xi^0\\Xi^0n}= 3877.9\\pm 6.9\\pm 9.2\\pm3.3 MeV corresponding to an energy-shift due to interactions of \\delta E_{\\Xi^0\\Xi^0n}=E_{\\Xi^0\\Xi^0n}-2M_{\\Xi^0} -M_n=4.6\\pm 5.0\\pm 7.9\\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.

  2. The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime

    Science.gov (United States)

    Featherstone, Nicholas A.; Hindman, Bradley W.

    2016-02-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.

  3. Anisotropic ion heating and tail generation during tearing mode magnetic reconnection in a high-temperature plasma.

    Science.gov (United States)

    Magee, R M; Den Hartog, D J; Kumar, S T A; Almagri, A F; Chapman, B E; Fiksel, G; Mirnov, V V; Mezonlin, E D; Titus, J B

    2011-08-05

    Complementary measurements of ion energy distributions in a magnetically confined high-temperature plasma show that magnetic reconnection results in both anisotropic ion heating and the generation of suprathermal ions. The anisotropy, observed in the C(+6) impurity ions, is such that the temperature perpendicular to the magnetic field is larger than the temperature parallel to the magnetic field. The suprathermal tail appears in the majority ion distribution and is well described by a power law to energies 10 times the thermal energy. These observations may offer insight into the energization process.

  4. Quantifying the high-velocity, low-amplitude spinal manipulative thrust: a systematic review.

    Science.gov (United States)

    Downie, Aron S; Vemulpad, Subramanyam; Bull, Peter W

    2010-09-01

    The purpose of this study was to systematically review studies that quantify the high-velocity, low-amplitude (HVLA) spinal thrust, to qualitatively compare the apparatus used and the force-time profiles generated, and to critically appraise studies involving the quantification of thrust as an augmented feedback tool in psychomotor learning. A search of the literature was conducted to identify the sources that reported quantification of the HVLA spinal thrust. MEDLINE-OVID (1966-present), MANTIS-OVID (1950-present), and CINAHL-EBSCO host (1981-present) were searched. Eligibility criteria included that thrust subjects were human, animal, or manikin and that the thrust type was a hand-delivered HVLA spinal thrust. Data recorded were single force, force-time, or displacement-time histories. Publications were in English language and after 1980. The relatively small number of studies, combined with the diversity of method and data interpretation, did not enable meta-analysis. Twenty-seven studies met eligibility criteria: 17 studies measured thrust as a primary outcome (13 human, 2 cadaver, and 2 porcine). Ten studies demonstrated changes in psychomotor learning related to quantified thrust data on human, manikin, or other device. Quantifiable parameters of the HVLA spinal thrust exist and have been described. There remain a number of variables in recording that prevent a standardized kinematic description of HVLA spinal manipulative therapy. Despite differences in data between studies, a relationship between preload, peak force, and thrust duration was evident. Psychomotor learning outcomes were enhanced by the application of thrust data as an augmented feedback tool. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  5. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    Science.gov (United States)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-02-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  6. Amplitude-integrated electroencephalographic activity is suppressed in preterm infants with high scores on illness severity

    NARCIS (Netherlands)

    ter Horst, Hendrik J.; Jongbloed-Pereboom, Marjolein; van Eykern, Leo A.; Bos, Arend F.

    2011-01-01

    Background: The neonatal acute physiology score. SNAP-II, reflects the severity of illness in newborns. In term newborns, amplitude integrated EEG (aEEG), is depressed following asphyxia. In preterm infants aEEG is discontinuous, and therefore more difficult to assess compared to term infants. Aims:

  7. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2015-07-01

    Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.

  8. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations

    Science.gov (United States)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2014-12-01

    The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations.

  9. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Held, Magnus; Wiesenberger, M.; Madsen, Jens

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic...

  10. A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers

    DEFF Research Database (Denmark)

    Wienberg, M; Glenthøj, Birte Yding; Jensen, K S

    2009-01-01

    processing. The present study was designed to replicate and further extent the results of our initial study on the effects of a low dose of escitalopram (10 mg) on MMN, PN and P300 amplitude. In a randomised, double-blind, cross-over experiment, 20 healthy male volunteers received either a single, orally...... administered dose of 15 mg escitalopram (a highly selective serotonin reuptake inhibitor (SSRI)) or placebo, after which their PN, MMN and P300 amplitude were assessed. Similar to our initial study with 10 mg escitalopram, 15 mg escitalopram significantly increased MMN, while it did not affect P300 amplitude....... In contrast to our initial study, however, the currently higher dose of escitalopram did not increase PN. Results support the view that a broad range of increased serotonergic activity enhances MMN, while the relationship between serotonin and PN seems more complex. The current study does not support...

  11. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.

    Science.gov (United States)

    Song, Na; Jiao, Dejin; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-01-25

    An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (λX) of the hybrid film to 12.6 W·m(-1)·K(-1), while the cross-plane thermal conductivity (λZ) shows a lower value of 0.042 W·m(-1)·K(-1) in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to λX/λZ = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.

  12. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William

    2012-01-01

    We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...

  13. Anisotropic States of Two-Dimensional Electrons in High Magnetic Fields

    Science.gov (United States)

    Ettouhami, A. M.; Doiron, C. B.; Klironomos, F. D.; Côté, R.; Dorsey, Alan T.

    2006-05-01

    We study the collective states formed by two-dimensional electrons in Landau levels of index n≥2 near half filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2 as in an ordinary Wigner crystal, and not like q5/2 as was found in previous studies where the energy of shear deformations was neglected.

  14. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Hennes

    2014-04-01

    Full Text Available Magnetically anisotropic as well as magnetic core–shell nanoparticles (CS-NPs with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core–shell nanoparticles, which relies on (optionally pulsed DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.

  15. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  16. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  17. Evaluation of a Hopkinson bar fly-away technique for high amplitude shock accelerometer calibration

    Energy Technology Data Exchange (ETDEWEB)

    Togami, T.C.; Bateman, V.I.; Brown, F.A.

    1997-11-01

    A split Hopkinson bar technique has been developed to evaluate the performance of accelerometers that measure large amplitude pulses. An evaluation of this technique has been conducted in the Mechanical Shock Laboratory at Sandia National Laboratories (SNL) to determine its use in the practical calibration of accelerometers. This evaluation consisted of three tasks. First, the quartz crystal was evaluated in a split Hopkinson bar configuration to evaluate the quartz gage`s sensitivity and frequency response at force levels of 18,000, 35,000 and 53,000 N at ambient temperature, {minus}48 C and +74 C. Secondly, the fly away technique was evaluated at shock amplitudes of 50,000, 100,000, 150,000 and 200,000 G (1 G = 9.81 m/s{sup 2}) at ambient temperature, {minus}48 C and +74 C. Lastly, the technique was performed using a NIST calibrated reference accelerometer. Comparisons of accelerations calculated from the quartz gage data and the measured acceleration data have shown very good agreement. Based on this evaluation, the authors expect this split Hopkinson fly away technique to be certified by the SNL Primary Standards Laboratory.

  18. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    Science.gov (United States)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (Proceedings of the National Academy of Sciences of the USA, v. 105, no. 41, pp. 15815-15818 Wagner F., L.L.R. Kouwenberg, T.B. van Hoof and H. Visscher 2004. Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quartenary Science Reviews. V. 23, pp. 1947-1954

  19. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface.

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo

    2016-10-20

    Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications.

  20. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    Monte Carlo computer-simulation techniques are used to elucidate the equilibrium phase behavior as well as the late-stage ordering dynamics of some two-dimensional models with ground-state ordering of a high degeneracy, Q. The models are Q-state Potts models with anisotropic grain......, like the standard Potts models do, nor a wetting of the boundaries, as the standard clock models do. Thermal fluctuations nevertheless cause wetting to occur for not too small temperatures. Specifically, we have studied models with Q=12 and 48. The models are quenched from infinite to zero as well......, for quenches to finite temperatures in the Potts-ordered phase there is a distinct crossover to the classical Lifshitz-Allen-Cahn exponent value, n=1 / 2, for both values of Q. This supports the conjecture that the zero-temperature dynamics for models with soft domain boundaries belong to a special...

  1. Short duration high amplitude flares detected on the M dwarf star KIC 5474065

    CERN Document Server

    Ramsay, Gavin; Hakala, Pasi; Garcia-Alvarez, David; Brooks, Adam; Barclay, Thomas; Still, Martin

    2013-01-01

    Using data obtained during the RATS-Kepler project we identified one short duration flare in a 1 hour sequence of ground based photometry of the dwarf star KIC 5474065. Observations made using GTC show it is a star with a M4 V spectral type. Kepler observations made using 1 min sampling show that KIC 5474065 exhibits large amplitude (deltaF/F>0.4) optical flares which have a duration as short as 10 mins. We compare the energy distribution of flares from KIC 5474065 with that of KIC 9726699, which has also been observed using 1 min sampling, and ground based observations of other M dwarf stars in the literature. We discuss the possible implications of these short duration, relatively low energy flares would have on the atmosphere of exo-planets orbiting in the habitable zone of these flare stars.

  2. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee

    2014-01-01

    packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...

  3. Using domain walls to perform non-local measurements with high spin signal amplitudes

    Science.gov (United States)

    Savero Torres, W.; Pham, V.-T.; Zahnd, G.; Laczkowski, P.; Nguyen, V.-D.; Beigné, C.; Notin, L.; Jamet, M.; Marty, A.; Vila, L.; Attané, J.-P.

    2016-07-01

    Standard non-local measurements require lateral spin-valves with two different ferromagnetic electrodes, to create and to detect the spin accumulation. Here we show that non-local measurements can also be performed in a cross-shaped nanostructure, made of a single ferromagnetic wire connected to an orthogonal non-magnetic wire. A magnetic domain wall located underneath the ferromagnetic/non-magnetic interface is used to control the magnetizations of the injection and detection zones. As these zones can be very close, our results display spin signals possessing amplitudes larger than those obtained in conventional non-local measurements. We also show that this method can be used as a domain wall detection technique.

  4. The Spectral Amplitude of Stellar Convection and its Scaling in the High-Rayleigh-Number Regime

    CERN Document Server

    Featherstone, Nicholas A

    2015-01-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely-hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique testbed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation due to this apparent overestimation. We present a series of 3-dimensional (3-D) stellar convection simulations designed to examine how the amplitude and spectral distribution of ...

  5. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study.

    Science.gov (United States)

    Rajaei Jafarabadi, M; Rouhi, G; Kaka, G; Sadraie, S H; Arum, J

    2016-12-01

    This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm(2), 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.

  6. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-11-16

    We have detected 90 objects with periods and lightcurve structure similar to those of field {delta} Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d{sup -1}) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  7. High Statistics Analysis using Anisotropic Clover Lattices: (IV) The Volume Dependence of the Light Hadron Masses

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A

    2011-07-01

    The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is

  8. Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure

    Science.gov (United States)

    Watanabe, Tomohiko; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2017-01-01

    The present paper studies amplitude death in high-dimensional maps coupled by time-delay connections. A linear stability analysis provides several sufficient conditions for an amplitude death state to be unstable, i.e., an odd number property and its extended properties. Furthermore, necessary conditions for stability are provided. These conditions, which reduce trial-and-error tasks for design, and the convex direction, which is a popular concept in the field of robust control, allow us to propose a design procedure for system parameters, such as coupling strength, connection delay, and input-output matrices, for a given network topology. These analytical results are confirmed numerically using delayed logistic maps, generalized Henon maps, and piecewise linear maps.

  9. Acoustic minor losses in high amplitude resonators with single-sided junctions

    Science.gov (United States)

    Doller, Andrew J.

    Steady flow engineering handbooks like Idelchik20 do not exist for investigators interested in acoustic (oscillating) fluid flows in complex resonators. Measurements of acoustic minor loss coefficients are presented in this dissertation for a limited number of resonator configurations having single-sided junctions. While these results may be useful, the greater purpose of this work is to provide a set of controlled measurements that can be used to benchmark computational models of acoustic flows used for more complicated resonator structures. The experiments are designed around a driver operating at 150 Hz enabling acoustic pressures in excess of 10k Pa in liquid cooled, temperature controlled resonators with 90°, 45° and 25° junctions. These junctions join a common 109 cm long 4.7 cm diameter section to a section of 8.4 mm diameter tube making two sets of resonators: one set with a small diameter length approximately a quarter-wavelength (45 cm), the other approximately a half-wavelength (112 cm). The long resonators have a velocity node at the junction; the short resonators have a velocity anti-node generating the greatest minor losses. Input power is measured by an accelerometer and a pressure transducer at the driver. A pressure sensor at the rigid termination measures radiation pressure from the driver and static junction pressure, as well as the acoustic pressure used to calculate linear thermal and viscous resonator wall losses. At the largest amplitudes, the 90° junction was found to dissipate as much as 0.3 Watt, 1/3 the power of linear losses alone. For each junction, the power dissipation depends on acoustic pressure differently: pressure cubed for the 90°, pressure to the 3.76 for the 45° and pressure to the 4.48 for the 25°. Common among all resonators, blowing acoustic half-cycle minor losses (KB) are excited at lower amplitudes than the suction half-cycle (KS) minor losses. Data collected for the 90° junction shows KB reaches an asymptotic

  10. Simple High-order Galerkin Finite Element Scheme for the Investigation of Both Guided and Leaky Modes in Anisotropic Planar Waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, H.J.W.M.; Groesen, van E.

    2004-01-01

    A simple high-order Galerkin finite element scheme is formulated to compute both the guided and leaky modes of anisotropic planar waveguides with a diagonal permittivity tensor. Transparent boundary conditions derived from the Sommerfield radiation conditions are used to model the fields at the comp

  11. High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Science.gov (United States)

    Cardani, L.; Casali, N.; Colantoni, I.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-01-01

    Developing wide-area cryogenic light detectors with baseline resolution better than 20 eV is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. The potential of this technique was proved by the CALDER project that reached a baseline resolution of 154 ± 7 eV RMS by sampling a 2 × 2 cm2 Silicon substrate with 4 Aluminum KIDs. In this paper, we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82 ± 4 eV by sampling the same substrate with a single Aluminum KID.

  12. Resolving longitudinal amplitude and phase information of two continuous data streams for high-speed and real-time processing

    Directory of Open Access Journals (Sweden)

    A. Guntoro

    2009-05-01

    Full Text Available Although there is an increase of performance in DSPs, due to its nature of execution a DSP could not perform high-speed data processing on a continuous data stream. In this paper we discuss the hardware implementation of the amplitude and phase detector and the validation block on a FPGA. Contrary to the software implementation which can only process data stream as high as 1.5 MHz, the hardware approach is 225 times faster and introduces much less latency.

  13. Surrogate data modeling the relationship between high frequency amplitudes and Higuchi fractal dimension of EEG signals in anesthetized rats.

    Science.gov (United States)

    Spasic, Sladjana; Kalauzi, Aleksandar; Kesic, Srdjan; Obradovic, Milica; Saponjic, Jasna

    2011-11-21

    We used spectral analysis and Higuchi fractal dimension (FD) to correlate the EEG spectral characteristics of the sensorimotor cortex, hippocampus, and pons with their corresponding EEG signal complexities in anesthetized rats. We have explored the quantitative relationship between the mean FDs and EEG wide range high frequency (8-50 Hz) activity during ketamine/xylazine versus nembutal anesthesia at surgical plane. Using FD we detected distinct inter-structure complexity pattern and uncovered for the first time that the polygraphically and behaviorally defined anesthetized state at surgical plane as equal during experiment in two anesthetic regimens, is not the same with respect to the degree of neuronal activity (degree of generalized neuronal inhibition achieved) at different brain levels. Using the correlation of certain brain structure EEG spectral characteristics with their corresponding FDs, and the surrogate data modeling, we determined what particular frequency band contributes to EEG complexities in ketamine/xylazine versus nembutal anesthesia. In this study we have shown that the quantitative relationship between higher frequency EEG amplitude and EEG complexity is the best-modeled by surrogate data as a 3rd order polynomial. On the base of our EEG amplitude/EEG complexity relationship model, and the evidenced spectral differences in ketamine versus nembutal anesthesia we have proved that higher amplitudes of sigma, beta, and gamma frequency in ketamine anesthesia yields to higher FDs.

  14. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  15. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  16. Low-Amplitude Anisotropic Wave Train Events during Passage of Interplanetary Magnetic Clouds / Mazas Amplitūdas Anizotropiju Viļņu Parādību Secība Starpplanētu Magnētisko Mākoņu Rašanās Laikā

    Science.gov (United States)

    Agarwal, R.; Mishra, R. K.

    2013-04-01

    The work presents a continuation in the series related to the long-term space observations made by ground-based neutron monitoring stations. The cosmic ray intensity variation is considered as affected by interplanetary magnetic clouds during low-amplitude anisotropic wave train (LAAWT) events. It was observed that the solar wind velocity is higher than normal (> 300 km/s) while the interplanetary magnetic field (IMF) strength is lower than normal on the arrival of magnetic cloud during LAAWT events. The proton density is found to remain significantly low at high solar-wind velocity, which was expected. The north/south component of interplanetary magnetic field turns southward one day before the arrival of cloud and remains in this direction after that. The cosmic ray intensity is found to increase with the solar wind velocity. It is noteworthy that the cosmic ray intensity significantly increases before and 90 h after the arrival of such a cloud, and decreases gradually after its passage. The north/south component of IMF (Bz) is found to significantly correlate with latitude angle (Ө) and disturbance storm time index Dst, whereas the geomagnetic activity index (Ap) significantly anti-correlates with these parameters, decreasing with (Ө) and Dst increasing on the arrival of interplanetary magnetic cloud during LAAWT events. Raksts ir turpinājums darbu sērijai par dažādām parādībām kosmosā, kas balstītas uz novērojumiem un datiem, iegūtiem dažādos laika periodos pasaules neitronu monitoringa stacijās (Deep River, Tokija, Maskava, u.c.). Rakstā apskatītās kosmisko staru intensitātes izmaiņas tiek pamatotas ar starpplanētu magnētisko mākoņu parādīšanos. Tiek parādītas saules vēja, magnētiskā lauka spēka, vētru pertubāciju indeksa un citu parametru atkarība no magnētisko mākoņu parādīšanās. Tiek atzīmēts, ka kosmisko staru intensitāte strauji pieaug pirms mākoņu parādīšanās un 90 stundu laikā pēc tiem, un pak

  17. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation.

    Science.gov (United States)

    Roudier, François; Fernandez, Anita G; Fujita, Miki; Himmelspach, Regina; Borner, Georg H H; Schindelman, Gary; Song, Shuang; Baskin, Tobias I; Dupree, Paul; Wasteneys, Geoffrey O; Benfey, Philip N

    2005-06-01

    The orientation of cell expansion is a process at the heart of plant morphogenesis. Cellulose microfibrils are the primary anisotropic material in the cell wall and thus are likely to be the main determinant of the orientation of cell expansion. COBRA (COB) has been identified previously as a potential regulator of cellulose biogenesis. In this study, characterization of a null allele, cob-4, establishes the key role of COB in controlling anisotropic expansion in most developing organs. Quantitative polarized-light and field-emission scanning electron microscopy reveal that loss of anisotropic expansion in cob mutants is accompanied by disorganization of the orientation of cellulose microfibrils and subsequent reduction of crystalline cellulose. Analyses of the conditional cob-1 allele suggested that COB is primarily implicated in microfibril deposition during rapid elongation. Immunodetection analysis in elongating root cells revealed that, in agreement with its substitution by a glycosylphosphatidylinositol anchor, COB was polarly targeted to both the plasma membrane and the longitudinal cell walls and was distributed in a banding pattern perpendicular to the longitudinal axis via a microtubule-dependent mechanism. Our observations suggest that COB, through its involvement in cellulose microfibril orientation, is an essential factor in highly anisotropic expansion during plant morphogenesis.

  18. High Energy Asymptotics of the Scattering Amplitude for the Schrödinger Equation

    Indian Academy of Sciences (India)

    D Yafaev

    2002-02-01

    We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy. Moreover, the same function gives all diagonal singularities of the kernel of the scattering matrix in the angular variables.

  19. Study of High and Low Amplitude Wave Trains of Cosmic Ray Diurnal Variation during Solar Cycle 23

    Indian Academy of Sciences (India)

    Ambika Singh; Anil Kumar Tiwari; S. P. Agrawal

    2010-06-01

    A detailed study has been conducted on the long-term changes in the diurnal variation of cosmic rays in terms of high and low amplitude wave trains event (HAEs/LAEs) during the period 1996–2008 (solar cycle 23), using the neutron monitor data from Kiel neutron monitoring station. As such, 17 HAE and 48 LAE cases have been detected and analyzed. These HAEs appear quite dominantly during the declining phase as well as near the maximum of the solar activity cycle 23. In contrast, the low amplitude events (LAEs) are inversely correlated with solar activity cycle. In fact, LAEs appear quite dominantly during the minimum phase of the solar activity. When we compare our results for diurnal phase with that observed on an annual average basis, we notice no significant diurnal phase shift for HAEs as well as for LAEs. Moreover, we find that the high-speed solar wind streams (HSSWS) do not play any significant role in causing these variations. These results are discussed on the basis of that observed in earlier cycles.

  20. High amplitude vortex-induced pulsations in a gas transport system

    NARCIS (Netherlands)

    Kriesels, P.C.; Peters, M.C.A.M.; Hirschberg, A.; Wijnands, A.P.J.; Iafrati, A.; Riccardi, G.; Piva, R.; Bruggeman, J.C.

    1995-01-01

    High Reynolds number, low Mach number gas flows in pipe systems with closed side branches exhibit spectacular low frequency self-sustained pulsations driven by periodic vortex shedding at specific values of the Strouhal number. A detailed study is presented of the behaviour of the flow in a system w

  1. Dose prediction accuracy of anisotropic analytical algorithm and pencil beam convolution algorithm beyond high density heterogeneity interface

    Directory of Open Access Journals (Sweden)

    Suresh B Rana

    2013-01-01

    Full Text Available Purpose: It is well known that photon beam radiation therapy requires dose calculation algorithms. The objective of this study was to measure and assess the ability of pencil beam convolution (PBC and anisotropic analytical algorithm (AAA to predict doses beyond high density heterogeneity. Materials and Methods: An inhomogeneous phantom of five layers was created in Eclipse planning system (version 8.6.15. Each layer of phantom was assigned in terms of water (first or top, air (second, water (third, bone (fourth, and water (fifth or bottom medium. Depth doses in water (bottom medium were calculated for 100 monitor units (MUs with 6 Megavoltage (MV photon beam for different field sizes using AAA and PBC with heterogeneity correction. Combinations of solid water, Poly Vinyl Chloride (PVC, and Styrofoam were then manufactured to mimic phantoms and doses for 100 MUs were acquired with cylindrical ionization chamber at selected depths beyond high density heterogeneity interface. The measured and calculated depth doses were then compared. Results: AAA′s values had better agreement with measurements at all measured depths. Dose overestimation by AAA (up to 5.3% and by PBC (up to 6.7% was found to be higher in proximity to the high-density heterogeneity interface, and the dose discrepancies were more pronounced for larger field sizes. The errors in dose estimation by AAA and PBC may be due to improper beam modeling of primary beam attenuation or lateral scatter contributions or combination of both in heterogeneous media that include low and high density materials. Conclusions: AAA is more accurate than PBC for dose calculations in treating deep-seated tumor beyond high-density heterogeneity interface.

  2. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.

  3. Screening of point charge impurities in highly anisotropic metals: application to mu+-spin relaxation in underdoped cuprate superconductors.

    Science.gov (United States)

    Shekhter, Arkady; Shu, Lei; Aji, Vivek; MacLaughlin, D E; Varma, C M

    2008-11-28

    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (mu+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the mu+ to nearly its value in the insulating state. The current-loop-ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This strongly suppresses the magnetic field at the mu+ site. We estimate this suppressed field in underdoped YBa2Cu3O6+x and La2-xSrxCuO4, and find consistency with the observed approximately 0.2 G field in the former case and the observed upper bound of approximately 0.2 G in the latter case. This resolves the controversy between the neutron diffraction and mu-spin relaxation experiments.

  4. Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas

    Science.gov (United States)

    Squire, J.; Schekochihin, A. A.; Quataert, E.

    2017-05-01

    This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.

  5. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.

    Science.gov (United States)

    Saltzman, Erica J; Schweizer, Kenneth S

    2008-05-01

    Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.

  6. Electrodynamic features of anisotropic hard superconductors

    CERN Document Server

    Voloshin, I F; Fisher, L M; Aksenov, A V; Yampolskij, V A

    2001-01-01

    The low-frequency electromagnetic response of the superconducting plates, which are characterized by strong anisotropy of the current-carrying capacity in the sample plane, is experimentally and theoretically studied. The measurements are carried out on the polycrystalline textured plates of the Y-123 system as well as on the monocrystal. It is shown that the form of curves describing the dependence of the q relative losses on the h sub 0 alternate field amplitudes is highly sensitive to the h sub 0 vector orientation in the sample plane. The q(h sub 0) dependence by the h sub 0 orientation along one of the main directions of the current anisotropic critical density symmetry the q(h sub 0) dependence is characterized by the single dimensional maximum. Two dimensional maxima are observed on the q(h sub 0) curve by the h sub 0 significant deviation from the main directions

  7. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  8. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Idar, D.J.; Lucht, R.A.; Straight, J.W.; Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Skidmore, C.B.; Buntain, G.A.

    1998-12-31

    The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from {approximately} 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from {approximately} 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.

  9. High-amplitude THz and GHz strain waves, generated by ultrafast screening of piezoelectric fields in InGaN/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; van Capel, P.J.S.; Turchinovich, Dmitry

    2010-01-01

    Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening.......Screening of large built-in piezoelectric fields in InGaN/GaN quantum wells leads to high-amplitude acoustic emission. We will compare acoustic emission by quantum wells with different thicknesses with photoluminescence; indicating screening....

  10. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  11. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Science.gov (United States)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  12. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.

    2004-12-01

    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  13. Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states.

    Science.gov (United States)

    Yuan, Bin-Ke; Wang, Jue; Zang, Yu-Feng; Liu, Dong-Qiang

    2014-01-01

    Recent studies employing rapid sampling techniques have demonstrated that the resting state fMRI (rs-fMRI) signal exhibits synchronized activities at frequencies much higher than the conventional frequency range (high-frequency fluctuations between different resting states. Here, we acquired rs-fMRI data at a high sampling rate (TR = 400 ms) from subjects with both eyes open (EO) and eyes closed (EC), and compared the amplitude of fluctuation (AF) between EO and EC for both the low- and high-frequency components. In addition to robust AF differences in the conventional low frequency band (high-frequency (primarily in 0.1-0.35 Hz) differences. The high-frequency results without covariates regression exhibited noisy patterns. For the data with nuisance covariates regression, we found a significant and reproducible reduction in high-frequency AF between EO and EC in the bilateral PSMC and the supplementary motor area (SMA), and an increase in high-frequency AF in the left middle occipital gyrus (MOG). Furthermore, we investigated the effect of sampling rate by down-sampling the data to effective TR = 2 s. Briefly, by using the rapid sampling rate, we were able to detect more regions with significant differences while identifying fewer artifactual differences in the high-frequency bands as compared to the down-sampled dataset. We concluded that (1) high-frequency fluctuations of rs-fMRI signals can be modulated by different resting states and thus may be of physiological importance; and (2) the regression of covariates and the use of fast sampling rates are superior for revealing high-frequency differences in rs-fMRI signals.

  14. Relics of Minijets amid Anisotropic Flows in High-energy Heavy-ion Collisions

    CERN Document Server

    Pang, Longgang; Wang, Xin-Nian

    2013-01-01

    Two dimensional low-$p_T$ dihadron correlations in azimuthal angle $\\phi$ and pseudo-rapidity $\\eta$ in high-energy heavy-ion collisions are investigated within both the HIJING Monte Carlo model and an event-by-event (3+1)D ideal hydrodynamic model. Without final-state interaction and collective expansion, dihadron correlations from HIJING simulations have a typical structure from minijets that contains a near-side two-dimensional peak and an away-side ridge along the $\\eta$-direction. In contrast, event-by-event (3+1)D ideal hydrodynamic simulations with fluctuating initial conditions from the HIJING+AMPT model produce a strong dihadron correlation that has an away-side as well as a near-side ridge. Relics of intrinsic dihadron correlation from minijets in the initial conditions still remain as superimposed on the two ridges. By varying initial conditions from HIJING+AMPT, we study effects of minijets, non-vanishing initial flow and longitudinal fluctuation on the final state dihadron correlations. With a la...

  15. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Neuwirthová, Lucie; Mamulová Kutláková, Kateřina [Nanotechnology centre, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Vallová, Silvie [Faculty of Metallurgy and Materials Engineering, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Stýskala, Vítězslav [Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba (Czech Republic); Čapková, Pavla [Faculty of Science, University of J.E. Purkyně, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2016-03-15

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  16. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc-dc power conversion

    Science.gov (United States)

    Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.

    2015-11-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.

  17. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G.; Lee, Taehwa; Jay Guo, L.

    2015-08-01

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  18. Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium

    CERN Document Server

    Martínez-Gómez, David; Terradas, Jaume

    2016-01-01

    Ideal MHD provides an accurate description of low-frequency Alfv\\'en waves in fully ionized plasmas. However, higher frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low and the high frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall's term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations we check that at high frequencies ions of different species are not as strongly coupled as in the low frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high frequency waves since an appreciable damping is obtained. Furthermore, Coulomb collisions be...

  19. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation.

    Science.gov (United States)

    Baac, Hyoung Won; Ok, Jong G; Lee, Taehwa; Guo, L Jay

    2015-09-14

    We demonstrate nano-structural characteristics of carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite films that can be used as highly efficient and robust ultrasound transmitters for diagnostic and therapeutic applications. An inherent architecture of the nano-composite provides unique thermal, optical, and mechanical properties that are accommodated not just for efficient energy conversion but also for extraordinary robustness against pulsed laser ablation. First, we explain a thermoacoustic transfer mechanism within the nano-composite. CNT morphologies are examined to determine a suitable arrangement for heat transfer to the surrounding PDMS. Next, we introduce an approach to enhance optical extinction of the composite films, which uses shadowed deposition of a thin Au layer through an as-grown CNT network. Finally, the transmitter robustness is quantified in terms of laser-induced damage threshold. This reveals that the CNT-PDMS films can withstand an order-of-magnitude higher optical fluence (and extinction) than a Cr film used as a reference. Such robustness is crucial to increase the maximum-available optical energy for optoacoustic excitation and pressure generation. All of these structure-originated characteristics manifest the CNT-PDMS composite films as excellent optoacoustic transmitters for high-amplitude and high-frequency ultrasound generation.

  20. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Science.gov (United States)

    Held, M.; Wiesenberger, M.; Madsen, J.; Kendl, A.

    2016-12-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the \\boldsymbol{E}× \\boldsymbol{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted.

  1. Anisotropic high-k deposition for gate-last processing of metal-oxide-semiconductor field-effect transistor utilizing electron-cyclotron-resonance plasma sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Yoshiaki, E-mail: kikuchi.y.ao@m.titech.ac.jp; Gao, Jun; Sano, Takahiro; Ohmi, Shun-ichiro, E-mail: ohmi@ep.titech.ac.jp

    2012-01-31

    A high-k/metal gate structure has been investigated for application to state-of-the-art metal-oxide-semiconductor field-effect transistors. In the high-k/metal gate structure, the 32-nm technology node was realized by using the high-k-last, metal-last integration process. We investigated anisotropic deposition for 3-dimensional gate structures on Si substrates utilizing electron-cyclotron-resonance plasma sputtering to reduce parasitic capacitance. Anisotropic HfN film deposition was realized and the deposition thickness on the side wall was reduced with decreasing sputtering gas pressure, from 0.15 to 0.06 Pa, corresponding to Ar/N{sub 2} flow ratios of 20/1 and 5/1 sccm. The HfSiON gate insulator formed from the anisotropically deposited HfN film showed an equivalent-oxide-thickness of 2.1 nm and a gate leakage of 3.1 Multiplication-Sign 10{sup -6}A/cm{sup 2} at V{sub FB}-1.0. - Highlights: Black-Right-Pointing-Pointer High-k film deposition was controlled by the deposition pressure. Black-Right-Pointing-Pointer The pressure decreases with a reduction of gas flow rate during the high-k film deposition. Black-Right-Pointing-Pointer A flat band voltage shows negative shifts with reduction of gas flow rates. Black-Right-Pointing-Pointer A reason of the flat band voltage shift is an increase in Si-N bonding.

  2. Illuminating heterogeneous anisotropic upper mantle: testing a new anisotropic teleseismic body-wave tomography code - part II: Inversion mode

    Science.gov (United States)

    Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi

    2015-04-01

    Considering only isotropic wave propagation and neglecting anisotropy in teleseismic tomography studies is a simplification obviously incongruous with current understanding of the mantle-lithosphere plate dynamics. Furthermore, in solely isotropic high-resolution tomography results, potentially significant artefacts (i.e., amplitude and/or geometry distortions of 3D velocity heterogeneities) may result from such neglect. Therefore, we have undertaken to develop a code for anisotropic teleseismic tomography (AniTomo), which will allow us to invert the relative P-wave travel time residuals simultaneously for coupled isotropic-anisotropic P-wave velocity models of the upper mantle. To accomplish that, we have modified frequently-used isotropic teleseismic tomography code Telinv (e.g., Weiland et al., JGR, 1995; Lippitsch, JGR, 2003; Karousova et al., GJI, 2013). Apart from isotropic velocity heterogeneities, a weak hexagonal anisotropy is assumed as well to be responsible for the observed P-wave travel-time residuals. Moreover, no limitations to orientation of the symmetry axis are prescribed in the code. We allow a search for anisotropy oriented generally in 3D, which represents a unique approach among recent trials that otherwise incorporate only azimuthal anisotopy into the body-wave tomography. The presented code for retrieving anisotropy in 3D thus enables its direct applications to datasets from tectonically diverse regions. In this contribution, we outline the theoretical background of the AniTomo anisotropic tomography code. We parameterize the mantle lithosphere and asthenosphere with an orthogonal grid of nodes with various values of isotropic velocities, as well as of strength and orientation of anisotropy in 3D, which is defined by azimuth and inclination of either fast or slow symmetry axis of the hexagonal approximation of the media. Careful testing of the new code on synthetics, concentrating on code functionality, strength and weaknesses, is a

  3. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Institute of Scientific and Technical Information of China (English)

    Pongsak Khokhuntod; Jian-Ning Fu; Chayan Boonyarak; Kanokwan Marak; Li Chen; Shi-Yang Jiang

    2007-01-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006.High-quality photometric data provided in the literature were used to analyze the pulsation of the star,with the derived multiple frequencies fitted to our new data.Besides the dominant frequency and its harmonics,one low frequency(2.27402 cd-1)is discovered,which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light.Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature.we analyzed the long-term variability of AD CMi with the O-C technique.The results provide the updated value of period of 0.122974478 days.and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system.of which some parameters are hereby deduced.

  4. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  5. Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris

    Science.gov (United States)

    Khokhuntod, Pongsak; Fu, Jian-Ning; Boonyarak, Chayan; Marak, Kanokwan; Chen, Li; Jiang, Shi-Yang

    2007-06-01

    Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006. High-quality photometric data provided in the literature were used to analyze the pulsation of the star, with the derived multiple frequencies fitted to our new data. Besides the dominant frequency and its harmonics, one low frequency (2.27402 c d-1) is discovered, which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light. Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature, we analyzed the long-term variability of AD CMi with the O-C technique. The results provide the updated value of period of 0.122974478 days, and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system, of which some parameters are hereby deduced.

  6. The Kep-Cont Mission: Continuing the observation of high-amplitude variable stars in the Kepler field of view

    CERN Document Server

    Molnár, L; Kolenberg, K; Borkovits, T; Antoci, V; Vida, K; Ngeow, C C; Guzik, J A; Plachy, E; Castanheira, B

    2013-01-01

    As a response to the Kepler white paper call, we propose to keep Kepler pointing to its current field of view and continue observing thousands of large amplitude variables (Cepheid, RR Lyrae and delta Scuti stars among others) with high cadence in the Kep-Cont Mission. The degraded pointing stability will still allow observation of these stars with reasonable (better than millimag) precision. The Kep-Cont mission will allow studying the nonradial modes in Blazhko-modulated and first overtone RR Lyrae stars and will give a better view on the period jitter of the only Kepler Cepheid in the field. With continued continuous observation of the Kepler RR Lyrae sample we may get closer to the origin of the century-old Blazhko problem. Longer time-span may also uncover new dynamical effects like apsidal motion in eclipsing binaries. A continued mission will have the advantage of providing unprecedented, many-years-long homogeneous and continuous photometric data of the same targets. We investigate the pragmatic detai...

  7. Patient-centered outcomes of high-velocity, low-amplitude spinal manipulation for low back pain: a systematic review.

    Science.gov (United States)

    Goertz, C M; Pohlman, K A; Vining, R D; Brantingham, J W; Long, C R

    2012-10-01

    Low back pain (LBP) is a well-recognized public health problem with no clear gold standard medical approach to treatment. Thus, those with LBP frequently turn to treatments such as spinal manipulation (SM). Many clinical trials have been conducted to evaluate the efficacy or effectiveness of SM for LBP. The primary objective of this paper was to describe the current literature on patient-centered outcomes following a specific type of commonly used SM, high-velocity low-amplitude (HVLA), in patients with LBP. A systematic search strategy was used to capture all LBP clinical trials of HVLA using our predefined patient-centered outcomes: visual analogue scale, numerical pain rating scale, Roland-Morris Disability Questionnaire, and the Oswestry Low Back Pain Disability Index. Of the 1294 articles identified by our search, 38 met our eligibility criteria. Like previous SM for LBP systematic reviews, this review shows a small but consistent treatment effect at least as large as that seen in other conservative methods of care. The heterogeneity and inconsistency in reporting within the studies reviewed makes it difficult to draw definitive conclusions. Future SM studies for LBP would benefit if some of these issues were addressed by the scientific community before further research in this area is conducted.

  8. Asteroseismology of KIC\\,11754974: a high-amplitude SX\\,Phe pulsator in a 343-day binary system

    CERN Document Server

    Murphy, S J; Kurtz, D W; Suarez, J C; Handler, G; Balona, L A; Smalley, B; Uytterhoeven, K; Szabo, R; Thygesen, A O; Elkin, V; Breger, M; Grigahcene, A; Guzik, J A; Nemec, J M; Southworth, J

    2013-01-01

    The candidate SX Phe star KIC 11754974 shows a remarkably high number of combination frequencies in the Fourier amplitude spectrum: 123 of the 166 frequencies in our multi-frequency fit are linear combinations of independent modes. Predictable patterns in frequency spacings are seen in the Fourier transform of the light curve. We present an analysis of 180 d of short-cadence Kepler photometry and of new spectroscopic data for this evolved, late A-type star. We infer from the 1150-d, long-cadence light curve, and in two different ways, that our target is the primary of a 343-d, non-eclipsing binary system. According to both methods, the mass function is similar, f(M)=0.0207 +/- 0.0003 Msun. The observed pulsations are modelled extensively, using separate, state-of-the-art, time-dependent convection (TDC) and rotating models. The models match the observed temperature and low metallicity, finding a mass of 1.50-1.56 Msun. The models suggest the whole star is metal-poor, and that the low metallicity is not just a...

  9. A novel high amplitude piezoceramic actuator for applications in magnetic resonance elastography: a compliant mechanical amplifier approach

    Science.gov (United States)

    Arani, Arvin; Eskandari, Amiraslan; Ouyang, Puren; Chopra, Rajiv

    2017-08-01

    Piezoceramic actuators are capable of precise positioning with high force, but suffer from limited displacement range, which has hindered their application in the field of magnetic resonance elastography (MRE). The objective of this study was to investigate the feasibility of using a mechanical amplifier in combination with a piezoceramic actuator for the application of endorectal prostate MRE. A five-bar symmetric structure was designed in ANSYS® and manufactured out of brass. Laser vibrometer measurements were used to characterize the amplitude of the CMA actuator while attached to masses in the 0-325 g range and over operating frequencies of 90-500 Hz. The response of the CMA was investigated while mechanically coupled to a balloon type endorectal coil. The resonant frequency of the prototype CMA actuator was predicted within 10% error using ANSYS simulations. The amplification ratio of the CMA actuator was measured to be 10 with the laser vibrometer and 7.6 ± 1.7 (max: 9.2, min: 6.5) using MRE, at a vibration frequency of 200 Hz. Laser vibrometer data also showed that the CMA actuator’s performance did not change whether it was connected to an empty or inflated endorectal. The feasibility of performing endorectal prostate MRE with a CMA actuator was successfully demonstrated in a human volunteer.

  10. A photometric monitoring of bright high-amplitude delta Scuti stars. II. Period updates for seven stars

    CERN Document Server

    Derekas, A; Székely, P; Alfaro, E J; Csák, B; Mészáros, S; Rodríguez, E; Rolland, A; Sarneczky, K; Szabó, G M; Szatmary, K; Varadi, M; Kiss, C; Meszaros, Sz.; Szabo, Gy.M.; Kiss, Cs.

    2003-01-01

    We present new photometric data for seven high-amplitude delta Scuti stars. The observations were acquired between 1996 and 2002, mostly in the Johnson photometric system. For one star (GW UMa), our observations are the first since the discovery of its pulsational nature from the Hipparcos data.The primary goal of this project was to update our knowledge on the period variations of the target stars. For this, we have collected all available photometric observations from the literature and constructed decades-long O-C diagrams of the stars. This traditional method is useful because of the single-periodic nature of the light variations. Text-book examples of slow period evolution (XX Cyg, DY Her, DY Peg) and cyclic period changes due to light-time effect (LITE) in a binary system (SZ Lyn) are updated with the new observations. For YZ Boo, we find a period decrease instead of increase. The previously suggested LITE-solution of BE Lyn (Kiss & Szatmary 1995) is not supported with the new O-C diagram. Instead o...

  11. Protostring scattering amplitudes

    Science.gov (United States)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  12. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations in a Young, Extremely Red L-type Brown Dwarf

    Science.gov (United States)

    Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.

    2016-10-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.

  13. Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida.

    Science.gov (United States)

    Grémiaux, Alexandre; Girard, Sébastien; Guérin, Vincent; Lothier, Jérémy; Baluška, František; Davies, Eric; Bonnet, Pierre; Vian, Alain

    2016-01-15

    It is now accepted that plants perceive high-frequency electromagnetic field (HF-EMF). We wondered if the HF-EMF signal is integrated further in planta as a chain of reactions leading to a modification of plant growth. We exposed whole small ligneous plants (rose bush) whose growth could be studied for several weeks. We performed exposures at two different development stages (rooted cuttings bearing an axillary bud and 5-leaf stage plants), using two high frequency (900MHz) field amplitudes (5 and 200Vm(-1)). We achieved a tight control on the experimental conditions using a state-of-the-art stimulation device (Mode Stirred Reverberation Chamber) and specialized culture-chambers. After the exposure, we followed the shoot growth for over a one-month period. We observed no growth modification whatsoever exposure was performed on the 5-leaf stage plants. When the exposure was performed on the rooted cuttings, no growth modification was observed on Axis I (produced from the elongation of the axillary bud). Likewise, no significant modification was noted on Axis II produced at the base of Axis I, that came from pre-formed secondary axillary buds. In contrast, Axis II produced at the top of Axis I, that came from post-formed secondary buds consistently displayed a delayed and significant reduced growth (45%). The measurements of plant energy uptake from HF-EMF in this exposure condition (SAR of 7.2 10(-4)Wkg(-1)) indicated that this biological response is likely not due to thermal effect. These results suggest that exposure to electromagnetic field only affected development of post-formed organs.

  14. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  15. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls.

    LENUS (Irish Health Repository)

    Whelan, R

    2012-02-01

    OBJECTIVE: To quantify latency, amplitude and topographical differences in event-related potential (ERP) components between multiple sclerosis (MS) patients and controls and to compare ERP findings with results from the paced auditory serial addition test (PASAT). METHODS: Fifty-four subjects (17 relapsing remitting (RRMS) patients, 16 secondary progressive (SPMS) patients, and 21 controls) completed visual and auditory oddball tasks while data were recorded from 134 EEG channels. Latency and amplitude differences, calculated using composite mean amplitude measures, were tested using an ANOVA. Topographical differences were tested using statistical parametric mapping (SPM). RESULTS: In the visual modality, P2, P3 amplitudes and N2 latency were significantly different across groups. In the auditory modality, P2, N2, and P3 latencies and N1 amplitude were significantly different across groups. There were no significant differences between RRMS and SPMS patients on any ERP component. There were topographical differences between MS patients and controls for both early and late components for the visual modality, but only in the early components for the auditory modality. PASAT score correlated significantly with auditory P3 latency for MS patients. CONCLUSIONS: There were significant ERP differences between MS patients and controls. SIGNIFICANCE: The present study indicated that both early sensory and later cognitive ERP components are impaired in MS patients relative to controls.

  16. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna

    2004-02-18

    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  17. Neural responses to the mechanical parameters of a high velocity, low amplitude spinal manipulation: effect of preload parameters

    Science.gov (United States)

    Reed, William. R.; Long, Cynthia R.; Kawchuk, Gregory N.; Pickar, Joel G.

    2014-01-01

    Objective The purpose of this study was to determine how the preload that precedes a high velocity low amplitude spinal manipulation (HVLA-SM) affects muscle spindle input from lumbar paraspinal muscles both during and after the HVLA-SM. Methods Primary afferent activity from muscle spindles in lumbar paraspinal muscles were recorded from the L6 dorsal root in anesthetized cats. HVLA-SM of the L6 vertebra was preceded either by no preload or by systematic changes in the preload magnitude, duration, and the presence or absence of a downward incisural point (DIP). Immediate effects of preload on muscle spindle responses to the HVLA-SM were determined by comparing mean instantaneous discharge frequencies (MIF) during the HVLA-SM’s thrust phase with baseline. Longer lasting effects of preload on spindle responses to the HVLA-SM were determined by comparing MIF during slow ramp and hold movement of the L6 vertebra before and following the HVLA-SM. Results The smaller compared to the larger preload magnitude and the longer compared to the shorter preload duration significantly increased (P=0.02 and P=0.04) respectively) muscle spindle responses during the HVLA-SM thrust. The absence of preload had the greatest effect on the change in MIF. Interactions between preload magnitude, duration and DIP often produced statistically significant but arguably physiologically modest changes in the passive signaling properties of the muscle spindle following the manipulation. Conclusion Because preload parameters in this animal model were shown to affect neural responses to an HVLA-SM, preload characteristics should be taken into consideration when judging this intervention’s therapeutic benefit in both clinical efficacy studies and in clinical practice. PMID:24387888

  18. Exponential suppression of interlayer conductivity in very anisotropic quasi-two-dimensional compounds in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, P.D., E-mail: grigorev@itp.ac.ru [L. D. Landau Institute for Theoretical Physics, Chernogolovka (Russian Federation)

    2012-06-01

    It is shown that in rather strong magnetic field the interlayer electron conductivity is exponentially damped by the Coulomb barrier arising from the formation of polaron around each localized electron state. The theoretical model is developed to describe this effect, and the calculation of the temperature and field dependence of interlayer magnetoresistance is performed. The results obtained agree well with the experimental data in GaAs/AlGaAs heterostructures and in strongly anisotropic organic metals. The proposed theory allows to use the experiments on interlayer magnetoresistance to investigate the electron states, localized by magnetic field and disorder.

  19. A modified phase coherence model for the non-linear c-axis V-I characteristics of highly anisotropic, high temperature superconductors

    CERN Document Server

    Luo Sheng; Huang Sai Jun; He Yu Sheng; Li Chun Guang; Zhang Xue Qiang

    2003-01-01

    A modified Ambegaokar-Halperin thermal-fluctuation model has been developed to describe the c-axis V-I characteristics and low-current ohmic resistance of highly anisotropic superconductors in a magnetic field parallel to the c-axis. The model assumes loss of phase coherence across the CuO-planes associated with the correlated motion of pancake vortices in the liquid state. The predicted V-I characteristics in the current-induced transition from the superconducting to the resistive state are in good agreement with measurements on a 2212-BSCCO single crystal as a function of temperature and field, provided the effect of the interlayer capacitance is taken into account. The measurements are consistent with a flux pancake correlation length within the CuO-planes varying as xi sub 0 /(T/T sub 0 - 1) supnu, where xi sub 0 = 1.57 +- 0.08 mu m and nu = 0.50 +- 0.01. Our measurements imply a current-dependent interlayer resistance above and below T sub c.

  20. Critical parameters and universal amplitude ratios of two-dimensional spin-S Ising models using high- and low-temperature expansions

    CERN Document Server

    Butera, P

    2003-01-01

    For the study of Ising models of general spin S on the square lattice, we have combined our recently extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting, Guttmann and Jensen. We have computed for the first time various critical parameters and improved the estimates of others. Moreover the properties of hyperscaling and of universality (spin S independence) of exponents and of various dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates of the corresponding amplitudes for the spin S Ising model on the triangular, honeycomb, and kagome` lattices.

  1. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering Faradaic processes at glassy carbon and at boron-doped diamond electrodes.

    Science.gov (United States)

    Zhang, Jie; Guo, Si-Xuan; Bond, Alan M; Marken, Frank

    2004-07-01

    Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.

  2. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  3. A new delirium phenotype with rapid high amplitude onset and nearly as rapid reversal: Central Coast Australia Delirium Intervention Study

    Directory of Open Access Journals (Sweden)

    Regal PJ

    2015-02-01

    , and 45%/80% for the Delirium Index. General medicine and geriatric medicine groups had similar outcomes.Conclusion: This delirium phenotype selects for a rapid high amplitude critical decline in attention, executive function, IADL, and apathy that recovers almost as rapidly.Keywords: delirium, inattention, executive function, dementia

  4. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  5. Fast Anisotropic Gauss Filters

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.

    2003-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and f

  6. Ultra-high resistive and anisotropic CoPd–CaF{sub 2} nanogranular soft magnetic films prepared by tandem-sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Masayuki, E-mail: naoe@denjiken.ne.jp [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Kobayashi, Nobukiyo [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Ohnuma, Shigehiro [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan); Iwasa, Tadayoshi; Arai, Ken-Ichi [Research Institute for Electromagnetic Materials, 2-1-1 Yagiyama-Minami, Taihaku-ku, Sendai 982-0807 (Japan); Masumoto, Hiroshi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578 (Japan)

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF{sub 2} matrix, and a specimen having a composition of (Co{sub 0.69}Pd{sub 0.31}){sub 52}–(Ca{sub 0.31}F{sub 0.69}){sub 48} exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau–Lifshitz–Gilbert equation. Furthermore, it was clarified that the CaF{sub 2}-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF{sub 2} matrix. - Highlights: • We fabricated high-resistive and anisotropic granular films by tandem-sputtering. • CaF{sub 2}-based films exhibit a hundredfold higher resistivity than conventional films. • Uniaxial field annealing improved the magnetic properties dramatically. • High uniaxial anisotropy extended ferromagnetic resonance frequency to 4 GHz. • Annealed samples can be regarded as a ferromagnetic homogenized material.

  7. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations In a Young, Extremely Red L-type Brown Dwarf

    CERN Document Server

    Lew, Ben W P; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J; Karalidi, Theodora; Yang, Hao; Marley, Mark S; Cowan, N B; Bedin,; R., L; Metchev, Stanimir A; Radigan, Jacqueline; Lowrance, Patrick J

    2016-01-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$\\pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentativ...

  8. Hidden focal EEG seizures during prolonged suppressions and high-amplitude bursts in early infantile epileptic encephalopathy.

    Science.gov (United States)

    Al-Futaisi, Amna; Banwell, Brenda; Ochi, Ayako; Hew, Justine; Chu, Bill; Oishi, Makoto; Otsubo, Hiroshi

    2005-05-01

    We report on a 27-month-old female with atypical early infantile epileptic encephalopathy (EIEE), who developed tonic spasms, partial seizures and myoclonic jerks along with episodic bradycardia at 5 days. We recorded digital electroencephalography (EEG) using either an 11-channel neonatal montage or 19 channel scalp electrodes, at 200 Hz sampling rate, and a single reference for a minimum of 30 min. At 18 days EEG showed suppression-burst (SB) patterns during wakefulness and sleep. Tonic spasms concomitant with bursts recorded as brief, low-amplitude fast waves. EEG at 8 months showed increased amplitude of bursts to 1 mV and extension of suppression periods to 65 s. By increasing recording sensitivity, we detected focal epileptiform discharges of slow rhythmic sharp and slow waves building to 30 microV during suppression periods. Status epilepticus occurred at 16 months. EEG at 27 months returned to the previous SB pattern with rare partial seizures. This report is the first to demonstrate clinically silent focal EEG seizures during prolonged suppression periods in atypical EIEE by off-line digital EEG. Digital EEG sensitivity can reveal covert electrical activity during suppression periods in epileptic neonates and infants.

  9. A review of crustacean sensitivity to high amplitude underwater noise: Data needs for effective risk assessment in relation to UK commercial species.

    Science.gov (United States)

    Edmonds, Nathan J; Firmin, Christopher J; Goldsmith, Denise; Faulkner, Rebecca C; Wood, Daniel T

    2016-07-15

    High amplitude anthropogenic noise is associated with adverse impacts among a variety of organisms but detailed species-specific knowledge is lacking in relation to effects upon crustaceans. Brown crab (Cancer pagurus), European lobster (Homarus gammarus) and Norway lobster (Nephrops norvegicus) together represent the most valuable commercial fishery in the UK (Defra, 2014). Critical evaluation of literature reveals physiological sensitivity to underwater noise among N. norvegicus and closely related crustacean species, including juvenile stages. Current evidence supports physiological sensitivity to local, particle motion effects of sound production in particular. Derivation of correlative relationships between the introduction of high amplitude impulsive noise and crustacean distribution/abundance is hindered by the coarse resolution of available data at the present time. Future priorities for research are identified and argument for enhanced monitoring under current legislative frameworks outlined. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Anisotropic magnetoelastic coupling in single-crystalline CeFeAsO as seen via high-resolution x-ray diffraction

    Science.gov (United States)

    Li, H.-F.; Yan, J.-Q.; Kim, J. W.; McCallum, R. W.; Lograsso, T. A.; Vaknin, D.

    2011-12-01

    Single-crystal synchrotron x-ray diffraction studies of CeFeAsO reveal strong anisotropy in the charge-correlation lengths along or perpendicular to the in-plane antiferromagnetic (AFM) wave vector at low temperatures, indicating an anisotropic two-dimensional magnetoelastic coupling. The high-resolution setup allows to distinctly monitor each of the twin domains by virtue of a finite misfit angle between them that follows the order parameter. In addition, we find that the in-plane correlations, above the orthorhombic (O)-to-tetragonal (T) transition, are shorter than those in each of the domains in the AFM phase, indicating a distribution of the in-plane lattice constants. This strongly suggests that the phase above the structural O-to-T transition is virtually T with strong O-T fluctuations that are probably induced by spin fluctuations.

  11. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  12. Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement.

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang

    2016-05-01

    Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

  13. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    2016-12-01

    Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  14. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  15. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  16. Propagation in Diagonal Anisotropic Chirowaveguides

    Directory of Open Access Journals (Sweden)

    S. Aib

    2017-01-01

    Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

  17. Anisotropic characterization of magnetorheological materials

    Science.gov (United States)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  18. Radar velocity tomography in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.

  19. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  20. Statistical Anisotropy from Anisotropic Inflation

    CERN Document Server

    Soda, Jiro

    2012-01-01

    We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).

  1. Passionflower Extract Induces High-amplitude Rhythms without Phase Shifts in the Expression of Several Circadian Clock Genes in Vitro and in Vivo.

    Science.gov (United States)

    Toda, Kazuya; Hitoe, Shoketsu; Takeda, Shogo; Shimizu, Norihito; Shimoda, Hiroshi

    2017-06-01

    Circadian rhythms play key roles in the regulation of physiological and behavioral systems including wake-sleep cycles. We evaluated the effects of passionflower (aerial parts of Passiflora incarnata Linnaeus) extract (PFE) on circadian rhythms using NIH3T3 cells and mice. PFE (100 μg/mL) induced high-amplitude rhythms in the expression of period circadian protein (Per) 2, cryptochrome (Cry) 1, superoxide dismutase (SOD) 1, and glutathione peroxidase (GPx) in vitro from 12 h after a treatment with serum-rich medium. Isovitexin 2"-O-glucoside, isoschaftoside, and homoorientin, which were purified from PFE, also significantly enhanced Per2 mRNA expression at 20 h. An oral treatment with PFE (100 mg/kg/day) at zeitgeber time (ZT) 0 h for 15 days improved sleep latencies and sleeping times in the pentobarbital-induced sleep test in mice, similar to muscimol (0.2 mg/kg, i.p.). PFE induced high-amplitude rhythms without obvious phase shifts in serum corticosterone levels and the expression of Per1, Per2, and Cry1 in the liver as well as NIH3T3 cells. However, in the cerebrum, PFE enhanced the circadian expression of brain-muscle ARNT-like protein (Bmal) 1, circadian locomotor output cycles kaput (Clock), and Per1. Regarding this difference, we suggest the involvement of several neurotransmitters that influence the circadian rhythm. Indeed, PFE significantly increased dopamine levels at ZT 18 h, and then affected the mRNA expression of the synthetic and metabolic enzymes such as monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), and glutamic acid decarboxylase (GAD). The results obtained show that PFE positively modulates circadian rhythms by inducing high-amplitude rhythms in the expression of several circadian clock genes.

  2. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  3. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  4. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  5. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  6. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  7. Mixture of Anisotropic Fluids

    Science.gov (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  8. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech

    2013-01-01

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  9. Anisotropic contrast optical microscope

    Science.gov (United States)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  10. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  11. Anisotropic models for compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Dayanandan, Baiju

    2015-01-01

    In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\

  12. An adaptive noise attenuation method for edge and amplitude preservation

    Institute of Scientific and Technical Information of China (English)

    Cai Han-Peng; He Zhen-Hua; Li Ya-Lin; He Guang-Ming; Zou Wen; Zhang Dong-Jun; Liu Pu

    2014-01-01

    Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and the subsequent seismic data interpretation, reservoir description, hydrocarbon detection, etc. Hence, we propose an adaptive noise attenuation method for edge and amplitude preservation, wherein the wavelet packet transform is used to decompose the full-band seismic signal into multiband data and then process these data using nonlinear anisotropic dip-oriented edge-preservingfi ltering. In the fi ltering, the calculated diffusion tensor from the structure tensor can be exploited to establish the direction of smoothing. In addition, the fault confidence measure and discontinuity operator can be used to preserve the structural and stratigraphic discontinuities and edges, and the decorrelation criteria can be used to establish the number of iterations. These parameters can minimize the intervention and subjectivity of the interpreter, and simplify the application of the proposed method. We applied the proposed method to synthetic and real 3D marine seismic data. We found that the proposed method could be used to attenuate noise in seismic data while preserving the effective discontinuity information and amplitude characteristics in seismic refl ection waves, providing high-quality data for interpretation and analysis such as high-resolution processing, attribute analysis, and inversion.

  13. Amplitude Equalization of 40 Gb/s RZ-DPSK Signals using Saturation of Four-Wave Mixing in a Highly Nonlinear Fiber

    DEFF Research Database (Denmark)

    Geng, Yan; Peucheret, Christophe; Jeppesen, Palle

    2006-01-01

    We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal......We report the first experimental demonstration of amplitude equalization of 40 Gb/s RZ-DPSK signals using saturation of FWM in a HNLF. We show effective power penalty reduction after wavelength conversion of an amplitude distorted signal...

  14. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  15. Anisotropic electron-transfer mobilities in diethynyl-indenofluorene-dione crystals as high-performance n-type organic semiconductor materials: remarkable enhancement by varying substituents.

    Science.gov (United States)

    Zhang, Xiao-Yu; Huang, Jin-Dou; Yu, Juan-Juan; Li, Peng; Zhang, Wei-Ping; Frauenheim, Thoma

    2015-10-14

    In this study, the electron-transfer properties of alkynylated indenofluorene-diones with various substituents (SiMe3, SiPr3, and SiPh3) that function as n-type organic semiconductors were comparatively investigated at the first-principles DFT level based on the Marcus-Hush theory. The reorganization energies are calculated by the adiabatic potential-energy surface method, and the coupling terms are evaluated through a direct adiabatic model. The maximum value of the electron-transfer mobility of SiPr3 is 0.485 cm(2) V(-1) s(-1), which appears at the orientation angle of the conducting channel on the reference plane a-b near to 172°/352°. The predicted maximum electron mobility value of SiPr3 is nearly 26 times larger than that of SiPh3. This may be attributed to the largest number of intermolecular π-π interactions. In addition, the mobilities in all three crystals show remarkable anisotropic behavior. The calculated results indicate that SiPr3 could be an ideal candidate as a high-performance n-type organic semiconductor material. Our investigations not only give us an opportunity to completely understand the charge transport mechanisms, but also provide guidelines for designing materials for electronic applications.

  16. Anisotropic Grid Generation

    Science.gov (United States)

    2016-03-24

    tensor . The...release. Figure 2. Examples of previous anisotropic surfaces include the original holographic tensor impedance surface created by the author (left... tensor that can be extracted from the properties of each unit cell. This impedance tensor can be mapped back onto the surface, and simulations of

  17. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  18. Mechanism associated with the Space Shuttle main engine oxidizer valve/duct system anomalous high amplitude discrete acoustical excitation

    Science.gov (United States)

    Schutzenhofer, L. A.; Jones, J. H.; Jewell, R. E.; Ryan, R. S.

    1980-01-01

    Anomalous high frequency pressure fluctuations in the Space Shuttle main engine have been experienced during hot firings. Through diagnostic analysis of hot firing engine data, it was determined that this excitation originated at the main oxidizer valve. The intensity of these fluctuations was such that the main oxidizer valve was partially consumed in fire, experienced fretting, and had seal damage. Delineated in this paper are the associated dynamical phenomena and the methodologies leading toward understanding the excitation mechanism. The results presented demonstrate that the source of the anomalous frequencies was suppressed by a simple fix and all main oxidizer valve damage was terminated.

  19. Frequency and amplitude characteristics of a high-repetition-rate hybrid TEA-CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.L.; Lavigne, P.; Verreault, M.; Otis, G.

    1978-02-01

    The envelope and frequency characteristics of the output pulse of a high-repetition-rate hybrid TEA-CO/sub 2/ laser are presented. Both the intrapulse and interpulse laser frequency stability are experimentally determined at repetition rates up to 300 Hz. The recovery of the CW laser signal following the generation of the TEA laser pulse is analyzed theoretically and experimentally. Short term reproducibilities of + or - 2 MHz are observed at a pulse repetition rate of 300 Hz with initial chirp rates of about 1.5 MHz/microsec. Improvements and limits on power and repetition rate are discussed.

  20. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  1. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    Science.gov (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  2. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  3. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  4. THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    SHI Dongyang; ZHU Huiqing

    2005-01-01

    This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.

  5. High-amplitude supergiant V5112 Sgr: enrichment of the envelope with heavy s-process metals

    CERN Document Server

    Klochkova., V G

    2013-01-01

    High-resolution (R=60000) echelle spectroscopy of the post-AGB supergiant V5112 Sgr performed in 1996-2012 with the 6-m telescope BTA has revealed peculiarities of the star optical spectrum and has allowed the variability of the velocity field in the stellar atmosphere and envelope to be studied in detail. An asymmetry and splitting of strong absorption lines with a low lower-level excitation potential have been detected for the first time. The effect is maximal in BaII lines whose profile is split into three components. The profile shape and positions of the split lines change with time. The blue components of the split absorption lines are shown to be formed in a structured circumstellar envelope, suggesting an efficient dredge-up of the heavy metals produced during the preceding evolution of this star into the envelope. The envelope expansion velocities have been estimated to be 20 and 30 km/s. The mean radial velocity from diffuse bands in the spectrum of V5112 Sgr coincides with that from the short-wavel...

  6. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Panah, Mohammad Esmail Aryaee

    2017-01-01

    High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates...... plasma frequency. During pillar fabrication, AZO conformally passivates the silicon template, which is characteristic of typical ALD growth conditions. The last step of fabrication is heavily dependent on the selective chemistry of the SF6 plasma. It was shown that silicon between AZO structures can...

  7. High T{sub g} and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Energy Technology Data Exchange (ETDEWEB)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (Thailand)

    2016-03-09

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  8. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  9. Convective dissolution in anisotropic porous media

    Science.gov (United States)

    de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2016-11-01

    Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.

  10. Thoracic compression myelopathy due to the progression of dystrophic scoliosis, the presence of a paraspinal tumor, and high and excessive amplitude movement of the shoulder.

    Science.gov (United States)

    Kurosawa, Takashi; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Uno, Koki; Kurosaka, Masahiro; Nishida, Kotaro

    2017-01-01

    The authors present a case of 45-year-old man with neurofibromatosis type 1 (NF-1) and thoracic scoliosis, previously undergoing fusion surgery, who developed myelopathy. This patient further complained of lightning pain when he extended and horizontally abducted the convex-side shoulder. Radiological examination revealed the progression of dystrophic scoliosis with opened spinal canals and the presence of a neurofibroma behind the spinal cord at the apical levels. Delayed development of spinal instability can occur due to dystrophy even postoperatively in patients with NF-1. After tumor resection, he had rapid recovery from myelopathy and no recurrence of radiating pain despite shoulder movement. These findings provide a speculation that high, intense amplitude movement of the shoulder toward the spinal canal causes the impingement on the neurofibroma, resulting in indirect compression of the exposed spinal cord. This is the first report describing thoracic compression myelopathy associated with paraspinal displacement of the scapula.

  11. Nuclear Jacobi and Poincaré transitions at high spins and temperatures: Account of dynamic effects and large-amplitude motion

    Science.gov (United States)

    Mazurek, K.; Dudek, J.; Maj, A.; Rouvel, D.

    2015-03-01

    We present a theoretical analysis of the competition between the so-called nuclear Jacobi and Poincaré shape transitions as a function of spin at high temperatures. The latter condition implies the method of choice, a realistic version of the nuclear liquid drop model, here the Lublin-Strasbourg drop model. We address specifically the fact that the Jacobi and Poincaré shape transitions are accompanied by the flattening of the total nuclear energy landscape as a function of the relevant deformation parameters, which enforces large-amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schrödinger equation whose solutions are used to calculate the most probable deformations associated with the nuclear Jacobi and Poincaré transitions. We discuss selected aspects of the new description focusing on the critical-spin values for both types of these transitions.

  12. Search for high-amplitude Delta Scuti and RR Lyrae stars in Sloan Digital Sky Survey Stripe 82 using principal component analysis

    CERN Document Server

    Süveges, M; Váradi, M; Mowlavi, N; Becker, A C; Ivezić, Ž; Beck, M; Nienartowicz, K; Rimoldini, L; Dubath, P; Bartholdi, P; Eyer, L

    2012-01-01

    We propose a robust principal component analysis (PCA) framework for the exploitation of multi-band photometric measurements in large surveys. Period search results are improved using the time series of the first principal component due to its optimized signal-to-noise ratio.The presence of correlated excess variations in the multivariate time series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude Delta Scuti variables. We found also 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., 2010, extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample comprises also 25 multiperiodic or Blazhko RR Lyrae stars.

  13. Nuclear Jacobi and Poincar\\'e Transitions at High Spins and Temperatures: Account~of~Dynamic~Effects~and~Large-Amplitude Motion

    CERN Document Server

    Mazurek, K; Maj, A; Rouvel, D

    2013-01-01

    We present a theoretical analysis of the competition between so-called nuclear Jacobi and Poincar\\'e shape transitions in function of spin - at high temperatures. The latter condition implies the method of choice - a realistic version of the nuclear Liquid Drop Model (LDM), here: the Lublin-Strasbourg Drop (LSD) model. We address specifically the fact that the Jacobi and Poincar\\'e shape transitions are accompanied by the flattening of total nuclear energy landscape as function of the relevant deformation parameters what enforces large amplitude oscillation modes that need to be taken into account. For that purpose we introduce an approximate form of the collective Schr\\"odinger equation whose solutions are used to calculate the most probable deformations associated with both types of transitions and discuss the physical consequences in terms of the associated critical-spin values and transitions themselves.

  14. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  15. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  16. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd30.0Fe61.8Co5.8Ga0.6Al0.1B0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m(-1)) and matched remanence (1.16 T) giving a BHmax of 230 kJ m(-3).

  17. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  18. Real topological string amplitudes

    Science.gov (United States)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  19. Highly anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lidong; Zhang, Songlin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhang, Jian, E-mail: zhangj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Ping Liu, J. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Xia, Weixing; Du, Juan; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Yi, Jianhong [Institute of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Wei; Guo, Zhaohui [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-01-15

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo{sub 5} nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo{sub 5} nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo{sub 5} nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo{sub 5} nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified.

  20. Strength variation and deformational behavior in anisotropic granitic mylonites under high-temperature and -pressure conditions - An experimental study

    Science.gov (United States)

    Liu, Gui; Zhou, Yongsheng; Shi, Yaolin; Miao, Sheqiang; He, Changrong

    2017-03-01

    We performed deformation experiments on foliated granitic mylonites under high-temperature and -pressure conditions. To investigate the effects of pre-existing fabric properties on the rheology of the rocks, these experiments were carried out at different compression directions 30°, 45°, and 60° relative to the foliation, at temperatures of 600-850 °C, under confining pressures of 800-1200 MPa, within a strain rate range of 1 × 10-4/S - 2.5 × 10-6/S. The results of the experiments show that the deformation of three group samples is in the semi-brittle region at temperatures between 600 and 700 °C, and that the deformation of the samples transforms to plastic deformation by power-law creep with the stress exponent n = 3 ± 0.3 at temperatures between 800 and 850 °C. In the semi-brittle region, the mechanical data show that strength reaches its minimum value at an angle of 30° between the compression direction and the original foliation. In the plastic deformation regime, strength reaches its minimum value at an angle of 45° between the foliation and the orientation of the maximum principal stress. The strength with angles between 30° and 60° is lower than that of the compression direction perpendicular to foliation and the compression direction parallel to foliation. Microstructure analysis based on optical and electron microscopy of the deformation microstructures showed plastic deformation of aggregates of biotite and quartz at 800-850 °C. This deformation was extensive and formed new foliation. Quartz c-axis fabrics analysis by EBSD show that at temperatures of 600-700 °C, the c-axis fabric patterns could have been formed by the dominant activity of basal slip, similar with the starting granitic mylonite samples, but the dominant slip systems have been changed and transformed from basal slip to rhomb slip and prism slip at temperature of 800 °C and 850 °C. Microfractures were developed in hornblende and feldspar grains with local plastic

  1. High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection.

    Science.gov (United States)

    Lin, Gong-Ru; Kang, Jung-Jui; Lee, Chao-Kuei

    2010-04-26

    The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

  2. Association among parental substance use disorder, p300 amplitude, and neurobehavioral disinhibition in preteen boys at high risk for substance use disorder.

    Science.gov (United States)

    Habeych, Miguel E; Sclabassi, Robert J; Charles, Prophete J; Kirisci, Levent; Tarter, Ralph E

    2005-06-01

    The P300 amplitude of the event-related potential as a mediator of the association between parental substance use disorder (SUD) and child's neurobehavioral disinhibition was assessed. The P300 amplitude was recorded using an oddball task in sons of fathers having either lifetime SUD (n = 105) or no psychiatric disorder (n = 160). Neurobehavioral disinhibition was assessed using measures of affect regulation, behavior control, and executive cognitive function. Parental SUD and child's P300 amplitude accounted for, respectively, 16.6% and 16.8% of neurobehavioral disinhibition variance. Controlling for parental and child psychopathology, an association between parental SUD and child's P300 amplitude was not observed. It was concluded that the P300 amplitude does not mediate the association between parental SUD and child's neurobehavioral disinhibition.

  3. Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics

    CERN Document Server

    Hopkins, Philip F

    2016-01-01

    We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect), and turbulent 'eddy diffusion.' We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV) as well as smoothed-particle hydrodynamics (SPH). We show the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators ...

  4. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.

    Science.gov (United States)

    Değirmenci, Evren; Eyüboğlu, B Murat

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  5. Strongly interacting particles on an anisotropic kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Chisa; Pollmann, Frank, E-mail: chisa@cc.kyoto-su.ac.j [Kyoto Sangyo University, Department of Physics, Faculty of Science, Kyoto 603-8555, Japan Department of Physics, University of California, Berkeley, CA94720 (United States)

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  6. Strongly interacting particles on an anisotropic kagome lattice

    Science.gov (United States)

    Hotta, Chisa; Pollmann, Frank

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  7. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, R.

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  8. High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap

    Science.gov (United States)

    Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.

    2015-12-01

    The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that

  9. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  10. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  11. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  12. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells.

    Science.gov (United States)

    Ceccarelli, Gabriele; Benedetti, Laura; Galli, Daniela; Prè, Deborah; Silvani, Giulia; Crosetto, Nicola; Magenes, Giovanni; Cusella De Angelis, Maria Gabriella

    2014-05-01

    Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vibration (HFV) at the cellular and tissue levels in muscle. We developed a system to produce vibrations adapted to test several parameters in vitro and in vivo. For in vivo experiments, we used newborn CD1 wild-type mice, for in vitro experiments, we isolated satellite cells from 6-day-old CD1 mice, while for proliferation studies, we used murine cell lines. Animals and cells were treated with high frequency vibration at 30 Hz. We analyzed the effects of mechanical stimulation on muscle hypertrophy/atrophy pathways, fusion enhancement of myoblast cells and modifications in the proliferation rate of cells. Results demonstrated that mechanical vibration strongly down-regulates atrophy genes both in vivo and in vitro. The in vitro experiments indicated that mechanical stimulation promotes fusion of satellite cells treated directly in culture compared to controls. Finally, proliferation experiments indicated that stimulated cells had a decreased growth rate compared to controls. We concluded that vibration treatment at 30 Hz is effective in suppressing the atrophy pathway both in vivo and in vitro and enhances fusion of satellite muscle cells.

  13. Large Amplitude Variations of an L/T Transition Brown Dwarf: Multi-Wavelength Observations of Patchy, High-Contrast Cloud Features

    CERN Document Server

    Radigan, Jacqueline; Lafrenière, David; Artigau, Etienne; Marley, Mark; Saumon, Didier

    2012-01-01

    We present multiple-epoch photometric monitoring in the $J$, $H$, and $K_s$ bands of the T1.5 dwarf 2MASS J21392676+0220226 (2M2139), revealing persistent, periodic ($P=7.72\\pm$0.05 hr) variability with a peak-to-peak amplitude as high as 26% in the $J$-band. The light curve shape varies on a timescale of days, suggesting that evolving atmospheric cloud features are responsible. Using interpolations between model atmospheres with differing cloud thicknesses to represent a heterogeneous surface, we find that the multi-wavelength variations and the near-infrared spectrum of 2M2139 can be reproduced by either (1)cool, thick cloud features sitting above a thinner cloud layer, or (2)warm regions of low condensate opacity in an otherwise cloudy atmosphere, possibly indicating the presence of holes or breaks in the cloud layer. We find that temperature contrasts between thick and thin cloud patches must be greater than 175 K and as high as 425 K. We also consider whether the observed variability could arise from an ...

  14. Multiple scattering in the high-frequency limit with second-order shadowing function from 2D anisotropic rough dielectric surfaces: II. Comparison with numerical results

    Science.gov (United States)

    Bourlier, C.; Berginc, G.

    2004-07-01

    This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5lgr to 1lgr (where lgr is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward-backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).

  15. A course in amplitudes

    Science.gov (United States)

    Taylor, Tomasz R.

    2017-05-01

    This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.

  16. Anisotropic Thermal Diffusion

    Science.gov (United States)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  17. Excitation of high-radial-order Laguerre–Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre–Gaussian (LG p or LG{}p,0) modes with radial order p = 1–4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  18. Eigenview on Jones matrix models of homogeneous anisotropic media

    Directory of Open Access Journals (Sweden)

    Savenkov S.

    2010-06-01

    Full Text Available The polarization of light when it passes through optical medium can change as a result of change in the amplitude (dichroism or phase shift (birefringence of the electric vector. The anisotropic properties of media can be determined from these two optical effects. Our main concern here is to revisit the factor of eigenpolarizations and eigenvalues in modeling of polarization properties of homogeneous media and elucidate certain new features in polarization behavior of birefringent and dichroic media.

  19. Anisotropic Power-law Inflation

    CERN Document Server

    Kanno, Sugumi; Watanabe, Masa-aki

    2010-01-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  20. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  1. Effect of Sampling Rates on the Quantification of Forces, Durations, and Rates of Loading of Simulated Side Posture High-Velocity, Low-Amplitude Lumbar Spine Manipulation☆

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-01-01

    Objective Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Methods Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. Results The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. Conclusions The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. PMID:23790603

  2. Effect of sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture high-velocity, low-amplitude lumbar spine manipulation.

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-06-01

    Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  3. Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles

    CERN Document Server

    Song, J

    2013-01-01

    Electrochemical impedance spectra for battery electrodes are usually interpreted using models that assume isotropic active particles, having uniform current density and symmetric diffusivities. While this can be reasonable for amorphous or polycrystalline materials with randomly oriented grains, modern electrode materials increasingly consist of highly anisotropic, single-crystalline, nanoparticles, with different impedance characteristics. In this paper, analytical expressions are derived for the impedance of anisotropic particles with tensorial diffusivities and orientation-dependent surface reaction rates and capacitances. The resulting impedance spectrum contains clear signatures of the anisotropic material properties and aspect ratio, as well as statistical variations in any of these parameters.

  4. Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes

    CERN Document Server

    Mamedov, F

    2002-01-01

    We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.

  5. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  6. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  7. Anisotropic microstructure near the sun

    Science.gov (United States)

    Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.

    1996-07-01

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar

  8. 2D self-assembly of phenylene-vinylene tectons at the liquid-highly oriented pyrolytic graphite interface: from chain length effects to anisotropic guest-host dynamics

    Science.gov (United States)

    Six, A.; Bocheux, A.; Charra, F.; Mathevet, F.; Kreher, D.; Attias, A.-J.

    2017-01-01

    Here we report the synthesis and characterization of a series of new phenylene-vinylene tectons. The study by scanning tunneling microscopy of their supramolecular self-assembly at the interface between a phenyloctane solution and highly oriented pyrolytic graphite demonstrates that variation of concentration and length of alkyl chains led to the formation of different networks, a compact one and a nanoporous one, with a fine control of the lattice parameters. The study of guest-host properties of the nanoporous network revealed a selectivity toward guest compounds according to their shape and size. Moreover, the statistical analysis of pore-to-pore guest dynamics evidences an anisotropic diffusion process.

  9. Quantitative Seismic Amplitude Analysis

    OpenAIRE

    Dey, A. K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...

  10. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  11. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  12. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  13. Anisotropic thermal expansion behavior of thin films of polymethylsilsesquioxane, a spin-on-glass dielectric for high-performance integrated circuits.

    Science.gov (United States)

    Oh, Weontae; Ree, Moonhor

    2004-08-03

    Thin films of poly(methylsilsesquioxane) (PMSSQ) are candidates for use as interdielectric layers in advanced semiconductor devices with multilayer structures. We prepared thin films of PMSSQ with thicknesses in the range 25.0-1151.0 nm by spin-casting its soluble precursor onto Si and GaAs substrates with native oxide layers and then drying and curing the films under a nitrogen atmosphere at temperatures in the range 250-400 degrees C. The out-of-plane thermal expansion coefficient alpha(perpendicular) of each film was measured over the temperature range 25-200 degrees C using spectroscopic ellipsometry and synchrotron X-ray reflectivity, while the in-plane thermal expansion coefficient alpha(parallel) of each film was determined over the temperature range 25-400 degrees C by residual stress analysis. PMSSQ films cured at higher temperatures exhibited reduced thermal expansion, which is attributed to the denser molecular packing and higher degree of cross-linking that arises at higher temperatures. Surprisingly however, all the PMSSQ films were found to exhibit very strong anisotropic thermal expansion; alpha(perpendicular) and alpha(parallel) of the films were in the ranges 140-329 ppm/ degrees C and 12-29 ppm/ degrees C respectively, depending on the curing temperature. This is the first time that cured PMSSQ thin films have been shown to exhibit anisotropic thermal expansion behavior. This anisotropic thermal expansion of the PMSSQ thin films might be due to the anisotropy of cross-link density in the films, which arises because of a combination of factors: the preferential orientation of methyl groups toward the upper film surface and the preferential network formation in the film plane that occurs during curing of the confined film. In addition, the film electron densities were determined using synchrotron X-ray reflectivity measurements and the film biaxial moduli were obtained using residual stress analysis.

  14. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-07-21

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  15. Validation of the cat as a model for the human lumbar spine during simulated high-velocity, low-amplitude spinal manipulation.

    Science.gov (United States)

    Ianuzzi, Allyson; Pickar, Joel G; Khalsa, Partap S

    2010-07-01

    High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of approximately 25% bodyweight for 0.5 s and peak forces that rose to 50-100% bodyweight within approximately 125 ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further

  16. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  17. Amplitude image processing by diffractive optics.

    Science.gov (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  18. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  19. Anisotropic electronic and magnetic properties of the quasi-two-dimensional heavy-fermion antiferromagnet CeRhIn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, A. L.; Arko, A. J.; Sarrao, J. L.; Hundley, M. F.; Fisk, Z.

    2000-12-01

    We have used high pulsed magnetic fields to 50 T to observe de Haas--van Alphen oscillations in the tetragonal antiferromagnet CeRhIn{sub 5}, which has an enhanced value of the electronic specific heat coefficient {gamma}{approx}>420 mJ/molK{sup 2}. For Tanisotropic spin-density wave opening a gap in the Fermi surface. The low-temperature magnetization reveals a magnetic phase transition that appears to be first order in nature. Quantum oscillations, which are observed for Tanisotropic Fermi surface. The temperature dependence of the amplitudes of the quantum oscillations shows anomalous behavior for B{parallel}[001] as a maximum at T{sup *}{approx}1.2 K is observed which we attribute to a gap opening in the anisotropic Fermi surface. The electronic and magnetic properties are anisotropic due to the quasi-two-dimensional crystal structure.

  20. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  1. Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities

    CERN Document Server

    Baryshevsky, V G

    2005-01-01

    In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

  2. Active Damping Using Distributed Anisotropic Actuators

    Science.gov (United States)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  3. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  4. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  5. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  6. Weibel instability driven by spatially anisotropic density structures

    CERN Document Server

    Tomita, Sara

    2016-01-01

    Observations of afterglows of gamma-ray bursts suggest (GRBs) that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating of the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron--positron plasmas with the spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by the spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that the temperature ...

  7. Observation of an Anisotropic Wigner Crystal

    Science.gov (United States)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  8. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli

    2013-04-01

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  9. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  10. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  11. Anisotropic assembly and pattern formation

    Science.gov (United States)

    von Brecht, James H.; Uminsky, David T.

    2017-01-01

    We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.

  12. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)

    2012-12-15

    A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.

  13. Propagation of an electromagnetic soliton in an anisotropic biquadratic ferromagnetic medium

    Institute of Scientific and Technical Information of China (English)

    L.Kavitha; M.Saravanan; D.Gopi

    2013-01-01

    Information storage technology based on anisotropic ferromagnets with sufficiently high magneto-optical effects has received much attention in recent years.Magneto-optical recording combines the merits of magnetic and optical techniques.We investigate the magneto-optical effects on a biquadratic ferromagnet and show that the dynamics of the system are govemed by a perturbed nonlinear Schr(o)dinger equation.The evolutions of amplitude and velocity of the soliton are found to be time independent,thereby admitting the lossless propagation of the electromagnetic soliton in the medium,which may have potential applications in soliton based optical communication systems.We also exploit the role of perturbation,which has a significant impact on the propagation of an electromagnetic soliton.

  14. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, C. [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Hung, L.; Sottile, F. [LSI, CNRS, CEA, École Polytechnique, F-91128 Palaiseau (France); European Theoretical Spectroscopy Facility (ETSF) (France); Zobelli, A. [LPS, CNRS and University Paris Sud, F-91405 Orsay (France); Blaise, P. [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); European Theoretical Spectroscopy Facility (ETSF) (France); Olevano, V. [University Grenoble Alpes, F-38000 Grenoble (France); European Theoretical Spectroscopy Facility (ETSF) (France); CNRS, Institut Néel, F-38042 Grenoble (France)

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  15. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    Science.gov (United States)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  16. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  17. Thick brane isotropization in the 5D anisotropic standing wave braneworld model

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel; Nucamendi, Ulises

    2014-01-01

    We study a smooth cosmological solution of the 5D anisotropic standing wave braneworld model generated by gravity coupled to a phantom-like scalar field. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We found a natural mechanism which isotropizes the braneworld, rendering a 3-brane with de Sitter symmetry embedded in a 5D de Sitter space-time for a wide class of initial conditions. The resulting thick geometrical braneworld (a de Sitter 3-brane) possesses a series of remarkable features. By explicitly solving the bulk field equations we are able to give a physical interpretation of the anisotropic dissipation: as the anisotropic energy on the 3-brane rapidly leaks into the bulk, through the nontrivial Weyl tensor components, the bulk becomes less isotropic.

  18. Polarization-tailored Fano interference in plasmonic crystals: A Mueller matrix model of anisotropic Fano resonance

    CERN Document Server

    Ray, S K; Singh, A K; Kumar, A; Misra, A Mandal S; Mitra, P; Ghosh, N

    2016-01-01

    We present a simple yet elegant Mueller matrix approach for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to two physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and post-selection of optimized polarization states. Experimental control on the Fano phase and the relative amplitude parameters and resulting tuning of spectral asymmetry is demonstrated in waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance including the complete reve...

  19. PULSE AMPLITUDE DISTRIBUTION RECORDER

    Science.gov (United States)

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  20. Light propagation through anisotropic turbulence.

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  1. Interdigitated Electrodes and Anisotropic Diffraction Analysis of Phase And/or Lossy Gratings for Bulk and Integrated Applications.

    Science.gov (United States)

    Glytsis, Elias Nikolaos

    1987-09-01

    Integrated optics is the primary area of application of the results of this thesis. Research and development of integrated optical circuits have been proceeding rapidly in recent years toward practical devices such acoustooptic spectrum analyzers, analog-to-digital converters, ultrafast logic gates, correlators, and multichannel data processors. These projects, however, have underscored the lack of fundamental knowledge regarding waveguide devices in anisotropic materials such as lithium niobate. Research into the basic physical modeling of these devices is the scope of this thesis. The main topics of this thesis are issues concerning the design and function of periodic interdigitated-electrode devices. At first, the electric field problem was solved taking into account the anisotropic properties of the substrate, the finite thickness of the electrodes, and the buffer layer between the electrodes and the substrate. The inclusion of the buffer layer is important for electrooptic applications since it is needed for the isolation of the optical field from the electrode metal. The bulk diffraction of plane waves by phase/amplitude anisotropic single or cascaded gratings with uniaxial anisotropic external regions has been analyzed. The various Bragg conditions have been classified and quantified. The diffraction of guided-waves by interdigitated-electrode induced phase gratings in uniaxial anisotropic waveguides has been treated. The electrostatic and grating diffraction analysis has been validated using available experimental data. The analysis is applicable to uniaxial anisotropic waveguides with the optic axis lying either in or perpendicular to the electrode surface. It applies to single-mode waveguides and to waveguides with negligible intermodal coupling. Finally, a new technique of designing antireflection coatings and gratings on lossy substrates has been developed in this thesis. The method employs high spatial-frequency surface-relief rectangular

  2. Mechanism of a strongly anisotropic MoIII-CN-MnII spin-spin coupling in molecular magnets based on the [Mo(CN)(7)](4-) heptacyanometalate: a new strategy for single-molecule magnets with high blocking temperatures.

    Science.gov (United States)

    Mironov, Vladimir S; Chibotaru, Liviu F; Ceulemans, Arnout

    2003-08-13

    Unusual spin coupling between Mo(III) and Mn(II) cyano-bridged ions in bimetallic molecular magnets based on the [Mo(III)(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo(III), the ground state of the pentagonal-bipyramidal [Mo(III)(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo(III)-CN-Mn(II) superexchange interaction is extremely anisotropic: it is described by an Ising-like spin Hamiltonian JS(z)(Mo) S(z)(Mn) for the apical pairs and by the J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn)) spin Hamiltonian for the equatorial pairs (in the latter case J(z) and J(xy) can have opposite signs). This anisotropy resulted from an interplay of several Ising-like (Sz(Mo) Sz(Mn)) and isotropic (S(Mo)S(Mn)) ferro- and antiferromagnetic contributions originating from metal-to-metal electron transfers through the pi and sigma orbitals of the cyano bridges. The Mo(III)-CN-Mn(II) exchange anisotropy is distinct from the anisotropy of the g-tensor of [Mo(III)(CN)(7)](4-); moreover, there is no correlation between the exchange anisotropy and g-tensor anisotropy. We indicate that highly anisotropic spin-spin couplings (such as the Ising-like JS(z)(Mo) S(z)(Mn)) combined with large exchange parameters represent a very important source of the global magnetic anisotropy of polyatomic molecular magnetic clusters. Since the total spin of such clusters is no longer a good quantum number, the spin spectrum pattern can differ considerably from the conventional scheme described by the zero-field splitting of the isotropic spin of the ground state. As a result, the spin reorientation barrier of the magnetic cluster may be considerably larger. This finding opens a new way in the strategy of designing single-molecule magnets (SMM) with unusually high blocking temperatures. The use of

  3. Enhancing magnetic properties of anisotropic NdDyFeCoNbCuB powder by applying magnetic field at high temperature during hydrogen desorption

    Institute of Scientific and Technical Information of China (English)

    LUO Jianjun; P.De Rango; D.Fruchart; MEI Jinna; HU Rui; LI Jinshan; ZHOU Lian

    2010-01-01

    Anisotropic powder was prepared with precursor (NdDy)-(FeCoNbCu)-B sintered magnets by hydrogen decrepitation,desorption,and subsequent annealing treatment.The hydrogen desorption was performed in magnetic fields of 0,1,3,and 5 T.The orientation of tetragonal phase grains of the powder was evaluated from the hysteresis loops measured by extraction magnetometer.Residual hydrogen content of the powder was evaluated by thermal-magnetic analysis.The powder with Hcj,Br,and (BH)max of 1138 kA.m-1,1.029 T,and 172.5 kJ.m-3,respectively,was achieved under the condition of the magnetic field of 3 T.Magnetic properties of the powder,especially,the remanence of the powder,are enhanced upon magnetic fields,which is due to better orientation of powder particles and less residual hydrogen in the powder resulted from the magnetic field during the hydrogen desorption process.

  4. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  5. Hyperspherical theory of anisotropic exciton

    CERN Document Server

    Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772

    2012-01-01

    A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.

  6. Anisotropic inflation in Finsler spacetime

    CERN Document Server

    Li, Xin; Chang, Zhe

    2015-01-01

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.

  7. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at √{sNN} = 2.76 TeV

    Science.gov (United States)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad Masoodi, A.; Ahmad, N.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, N.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bose, S.; Bossú, F.; Botje, M.; Boyer, B.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; D'Erasmo, G.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, A.; Dash, S.; de, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Delagrange, H.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; di Bari, D.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gonschior, A.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jangal, S.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jusko, A.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. J.; Kim, D. W.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, S. H.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Korneev, A.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lazzeroni, C.; Le Bornec, Y.; Lea, R.; Lechman, M.; Lee, G. R.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Mal'Kevich, D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, A. K.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortona, G.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puchagin, S.; Puddu, G.; Pujahari, P.; Pujol Teixido, J.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodrigues Fernandes Rabacal, B.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, J.; Song, M.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strabykin, K.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymanski, M.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Tosello, F.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; van Leeuwen, M.; Vande Vyvre, P.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Øvrebekk, G.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, V.; Wan, R.; Wang, D.; Wang, M.; Wang, Y.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.; Alice Collaboration

    2013-02-01

    The elliptic, v2, triangular, v3, and quadrangular, v4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb-Pb collisions at √{sNN} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range | η | 8 GeV / c. The small pT dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT = 8 GeV / c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT = 8 GeV / c indicating that the particle type dependence persists out to high pT.

  8. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK

    2013-02-12

    The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |$\\eta$|8 GeV/c. The small $p_T$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_T$ =8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_T$ =8 GeV/c indicating that the particle type dependence persists out to high $p_T$.

  9. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    Energy Technology Data Exchange (ETDEWEB)

    Ashoorioon, Amjad [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Casadio, Roberto [INFN - Sezione di Bologna, IS FLAG,viale B. Pichat 6/2, I-40127 Bologna (Italy); Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); Koivisto, Tomi [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  10. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    Science.gov (United States)

    Ashoorioon, Amjad; Casadio, Roberto; Koivisto, Tomi

    2016-12-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B| lesssim 0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and epsilonsimeq 0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach 0fNL ~ 3 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  11. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  12. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  13. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  14. Graviton amplitudes from collinear limits of gauge amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2015-05-11

    We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.

  15. On the Period-Amplitude and Amplitude-Period Relationships

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  16. Electromagnetic fields due to dipole antennas over stratified anisotropic media.

    Science.gov (United States)

    Kong, J. A.

    1972-01-01

    Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information about the geometrical configuration and the physical constituents of the medium, are obtained in closed form. In view of the general formulation, various special cases are discussed.

  17. Analysis of stability of a homogeneous state of anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, V. Yu., E-mail: vladiyuz@mail.ru; Chernova, T. G., E-mail: chernova-tg@yandex.ru; Stepanov, S. E., E-mail: stepanov@bmstu-kaluga.ru [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation)

    2015-04-15

    Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves.

  18. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  19. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  20. Anisotropic Poisson Processes of Cylinders

    CERN Document Server

    Spiess, Malte

    2010-01-01

    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  1. Anisotropic magnetoresistance effect field sensors

    CERN Document Server

    Hauser, H; Stangl, G; Chabicovsky, R; Janiba, M; Riedling, K

    2000-01-01

    The parameters of the sensor layout and sensitivity considerations are discussed. The anisotropic magnetoresistive effect of DC-sputtered Ni 81%-Fe 19% films has been increased up to DELTA rho/rho=3.93% at 50 nm thickness and a sensitivity of 500 mu V/mu T can be achieved by an elliptically shaped sensor layout.

  2. Wireless energy transfer between anisotropic metamaterials shells

    CERN Document Server

    Diaz-Rubio, Ana; Sanchez-Dehesa, Jose

    2013-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.

  3. Scattering of electromagnetic light waves from a deterministic anisotropic medium

    Science.gov (United States)

    Li, Jia; Chang, Liping; Wu, Pinghui

    2015-11-01

    Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.

  4. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...

  5. Closed string amplitudes as single-valued open string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2014-04-15

    We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.

  6. TOFPET2: a high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications

    Science.gov (United States)

    Di Francesco, A.; Bugalho, R.; Oliveira, L.; Pacher, L.; Rivetti, A.; Rolo, M.; Silva, J. C.; Silva, R.; Varela, J.

    2016-03-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with 320 pF capacitance the circuit has 24 (30) dB SNR, 75(39) ps r.m.s. resolution, and 4(8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  7. Amplitude Modulations of Acoustic Communication Signals

    Science.gov (United States)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  8. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    Science.gov (United States)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  9. Weibel Instability Driven by Spatially Anisotropic Density Structures

    Science.gov (United States)

    Tomita, Sara; Ohira, Yutaka

    2016-07-01

    Observations of afterglows of gamma-ray bursts (GRBs) suggest that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron-positron plasmas with spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that a temperature anisotropy is generated and the Weibel instability becomes unstable. Our simulation results suggest that the Weibel instability driven by an anisotropic density structure can generate sufficiently large magnetic fields and they can cover sufficiently large regions to explain the afterglow emission of GRBs.

  10. Surface Wave Amplitude Anomalies in the Western United States

    Science.gov (United States)

    Eddy, C.; Ekstrom, G.

    2011-12-01

    We determine maps of local surface wave amplitude factors across the Western United States for Rayleigh and Love waves at discrete periods between 25 and 125s. Measurements of raw amplitude anomalies are made from data recorded at 1161 USArray stations for minor arc arrivals of earthquakes with Mw>5.5 occurring between 2006 and 2010. We take the difference between high-quality amplitude anomaly measurements for events recorded on station pairs less than 2 degrees apart. The mean of these differences for each station pair is taken as the datum. Surface wave amplitudes are controlled by four separate mechanisms: focusing due to elastic structure, attenuation due to anelastic structure, source effects, and receiver effects. By taking the mean of the differences of amplitude anomalies for neighboring stations, we reduce the effects of focusing, attenuation, and the seismic source, thus isolating amplitude anomalies due to near-receiver amplitude effects. We determine local amplitude factors for each USArray station by standard linear inversion of the differential data set. The individual station amplitude factors explain the majority of the variance of the data. For example, derived station amplitude factors for 50s Rayleigh waves explain 92% of the variance of the data. We explore correlations between derived station amplitude factors and local amplitude factors predicted by crust and upper mantle models. Maps of local amplitude factors show spatial correlation with topography and geologic structures in the Western United States, particularly for maps derived from Rayleigh wave amplitude anomalies. A NW-SE trending high in amplitude factors in Eastern California is evident in the 50s map, corresponding to the location of the Sierra Nevada Mountains. High amplitude factors are observed in Colorado and New Mexico in the 50s-125s maps in the location of the highest peaks of the Rocky Mountains. High amplitude factors are also seen in Southern Idaho and Eastern Wyoming in

  11. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  12. Anisotropic expansion and SNIa: An open issue

    Directory of Open Access Journals (Sweden)

    Jose Beltrán Jiménez

    2015-02-01

    Full Text Available We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical comparison method to detect possible anisotropic features. Unlike some previous works where non-diagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of previously claimed detections of a preferred direction in the Union2 dataset completely disappears once we include the effects of using the full covariance matrix. Moreover, we also find that such a preferred direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, after removal of the highest inhomogeneous sub-samples, the number of SNIa is too low. Finally, we take advantage of the particular distribution of SNLS SNIa sub-sample in the SNLS3 data set, in which the observations were taken along four different directions. We fit each direction independently and find consistent results at the 1σ level. Although the likelihoods peak at relatively different values of Ωm, the low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently broad as to overlap within 1σ.

  13. Monte Carlo simulation with aspect-ratio optimization: anomalous anisotropic scaling in dimerized antiferromagnets.

    Science.gov (United States)

    Yasuda, Shinya; Todo, Synge

    2013-12-01

    We present a method that optimizes the aspect ratio of a spatially anisotropic quantum lattice model during the quantum Monte Carlo simulation, and realizes the virtually isotropic lattice automatically. The anisotropy is removed by using the Robbins-Monro algorithm based on the correlation length in each direction. The method allows for comparing directly the value of the critical amplitude among different anisotropic models, and identifying the universality more precisely. We apply our method to the staggered dimer antiferromagnetic Heisenberg model and demonstrate that the apparent nonuniversal behavior is attributed mainly to the strong size correction of the effective aspect ratio due to the existence of the cubic interaction.

  14. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  15. Recent progress in anisotropic hydrodynamics

    CERN Document Server

    Strickland, Michael

    2016-01-01

    The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  16. Conductivities in an anisotropic medium

    Science.gov (United States)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong

    2016-10-01

    In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.

  17. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  18. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  19. Decorrelation of anisotropic flow along the longitudinal direction

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Qin, Guang-You [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Roy, Victor [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Wang, Xin-Nian [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Lawrence Berkeley National Laboratory, Nuclear Science Division MS70R0319, Berkeley, CA (United States)

    2016-04-15

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity (η). Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations. (orig.)

  20. Decorrelation of anisotropic flow along the longitudinal direction

    Science.gov (United States)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-04-01

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.

  1. Slotted Antenna with Anisotropic Covering

    Science.gov (United States)

    2015-08-06

    08-2015 Publication Slotted Antenna with Anisotropic Covering David A. Tonn et al Naval Under Warfare Center Division, Newport 1176 Howell St...NUWC 300055 Distribution A An antenna includes a tubular, conductive radiator having a longitudinal slot formed therein from a first end of the...conductive radiator to a second end of the conductive radiator. An antenna feed can be joined to the conductive radiator adjacent to and across the slot

  2. Positive Amplitudes In The Amplituhedron

    CERN Document Server

    Arkani-Hamed, Nima; Trnka, Jaroslav

    2014-01-01

    The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by an "amplitude form" with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural "bosonization" of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a "dual amplituhedron" formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting...

  3. Model selection for amplitude analysis

    CERN Document Server

    Guegan, Baptiste; Stevens, Justin; Williams, Mike

    2015-01-01

    Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.

  4. Studies on the formation mechanism and the structure of the anisotropic collagen gel prepared by dialysis-induced anisotropic gelation.

    Science.gov (United States)

    Furusawa, Kazuya; Sato, Shoichi; Masumoto, Jyun-ichi; Hanazaki, Yohei; Maki, Yasuyuki; Dobashi, Toshiaki; Yamamoto, Takao; Fukui, Akimasa; Sasaki, Naoki

    2012-01-09

    We have found that dialysis of 5 mg/mL collagen solution into the phosphate solution with a pH of 7.1 and an ionic strength of 151 mM [corrected] at 25 °C results in a collagen gel with a birefringence and tubular pores aligned parallel to the growth direction of the gel. The time course of averaged diameter of tubular pores during the anisotropic gelation was expressed by a power law with an exponent of 1/3, suggesting that the formation of tubular pores is attributed to a spinodal decomposition-like phase separation. Small angle light scattering patterns and high resolution confocal laser scanning microscope images of the anisotropic collagen gel suggested that the collagen fibrils are aligned perpendicular to the growth direction of the gel. The positional dependence of the order parameter of the collagen fibrils showed that the anisotropic collagen gel has an orientation gradient.

  5. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  6. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  7. Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films

    Science.gov (United States)

    Jian, Zhihao

    Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.

  8. Particle Distribution Modification by Low Amplitude Modes

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  9. Anisotropic artificial substrates for microwave applications

    Science.gov (United States)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  10. Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and Fourier series.

    Science.gov (United States)

    Mao, Shi-Chun; Wu, Zhen-Sen

    2008-12-01

    An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.

  11. 稳定的保幅高阶广义屏地震偏移成像方法研究%The method of preserved-amplitude seismic migration imaging with stable generalized high order screen

    Institute of Scientific and Technical Information of China (English)

    刘定进; 杨瑞娟; 罗申玥; 王鹏燕; 郑小鹏; 宋林

    2012-01-01

    Wave equation preserved-amplitude seismic migration imaging has a special function that can give true amplitudes as well as the correct locations based on advanced wave theories. The author first starts from the unstable phase shift expression of preserved-amplitude one way wave equation. Based on perturbation theory which is often used in reversed question solution, the author uses the progressive expansion of single square root operator to drive a high-order generalized screen form of preserved-amplitude prestack depth migration equation. To solve the unstable problem in lateral variable speed media caused by computation items of the scattering wavefield, the author proposes a strategy which can effectively improve the stability by math approximation. Then this strategy is applied to the wavefield recursion extrapolation, so a kind of stable preserved-amplitude prestack depth migration operators of high-order generalized screen are obtained. Theoretical model testing and real data processing indicate that this method can not only make scattering energy be focused and migrated to the correct position to improve imaging accuracy but also output the amplitude information which reflects the correct subsurface reflection coefficients. So this method has clearer AVO response and can enhance analytic precision for AVO data.%以先进的波动理论为基础的波动方程保幅地震偏移成像是在给出正确位置的同时也给出真实振幅的一种特殊完善.作者从保幅单程波动方程的非稳态相移公式出发,基于反问题求解中常用的摄动理论,利用单平方根算子的渐进展开,从而推导出保幅叠前深度偏移方程的高阶广义屏形式;针对散射波场计算项对于横向变速介质的不稳定性,通过数学近似提出一个有效提高稳定性的策略,应用到波场递归外推过程中,从而得到一种稳定的保幅高阶广义屏叠前深度偏移算子.理论模型试算和实际资料处理表明,该

  12. Anisotropic Homogeneous Turbulence: Hierarchy and Intermittency of Scaling Exponents in the Anisotropic Sectors

    NARCIS (Netherlands)

    Biferale, Luca; Toschi, Federico

    2001-01-01

    We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flo

  13. Seismic Wave Propagation in Fully Anisotropic Axisymmetric Media: Applications and Practical Considerations

    Science.gov (United States)

    van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen

    2014-05-01

    We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.

  14. Optical Propagation in Anisotropic Metamaterials (Postprint)

    Science.gov (United States)

    2017-02-22

    AFRL-RX-WP-JA-2017-0309 OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) Rudra Gnawali, Partha P. Banerjee, and...October 2013 – 26 December 2016 4. TITLE AND SUBTITLE OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-13-D...ABSTRACT (Maximum 200 words) Anisotropic metamaterials are widely used in the field of optics because of their unique electromagnetic properties. These

  15. PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS

    OpenAIRE

    Bobyr, M.; Khalimon, O.; Bondarets, O.

    2015-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...

  16. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb–Pb collisions at √(s{sub NN})=2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Adam, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Adamová, D. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy (Czech Republic); Adare, A.M. [Yale University, New Haven, CT (United States); Aggarwal, M.M. [Physics Department, Panjab University, Chandigarh (India); Aglieri Rinella, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Agocs, A.G. [KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest (Hungary); Agostinelli, A. [Dipartimento di Fisica dell' Università and Sezione INFN, Bologna (Italy); Aguilar Salazar, S. [Instituto de Física, Universidad Nacional Autónoma de México, Mexico City (Mexico); Ahammed, Z. [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad Masoodi, A.; Ahmad, N. [Department of Physics, Aligarh Muslim University, Aligarh (India); Ahn, S.U. [Gangneung-Wonju National University, Gangneung (Korea, Republic of); Akindinov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Aleksandrov, D. [Russian Research Centre Kurchatov Institute, Moscow (Russian Federation); Alessandro, B. [Sezione INFN, Turin (Italy); Alfaro Molina, R. [Instituto de Física, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alici, A. [Centro Fermi – Centro Studi e Ricerche e Museo Storico della Fisica “Enrico Fermi”, Rome (Italy); Alkin, A. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); and others

    2013-02-12

    The elliptic, v{sub 2}, triangular, v{sub 3}, and quadrangular, v{sub 4}, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at √(s{sub NN})=2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |η|<0.8 at different collision centralities and as a function of transverse momentum, p{sub T}, out to p{sub T}=20 GeV/c. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for p{sub T}>8 GeV/c. The small p{sub T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to p{sub T}=8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least p{sub T}=8 GeV/c indicating that the particle type dependence persists out to high p{sub T}.

  17. Supplemental figure: Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76 TeV

    CERN Document Server

    2015-01-01

    This note provides a supplemental figure for data on ``Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76~TeV" published in \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{Phys.\\ Lett.\\ B {\\bf 719}, 18 (2013)}, \\href{http://arxiv.org/abs/1205.5761}{arXiv:1205.5761}. The figure~(\\ref{fig:v2_pid}) presents the $v_2$ of charged pions and protons (particles and anti-particles are not distinguished in this analysis) from the event plane method as a function of transverse momentum for different centrality classes as reported in Fig. 5 of the \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{publication}. The proton $v_2$ is higher than that of pions out to $\\pt=8$~GeV/$c$ where the uncertainties become large.

  18. Computing Maximally Supersymmetric Scattering Amplitudes

    Science.gov (United States)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  19. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  20. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    CERN Document Server

    Tang, Xiangwei; Dombeck, John; Dai, Lei; Wilson, Lynn B; Breneman, Aaron; Hupach, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region at the sub-solar magnetopause using data from one THEMIS satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves and electrostatic electron cyclotron waves, are observed in the same 12-sec waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves which are at the electron scale and enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (~30 keV) within the electron diffusion region have anisotropic distributions with T_{e\\perp}/T_{e\\parallel}>1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whi...

  1. Research advances of un-symmetric constitutive theory of anisotropic viscoelastic liquids and its hydrodynamic behavior

    Institute of Scientific and Technical Information of China (English)

    韩式方

    2008-01-01

    Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anisotropic suspension were reported.A new concept of simple anisotropic fluid was introduced.On the basis of anisotropic principle,the simple fluid stress behaviour was described by velocity gradient tensor F and spin tensor W instead of velocity gradient tensor D in the classic Leslie-Ericksen continuum theory.Two relaxation times analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equation of co-rotational type was introduced.More general model LCP-H for the fluid was developed.The unsymmetry of the shear stress was predicted by the present continuum theory for anisotropic viscoelastic fluid-LC polymer liquids.The influence of the relaxation times on material functions was specially studied.It is important to study the unsteady vibrational rotating flow with small amplitudes,as it is a best way to obtain knowledge of elasticity of the LC polymer,i.e.dynamic viscoelasticity.For the shear-unsymmetric stresses,two shear stresses were obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) were introduced by the constitutive equation which was defined by rotating shear rate introduced by author.For the two stability problems of fluid,such as stability of hydrodynamic flow and orientational motion,were discussed.The results show that the polymer suspension systems exhibit anisotropic character.The PNC systems can exhibit significant shear-thinning effects.For more concentrated polymer nano-suspensions,the first normal stress difference change from positive to negative,which is similar to LC polymer behavior.

  2. Decorrelation of anisotropic flows along the longitudinal direction

    CERN Document Server

    Pang, Long-Gang; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2015-01-01

    The initial energy density distribution and fluctuation in the transverse direction lead to anisotropic flows of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flows in different regions of pseudo rapidity ($\\eta$). Decorrelation of the $2$nd and $3$rd order anisotropic flows with different $\\eta$ gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flows of final hadrons with large $\\eta$ gaps are found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event-plane angles. The agreement between our r...

  3. Investigation of Low-Amplitude Shear Wave Velocity in Anisotropic Material.

    Science.gov (United States)

    1986-08-01

    OCR = overconsolidation ratio, K = factor related to soil plasticity , P = atmospheric pressure in same units as Gmax, e = void ratio, 0o = mean...units, C = dimensionless constant, OCR = overconsolidation ratio, k = factor related to soil plasticity , Pa = atmospheric pressure in same units as...and 474-478 (from Hardin, 1961). 33. Chen, W. F. (1976), Limit Analysis and Soil Plasticity , McGraw-Hill Book Co., New York. 34. Chu, H.Y.F., Lee, S.H.H

  4. Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit

    Digital Repository Service at National Institute of Oceanography (India)

    Sriram, G.; Dewangan, P.; Ramprasad, T.; RamaRao, P.

    stream_size 75666 stream_content_type text/plain stream_name J_Geophys_Res_B_Solid_Earth_118_2258a.pdf.txt stream_source_info J_Geophys_Res_B_Solid_Earth_118_2258a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset... below the base of gas hydrate stability zone is interpreted in the vicinity of fault system (F1). 1. Introduction Gas hydrate represents a solid crystalline form of lighter hydrocarbon gases trapped within the cages of water molecules...

  5. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  6. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  7. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  8. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  9. Comments on inhomogeneous anisotropic cosmology

    CERN Document Server

    Kaya, Ali

    2016-01-01

    Recently a new no-global-recollapse argument is given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this note we point out a few important issues about the proposed deformations and in particular indicate that in the presence of large spatial variations the mean curvature flow may deform an initially spacelike surface to a surface with null or timelike portions. The time evolution of the spatial scalar curvature that prevents recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis also indicates a possible caveat in numerical solutions that give rise to inflation.

  10. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  11. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  12. Remarks on inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  13. Detection of a 1258 Hz high-amplitude kilohertz quasi-periodic oscillation in the ultra-compact X-ray binary 1A 1246-588

    CERN Document Server

    Jonker, P G; Méndez, M; Van der Klis, M

    2007-01-01

    We have observed the ultra-compact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this manuscript we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258+-2 Hz and at a single trial significance of more than 7 sigma. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full-width at half maximum is 25+-4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0....

  14. Method of differential-phase/absolute-amplitude QAM

    Science.gov (United States)

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  15. PIV anisotropic denoising using uncertainty quantification

    Science.gov (United States)

    Wieneke, B.

    2017-08-01

    Recently, progress has been made to reliably compute uncertainty estimates for each velocity vector in planar flow fields measured with 2D-or stereo-PIV. This information can be used for a post-processing denoising scheme to reduce errors by a spatial averaging scheme preserving true flow fluctuations. Starting with a 5 × 5 vector kernel, a second-order 2D-polynomial function is fitted to the flow field. Vectors just outside will be included in the filter kernel if they lie within the uncertainty band around the fitted function. Repeating this procedure, vectors are added in all directions until the true flow field can no longer be approximated by the second-order polynomial function. The center vector is then replaced by the value of the fitted function. The final shape and size of the filter kernel automatically adjusts to local flow gradients in an optimal way preserving true velocity fluctuations above the noise level. This anisotropic denoising scheme is validated first on synthetic vector fields varying spatial wavelengths of the flow field and noise levels relative to the fluctuation amplitude. For wavelengths larger than 5-7 times the spatial resolution, a noise reduction factor of 2-4 is achieved significantly increasing the velocity dynamic range. For large noise levels above 50% of the flow fluctuation, the denoising scheme can no longer distinguish between true flow fluctuations and noise. Finally, it is shown that the procedure performs well for typical experimental PIV vector fields. It provides an effective alternative to more complicated adaptive PIV algorithms optimizing interrogation window sizes and shapes based on seeding density, local flow gradients, and other criteria.

  16. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    Science.gov (United States)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  17. Quantitative laryngeal electromyography: turns and amplitude analysis.

    Science.gov (United States)

    Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C

    2010-10-01

    Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.

  18. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  19. Anisotropic magnetic fluctuations in 3-k antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Caciuffo, R. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany)]. E-mail: roberto.caciuffo@ec.europa.eu; Magnani, N. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany); Istituto dei Materiali per l' Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, I-43010 Fontanini (PR) (Italy); Santini, P. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Carretta, S. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Amoretti, G. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Blackburn, E. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany); Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Enderle, M. [Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Brown, P.J. [Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Lander, G.H. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany)

    2007-03-15

    The anisotropy of magnetic fluctuations propagating along the high-symmetry directions in cubic systems with 3-k magnetic order is analyzed within the random-phase approximation assuming anisotropic exchange interactions. Both transverse and longitudinal structures are considered, with reference to the UO{sub 2} and USb compounds, respectively. In the case of UO{sub 2}, the spin-waves polarizations calculated for acoustic and optical branches are favorably compared with three-dimensional polarization analysis experiments carried out on a triple axis spectrometer. The overall spin-waves polarization behavior emerges as a consequence of the 3-k nature of the magnetic order, whatever the strength of the exchange coupling assumed.

  20. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  1. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits.

  2. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  3. Recent progress in anisotropic hydrodynamics

    Directory of Open Access Journals (Sweden)

    Strickland Michael

    2017-01-01

    Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  4. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  5. Employing Helicity Amplitudes for Resummation

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...

  6. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire

  7. Extracting amplitudes from photoproduction data

    Science.gov (United States)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  8. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  9. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals

    Science.gov (United States)

    Khonina, Svetlana N.; Karpeev, Sergei V.; Paranin, Vyacheslav D.; Morozov, Andrei A.

    2017-08-01

    We report the development of an optical system based on diffractive optical elements and uniaxial crystals to produce radially and azimuthally polarized beams, including beams of higher orders. The conditions for the generation of beams with different polarization states in an anisotropic crystal with an arbitrary axially symmetric amplitude distribution are analyzed theoretically. The results of the experimental study on the generation of cylindrical vector beams in a calcite crystal agree with the results of the simulation.

  10. Strain accumulation model of soils under low-amplitude high-cycle loading%低幅值高循环荷载作用下土体的应变累积模型

    Institute of Scientific and Technical Information of China (English)

    贾鹏飞; 孔令伟; 杨爱武

    2013-01-01

    高速铁路路基上的轨道以及附近区域的结构物承受低幅值、高循环振动荷载的反复作用.在此低幅值、高循环荷载作用下土体会产生不可恢复的应变累积,导致轨道及附近区域结构物发生附加沉降.当前,描述土体的循环变形特征的理论分为两类:一类是基于经典塑性理论的应力-应变滞回模型(例如边界面模型),另一类是基于循环三轴试验经验规律的应变累积模型(例如Bochum累积模型).为了能够预测土体在低幅值、高循环荷载作用下的应变累积行为,在前人对土体在低幅值、高循环荷载作用下大量试验研究的基础上,在经典弹塑性理论的框架下,提出一个土体在低幅值、高循环荷载作用下的应变累积模型.该模型通过用对数律来描述塑性体应变的累积规律,并以此作为应变累积的大小度量,然后通过修正Cam-clay模型的流动准则来描述应变累积的发展方向.最后,通过多组试验结果的模拟,表明所提出的应变累积模型能够较好地预测土体在低幅值、高循环荷载作用下的应变累积行为,具有广泛的应用前景.%High-speed railway track and nearby structures are subjected to low-amplitude and high-cycle loading. Additional settlements of track and structures may be caused by irreversible strain accumulation of soils under the low-amplitude and high-cycle loading. At present, the theories described the deformation characteristics of soils have two kinds, stress-strain hysteretic model based on classical plastic theory, e.g. bounding surface model, and strain accumulation model based on empirical law obtained from the cyclic triaxial tests, e.g. Bochum accumulation model. Based on the existing test studies and classical elastoplastic theory, a strain accumulation model is proposed to predict strain accumulation behavior of soils subjected to low-amplitude and high-cycle loading. The model describes the accumulation law of

  11. The Hall effect in the organic conductor TTF–TCNQ: choice of geometry for accurate measurements of a highly anisotropic system

    DEFF Research Database (Denmark)

    Tafra, E; Čulo, M; Basletić, M

    2012-01-01

    We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF–TCNQ (tetrathiafulvalene–tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ......) chains. The measurements were performed in the temperature interval 30 K ... Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF...

  12. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...

  13. Reflection of light from an anisotropic medium

    CERN Document Server

    Ignatovich, Filipp V

    2010-01-01

    We present here a general approach to treat reflection and refraction of light of arbitrary polarization from single axis anisotropic plates. We show that reflection from interface inside the anisotropic medium is accompanied by beam splitting and can create surface waves.

  14. ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Shipeng MAO; Hui LIANG

    2006-01-01

    The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.

  15. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  16. Ultrasonic guided wave nondestructive evaluation using generalized anisotropic interface waves

    Science.gov (United States)

    Gardner, Michael D.

    The motivation for this work is a goal to inspect interfaces between thick layers of materials that can be anisotropic. The specific application is a thick composite bonded to a metal substrate. The interface is inspected for disbonds between the metal and composite. The large thickness allows the problem to be modeled as a half space. The theory behind guided waves in plates is presented. This theory includes the calculation and analysis of dispersion curves and the resulting wave structure. It is noted that for high frequency-thickness values, certain modes will converge to the half-space waves, e.g. the Rayleigh wave and the Stoneley wave. Points of high energy, especially shear energy, at the interface are desirable for interfacial inspection. Therefore, the wave structure for all modes and frequencies is searched for ideal inspection points. Interface waves are inherently good modes to use for interface inspection. Results from the dispersion curves and wave structures are verified in the finite element model software package called Abaqus. It is confirmed that the group speeds and wave structures of the modes match the predicted values. A theoretical development of interface waves is given wherein Rayleigh, Stoneley, and generalized interface waves are discussed. This is applied to both isotropic and anisotropic materials. It is shown that the Stoneley wave only exists for a certain range of material parameters. Because the Stoneley wave is the interface wave between two solid half spaces, it might appear that only certain pairs of solids would allow for inspection via interface wave. However, it is shown that for perturbations of the Stoneley-wave-valid material properties, interface waves which leak energy away from the interface can still propagate. They can also be used for inspection. Certain choices of materials will leak less energy and will therefore allow for longer inspection distances. The solutions to the isotropic leaky wave problem exist on

  17. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  18. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  19. The Hall effect in the organic conductor TTF-TCNQ: choice of geometry for accurate measurements of a highly anisotropic system.

    Science.gov (United States)

    Tafra, E; Culo, M; Basletić, M; Korin-Hamzić, B; Hamzić, A; Jacobsen, C S

    2012-02-01

    We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) chains. The measurements were performed in the temperature interval 30 K Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF or the TCNQ chain. At lower temperatures our measurements clearly prove that all three phase transitions of TTF-TCNQ could be identified from Hall effect measurements.

  20. Highly anisotropic exchange interactions of jeff=1/2 iridium moments on the fcc lattice in La2B IrO6 (B =Mg ,Zn )

    Science.gov (United States)

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; Calder, S.; Christianson, A. D.; Cao, G.-X.; Mandrus, D.; Kim, Yong-Baek; Paramekanti, A.

    2016-06-01

    We have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO6 and La2MgIrO6 , which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated jeff=1/2 Mott insulators provide clear evidence for gapped spin-wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in jeff=1/2 Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly directional Kitaev interaction is a type of exchange anisotropy which is symmetry allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order by disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry lowering due to lattice distortions can pin the order and enhance the magnon gap. Our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly directional exchange interactions rooted in strong spin-orbit coupling.

  1. Channeling efficiency dependence on bending radius and thermal vibration amplitude of the model for the channeling of high-energy particles in straight and bent crystals implemented in Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, Enrico [INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Asai, Makoto; Dotti, Andrea [SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Guidi, Vincenzo [INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Verderi, Marc [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France)

    2015-07-15

    Monte Carlo simulations of the interaction of particles with matter are usually done with downloadable toolkits such as Geant4. A model suitable for the implementation into Geant4 for the interaction of high-energy particles in straight and bent crystals was developed and implemented. The model relies on the continuum potential approximation. The variation of the Geant4 model for the description of the orientational effect as a function of the physical parameters for the calculation of the interplanar potential is presented. The simulations are capable of reproducing the variation of the efficiency of channeling as a function of the thermal vibration amplitude and the bending radius of a bent Si strip. The study can be useful for the simulation of the channeling effect in experiments at GeV/c energies.

  2. Validity of the Néel-Arrhenius model for highly anisotropic Co{sub x}Fe{sub 3−x}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Torres, T. E.; Ibarra, M. R. [Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Lima, E. [División Resonancias Magnéticas, Centro Atómico Bariloche/CONICET, S. C. Bariloche 8400 (Argentina); Mayoral, A.; Ibarra, A. [Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Marquina, C. [Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Goya, G. F., E-mail: goya@unizar.es [Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2015-11-14

    We report a systematic study on the structural and magnetic properties of Co{sub x}Fe{sub 3−x}O{sub 4} magnetic nanoparticles with sizes between 5 and 25 nm, prepared by thermal decomposition of Fe(acac){sub 3} and Co(acac){sub 2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (42 K < T{sub B} < 345 K for 5 < d < 13 nm) and large coercive fields (H{sub C} ≈ 1600 kA/m for T = 5 K). The smallest particles (〈d〉=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the Neel–Arrhenius relaxation framework by including the thermal dependence of the magnetocrystalline anisotropy constant K{sub 1}(T), without the need of ad-hoc corrections. This approach, using the empirical Brükhatov-Kirensky relation, provided K{sub 1}(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ{sub 0} ≈ 10{sup −10}s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener's relation between K{sub 1}(T) and M(T)

  3. Preparation of YCo{sub 5}, PrCo{sub 5} and SmCo{sub 5} anisotropic high-coercivity powders via mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gabay, A.M., E-mail: gabay@udel.edu [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Hu, X.C. [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-11-15

    Polydispersed RCo{sub 5} powders consisting mostly of single crystal particles with an average size ranging from 280 nm to 400 nm have been prepared mechanochemically for R=Y, Pr, Pr–Sm and Sm. The synthesis included (i) mechanical activation of a mixture of rare earth oxides, Co, Ca and CaO, (ii) short annealing and (iii) separation of the RCo{sub 5} particles through a multi-step washing process. The highest room-temperature coercivities of the oriented YCo{sub 5}, PrCo{sub 5} and SmCo{sub 5} powders were 20.6, 19.1 and 41.5 kOe, respectively. This improvement compared to traditionally ground powders is attributed to a lower density of crystalline defects. An investigation of a broad, 1050–1320 K, range of the synthesis temperatures revealed nearly universal evolution of crystalline anisotropy of the particles and their remanent magnetization, significant variations in the particle growth rate—with growth of the YCo{sub 5} particles being the most sluggish—and, surprisingly, no correlation between the average size of the particles and their coercivity. These findings extend the practical limits associated with hard magnetic materials and demonstrate that the hard magnetic properties of the mechanochemically synthesized YCo{sub 5} and PrCo{sub 5} powders are similar to those of traditionally prepared SmCo{sub 5}. - Highlights: • Mechanochemistry yields RCo{sub 5} single crystals few hundred nanometers in size. • Coercivity of powders is 2–5 times larger than the one attainable through milling. • The high coercivity is attributed to a lower density of crystalline defects.

  4. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb–Pb collisions at √sNN =2.76 TeV

    NARCIS (Netherlands)

    Abelev, B.I.; Adam, J.; Bjelogrlic, S; Chojnacki, M.; de Rooij, R. S.; Grelli, A.; La Pointe, S.L.; Luparello, G.; Mischke, A.; Nooren, G.J.L.; Peitzmann, T.; Reicher, M; Snellings, R.J.M.; Thomas, D; van Leeuwen, M.; Veldhoen, M; Verweij, M.; Zhou, Y.; Zyzak, M.

    2013-01-01

    The elliptic, v2, triangular, v3, and quadrangular, v4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at View the MathML source with the ALICE detector at the Large Hadron Collider. Results obtained with the eve

  5. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Qiang; Jiang Weixiang; Cui Tiejun, E-mail: tjcui@seu.edu.c [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-25

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  6. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    Science.gov (United States)

    Cheng, Qiang; Jiang, Wei Xiang; Cui, Tie Jun

    2010-08-01

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  7. New structures in scattering amplitudes: a review

    CERN Document Server

    Benincasa, Paolo

    2013-01-01

    We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE

  8. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...

  9. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  10. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    Science.gov (United States)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives

  11. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  12. Infrared singularities in QCD amplitudes

    CERN Document Server

    Gardi, Einan

    2009-01-01

    We review recent progress in determining the infrared singularity structure of on-shell scattering amplitudes in massless gauge theories. We present a simple ansatz where soft singularities of any scattering amplitude of massless partons, to any loop order, are written as a sum over colour dipoles, governed by the cusp anomalous dimension. We explain how this formula was obtained, as the simplest solution to a newly-derived set of equations constraining the singularity structure to all orders. We emphasize the physical ideas underlying this derivation: the factorization of soft and collinear modes, the special properties of soft gluon interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential multi-loop contributions going beyond the sum-over-dipoles formula, which cannot be excluded at present.

  13. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  14. A Weakly Non Linear Stability Analysis of Heat Transport in Anisotropic Porous Cavity Under Time PeriodicTemperature Modulation

    Directory of Open Access Journals (Sweden)

    Amit kumar Mishra

    2015-01-01

    Full Text Available In this paper, we have analyzed the effect of time periodic temperature modulation on convective stability in anisotropic porous cavity. The cavity is heated from below and cooled from above. A weakly non-linear stability analysis is done to find Nusselt number governing the heat transport. The infinitely small disturbances are expanded in terms of power series of amplitude of modulation. Analytically the nonautonomous Ginzburg- landau amplitude equation is obtained for the stationary mode of convection. The effects of various parameters like Vadasz number, mechanical and thermal anisotropic parameters, amplitude of oscillations, frequency of modulation and aspect ratio of the cavity on heat transport is studied and plotted graphically. It is observed that the heat transport can also be controlled by suitably adjusting the external and internal parameters of the system.

  15. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  16. Anisotropic inflation from extra dimensions

    CERN Document Server

    Litterio, M; Amendola, L; Dyrek, A; Litterio, Marco; Amendola, Luca; Dyrek, Andrzej

    1995-01-01

    Vacuum multidimensional cosmological models with internal spaces being compact n-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.

  17. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  18. Spatially anisotropic Heisenberg kagome antiferromagnet

    Science.gov (United States)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  19. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  20. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  1. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  2. Mechanics of anisotropic spring networks

    Science.gov (United States)

    Zhang, T.; Schwarz, J. M.; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, px and py, for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of px and py. We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  3. Anisotropic grid adaptation in LES

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2016-11-01

    The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.

  4. All-Multiplicity Amplitudes with Massive Scalars

    CERN Document Server

    Forde, D; Forde, Darren; Kosower, David A.

    2005-01-01

    We compute two infinite series of tree-level amplitudes with a massive scalar pair and an arbitrary number of gluons. We provide results for amplitudes where all gluons have identical helicity, and amplitudes with one gluon of opposite helicity. These amplitudes are useful for unitarity-based one-loop calculations in nonsupersymmetric gauge theories generally, and QCD in particular.

  5. Anisotropic Non-Gaussianity from a Two-Form Field

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially. First, we show that anisotropic inflation can be realized as an attractor solution and that the two-form hair remains during inflation. A statistical anisotropy can be developed because of a cumulative anisotropic interaction induced by the background two-form field. The power spectrum of curvature perturbations has a prolate-type anisotropy, in contrast to the vector models having an oblate-type anisotropy. We also evaluate the bispectrum and trispectrum of curvature perturbations by employing the in-in formalism based on the interacting Hamiltonians. We find that the non-linear estimators $f_{NL}$ and $\\tau_{NL}$ are correlated with the amplitude $g_*$ of the statistical anisotropy in the power spectrum. Unlike the vector models, both $f_{NL}$ and $\\tau_{NL}$ vanish in the squeezed limit. However, the estimator $f_{NL}$ can reach the order of 10 in the equilateral and enfolded limits. These results are consis...

  6. Entanglement in an anisotropic spin-1 Heisenberg chain

    Institute of Scientific and Technical Information of China (English)

    Zhu Yan; Zhu Shi-Qun; Hao Xiang

    2007-01-01

    The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearest-neighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.

  7. Crisis in Amplitude Control Hides in Multistability

    Science.gov (United States)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-12-01

    A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.

  8. Calculation of multi-loop superstring amplitudes

    Science.gov (United States)

    Danilov, G. S.

    2016-12-01

    The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.

  9. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  10. Anisotropic flux pinning in high Tc superconductors

    Science.gov (United States)

    Koleśnik, S.; Igalson, J.; Skośkiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-02-01

    In this paper we present a comparison of the results of FC magnetization measurements on several PbSr(Y,Ca)CuO crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed.

  11. Anisotropic inflation in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)

    2016-09-19

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  12. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  13. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  14. Imprints of Anisotropic Inflation on the CMB

    CERN Document Server

    Watanabe, Masa-aki; Soda, Jiro

    2010-01-01

    We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.

  15. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  16. Research on anisotropic parameters by synthetic seismogram

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-ping; LI Qing-he; YANG Cong-jie

    2005-01-01

    ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.

  17. Anisotropic scaling and generalized conformal invariance at Lifshitz points

    Science.gov (United States)

    Henkel, Malte; Pleimling, Michel

    2002-08-01

    A new variant of the Wolff cluster algorithm is proposed for simulating systems with competing interactions. This method is used in a high-precision study of the Lifshitz point of the 3D ANNNI model. At the Lifshitz point, several critical exponents are found and the anisotropic scaling of the correlators is verified. The functional form of the two-point correlators is shown to be consistent with the predictions of generalized conformal invariance.

  18. Anisotropic Diffusion of Polyelectrolyte Chains within Multi-layer Films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Stevens Institute of Technology, Hoboken, New Jersey; Kozlovskaya, Veronika [University of Alabama, Birmingham; Kharlampieva, Eugenia [University of Alabama, Birmingham; Ankner, John Francis [ORNL; Sukhishvili, Prof. Svetlana A. [Stevens Institute of Technology, Hoboken, New Jersey

    2012-01-01

    We found diffusion of polyelectrolyte chains within multilayer films to be highly anisotropic, with the preferential chain motion parallel to the substrate. The degree of anisotropy was quantified by a combination of fluorescence recovery after photobleaching and neutron reflectometry, probing chain diffusion in directions parallel and perpendicular to the substrate, respectively. Chain mobility was controlled by ionic strength of annealing solutions and steric hindrance to ionic pairing of interacting polyelectrolytes.

  19. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    slab geometry, two studies were conducted exploring the relative effect of anisotropic scatter as compared to isotropic scatter in the center of mass... anisotropic scatter. In order to address this question, first anisotropic scatter was implemented, then verified, and finally, the measurement of the... measured value. The relative error between neutron counts in isotropic and anisotropic time- integrated energy bins, isotropic anisotropicrel

  20. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  1. Spatial interpolation approach based on IDW with anisotropic spatial structures

    Science.gov (United States)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  2. Biodirected synthesis and nanostructural characterization of anisotropic gold nanoparticles.

    Science.gov (United States)

    Plascencia-Villa, Germán; Torrente, Daniel; Marucho, Marcelo; José-Yacamán, Miguel

    2015-03-24

    Gold nanoparticles with anisotropic structures have tunable absorption properties and diverse bioapplications as image contrast agents, plasmonics, and therapeutic-diagnostic materials. Amino acids with electrostatically charged side chains possess inner affinity for metal ions. Lysine (Lys) efficiently controlled the growing into star-shape nanoparticles with controlled narrow sizes (30-100 nm) and produced in high yields (85-95%). Anisotropic nanostructures showed tunable absorbance from UV to NIR range, with extraordinary colloidal stability (-26 to -42 mV) and surface-enhanced Raman scattering properties. Advanced electron microscopy characterization through ultra-high-resolution SEM, STEM, and HR-TEM confirmed the size, nanostructure, crystalline structure, and chemical composition. Molecular dynamics simulations revealed that Lys interacted preferentially with Au(I) through the -COOH group instead of their positive side chains with a binding free energy (BFE) of 3.4 kcal mol(-1). These highly monodisperse and colloidal stable anisotropic particles prepared with biocompatible compounds may be employed in biomedical applications.

  3. New Isotropic and Anisotropic Sudden Singularities

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2004-01-01

    We show the existence of an infinite family of finite-time singularities in isotropically expanding universes which obey the weak, strong, and dominant energy conditions. We show what new type of energy condition is needed to exclude them ab initio. We also determine the conditions under which finite-time future singularities can arise in a wide class of anisotropic cosmological models. New types of finite-time singularity are possible which are characterised by divergences in the time-rate of change of the anisotropic-pressure tensor. We investigate the conditions for the formation of finite-time singularities in a Bianchi type $VII_{0}$ universe with anisotropic pressures and construct specific examples of anisotropic sudden singularities in these universes.

  4. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  5. Overview of anisotropic flow measurements from ALICE

    Directory of Open Access Journals (Sweden)

    Zhou You

    2016-01-01

    Full Text Available Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP, created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb–Pb, p–Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  6. Slotted Antenna with Anisotropic Magnetic Loading

    Science.gov (United States)

    2016-07-26

    magnetic material having a uniaxial permeability tensor is positioned in the slot between the two fins. This material is oriented such that it has a...volume of slot 14 between fins 24 and 26 is filled with an anisotropic magnetic material 28 with a uniaxial permeability tensor . This means that the...uniaxial dielectric tensor . Thus, properties are different through the radial depth of the anisotropic magnetic material. The coordinate axis used is

  7. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  8. Inflation in anisotropic scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, L.O.; Stein-Schabes, J.

    1989-01-05

    The existence of an inflationary phase in anisotropic scalar-tensor theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a non-trivial potential. We then use the explicit form of the potential and the no hair theorem to conclude that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  9. Inflation in anisotropic scalar-tensor theories

    Science.gov (United States)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  10. Relative acceleration approach for conduction failure of cardiac excitation propagation on anisotropic curved surfaces

    CERN Document Server

    Chun, Sehun

    2012-01-01

    In cardiac electrophysiology, it is important to predict the necessary conditions for conduction failure, the failure of the cardiac excitation propagation even in the presence of normal excitable tissue, in high-dimensional anisotropic space because these conditions may provide feasible mechanisms for abnormal excitation propagations such as atrial re-entry and, subsequently, atrial fibrillation even without taking into account the time-dependent refractory region. Some conditions of conduction failure have been studied for anisotropy or simple curved surfaces, but the general conditions on anisotropic curved surfaces (anisotropic and curved surface) remain unknown. To predict and analyze conduction failure on anisotropic curved surfaces, a new analytic approach is proposed, called the relative acceleration approach borrowed from spacetime physics. Motivated by a discrete model of cardiac excitation propagation, this approach is based on the hypothesis that a large relative acceleration can translate to a dr...

  11. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  12. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    Science.gov (United States)

    Falakzaadeh, F.; Mehryar, R.

    2017-01-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  13. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation.

    Science.gov (United States)

    Navaladian, S; Viswanathan, B; Varadarajan, T K; Viswanath, R P

    2008-01-30

    Anisotropic silver nanoparticles (NPs) have been synthesized rapidly using microwave irradiation by the decomposition of silver oxalate in a glycol medium using polyvinyl pyrolidone (PVP) as the capping agent. The obtained Ag nanoparticles have been characterized by UV-visible spectroscopy, powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies. Anisotropic Ag nanoparticles of average size around 30 nm have been observed in the case of microwave irradiation for 75 s whereas spherical particles of a size around 5-6 nm are formed for 60 s of irradiation. The texture coefficient and particle size calculated from XRD patterns of anisotropic nanoparticles reveal the preferential orientation of (111) facets in the Ag sample. Ethylene glycol is found to be a more suitable medium than diethylene glycol. A plausible mechanism has been proposed for the formation of anisotropic Ag nanoparticles from silver oxalate.

  14. Tunable scattering cancellation of light using anisotropic cylindrical cavities

    CERN Document Server

    Díaz-Aviñó, Carlos; Zapata-Rodríguez, Carlos J

    2016-01-01

    Engineered core-shell cylinders are good candidates for applications in invisibility and cloaking.In particular, hyperbolic nanotubes demonstrate tunable ultra-low scattering cross section in the visible spectral range. In this work we investigate the limits of validity of the condition for invisibility, which was shown to rely on reaching an epsilon near zero in one of the components of the effective permittivity tensor of the anisotropic metamaterial cavity. For incident light polarized perpendicularly to the scatterer axis, critical deviations are found in low-birefringent arrangements and also with high-index cores. We demonstrate that the ability of anisotropic metallodielectric nanocavities to dramatically reduce the scattered light is associated with a multiple Fano-resonance phenomenon. We extensively explore such resonant effect to identify tunable windows of invisibility.

  15. Optical measurement of anisotropic magnetic susceptibility for diamagnetic fine particles

    Science.gov (United States)

    Kitamura, Naoyuki; Takahashi, Kohki; Mogi, Iwao; Awaji, Satoshi; Watanabe, Kazuo

    2016-01-01

    We have developed an apparatus that allows the observation of the transient rotational motion of fine particles under a high magnetic field in order to determine anisotropic magnetic susceptibility. The anisotropic susceptibilities of spherical nanoparticles of bismuth and commercially available carbon nanofibers were determined. The estimated Δχ = 3.9 × 10-5 of spherical bismuth nanoparticles with a diameter of 370 nm was fairly consistent with the value determined previously by the magnetic field dependence of diffraction peak intensity in the X-ray diffraction (XRD) pattern, but was slightly smaller than the value for the bulk crystal. In contrast, the transient behavior of carbon nanofibers did not obey the theoretical motion of a single crystal. The wide distribution of fiber lengths, the irregularity of the structure in the fiber, and the connections between the fibers are suggested for the anomalous behavior.

  16. Spatial nonlinearity in anisotropic metamaterial plasmonic slot waveguides

    CERN Document Server

    Elsawy, Mahmoud M R

    2016-01-01

    We study the main nonlinear solutions of plasmonic slot waveguides made from an anisotropic metamaterial core with a positive Kerr-type nonlinearity surrounded by two semi-infinite metal regions. First, we demonstrate that for a highly anisotropic diagonal elliptical core, the bifurcation threshold of the asymmetric mode is reduced from GW/m threshold for the isotropic case to 50 MW/m one indicating a strong enhancement of the spatial nonlinear effects, and that the slope of the dispersion curve of the asymmetric mode stays positive, at least near the bifurcation, suggesting a stable mode. Second, we show that for the hyperbolic case there is no physically meaningful asymmetric mode, and that the sign of the effective nonlinearity can become negative.

  17. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  18. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Science.gov (United States)

    Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.

    2016-01-01

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195

  19. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    Fedorov, Roman G; Mandler, Daniel

    2013-02-28

    We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.

  20. Propagation of electromagnetic stochastic beams in anisotropic turbulence.

    Science.gov (United States)

    Yao, Min; Toselli, Italo; Korotkova, Olga

    2014-12-29

    The effects of anisotropic, non-Kolmogorov turbulence on propagating stochastic electromagnetic beam-like fields are discussed for the first time. The atmosphere of interest can be found above the boundary layer, at high (more than 2 km above the ground) altitudes where the energy distribution among the turbulent eddies might not satisfy the classic assumption represented by the famous 11/3 Kolmogorov's power law, and the anisotropy in the direction orthogonal to the Earth surface is possibly present. Our analysis focuses on the classic electromagnetic Gaussian Schell-model beams but can either be readily reduced to scalar and/or coherent beams or generalized to other beam classes. In particular, we explore the effects of the anisotropic parameter on the spectral density, the spectral degree of coherence and on the spectral degree of polarization of the beam.