WorldWideScience

Sample records for high ambient temperature

  1. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    Science.gov (United States)

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  2. Assessment of ambient-temperature, high-resolution detectors for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruhter, W.D.; McQuaid, J.H.; Lavietes, A.

    1993-01-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are now performed with high-purity germanium (HPGe) detectors that require cooling liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. Ambient temperature semiconductor detectors may complement HPGe detectors for certain safeguards verification applications. Their potential will be determined by criteria such as their performance, commercial availability, stage of development, and costs. We have conducted as assessment of ambient temperature detectors for safeguards measurement applications with these criteria in mind

  3. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  4. Multiplexing milli-volt transmitter for operation in high ambient temperatures

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1980-01-01

    A high integrity method of multiplexing up to two hundred and fifty millivolt level signals and transmitting the data to a remote measuring station via a 12 core flexible cable is described. The system was designed for operation in the normally hazardous and therefore inaccessible areas where high ambient temperatures are experienced. Additionally, because one potential application is in nuclear reactor systems, the design is tolerant to high levels of gamma background. The system's high reliability, high integrity and relatively small and conventional cable installation, makes it applicable to situations which depend upon temperature measurement for plant or personnel safety. (author)

  5. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.

    Science.gov (United States)

    Jung, Inuk; Kang, Hyejin; Kim, Jang Uk; Chang, Hyeonsook; Kim, Sun; Jung, Woosuk

    2018-03-19

    Ginseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level. To investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature. Collectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6

  6. Physiological responses of growing pigs to high ambient temperature and/or inflammatory challenges

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Reis Furtado Campos

    Full Text Available ABSTRACT Global warming is one of the major environmental threats facing the world in the 21st century. This fact will have a significant impact on pig production due to its direct effects on welfare, health, and performance of pigs. Besides, the effects of high temperatures will presumably become more important over the next decades due to the development of pig production in developing countries mainly located in tropical and subtropical areas, where animals are often exposed to ambient temperatures above their thermal comfort zone. Furthermore, pigs reared in tropical areas are often confronted to sanitary challenges including poor hygiene conditions, lack of respect for sanitary rules, and pathogens. This results in the stimulation of the immune system and, as a consequence, in the production of pro-inflammatory cytokines and neuroendocrine adjustments that, in turn, usually have a negative impact on growth and feed efficiency. Although the effects of high ambient temperature and disease on pig physiology and performance have been well documented in literature, little is known about the associated effects of both factors. This understanding may contribute to a better quantification and comprehension of the physiological and metabolic disturbances occurring in practical conditions of pig production in tropical areas and, more generally, in many other geographic areas that will be influenced by the perspective of global warming. Therefore, the objective of this work is to provide an overview of recent research advances on the physiological responses of growing pigs during acclimation to high ambient temperature and on the potential effects of high ambient temperature on the ability of growing pigs to resist, cope with, or recover from an inflammatory challenge.

  7. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    Science.gov (United States)

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature ( 21 degrees C) on each variable. Compared with findings at ambient temperatures 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  8. Development of an ozone high sensitive sensor working at ambient temperature

    International Nuclear Information System (INIS)

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  9. Relationship between prostate-specific antigen levels and ambient temperature

    Science.gov (United States)

    Ohwaki, Kazuhiro; Endo, Fumiyasu; Hattori, Kazunori; Muraishi, Osamu

    2014-07-01

    We examined the association between prostate-specific antigen (PSA) and daily mean ambient temperature on the day of the test in healthy men who had three annual checkups. We investigated 9,694 men who visited a hospital for routine health checkups in 2007, 2008, and 2009. Although the means and medians of ambient temperature for the three years were similar, the mode in 2008 (15.8 °C) was very different from those in 2007 and 2009 (22.4 °C and 23.2 °C). After controlling for age, body mass index, and hematocrit, a multiple regression analysis revealed a U-shaped relationship between ambient temperature and PSA in 2007 and 2009 ( P 2.5 ng/mL) by ambient temperature, with the lowest likelihood of having a high PSA at 17.8 °C in 2007 ( P = 0.038) and 15.5 °C in 2009 ( P = 0.033). When tested at 30 °C, there was a 57 % excess risk of having a high PSA in 2007 and a 61 % higher risk in 2009 compared with those at each nadir temperature. We found a U-shaped relationship between PSA and ambient temperature with the lowest level of PSA at 15-20 °C.

  10. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    Science.gov (United States)

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially

  11. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  12. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  13. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  14. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  15. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review

    Science.gov (United States)

    Otte im Kampe, Eveline; Kovats, Sari; Hajat, Shakoor

    2016-01-01

    Objectives Given the likelihood of increased hot weather due to climate change, it is crucial to have prevention measures in place to reduce the health burden of high temperatures and heat waves. The aim of this review is to summarise and evaluate the evidence on the effects of summertime weather on unintentional injuries in high-income countries. Design 3 databases (Global Public Health, EMBASE and MEDLINE) were searched by using related keywords and their truncations in the title and abstract, and reference lists of key studies were scanned. Studies reporting heatstroke and intentional injuries were excluded. Results 13 studies met our inclusion criteria. 11 out of 13 studies showed that the risk of unintentional injuries increases with increasing ambient temperatures. On days with moderate temperatures, the increased risk varied between 0.4% and 5.3% for each 1°C increase in ambient temperature. On extreme temperature days, the risk of injuries decreased. 2 out of 3 studies on occupational accidents found an increase in work-related accidents during high temperatures. For trauma hospital admissions, 6 studies reported an increase during hot weather, whereas 1 study found no association. The evidence for impacts on injuries by subgroups such as children, the elderly and drug users was limited and inconsistent. Conclusions The present review describes a broader range of types of unintentional fatal and non-fatal injuries (occupational, trauma hospital admissions, traffic, fire entrapments, poisoning and drug overdose) than has previously been reported. Our review confirms that hot weather can increase the risk of unintentional injuries and accidents in high-income countries. The results are useful for injury prevention strategies. PMID:26868947

  16. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  17. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    Science.gov (United States)

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  18. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  19. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  20. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

    Science.gov (United States)

    Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767

  1. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere.

    Directory of Open Access Journals (Sweden)

    Anne-Lise Fabre

    Full Text Available Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

  2. Effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers.

    Science.gov (United States)

    Theurer, Miles E; White, Brad J; Anderson, David E; Miesner, Matt D; Mosier, Derek A; Coetzee, Johann F; Amrine, David E

    2013-03-01

    To determine the effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers. 20 heifers (mean body weight, 217.8 kg). Ten heifers were transported 518 km when the maximum ambient temperature was ≥ 32.2°C while the other 10 heifers served as untransported controls. Blood samples were collected from transported heifers at predetermined intervals during the transportation period. For all heifers, body weights, nasal and rectal temperatures, and behavioral indices were measured at predetermined intervals for 3 days after transportation. A week later, the entire process was repeated such that each group was transported twice and served as the control twice. Transported heifers spent more time near the hay feeder on the day of transportation, had lower nasal and rectal temperatures for 24 hours after transportation, and spent more time lying down for 2 days after transportation, compared with those indices for control heifers. Eight hours after transportation, the weight of transported heifers decreased 6%, whereas that of control heifers increased 0.6%. At 48 hours after initiation of transportation, weight, rectal temperature, and time spent at various pen locations did not differ between transported and control heifers. Cortisol concentrations were higher 4 hours after initiation of transportation, compared with those determined just prior to transportation. Results indicated transportation during periods of high ambient temperatures caused transient changes in physiologic and behavioral indices of beef heifers.

  3. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly.

    Science.gov (United States)

    Pan, Wen-Chi; Eliot, Melissa N; Koutrakis, Petros; Coull, Brent A; Sorond, Farzaneh A; Wellenius, Gregory A

    2015-01-01

    Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events.

  4. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  5. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  6. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    Science.gov (United States)

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and

  7. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment.

    Science.gov (United States)

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly (P behavior of sheep which is directed to circumvent the effect of the stressor.

  8. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment

    Science.gov (United States)

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly ( P animals of T spent significantly ( P behavior of sheep which is directed to circumvent the effect of the stressor.

  9. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  10. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  11. Effect of ambient temperature on human pain and temperature perception.

    Science.gov (United States)

    Strigo, I A; Carli, F; Bushnell, M C

    2000-03-01

    Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P cool than in the neutral environment (P cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.

  12. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  13. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  14. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  15. Influence of low ambient temperature on epitympanic temperature measurement: a prospective randomized clinical study.

    Science.gov (United States)

    Strapazzon, Giacomo; Procter, Emily; Putzer, Gabriel; Avancini, Giovanni; Dal Cappello, Tomas; Überbacher, Norbert; Hofer, Georg; Rainer, Bernhard; Rammlmair, Georg; Brugger, Hermann

    2015-11-05

    Epitympanic temperature (Tty) measured with thermistor probes correlates with core body temperature (Tcore), but the reliability of measurements at low ambient temperature is unknown. The aim of this study was to determine if commercially-available thermistor-based Tty reflects Tcore in low ambient temperature and if Tty is influenced by insulation of the ear. Thirty-one participants (two females) were exposed to room (23.2 ± 0.4 °C) and low (-18.7 ± 1.0 °C) ambient temperature for 10 min using a randomized cross-over design. Tty was measured using an epitympanic probe (M1024233, GE Healthcare Finland Oy) and oesophageal temperature (Tes) with an oesophageal probe (M1024229, GE Healthcare Finland Oy) inserted into the lower third of the oesophagus. Ten participants wore ear protectors (Arton 2200, Emil Lux GmbH & Co. KG, Wermelskirchen, Switzerland) to insulate the ear from ambient air. During exposure to room temperature, mean Tty increased from 33.4 ± 1.5 to 34.2 ± 0.8 °C without insulation of the ear and from 35.0 ± 0.8 to 35.5 ± 0.7 °C with insulation. During exposure to low ambient temperature, mean Tty decreased from 32.4 ± 1.6 to 28.5 ± 2.0 °C without insulation and from 35.6 ± 0.6 to 35.2 ± 0.9 °C with insulation. The difference between Tty and Tes at low ambient temperature was reduced by 82% (from 7.2 to 1.3 °C) with insulation of the ear. Epitympanic temperature measurements are influenced by ambient temperature and deviate from Tes at room and low ambient temperature. Insulating the ear with ear protectors markedly reduced the difference between Tty and Tes and improved the stability of measurements. The use of models to correct Tty may be possible, but results should be validated in larger studies.

  16. The effect of ambient temperature on gross-efficiency in cycling

    NARCIS (Netherlands)

    Hettinga, F.J.; Koning, J.J. de; Vrijer, A. de; Wüst, R.C.I.; Daanen, H.A.M.; Foster, C.

    2007-01-01

    Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account

  17. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  18. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  19. The importance of ambient temperature to growth and the induction of flowering.

    Directory of Open Access Journals (Sweden)

    C. Robertson Mcclung

    2016-08-01

    Full Text Available Plant development is exquisitely sensitive to the environment. Light quantity, quality, and duration (photoperiod have profound effects on vegetative morphology and flowering time. Recent studies have demonstrated that ambient temperature is a similarly potent stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures that are high, but not so high as to induce a heat stress response, confer morphological changes that resemble the shade avoidance syndrome. Similarly, these high but not stressful temperatures can accelerate flowering under short day conditions as effectively as exposure to long days. Photoperiodic flowering entails a series of external coincidences, in which environmental cycles of light and dark must coincide with an internal cycle in gene expression established by the endogenous circadian clock. It is evident that a similar model of external coincidence applies to the effects of elevated ambient temperature on both vegetative morphology and the vegetative to reproductive transition. Further study is imperative, because global warming is predicted to have major effects on the performance and distribution of wild species and strong adverse effects on crop yields. It is critical to understand temperature perception and response at a mechanistic level and to integrate this knowledge with our understanding of other environmental responses, including biotic and abiotic stresses, in order to improve crop production sufficiently to sustainably feed an expanding world population.

  20. Effects of floor cooling during high ambient temperatures on the lying behavior and productivity of growing finishing pigs

    NARCIS (Netherlands)

    Huynh Thi Thanh Thuy,; Aarnink, A.J.A.; Spoolder, H.A.M.; Verstegen, M.W.A.; Kemp, B.

    2004-01-01

    Given that exposing rapidly growing pigs to high ambient temperatures can induce heat stress, which reduces their welfare and production, this study looked at the influence of floor cooling on pigs¿ behavior and performance. Pens in room 1 had a solid floor (60%) and a metal slatted floor (40%). The

  1. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    Science.gov (United States)

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  2. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  3. Investigation of ambient temperature on the performance of GE-F5 gas turbine

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Taffazoli, D.; Manshori, N.

    2002-01-01

    The role of ambient temperature in determining the performance of GE-F5 gas turbine is analysed by investigating the Shirvan gas turbine power plant 10 MW , 15 MW and 20 MW power output. These parameters have been brought as a function of ambient temperature. The results show when ambient temperature increases 1 deg C, The compressor pressure decreases about 20 k Pa, compressor outlet temperature increases about 1.13 deg C and exhaust temperature increases about 2.5 deg C. It is revealed that variations are due to decreasing the efficiency of compressor and less due to mass flow rate of air reduction as ambient temperature increases at constant power output. The results shows cycle efficiency reduces 3% with increasing 50 of ambient temperature, also the m increases as ambient temperature increase for constant turbine work. These are also because of reducing the compressor efficiency as ambient temperature increases

  4. Significance and influence of the ambient temperature as a rate ...

    Indian Academy of Sciences (India)

    Unknown

    , undoubtedly is dependent even on the level of the ambient temperature. Therefore, the ambient temperature seems to be an important factor of the corrosion rate and the durability of the reinforced concrete structures in aggressive ...

  5. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    Science.gov (United States)

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  6. Ambient temperature signalling in plants.

    Science.gov (United States)

    Wigge, Philip A

    2013-10-01

    Plants are exposed to daily and seasonal fluctuations in temperature. Within the 'ambient' temperature range (about 12-27°C for Arabidopsis) temperature differences have large effects on plant growth and development, disease resistance pathways and the circadian clock without activating temperature stress pathways. It is this developmental sensing and response to non-stressful temperatures that will be covered in this review. Recent advances have revealed key players in mediating temperature signals. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) has been shown to be a hub for multiple responses to warmer temperature in Arabidopsis, including flowering and hypocotyl elongation. Changes in chromatin state are involved in transmitting temperature signals to the transcriptome. Determining the precise mechanisms of temperature perception represents an exciting goal for the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Raman Channel Temperature Measurement of SiC MESFET as a Function of Ambient Temperature and DC Power

    Science.gov (United States)

    Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.

    2009-01-01

    Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.

  8. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  9. The relationship of lung function with ambient temperature.

    Science.gov (United States)

    Collaco, Joseph M; Appel, Lawrence J; McGready, John; Cutting, Garry R

    2018-01-01

    Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health. To determine whether ambient air temperature is associated with lung function (FEV1) in the general population. Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES) periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression. The NHANES III (1988-94) cohort included 14,088 individuals (55.6% female) and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female), with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively. After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014). The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States. In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  10. The relationship of lung function with ambient temperature.

    Directory of Open Access Journals (Sweden)

    Joseph M Collaco

    Full Text Available Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health.To determine whether ambient air temperature is associated with lung function (FEV1 in the general population.Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression.The NHANES III (1988-94 cohort included 14,088 individuals (55.6% female and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female, with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively.After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014. The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States.In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  11. Multielement CdZnTe detectors for high-efficiency, ambient-temperature gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Moss, C.E.; Sweet, M.R.; Ianakiev, K.; Reedy, R.C.; Li, J.; Valentine, J.D.

    1998-01-01

    CdZnTe is an attractive alternative to scintillator-based technology for ambient-temperature, gamma-ray spectroscopy. Large, single-element devices up to 3500 mm 3 have been developed for gamma-ray spectroscopy and are now available commercially. Because CdZnTe is a wide band-gap semiconductor, it can operate over a wide range of ambient temperatures with minimal power consumption. Over this range, CdZnTe detectors routinely yield better overall performance for gamma-ray spectroscopy than scintillator detectors. Manufacturing issues and material electronic properties limit the maximum size of single-element CdZnTe detectors. The authors are investigating methods to combine CdZnTe detectors together to improve detection efficiency and overall performance of gamma-ray spectroscopy. The applications include the assay and identification of radioisotopes for nuclear material safeguards and nonproliferation (over the energy range 50 keV to 1 MeV), and the analysis of elemental composition for planetary science (over the energy range 1 MeV to 10 MeV). Design issues for the two energy ranges are summarized

  12. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions

    International Nuclear Information System (INIS)

    Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H.

    2014-01-01

    Highlights: • Characterization on the precipitation of Ni- and Zr-based intermetallics. • High temperature tensile properties of 354 alloy containing Zr and Ni below 0.5%. • Quality index charts as a function of heat treatment. • Yield strength and ductility color contours as a function of aging temperature and aging time. - Abstract: The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy

  13. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  14. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    Science.gov (United States)

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  15. Characterization of CdZnTe ambient temperature detectors

    International Nuclear Information System (INIS)

    Lavietes, A.

    1994-09-01

    A great deal of interest has been generated in the use of cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) detectors for ambient temperature detection of radionuclides. The addition of zinc to CdTe provides several benefits that enhance the materials operational characteristics at ambient temperature. Recent movement in the industry is to produce larger volume detectors using CdZnTe without much known about the effects of larger geometry on performance. The purpose of this study is to get an idea of the relationship of detector performance to both area and thickness variations

  16. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  17. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color

  18. How to correct the ambient temperature influence on the thermal response test results

    International Nuclear Information System (INIS)

    Borinaga-Treviño, Roque; Norambuena-Contreras, Jose; Castro-Fresno, Daniel

    2015-01-01

    Due to global warming and to the increasing energy demand, it is necessary to improve energy efficiency on buildings. In this context, Ground-Coupled Heat Pumps (GCHP) have proved to be the most efficient heating and cooling system. The main parameters to define a ground heat exchanger are obtained via an in situ test called Thermal Response Test (TRT). However, ambient air influence on this test is remarkable due to the exposition of the testing machine, and even the ground undisturbed temperature varies with the ambient temperature oscillations. Therefore, despite the fact that the influence of ambient conditions on the TRT results is an important topic in order to define a ground heat exchanger, there is yet a limited literature on new theoretical methods to correct the ambient temperature influence on the predicted ground thermal conductivity measured via TRT. This paper presents a new methodology to analyse and mitigate the influence of the ambient conditions on the TRT results, with the main advantage that it is not necessary to know its physical origin previously. The method is focused on reducing the mean fluid temperature oscillations caused by the ambient temperature, by analysing the influence of the chosen time interval to fit the data to the infinite line source theory formulae that finally predicts the ground thermal conductivity. With these purpose, results of two different TRTs were analysed, each of them with a different equipment and ambient exposition. Results using the proposed method showed that thermal conductivity oscillations were reduced in both tests. For the first test, the uncertainty associated to the chosen time interval for the estimation was diminished by 33%, reducing significantly its predicted value and thus avoiding the future installation possible under-designing. However, because of the equipment insulation improvements and the smoother ambient temperature variations, the method obtained similar results for the predicted

  19. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.

    Science.gov (United States)

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D

    2011-04-01

     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of 1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  20. Effects of dietary on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature

    Directory of Open Access Journals (Sweden)

    Sara Mirzaie

    2018-04-01

    Full Text Available Objective Spirulina has been recognized formerly as a filamentous spiral-shaped blue-green algae but more recently as a genus of photosynthetic bacteria (Arthrospira. This microorganism is considered as a rich source of essential nutrients for human and animals. The present study was conducted to determine potential application of Spirulina for heat-exposed broilers. Methods Two hundred and fifty Cobb 500 chicks with male to female in equal ratio with average initial weight of 615.6 g at 17 days of age were divided into 5 treatments with 5 replicates of 10 chicks. Treatment groups were as follows: positive and negative controls with 0% Spirulina supplement and three Spirulina receiving groups with 5 g/kg (0.5%, 10 g/kg (1%, and 20 g/kg (2% supplementation. Spirulina receiving groups as well as positive control were exposed to high ambient temperature at 36°C for 6 h/d from 38 to 44 days of age. Biochemical variables were measured in serum samples at 35, 38, 42, and 45 days of broiler chickens age. Results The results showed that supplementation of the diet with Spirulina decreased concentration of stress hormone and some serum lipid parameters while enhanced humoral immunity response and elevated antioxidant status whereas it didn’t meaningfully affect performance characteristics. Nevertheless, feed conversion ratio was improved numerically but not statistically in broilers fed with 1% Spirulina under high ambient temperature. Conclusion Overall, the present study suggests that alleviation of adverse impacts due to high ambient temperature at biochemical level including impaired enzymatic antioxidant system, elevated stress hormone and lipid profile can be approached in broiler chickens through supplementation of the diet with Spirulina platensis.

  1. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  2. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  3. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  4. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study.

    Directory of Open Access Journals (Sweden)

    Danni Zheng

    Full Text Available Rates of acute intracerebral hemorrhage (ICH increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2 participants on an hourly timescale.INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset and elevated systolic blood pressure (SBP, 150-220 mmHg assigned to intensive (target SBP <140 mmHg or guideline-recommended (SBP <180 mmHg BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs and 95% CI.Low ambient temperature (≤10°C was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99-1.91 for 10°C, 1.92 (1.31-2.81 for 0°C, 3.13 (1.89-5.19 for -10°C, and 5.76 (2.30-14.42 for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses.Exposure to low ambient temperature within several hours increases the risk of ICH.ClinicalTrials.gov NCT00716079.

  5. The ADAM and EVE project: Heat transfer at ambient temperature

    International Nuclear Information System (INIS)

    Boltendahl, U.; Harth, R.

    1980-01-01

    In the nuclear research plant at Juelich a new heating system is at present being developed as part of the Nuclear Long-distance Heating Project. Helium is heated up in a high-temperature reactor. The heat chemically converts a gas mixture in a reformer plant (EVE). The gases 'charged' with energy can be transported through tubes over any distance required at ambient temperatures. In a methanisation plant (ADAM) the gases react with one another, releasing the energy in the form of heat which can be used for heating air or water. (orig.) [de

  6. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    Science.gov (United States)

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    Science.gov (United States)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  8. Low Ambient Temperature and Intracerebral Hemorrhage: The INTERACT2 Study

    Science.gov (United States)

    Zheng, Danni; Arima, Hisatomi; Sato, Shoichiro; Gasparrini, Antonio; Heeley, Emma; Delcourt, Candice; Lo, Serigne; Huang, Yining; Wang, Jiguang; Stapf, Christian; Robinson, Thompson; Lavados, Pablo; Chalmers, John; Anderson, Craig S.

    2016-01-01

    Background Rates of acute intracerebral hemorrhage (ICH) increase in winter months but the magnitude of risk is unknown. We aimed to quantify the association of ambient temperature with the risk of ICH in the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT2) participants on an hourly timescale. Methods INTERACT2 was an international, open, blinded endpoint, randomized controlled trial of patients with spontaneous ICH (<6h of onset) and elevated systolic blood pressure (SBP, 150–220 mmHg) assigned to intensive (target SBP <140 mmHg) or guideline-recommended (SBP <180 mmHg) BP treatment. We linked individual level hourly temperature to baseline data of 1997 participants, and performed case-crossover analyses using a distributed lag non-linear model with 24h lag period to assess the association of ambient temperature and risk of ICH. Results were presented as overall cumulative odds ratios (ORs) and 95% CI. Results Low ambient temperature (≤10°C) was associated with increased risks of ICH: overall cumulative OR was 1.37 (0.99–1.91) for 10°C, 1.92 (1.31–2.81) for 0°C, 3.13 (1.89–5.19) for -10°C, and 5.76 (2.30–14.42) for -20°C, as compared with a reference temperature of 20°C.There was no clear relation of low temperature beyond three hours after exposure. Results were consistent in sensitivity analyses. Conclusions Exposure to low ambient temperature within several hours increases the risk of ICH. Trial Registration ClinicalTrials.gov NCT00716079 PMID:26859491

  9. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    Science.gov (United States)

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  10. Three Mile Island ambient-air-temperature sensor measurements

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1983-01-01

    Data from the ambient-air-temperature sensors in Three Mile Island-Unit 2 (TMI-2) reactor containment building are analyzed. The data were for the period of the hydrogen burn that was part of the TMI-2 accident. From the temperature data, limits are placed on the duration of the hydrogen burn

  11. No relevant impact of ambient temperature on disability measurements in a large cohort of patients with multiple sclerosis.

    Science.gov (United States)

    Stellmann, J-P; Young, K L; Vettorazzi, E; Pöttgen, J; Heesen, C

    2017-06-01

    Many patients with multiple sclerosis (MS) report a worsening of symptoms due to high ambient temperatures, but objective data about this association are rare and contradictory. The aim of this study was to investigate the influence of ambient temperature on standard clinical tests. We extracted the Symbol Digit Modality Test, Nine Hole Peg Test, Timed 25 Foot Walk (T25FW), Timed Tandem Walk, Expanded Disability Status Scale (EDSS) and quality-of-life items on cognition, fatigue and depression from our clinical database and matched them to historical temperatures. We used linear mixed-effect models to investigate the association between temperature and outcomes. A total of 1254 patients with MS (mean age, 42.7 years; 69.9% females; 52.1% relapsing-remitting MS, mean EDSS, 3.8) had 5751 assessments between 1996 and 2012. We observed a worsening in the T25FW with higher ambient temperatures in moderately disabled patients (EDSS ≥ 4) but not in less disabled patients. However, an increase of 10°C prolonged the T25FW by just 0.4 s. Other outcomes were not associated with ambient temperatures. Higher ambient temperature might compromise walking capabilities in patients with MS with a manifest walking impairment. However, effects are small and not detectable in mildly disabled patients. Hand function, cognition, mood and fatigue do not appear to be correlated with ambient temperature. © 2017 EAN.

  12. On the Reference State for Exergy when Ambient Temperature Fluctuates

    OpenAIRE

    Michel Pons

    2009-01-01

    Exergy (availability) is the amount of mechanical work that could be produced by reversible processes. This notion is revisited in the case when ambient temperature fluctuates. Simple examples are first considered, and then a theoretical approach is developed. It results that the most reliable way for combining entropy and total energy into an exergy function is a linear combination where entropy is multiplied by a constant temperature. It results that ambient air has non-zero exergy, but tha...

  13. The Effect of High Ambient Temperature on the Elderly Population in Three Regions of Sweden

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2010-06-01

    Full Text Available The short-term effects of high temperatures are a serious concern in the context of climate change. In areas that today have mild climates the research activity has been rather limited, despite the fact that differences in temperature susceptibility will play a fundamental role in understanding the exposure, acclimatization, adaptation and health risks of a changing climate. In addition, many studies employ biometeorological indexes without careful investigation of the regional heterogeneity in the impact of relative humidity. We aimed to investigate the effects of summer temperature and relative humidity and regional differences in three regions of Sweden allowing for heterogeneity of the effect over the scale of summer temperature. To do so, we collected mortality data for ages 65+ from Stockholm, Göteborg and Skåne from the Swedish National Board of Health and Welfare and the Swedish Meteorological and Hydrological Institute for the years 1998 through 2005. In Stockholm and Skåne on average 22 deaths per day occurred, while in Göteborg the mean frequency of daily deaths was 10. We fitted time-series regression models to estimate relative risks of high ambient temperatures on daily mortality using smooth functions to control for confounders, and estimated non-linear effects of exposure while allowing for auto-regressive correlation of observations within summers. The effect of temperature on mortality was found distributed over the same or following day, with statistically significant cumulative combined relative risk of about 5.1% (CI = 0.3, 10.1 per °C above the 90th percentile of summer temperature. The effect of high relative humidity was statistically significant in only one of the regions, as was the effect of relative humidity (above 80th percentile and temperature (above 90th percentile. In the southernmost region studied there appeared to be a significant increase in mortality with decreasing low summer temperatures that was not

  14. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  15. Formation of actinide hexafluorides at ambient temperatures with krypton difluoride

    International Nuclear Information System (INIS)

    Asprey, L.B.; Eller, P.G.; Kinkead, S.A.

    1986-01-01

    A second low-temperature agent, krypton difluoride, for generating volatile plutonium hexafluoride is reported (dioxygen difluoride is the only other reported agent). Plutonium hexafluoride is formed at ambient or lower temperature by the treatment of various solid substrates with krypton difluoride. Volatilization of uranium and neptunium from solid substrates using gaseous krypton difluoride is also reported for the first time. The formation of actinide hexafluorides has been confirmed for the reaction of krypton difluoride in anhydrous HF with UO 2 and with uranium and neptunium fluorides at ambient temperatures. Treatment of americium dioxide with krypton difluoride did not yield americium hexafluoride under the conditions studied. 15 references, 2 figures

  16. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  17. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  18. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-01-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m 3 increase in the present-day PM 10 , PM 2.5 , SO 2 , NO 2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  19. Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study.

    Science.gov (United States)

    Zheng, Danni; Arima, Hisatomi; Heeley, Emma; Karpin, Anne; Yang, Jie; Chalmers, John; Anderson, Craig S

    2015-01-01

    As no human data exist, we aimed to determine the relation between ambient temperature and volume of perihematomal 'cerebral' edema in acute spontaneous intracerebral haemorrhage (ICH) among Chinese participants of the pilot phase, Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT1). INTERACT1 was a multicenter, open, blind outcome assessed, randomized controlled trial of intensive (systolic target ambient temperature (mean, minimum, maximum, and range) on the day of each participant's ICH obtained from China Meteorological Data Sharing Service System were linked to other data including edema volumes. Multivariable regression analyses were performed to evaluate association between ambient temperature and edema volumes. A generalized linear regression model with a generalized estimating equations approach (GEE) was used to assess any association of ambient temperature and change in edema volume over 72 h. A total of 250 of all 384 Chinese participants had complete data that showed positive associations between ambient temperature (mean and minimum temperatures) and edema volumes at each time point over 72 h after hospital admission (all P ambient temperature and perihematomal edema volume in acute spontaneous ICH. © 2014 World Stroke Organization.

  20. Effects of Elevated Ambient Temperature on Reproductive Outcomes and Offspring Growth Depend on Exposure Time

    Directory of Open Access Journals (Sweden)

    Huda Yahia Hamid

    2012-01-01

    Full Text Available Reproductive performance has been shown to be greatly affected by changes in environmental factors, such as temperature. However, it is also crucial to identify the particular stage of pregnancy that is most adversely affected by elevated ambient temperature. The aims of this study were to determine the effect on reproductive outcomes of exposure to elevated ambient temperature during different stages of pregnancy and to determine the effect of prenatal heat stress on offspring growth. Sixty pregnant rats were used in this study. The rats were divided equally into four groups as group 1 (control, group 2 (exposed to elevated temperature following implantation, group 3 (exposed to elevated temperature during pre- and periimplantation, and group 4 (exposed to elevated temperature during pre- and periimplantation and following implantation. Groups 3 and 4 had prolonged gestation periods, reduced litter sizes, and male-biased sex ratios. Moreover, the growth patterns of group 3 and 4 pups were adversely affected by prenatal exposure to elevated temperature. The differences between group 1 and group 3 and between group 1 and group 4 were highly significant. However, no significant differences were observed between groups 1 and 2 in the gestation length, sex ratios, and growth patterns. Thus, it can be concluded that exposure to elevated ambient temperature during pre- and periimplantation has stronger adverse effects on reproductive outcomes and offspring growth than postimplantation exposure.

  1. An epidemiological assessment of the effect of ambient temperature on the incidence of preterm births: Identifying windows of susceptibility during pregnancy.

    Science.gov (United States)

    Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong

    2018-05-01

    It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  3. QUALITY CHANGES OF SARDINES (Sardinella neopilchardus) AT INDONESIAN AMBIENT TEMPERATURE

    OpenAIRE

    Farida Ariyani

    2018-01-01

    In tropical countries such as Indonesia, high ambient temperature and a lack of icing cause very rapid spoilage of fish. Leaving fish uniced while waiting for processing is a common practice resulting in lower quality of the end products, and consequently lower price of the products. To study the spoilage pattern of sardines (Sardinella neophilchardus) in a tropical region, and to investigate a simple and quick method to judge the degree of spoilage, observations on the deterioration of sardi...

  4. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  5. Variable capacity utilization, ambient temperature shocks and generation asset valuation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chung-Li; Dmitriev, Alexandre [Australian School of Business, University of New South Wales, Sydney NSW 2052 (Australia); Zhu, Wei [Optim Energy, 225 E. John Carpenter Freeway, Irving, TX 75062 (United States)

    2009-11-15

    This paper discusses generation asset valuation in a framework where capital utilization decisions are endogenous. We use real options approach for valuation of natural gas fueled turbines. Capital utilization choices that we explore include turning on/off the unit, operating the unit at increased firing temperatures (overfiring), and conducting preventive maintenance. Overfiring provides capacity enhancement which comes at the expense of reduced maintenance interval and increased costs of part replacement. We consider the costs and benefits of overfiring in attempt to maximize the asset value by optimally exercising the overfire option. In addition to stochastic processes governing prices, we incorporate an exogenous productivity shock: ambient temperature. We consider how variation in ambient temperature affects the asset value through its effect on gas turbine's productivity. (author)

  6. High Temperature Electro-Mechanical Devices For Nuclear Applications

    International Nuclear Information System (INIS)

    Robertson, D.

    2010-01-01

    Nuclear power plants require a number of electro-mechanical devices, for example, Control Rod Drive Mechanisms (CRDM's) to control the raising and lowering of control rods and Reactor Coolant Pumps (RCP's) to circulate the primary coolant. There are potential benefits in locating electro-mechanical components in areas of the plant with high ambient temperatures. One such benefit is the reduced need to make penetrations in pressure vessels leading to simplified plant design and improved inherent safety. The feature that limits the ambient temperature at which most electrical machines may operate is the material used for the electrical insulation of the machine windings. Conventional electrical machines generally use polymer-based insulation that limits the ambient temperature they can operate in to below 200 degrees Celsius. This means that when a conventional electrical machine is required to operate in a hot area it must be actively cooled necessitating additional systems. This paper presents data gathered during investigations undertaken by Rolls-Royce into the design of high temperature electrical machines. The research was undertaken at Rolls-Royce's University Technology Centre in Advanced Electrical Machines and Drives at Sheffield University. Rolls- Royce has also been investigating high temperature wire and encapsulants and latterly techniques to provide high temperature insulation to terminations. Rolls-Royce used the experience gained from these tests to produce a high temperature electrical linear actuator at sizes representative of those used in reactor systems. This machine was tested successfully at temperatures equivalent to those found inside the reactor vessel of a pressurised water reactor through a full series of operations that replicated in service duty. The paper will conclude by discussing the impact of the findings and potential electro-mechanical designs that may utilise such high temperature technologies. (authors)

  7. Ambient Temperature Based Thermal Aware Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Saini, Rishita; Bansal, Neha; Bansal, Meenakshi

    2015-01-01

    Thermal aware design is currently gaining importance in VLSI research domain. In this work, we are going to design thermal aware energy efficient ROM on Virtex-5 FPGA. Ambient Temperature, airflow, and heat sink profile play a significant role in thermal aware hardware design life cycle. Ambient...

  8. Microbiological Studies of Semi-Preserved Natural Condiments Paste Stored in Refrigerator and Ambient Temperature

    Science.gov (United States)

    Dien, H. A.; Montolalu, R. I.; Mentang, F.; Mandang, A. S. K.; Rahmi, A. D.; Berhimpon, S.

    2018-01-01

    The aims of this studies were to prepare juice and raw condiment to be come semipreserve pastes, and to do microbial assessments on the both pastes during storing in refrigerator and ambient temperatures. For both pastes in refrigerator, samples were taken at 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, and 30 days, and in ambient temperature samples were taken at 0, 1, 2, 3, 4, and 6 days. Assessment were done for TPC, total coliform and E. coli, Salmonella sp, Staphylococcus sp., Vibrio sp., pH and water content. The results shown that juice paste stored in refrigerator still good until 30 days (TPC 1,5x104 CFU/g), and in ambient temperature still good until 6 days (2x104 CFU/g). Condiment paste stored in refrigerator still good until 30 days (6.5x103 CFU/g), and in ambient temperature still good until 6 days (1.17x104 CFU/g). However, recommended that condiment paste stored in ambient temperature only until 4 days (7.3x103CFU/g), while that juice paste until 5 days (7.8x103CFU/g). There were no pathogenic bacteria found in all samples.

  9. Experimental and casework validation of ambient temperature corrections in forensic entomology.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F; Archer, Melanie S

    2012-01-01

    This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.

  10. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    Science.gov (United States)

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  12. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    Science.gov (United States)

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  13. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  14. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Morita

    Full Text Available Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C, control (37.5°C, or high (39°C temperatures (treatments LT, CK, and HT, respectively from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C was higher than of LT (37.4±0.08°C and CK eggs (37.8 ±0.15°C. The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to

  15. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  16. Apparatus and method for maintaining an article at a temperature that is less than the temperature of the ambient air

    Science.gov (United States)

    Klett, James; Klett, Lynn

    2018-04-03

    An apparatus for maintaining the temperature of an article at a temperature that is below the ambient air temperature includes an enclosure having an outer wall that defines an interior chamber for holding a volume of sealed air. An insert is disposed inside of the chamber and has a body that is made of a porous graphite foam material. A vacuum pump penetrates the outer wall and fluidly connects the sealed air in the interior chamber with the ambient air outside of the enclosure. The temperatures of the insert and article is maintained at temperatures that are below the ambient air temperature when a volume of a liquid is wicked into the pores of the porous insert and the vacuum pump is activated to reduce the pressure of a volume of sealed air within the interior chamber to a pressure that is below the vapor pressure of the liquid.

  17. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures

    Science.gov (United States)

    Mathis, Urs; Mohr, Martin; Forss, Anna-Maria

    Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dpefficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.

  18. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature

    International Nuclear Information System (INIS)

    Sliney, D.H.

    1986-01-01

    A number of environmental cofactors have been implicated in cataracto-genesis. Two have received the greatest attention: ultraviolet radiation (UVR) and ambient temperature. Unfortunately, both temperature and UVR levels vary similarly with geographical latitude. Careful attention to several more refined physical variables and the geometry of exposure may permit investigators to separate the contributory effects of these two physical agents. This paper briefly reviews the available data, estimates the variation of lenticular temperature with ambient temperature, and provides measurements of short-wavelength (UV-B) UVR exposure to the human eye with different meterological conditions. The study attempts to provide epidemiological investigators with more detailed information necessary to perform more accurate studies of cataract and other ocular pathologies that appear to be related to environmental factors. Ocular UV-B radiation exposure levels were measured at nine locations in the USA near 40 degrees latitude at elevations from sea level to 8000 ft. Terrain reflectance is shown to be much more important than terrain elevation; cloud cover and haze may actually increase ocular exposure; and the value of wearing brimmed hats and spectacles varies with the environment. Several avenues for future research are suggested

  19. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  20. Ambient temperature effects on gas turbine power plant: A case study in Iran

    International Nuclear Information System (INIS)

    Gorji, M.; Fouladi, F.

    2007-01-01

    Actual thermal efficiency, electric-power output, fuel-air ratio and specific fuel consumption (SFC) vary according to the ambient conditions. The amount of these variations greatly affects those parameters as well as the plant incomes. In this paper the effect of ambient temperature as a seasonal variation on a gas power plant has been numerically studied. For this purpose, the gas turbine model and different climate seasonal variations of Ray in Iran are considered in this study. For the model, by using average monthly temperature data of the region, the different effective parameters were compared to those in standard design conditions. The results show that ambient temperature increase will decrease thermal efficiency, electric-power out put and fuel-air ratio of the gas turbine plant whereas increases the specific fuel consumption

  1. Ambient temperature influences the neural benefits of exercise.

    Science.gov (United States)

    Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh

    2016-02-15

    Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature

    Science.gov (United States)

    Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan

    2010-02-01

    The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.

  3. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  4. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  5. Effects of elevated ambient temperature on embryo implantation in rats

    African Journals Online (AJOL)

    Yomi

    2012-03-22

    Mar 22, 2012 ... ambient temperature leads to a delayed implantation and reduced number of implantation sites in. Sprague ... rates decrease after exposure to stress. One of the ..... implantation initiation time, support the previous findings.

  6. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. On exhaust emissions from petrol-fuelled passenger cars at low ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1998-11-01

    The study at hand deals with regulated and unregulated exhaust emissions from petrol-fuelled cars at low ambient temperatures with present-day or near-future exhaust after treatment systems. The subject has been investigated at VTT over a decade and this report compiles data from various sub-studies carried out between the years 1993 - 1997. Each one of them viewed different aspects of the phenomenon, like determining the low-temperature response of today`s new cars employing three-way catalytic converters or assessing the long-term durability and the influence of vehicle mileage upon the low-temperature emissions performance. Within these studies, together more than 120 cars of model years from 1990 to 1997 have been tested. Most of them were normal, in-service vehicles with total mileages differing between only a few thousand kilometres for new cars up to 80,000 km or even more for the in-use vehicles. Both the US FTP75 and the European test cycle have been employed, and the ambient temperatures ranged from the baseline (+22 deg C) down to +- O deg C, -7 deg C and in some cases even to -20 deg C. The studies attested that new cars having today`s advanced emissions control systems produced fairly low levels of emissions when tested in conditions designated in the regulations that are the basis of the current new-vehicle certification. However, this performance was not necessarily attained at ambient temperatures that were below the normative range. Fairly widespread response was recorded, and cars having almost equal emissions output at baseline could produce largely deviating outcomes in low-temperature conditions. On average, CO and HC emissions increased by a factor of five to 10, depending on the ambient temperature and vehicle type. However, emissions of NO{sub x} were largely unaffected. Apart from these regulated emissions, many unregulated species were also determined, either by using traditional sampling and chromatography methods or on-line, employing

  8. Combined Effect of Ambient Temperature with Radiofrequency Electromagnetic Radiation in Rabbit

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Choi, Dae Seong; Komarova, Ludmila N.; Petin, Vladislav G.

    2010-01-01

    There has been an increasing interest in synergistic effects observed after combined action of various agents. Many studies have shown that numerous physical and chemical agents combined with hyperthermia can interact in a synergistic manner when the effect produced by both agents used in combination exceeded the expected results from simple summation of the every effect produced by heat and the particular agent. I t was found that ambient temperature had a profound effect on the thermoregulatory responses to radiofrequency electromagnetic radiation (RFR) in various animals and humans. An extensive quantitative investigation of synergistic interaction of ambient temperature and microwaves has been published for rabbit heating. I t would be of interest to estimate whether or not the general features of the combined action revealed with unicellular organisms can be expressed for animals exposed to microwave power combined with a higher environmental temperature.

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  10. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  11. Is ambient temperature associated with risk of infant mortality? A multi-city study in Korea.

    Science.gov (United States)

    Son, Ji-Young; Lee, Jong-Tae; Bell, Michelle L

    2017-10-01

    Although numerous studies have shown increased risk of mortality from elevated temperatures for adults, limited studies have examined temperature's effect on mortality for infants. Our study investigated the city-specific and overall effects of ambient temperature on infant mortality in seven major cities in Korea, 2004-2007. Birth cohort using a linked birth and death records included 777,570 births with 557 all-cause deaths. We estimated city-specific hazard ratios for each city using an extended Cox proportional hazards model with time-dependent covariates. Then we combined city-specific hazard ratios to generate overall hazard ratio across the seven cities using a Bayesian hierarchical model. Stratified analyses were conducted by cause of death (total and SIDS), exposure period (whole gestation, each trimester, lifetime, 1 month before death, and 2 weeks before death), sex, and maternal characteristics. Overall across the cities, we found significantly positive associations between ambient temperature during 1 month before death or 2 weeks before death and infant mortality from total or SIDS. The overall hazard ratio of infant mortality from total deaths and SIDS for a 1°C increase during 1 month before death was 1.52 (95% CI, 1.46-1.57) and 1.50 (95% CI, 1.35-1.66), respectively. We also found suggestive evidence that some factors such as mother's age may modify the association. Our findings have implications for establishment of policy to reduce the risk of infant mortality from high ambient temperature under climate change. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Spatial distribution of unspecified chronic kidney disease in El Salvador by crop area cultivated and ambient temperature.

    Science.gov (United States)

    VanDervort, Darcy R; López, Dina L; Orantes, Carlos M; Rodríguez, David S

    2014-04-01

    Chronic kidney disease of unknown etiology is occurring in various geographic areas worldwide. Cases lack typical risk factors associated with chronic kidney disease, such as diabetes and hypertension. It is epidemic in El Salvador, Central America, where it is diagnosed with increasing frequency in young, otherwise-healthy male farmworkers. Suspected causes include agrochemical use (especially in sugarcane fields), physical heat stress, and heavy metal exposure. To evaluate the geographic relationship between unspecified chronic kidney disease (unCKD) and nondiabetic chronic renal failure (ndESRD) hospital admissions in El Salvador with the proximity to cultivated crops and ambient temperatures. Data on unCKD and ndESRD were compared with environmental variables, crop area cultivated (indicator of agrochemical use) and high ambient temperatures. Using geographically weighted regression analysis, two model sets were created using reported municipal hospital admission rates are per thousand population for unCKD 2006-2010 and rates of ndESRD 2005-2010 [corrected]. These were assessed against local percent of land cultivated by crop (sugarcane, coffee, corn, cotton, sorghum, and beans) and mean maximum ambient temperature, with Moran's indices determining data clustering. Two-dimensional geographic models illustrated parameter spatial distribution. Bivariate geographically weighted regressions showed statistically significant correlations between percent area of sugarcane, corn, cotton, coffee, and bean cultivation, as well as mean maximum ambient temperature with both unCKD and ndESRD hospital admission rates. Percent area of sugarcane cultivation had greatest statistical weight (p ≤ 0.001; Rp2 = 0.77 for unCKD). The most statistically significant multivariate geographically weighted regression model for unCKD included percent area of sugarcane, cotton and corn cultivation (p ≤ 0.001; Rp2 = 0.80), while, for ndESRD, it included the percent area of sugarcane, corn

  13. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  14. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  15. Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior

    International Nuclear Information System (INIS)

    Caresana, F.; Pelagalli, L.; Comodi, G.; Renzi, M.

    2014-01-01

    Highlights: • Electrical power reduces with temperature, heat recovery remains almost constant. • Thermal-to-electrical power ratio increases with ambient temperature. • Not only the density of sucked air decreases but also its volumetric flow. • Putting a limit to shaft speed causes TIT to decrease with ambient temperature. • Power reduction with ambient temperature more than doubles that of great GTs. - Abstract: Microturbines (MGTs) are a relatively new technology that is currently attracting a lot of interest in the distributed generation market. Particularly interesting is their use as backup source for integrating photovoltaic panels or/and wind turbines in hybrid systems. In this case the sensitivity to ambient conditions of the MGT adds to that of the renewables and the knowledge of the effects of ambient conditions on its performance becomes a key subject both for the sizing of the energy system and for its optimal dynamic control. Although the dependence of medium/large gas turbines performance on atmospheric conditions is well known and documented in literature, there are very limited reports available on MGTs and they regard only global parameters. The paper aims at filling this lack of information by analyzing the ambient temperature effect on the global performance of an MGT in cogeneration arrangement and by entering in detail into its machines’ behavior. A simulation code, tuned on experimental data, is used for this purpose. Starting from the nominal ISO conditions, electrical power output is shown to decrease with ambient temperature at a rate of about 1.22%/°C, due to a reduction of both air density and volumetric flow. Meanwhile, thermal to electrical power ratio increases at a rate of about 1.30%/°C. As temperature increases compressor delivers less air at a lower pressure, and the turbine expansion ratio and mass flow reduce accordingly. With the in-use control system the turbine inlet temperature reduces at a rate of 0.07%/

  16. Cold Start Emissions of Spark-Ignition Engines at Low Ambient Temperatures as an Air Quality Risk

    Directory of Open Access Journals (Sweden)

    Bielaczyc Piotr

    2014-12-01

    Full Text Available SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC, emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC. The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

  17. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  18. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  19. Experiment of ambient temperature distribution in ICF driver's target building

    International Nuclear Information System (INIS)

    Zhou Yi; He Jie; Yang Shujuan; Zhang Junwei; Zhou Hai; Feng Bin; Xie Na; Lin Donghui

    2009-01-01

    An experiment is designed to explore the ambient temperature distribution in an ICF driver's target building, Multi-channel PC-2WS temperature monitoring recorders and PTWD-2A precision temperature sensors are used to measure temperatures on the three vertical cross-sections in the building, and the collected data have been handled by MATLAB. The experiment and analysis show that the design of the heating ventilation and air conditioning (HVAC) system can maintain the temperature stability throughout the building. However, because of the impact of heat in the target chamber, larger local environmental temperature gradients appear near the marshalling yard, the staff region on the middle floor, and equipments on the lower floor which needs to be controlled. (authors)

  20. Thermoelectric energy harvesting from small ambient temperature transients

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Andre

    2012-07-01

    Wireless sensor networks (WSNs) represent a key technology, used, for instance, in structural health monitoring, building automation systems, or traffic surveillance. Supplying power to a network of spatially distributed sensor nodes, especially at remote locations, is a large challenge: power grids are reliable but costly to install, whereas batteries provide a high flexibility in the installation but have a limited lifetime. This dilemma can be overcome by micro energy harvesting which offers both: reliability and flexibility. Micro energy harvesters are able to convert low grade ambient energy into useful electrical energy and thus provide power for wireless sensor networks or other electronic devices - in-situ, off-grid, and with an almost unlimited lifetime. Thermal energy is an omnipresent source of ambient energy: The day-night-cycle of the sun causes a temperature variation in the ambient air as well as arbitrary solids (soil, building walls, etc.). Unlike the air, solids have a large thermal inertia which dampens the temperature variation. This physical process leads to a temperature difference {Delta}T = T{sub air} - T{sub solid} between air and solid that can be converted directly into electrical energy by a thermoelectric generator (TEG). Thermal and electrical interfaces are necessary to connect the TEG to the thermal energy source (T{sub air}, T{sub solid}) and the electrical load (WSN). Reliable operation of the WSN may only be ensured if the harvester provides sufficient electrical energy, i.e. operates at its maximum power point. The goal of this thesis is to study, design, and test thermoelectric harvesters generating electrical energy from small ambient temperature transients in order to self-sufficiently power a WSN. Current research into thermoelectric energy harvesting, especially analytical modeling and application in the field are treated insufficiently. Therefore, a time-dependent analytical model of the harvester's output power is set

  1. Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers.

    Science.gov (United States)

    Kang, H J; Lee, I K; Piao, M Y; Gu, M J; Yun, C H; Kim, H J; Kim, K H; Baik, M

    2016-03-01

    Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean (8.7°C) and minimum (1.0°C) indoor ambient temperatures during P1 were lower (pambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

  2. Ambient temperature dependence on emission spectrum of InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, C.Y.; Yoon, S.F. [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Chua, S.J. [Institute of Materials Research and Engineering, Faculty of Engineering (Singapore)

    2009-04-15

    Semiconductor superluminescent diodes (SLDs) are important broadband light source for fiber optic gyroscope and biomedical imaging. Quantum dots (QDs) have been proposed to be the best candidate for broadband light sources due to the inhomogeneous broadening of the gain spectrum as a result of the inherited size inhomogeneity of the self-assembled QD growth. In this work, the effect of ambient temperature (25-100 C) on the emission spectrum of InAs QDs with wideband emission was investigated. It was found that the full-width at half-maximum (FWHM) of the photoluminescence (PL) spectra remains more than 125 nm throughout the temperature range, and the redshift as function of temperature is approximately 0.27 meV/K. Activation energy of 270 meV is extracted from the Arrhenius plot and the PL quenching at high temperature is attributed to thermally induced carriers escaping out of the In{sub 0.15}Ga{sub 0.85}As strain-reducing layer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  4. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    Science.gov (United States)

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  5. Interim storage of sodium in ferritic steel tanks at ambient temperature

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1994-01-01

    Sodium tanks originally fabricated for elevated temperature service in the Clinch River Breeder Reactor Plant (CRBRP) will be used to store sodium removed from the Fast Flux Test Facility (FFTF) in the Sodium Storage Facility (SSF) at ambient temperature. This report presents an engineering review to confirm that protection against brittle fracture of the ferritic steel tanks is adequate for the intended service

  6. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  7. Storage beyond Three Hours at Ambient Temperature Alters the ...

    African Journals Online (AJOL)

    The effect of storage on stability of human breast milk was investigated in 30 lactating mothers. Samples stored for 3, 6 and 24 hours at ambient temperature of 302K (29°) were analysed for protein, lactose, pH, and microbial content. There were significant (p < 0.01) decreases in protein, lactose and pH upon storage for 6 ...

  8. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  9. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    OpenAIRE

    POPOVICI Ovidiu; HOBLE Dorel Anton

    2012-01-01

    The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  10. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  11. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).

    Science.gov (United States)

    Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  12. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000 degrees C

    International Nuclear Information System (INIS)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-01-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000 degrees C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength

  13. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength.

  14. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  15. Ambient temperature effects on broadband UV-B measurements using fluorescent phosphor (MgWO4)-based detectors

    Science.gov (United States)

    Dichter, Bronislaw K.; Beaubien, David J.; Beaubien, Arthur F.

    1994-01-01

    Results of field tests on a group of broadband UV-B pyranometers are presented. A brief description of the instrument is given. The effects of ambient temperature on thermally unregulated fluorescent phosphor (Robertson type) meters are presented and compared with the performance of thermally stabilized instruments. Means for correcting data from thermally unregulated instruments, where the prevailing ambient temperatures are known, are outlined.

  16. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  17. High temperature thermophysical properties of (Th,U)O2 fuels

    International Nuclear Information System (INIS)

    Jarvis, T.; Banerjee, J.; Bhagat, R.K.; Ravi, K.; Sengupta, A.K.; Kutty, T.R.G.; Majumdar, S.

    2000-01-01

    In the present investigation thermal expansion data for sintered ThO 2 and ThO 2 containing 2,4,6,10 and 20% UO 2 pellets were measured using a high temperature dilatometer in the temperature range from ambient to 1773K in an inert atmosphere of argon

  18. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  19. Ambient growth of highly oriented Cu{sub 2}S dendrites of superior thermoelectric behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mulla, Rafiq; Rabinal, M.K., E-mail: mkrabinal@yahoo.com

    2017-03-01

    Highlights: • A simple and ambient route to synthesize highly oriented dendrites of copper sulfide is proposed. • Remarkable enhancement is observed in Seebeck coefficient by room temperature, solution phase doping. • High thermoelectric power factor is observed at room temperature, indicating promising behaviour. - Abstract: Low-cost, non-toxic and efficient material is an urgent need for the thermoelectric energy conversion. Here, a rapid and ambient chemical route has been developed to grow dense and highly oriented dendrites of copper sulfide (Cu{sub 2}S) on copper substrate in a very simple approach, these films are uniform and covered with dense nanosheets. Room temperature solution doping of copper ions is carried out to improve thermoelectric performance. The Seebeck coefficient increased from ∼100 to 415 μV K{sup −1} with a slight decrease in electrical conductivity, this gives a high power factor (S{sup 2}σ) of about ∼400 μW m{sup −1} K{sup −2}. The improved thermoelectric properties in these films are accounted for resonant energy level doping and high phonon scattering. Such films with improved thermoelectric behaviour can be promising materials for energy conversion. The earth abundant, low cost, non toxic with a good thermoelectric property makes copper sulfide as a promising thermoelectric material for future applications.

  20. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus

    Directory of Open Access Journals (Sweden)

    Rebecca N. Cliffe

    2015-04-01

    Full Text Available Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths had a remarkably low mean food intake of 17 g kg−1day−1 (SD 4.2. Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  1. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  2. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions

    Directory of Open Access Journals (Sweden)

    Mirim Shin

    2015-01-01

    Full Text Available There were no validation studies on portable sleep devices under different ambient temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2 or SenseWear armband (SWA against polysomnography (PSG in different ambient temperatures. Nine healthy young participants (6 males, aged 23.3±4.1 y underwent nine nights of study at ambient temperature of 17 °C, 22 °C and 29 °C in random order, after an adaptation night. They wore the AW2 and SWA while being monitored for PSG simultaneously. A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL, total sleep time (TST and sleep efficiency (SE but significantly overestimated wake after sleep onset (WASO at 17 °C and 22 °C. SWA is valid for WASO, TST and SE at these temperatures, but severely underestimates SOL. However, at 29 °C, SWA significantly overestimated WASO and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable limits of agreement (LoA for AW2 whereas, small biases and relatively wider LoA for most sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake epoch agreement, with a high sensitivity but poor specificity; wake detection remains suboptimal. AW2 showed small biases for most of sleep variables at all temperature conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at 17–22 °C but not at 29 °C, and SOL approximates that of PSG only at 29 °C, thus caution is needed when monitoring sleep at different temperatures, especially in home sleep studies, in which temperature conditions are more variable.

  3. Ambient temperature and cardiovascular biomarkers in a repeated-measure study in healthy adults: A novel biomarker index approach.

    Science.gov (United States)

    Wu, Shaowei; Yang, Di; Pan, Lu; Shan, Jiao; Li, Hongyu; Wei, Hongying; Wang, Bin; Huang, Jing; Baccarelli, Andrea A; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2017-07-01

    Associations of ambient temperature with cardiovascular morbidity and mortality have been well documented in numerous epidemiological studies, but the underlying pathways remain unclear. We investigated whether systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function may be the mechanistic pathways associated with ambient temperature. Forty study participants underwent repeated blood collections for 12 times in Beijing, China in 2010-2011. Ambient temperature and air pollution data were measured in central monitors close to student residences. We created five indices as the sum of weighted biomarker percentiles to represent the overall levels of 15 cardiovascular biomarkers in five pathways (systemic inflammation: hs-CRP, TNF-α and fibrinogen; coagulation: fibrinogen, PAI-1, tPA, vWF and sP-selectin; systemic oxidative stress: Ox-LDL and sCD36: antioxidant activity: EC-SOD and GPX1; and endothelial function: ET-1, E-selectin, ICAM-1 and VCAM-1). We used generalized mixed-effects models to estimate temperature effects controlling for air pollution and other covariates. There were significant decreasing trends in the adjusted means of biomarker indices over the lowest to the highest quartiles of daily temperatures before blood collection. A 10°C decrease at 2-d average daily temperature were associated with increases of 2.5% [95% confidence interval (CI): 0.7, 4.2], 1.6% (95% CI: 0.1, 3.1), 2.7% (95% CI: 0.5, 4.8), 5.5% (95% CI: 3.8, 7.3) and 2.0% (95% CI: 0.3, 3.8) in the indices for systemic inflammation, coagulation, systemic oxidative stress, antioxidant activity and endothelial function, respectively. In contrast, the associations between ambient temperature and individual biomarkers had substantial variation in magnitude and strength. The altered cardiovascular biomarker profiles in healthy adults associated with ambient temperature changes may help explain the temperature-related cardiovascular morbidity

  4. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  5. Antireflectance coating on shielding window glasses using glacial acetic acid at ambient temperature

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2006-01-01

    High density lead glasses having thickness of several centimeters and large dimensions are used as shielding windows in hot cells. To improve visibility, the reflection of light from its optically polished surfaces needs to be minimized to improve transmission as absorption of light in the thick glasses can not be avoided. Antireflectance coating of a material having low refractive index is required for this purpose. Selective leaching of lead at ambient temperature in glacial acetic acid develops a silica rich leached layer on glass surface. Since silica has low refractive index, the leached layer serves as antireflectance coating. Two optically polished discs of shielding window glasses were leached in glacial acetic acid at ambient temperature for 2, 5 and 10 days and their reflectance and transmittance spectra were taken to find effect of leaching. For transparent glass transmittance could be improved from 78.76% to 85.31% after 10 days leaching. Reflectance from the glass could be decreased from 12.48 to 11.67%. For coloured glass transmittance improved from 87.77% to 88.24% after 5 days leaching while reflectance decreased from 12.28% to 5.6% during same period. Based on data generated, 10 days leaching time is recommended for developing anti reflectance coating on transparent shielding window glass and 5 days for coloured shielding window glass. The procedure can be used for shielding windows of any dimensions by fabrication a PVC tank of slightly high dimensions and filling with acetic acid (author)

  6. Morfometria da mucosa duodenal em frangos de corte submetidos à temperatura ambiente cíclica elevada Intestinal morphometry of the duodenal mucosa in broiler chickens underwent to high cyclic environment temperature

    Directory of Open Access Journals (Sweden)

    C.F.P. Marchini

    2009-04-01

    Full Text Available Os efeitos da temperatura ambiente cíclica elevada sobre a morfometria da mucosa duodenal e o peso corporal em frangos de corte foram avaliados. Setenta pintos de corte, machos, foram alojados em gaiolas e distribuídos em dois grupos. Um grupo foi submetido diariamente, durante uma hora, à temperatura ambiente cíclica elevada do primeiro até o 42º dia de idade (ambiente ST; e outro foi mantido em conforto térmico (ambiente TN. Cinco frangos de cada grupo foram sacrificados, semanalmente, por deslocamento cervical para mensuração da altura de vilosidades (VI, profundidade das criptas (CR e relação vilo/cripta (VI/CR duodenal. Dez aves de cada grupo foram pesadas semanalmente em balança digital. Utilizou-se delineamento inteiramente ao acaso em esquema fatorial 7x2 (sete idades: um, sete, 14, 21, 28, 35 e 42 dias, e dois ambientes: ST e TN. Os ambientes foram comparados pelo teste de Fisher (PThe effects of high cyclic environment temperature on body weight and morphometry of the duodenal mucosa in broiler chicken were evaluated. Seventy one-day-old male broiler chicks were sheltered in cages and distributed in two groups. One group was daily exposed to high cyclic environment temperature for an hour, from hatching to 42 days of age (group ST, the other one was kept under thermoneutral conditions (group TN. Five chickens of each group were weekly slaughtered by cervical delocation to mesure the villosities height (VI, crypts depth (CR, and villo/crypt ratio (VI/ CR in the duodenum. Ten chickens of each group were weighted weekly on a digital balance. A completely randomized experimental design in a 7x2 factorial arrangement (hatching, seven, 14, 21, 28, 35, and 42 days of age and two environments: ST and TN. The environments were compared by Fisher test (P<0.05 and the effects of days of life by polynomial regression. The ST group had reduction in VI at 14 and 21 days of age (P<0.01, CR at 28 days of age (P<0.05, and in VI/CR at 21

  7. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  8. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  9. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    International Nuclear Information System (INIS)

    Bharathan, D.; Nix, G.

    2001-01-01

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  10. The potential effect of differential ambient and deployment chamber temperatures on PRC derived sampling rates with polyurethane foam (PUF) passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Karen, E-mail: k.kennedy@uq.edu.a [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia); Hawker, Darryl W. [Griffith University, School of Environment, Nathan QLD 4111 (Australia); Bartkow, Michael E. [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia); Carter, Steve [Queensland Health Forensic and Scientific Services, Coopers Plains QLD 4108 (Australia); Ishikawa, Yukari; Mueller, Jochen F. [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia)

    2010-01-15

    Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m{sup 3} day{sup -1} and 2.2-6.8 m{sup 3} day{sup -1} respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates. - Internal deployment chamber temperatures rather than ambient temperatures may be required to accurately estimate PRC-based sampling rates.

  11. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  12. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  13. Preparation of the Crosslinked Polyethersulfone Films by High Temperature Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Li, J.

    2006-01-01

    The aromatic polymers, mainly so called engineering plastics, were famed for the good stability under irradiation. However, high temperature irradiation of the aromatic polymers can result the crosslinked structure, due to the improved molecular mobility. Polyethersulfone (PES) is a wide used engineering plastic because of the high performance and high thermal stability. PES films were irradiated by electron-beam under nitrogen atmosphere above the glass transition temperature and then the covalently crosslinked PES (RX-PES) films were obtained. The irradiations were also performed at ambient temperature for comparison. The network structure formation of the RX-PES films was confirmed by the appearance of the gel, which were measured by soaking the irradiated PES films in the N,N-dimethylformamide (DMF) at room temperature. When the PES films were irradiated to 300 kGy, there was gel appeared. The gel percent increased with the increasing in the absorbed dose, and saturated when the absorbed dose exceeded 1200 kGy. However, there was no gel formed for the PES films irradiated at ambient temperature even to 2250 kGy. The G(S) and G(X) were calculated according to the Y-crosslinking mechanism. The results values are consistent in error range. G(S) of 0.10 and G(X) of 0.23 were obtained. As calculated, almost all the macromolecular radicals produced by chain scission were used for crosslinking. Also, the glass transition temperature of the RX-PES films increased with the increasing in the absorbed doses, while the glass transition temperature of the PES films irradiated at ambient temperature decreased with the increasing in the absorbed doses. The blending films of the PES with FEP or ETFE were prepared and the high temperature irradiation effects were also studies

  14. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  15. Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun

    2011-01-01

    An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power

  16. Experimental investigation on heating performance of heat pump for electric vehicles at −20 °C ambient temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Xue, Qingfeng; Albarracin Velez, Giovanny Marcelo; Zhang, Guiying; Zou, Huiming; Tian, Changqing

    2015-01-01

    Highlights: • An ASHP system with refrigerant injection for EVs is designed, for cold regions. • The heat performances of the system are tested at −20 °C ambient temperature. • The system cycle process with refrigerant injection are analyzed on lgP-H diagrams. • The effects of refrigerant injection, dryness, and in-car inlet state are discussed. • The new system can improve heating and own better application prospect. - Abstract: Since the performance of conventional air source heat pump (ASHP) for electric vehicles (EVs) is apt to decline sharply in low ambient temperature, it will consume more electricity of the cell, and affect driving mileage in cold regions. Aiming at developing high efficiency heating system for EVs in cold regions, an ASHP system applying refrigerant injection for EVs is designed, as well as the test bench is built to investigate its performance. According to the operation condition of EVs, heating performances are tested on different in-car inlet air temperature and various fresh air ratios under −20 °C ambient temperature. The system cycle process with refrigerant injection, as well as the influences of refrigerant injection and dryness are also analyzed and discussed. The results show that the heating capacity of the ASHP with refrigerant injection can be increased up to 31%, and in comparison with the conventional heat pump system its heating performance is better when in-car inlet temperature is above −10 °C. Therefore, ASHP with refrigerant injection has great potentiality to be applied for the EVs in cold regions

  17. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Hang Qiu

    2018-03-01

    Full Text Available Evidence on the burden of chronic obstructive pulmonary disease (COPD morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM with aerodynamic diameter <10 μm (PM10 and <2.5 μm (PM2.5, nitrogen dioxide (NO2, sulfur dioxide (SO2, carbon monoxide (CO and ozone (O3 with risk of hospital admissions (HAs for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM2.5, PM10 and SO2 and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19% and 14.72% (95% CI: 10.38%, 19.06% of COPD HAs were attributable to PM2.5 and PM10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO2 on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  18. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  19. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    2017-02-01

    Full Text Available Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday. The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  20. Etanercept (Enbrel® alternative storage at ambient temperature

    Directory of Open Access Journals (Sweden)

    Shannon E

    2017-07-01

    Full Text Available Edel Shannon,1 Joanne Daffy,2 Heather Jones,3 Andrea Paulson,4 Steven M Vicik5 1Global Chemistry, Manufacturing, and Controls Regulatory, 2Contract Operations Quality Assurance, Pfizer Ireland Pharmaceuticals, Clondalkin, Dublin, Ireland; 3Medical Affairs, Pfizer, Collegeville, PA, USA; 4Pharmaceutical Research and Development, 5Global Supply Product Portfolio Management, Pfizer Biotech, Andover, MA, USA Background: Biologic disease-modifying antirheumatic drugs, including tumor necrosis factor inhibitors such as etanercept (Enbrel®, have improved outcomes for patients with rheumatic and other inflammatory diseases, with sustained remission being the optimal goal for patients with rheumatoid arthritis. Flexible and convenient treatment options, compatible with modern lifestyle, are important in helping patients maintain treatment and manage their disease. Etanercept drug product (DP is available in lyophilized powder (Lyo for solution injection, prefilled syringe, and prefilled pen presentations and is typically stored under refrigerated conditions. We aimed to generate a comprehensive analytical data package from stability testing of key quality attributes, consistent with regulatory requirements, to determine whether the product profile of etanercept is maintained at ambient temperature. Methods: Test methods assessing key attributes of purity, quality, potency, and safety were performed over time, following storage of etanercept DP presentations under a range of conditions. Results: Results and statistical analysis from stability testing (based on size exclusion high-performance liquid chromatography, hydrophobic interaction chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis Coomassie across all etanercept presentations (10 and 25 mg/vial Lyo DP; 25 and 50 mg prefilled syringe DP; 50 mg prefilled pen DP showed key stability-indicating parameters were within acceptable limits through the alternative storage

  1. Photocatalysts: ambient temperature destruction of VOCs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R [IT Corp., Oak Ridge, TN (United States)

    1994-12-31

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs.

  2. Photocatalysts: ambient temperature destruction of VOCs

    International Nuclear Information System (INIS)

    Miller, R.

    1994-01-01

    Photocatalysis was a failure as a solar energy driven organic synthesis technique, but as this study indicates, it has undergone a renaissance as a promising treatment method for volatile organic compounds (VOCs) in air streams. Photocatalytic oxidation (PCO) relies upon the ability of certain semiconductors to be stimulated by UV radiation. UV light excites valence band electrons in the semiconductor catalyst to jump to a conductance band leaving holes in the valence band. The electrons and holes can react with compounds such as organic contaminants present in an air stream. Hallmarks of the technology include rapid destruction kinetics for many VOCs at ambient temperature and efficient use energy in the form of UV-A photons. Studies clearly indicate that PCO is competitive on capital cost and offers significant operating cost savings on selected applications. 6 refs., 3 tabs., 2 figs

  3. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures

    International Nuclear Information System (INIS)

    Xing, Yinjiao; He, Wei; Pecht, Michael; Tsui, Kwok Leung

    2014-01-01

    Highlights: • An offline OCV–SOC–temperature table was established to infer battery SOC. • A temperature-based model was developed to estimate SOC at different temperatures. • The algorithm for SOC estimation was verified by dynamic current load. • The robustness of the approach was validated by different initial SOC values. - Abstract: Ambient temperature is a significant factor that influences the accuracy of battery SOC estimation, which is critical for remaining driving range prediction of electric vehicles (EVs) and optimal charge/discharge control of batteries. A widely used method to estimate SOC is based on an online inference of open-circuit voltage (OCV). However, the fact that the OCV–SOC is dependent on ambient temperature can result in errors in battery SOC estimation. To address this problem, this paper presents an SOC estimation approach based on a temperature-based model incorporated with an OCV–SOC–temperature table. The unscented Kalman filtering (UKF) was applied to tune the model parameters at each sampling step to cope with various uncertainties arising from the operation environment, cell-to-cell variation, and modeling inaccuracy. Two dynamic tests, the dynamic stress test (DST) and the federal urban driving schedule (FUDS), were used to test batteries at different temperatures. Then, DST was used to identify the model parameters while FUDS was used to validate the performance of the SOC estimation. The estimation was made covering the major working range from 25% to 85% SOC. The results indicated that our method can provide accurate SOC estimation with smaller root mean squared errors than the method that does not take into account ambient temperature. Thus, our approach is effective and accurate when battery operates at different ambient temperatures. Since the developed method takes into account the temperature factor as well as the complexity of the model, it could be effectively applied in battery management systems for

  4. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  5. Preservation of Biospecimens at Ambient Temperature: Special Focus on Nucleic Acids and Opportunities for the Biobanking Community.

    Science.gov (United States)

    Muller, Rolf; Betsou, Fay; Barnes, Michael G; Harding, Keith; Bonnet, Jacques; Kofanova, Olga; Crowe, John H

    2016-04-01

    Several approaches to the preservation of biological materials at ambient temperature and the relative impact on sample stability and degradation are reviewed, with a focus on nucleic acids. This appraisal is undertaken within the framework of biobank risk, quality management systems, and accreditation, with a view to assessing how best to apply ambient temperature sample storage to ensure stability, reduce costs, improve handling logistics, and increase the efficiency of biobank procedures.

  6. Ambient temperature and neck EMG with +Gz loading on a trampoline.

    Science.gov (United States)

    Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Siitonen, Simo

    2007-06-01

    Fighter pilots who are frequently exposed to severe cold ambient temperatures experience neck pain disabilities and occupational disorders more often than those who are not so exposed. We hypothesized that a cold-induced increase in muscle strain might lead to in-flight neck injuries. The aims of this study were to measure the level of cooling before takeoff and to determine muscle strain under Gz loading (0 to +4 Gz) at different temperatures. Test subjects' (n = 14) skin temperature (T(skin)) over the trapezoids was measured before the walk to the aircraft and again in the cockpit (air temperature -14 degrees C). The subjects then performed trampoline exercises in two different ambient temperatures (-2 degrees C and +21 degrees C) after a 30-min period at the respective temperatures. EMG activity of the sternocleidomastoid (SCM), cervical erector spinae (CES), trapezoid (TRA), thoracic erector spinae (TES) muscles, and Tskin of the SCM and TRA were measured. Tskin over the trapezoids decreased from 30.1 +/- 1.7 degrees C to 27.8 +/- 2.6 degrees C (p < 0.001) before takeoff. The change of muscle strain in cold was +11.0% in SCM, +14.9% in CES, +3.7% in TRA, and -1.7% in TES. Change was statistically significant in the cervical, uncovered area (SCM, CES). The linear regression model indicated a 2.6% increase in muscle strain per every decreased degree centigrade in skin temperature over the SCM. Superficial cooling over the neck muscles was significant prior to takeoff. Muscle loading in the cold caused higher EMG activity. A major increase in muscle strain was seen in the cervical muscles. These findings suggest a cold-induced increase in muscle strain during in-flight Gz loading.

  7. Why cross-national differences in role overload? Don't overlook ambient temperature!

    NARCIS (Netherlands)

    Van de Vliert, E.; Van Yperen, N.W.

    The finding that, across nations, power distance (expected and accepted unequal interpersonal influence) Is positively related to role overload (Peterson et al., 1995) might he an artifact of the relation between role overload and ambient temperature or other third factors. We related data on power

  8. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  9. The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia under ambient and elevated ocean temperatures

    Directory of Open Access Journals (Sweden)

    Rael Horwitz

    2017-02-01

    Full Text Available Ocean warming represents a major threat to marine biota worldwide, and forecasting ecological ramifications is a high priority as atmospheric carbon dioxide (CO2 emissions continue to rise. Fitness of marine species relies critically on early developmental and reproductive stages, but their sensitivity to environmental stressors may be a bottleneck in future warming oceans. The present study focuses on the tropical sea hare, Stylocheilus striatus (Gastropoda: Opisthobranchia, a common species found throughout the Indo-West Pacific and Atlantic Oceans. Its ecological importance is well-established, particularly as a specialist grazer of the toxic cyanobacterium, Lyngbya majuscula. Although many aspects of its biology and ecology are well-known, description of its early developmental stages is lacking. First, a detailed account of this species’ life history is described, including reproductive behavior, egg mass characteristics and embryonic development phases. Key developmental features are then compared between embryos developed in present-day (ambient and predicted end-of-century elevated ocean temperatures (+3 °C. Results showed developmental stages of embryos reared at ambient temperature were typical of other opisthobranch species, with hatching of planktotrophic veligers occurring 4.5 days post-oviposition. However, development times significantly decreased under elevated temperature, with key embryonic features such as the velum, statocysts, operculum, eyespots and protoconch developing approximately 24 h earlier when compared to ambient temperature. Although veligers hatched one day earlier under elevated temperature, their shell size decreased by approximately 20%. Our findings highlight how an elevated thermal environment accelerates planktotrophic development of this important benthic invertebrate, possibly at the cost of reducing fitness and increasing mortality.

  10. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodriguez

    2016-04-01

    Full Text Available This study explored the effects of physical activity (PA and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating. Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001. Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001. When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001. Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality. On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality.

  11. Effect of Sodium Bicarbonate Supplementation on Carcass Characteristics of Lambs Fed Concentrate Diets at Different Ambient Temperature Levels

    Directory of Open Access Journals (Sweden)

    Demba B. Jallow

    2014-08-01

    Full Text Available The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks. The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period. Ambient temperature had significant (p0.05 effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  12. Synthesis of indium nanoparticles at ambient temperature; simultaneous phase transfer and ripening

    Energy Technology Data Exchange (ETDEWEB)

    Aghazadeh Meshgi, Mohammad; Kriechbaum, Manfred [Graz University of Technology, Institute of Inorganic Chemistry (Austria); Biswas, Subhajit; Holmes, Justin D., E-mail: j.holmes@ucc.ie [University College Cork, Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute (Ireland); Marschner, Christoph, E-mail: christoph.marschner@tugraz.at [Graz University of Technology, Institute of Inorganic Chemistry (Austria)

    2016-12-15

    The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl{sub 3} with LiBH{sub 4} at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.

  13. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  14. Survival of Escherichia coli O157:H7 in Milk Exposed to High Temperatures and High Pressure**

    Directory of Open Access Journals (Sweden)

    Irena Usajewicz

    2006-01-01

    Full Text Available The objective of the present study was to determine the survival of two enterohemorrhagic Escherichia coli O157:H7 strains (no. 94 and 402 and a saprophytic E. coli 1 strain at temperatures of 55 and 60 °C, and under the pressure of 300 to 600 MPa at ambient temperature (about 20 °C. The strains, in populations of 106–107 CFU/mL, were introduced into the skim milk and broth. The survival of test strains at high temperatures and high pressure depended to a high degree (p<0.05 on the type of medium in which the cells were suspended. At 55 °C the inactivation of E. coli cells was recorded after 60 to 120 min in the broth, and after 180 min in the milk. At 60 °C the time required for their thermal death was 15 to 30 min in broth. In milk only E. coli 1 cells died after 30-minute heating; the other strains survived in populations of about 40 CFU/mL. In the broth, a pressure of 550 MPa, applied for 20 min at ambient temperature, killed the entire populations of E. coli 94 and E. coli 402, and all E. coli 1 cells died at 600 MPa, also applied for 20 min at ambient temperature. In the milk live cells of all pressurized strains survived in the quantities of 102–103 CFU/mL, so their reduction by 5 log cycles was not achieved. Damaged cells were found in the majority of samples exposed to heating and high pressure. These cells did not form colonies on nutrient agar, but were able to repair damage and grow in nutrient broth at 37 °C.

  15. Freely chosen cadence during a covert manipulation of ambient temperature.

    Science.gov (United States)

    Hartley, Geoffrey L; Cheung, Stephen S

    2013-01-01

    The present study investigated relationships between changes in power output (PO) to torque (TOR) or freely chosen cadence (FCC) during thermal loading. Twenty participants cycled at a constant rating of perceived exertion while ambient temperature (Ta) was covertly manipulated at 20-min intervals of 20 °C, 35 °C, and 20 °C. The magnitude responses of PO, FCC and TOR were analyzed using repeated-measures ANOVA, while the temporal correlations were analyzed using Auto-Regressive Integrated Moving Averages (ARIMA). Increases in Ta caused significant thermal strain (p FCC remained unchanged (p = .51). ARIMA indicates that changes in PO were highly correlated to TOR (stationary r2 = .954, p = .04), while FCC was moderately correlated (stationary r2 = .717, p = .01) to PO. In conclusion, changes in PO are caused by a modulation in TOR, whereas FCC remains unchanged and therefore, unaffected by thermal stressors.

  16. Association between ambient temperature and blood pressure and blood pressure regulators: 1831 hypertensive patients followed up for three years.

    Directory of Open Access Journals (Sweden)

    Qing Chen

    Full Text Available Several studies have suggested an association between ambient air temperature and blood pressure. However, this has not been reliably confirmed by longitudinal studies. Also, whether the reaction to temperature stimulation is modified by other factors such as antihypertensive medication is rarely investigated. The present study explores the relationship between ambient temperature and blood pressure, without and with antihypertensive medication, in a study of 1,831 hypertensive patients followed up for three years, in two or four weekly check ups, accumulating 62,452 follow-up records. Both baseline and follow-up blood pressure showed an inverse association with ambient temperature, which explained 32.4% and 65.6% of variation of systolic blood pressure and diastolic blood pressure (P<0.05 respectively. The amplitude of individual blood pressure fluctuation with temperature throughout a year (a 29 degrees centigrade range was 9.4/7.3 mmHg. Medication with angiotensin converting enzyme inhibitor benazepril attenuated the blood pressure fluctuation by 2.4/1.3 mmHg each year, though the inverse association of temperature and blood pressure remained. Gender, drinking behavior and body mass index were also found to modify the association between temperature and diastolic blood pressure. The results indicate that ambient temperature may negatively regulate blood pressure. Hypertensive patients should monitor and treat blood pressure more carefully in cold days, and it could be especially important for the males, thinner people and drinkers.

  17. On exergy analysis of industrial plants and significance of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Berit

    2011-07-01

    The exergy analysis has been a relatively mature theory for more than 30 years. However, it is not that developed in terms of procedures for optimizing systems, which partly explains why it is not that common. Misconceptions and prejudices, even among scientists, are also partly to blame.The main objective of this work was to contribute to the development of an understanding and methodology of the exergy analysis. The thesis was mainly based on three papers, two of which provided very different examples from existing industrial systems in Norway, thus showing the societal perspective in terms of resource utilization and thermodynamics. The last paper and the following investigation were limited to certain aspects of ambient conditions. Two Norwegian operational plants have been studied, one operative for close to 30 years (Kaarstoe steam production and distribution system), while the other has just started its expected 30 years of production (Snoehvit LNG plant). In addition to mapping the current operational status of these plants, the study of the Kaarstoe steam production and distribution system concluded that the potential for increasing the thermodynamic performance by rather cautious actions was significant, whereas the study of the Snoehvit LNG plant showed the considerable profit which the Arctic location provided in terms of reduced fuel consumption. The significance of the ambient temperature led to the study of systems with two ambient bodies (i.e. ambient water and ambient air) of different temperatures, here three different systems were investigated: A regenerative steam injection gas turbine (RSTIG), a simple Linde air liquefaction plant (Air Liq) and an air-source heat pump water heater (HPWH). In particular, the effect of the chosen environment on exergy analysis was negligible for RSTIG, modest for Air Liq and critical for HPWH. It was found that the amount of exergy received from the alternative ambient body, compared to the main exergy flow of

  18. Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers

    Directory of Open Access Journals (Sweden)

    H. J. Kang

    2016-03-01

    Full Text Available Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1 was for four weeks from March 7 to April 3 and period 2 (P2 was four weeks from April 4 to May 1. Mean (8.7°C and minimum (1.0°C indoor ambient temperatures during P1 were lower (p<0.001 than those (13.0°C and 6.2°C, respectively during P2. Daily dry matter feed intake in both the concentrate diet and forage groups was higher (p<0.001 during P2 than P1. Average daily weight gain was higher (p<0.001 during P2 (1.38 kg/d than P1 (1.13 kg/d. Feed efficiency during P2 was higher (p = 0.015 than P1. Blood was collected three times; on March 7, April 4, and May 2. Nonesterified fatty acids (NEFA were higher on March 7 than April 4 and May 2. Blood cortisol, glucose, and triglyceride concentrations did not differ among months. Blood CD4+, CD8+, and CD4+CD25+ T cell percentages were higher, while CD8+CD25+ T cell percentage was lower, during the colder month of March than during May, suggesting that ambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

  19. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    Science.gov (United States)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P diet is 1.00-1.25 g/kg.

  20. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  1. High temperature behaviour of self-consolidating concrete

    International Nuclear Information System (INIS)

    Fares, Hanaa; Remond, Sebastien; Noumowe, Albert; Cousture, Annelise

    2010-01-01

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have already been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.

  2. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  3. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    Science.gov (United States)

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  4. Problems of the Starting and Operating of Hydraulic Components and Systems in Low Ambient Temperature (Part IV

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2017-09-01

    Full Text Available Designers of hydraulically driven machines and devices are obliged to ensure during design process their high service life with taking into account their operational conditions. Some of the machines may be started in low ambient temperature and even in thermal shock conditions (due to delivering hot working medium to cold components. In order to put such devices into operation appropriate investigations, including experimental ones - usually very expensive and time-consuming, are carried out. For this reason numerical calculations can be used to determine serviceability of a hydraulic component or system operating in thermal shock conditions. Application of numerical calculation methods is much less expensive in comparison to experimental ones. This paper presents a numerical calculation method which makes it possible to solve issues of heat exchange in elements of investigated hydraulic components by using finite elements method. For performing the simulations the following data are necessary: ambient temperature, oil temperature, heat transfer coefficient between oil and surfaces of elements, as well as areas of surfaces being in contact with oil. By means of computer simulation method values of clearance between cooperating elements as well as ranges of parameters of correct and incorrect operation of hydraulic components have been determined. In this paper results of computer simulation of some experimentally tested hydraulic components such as axial piston pump and proportional spool valve, are presented. The computer simulation results were compared with the experimental ones and high conformity was obtained.

  5. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  6. Experimental Investigation of the Effect of Change in Ambient Air Temperature on Power Consumption of Domestic Refrigerators

    Directory of Open Access Journals (Sweden)

    J. A. Olorunmaiye

    2012-12-01

    Full Text Available One of the manifestations of climate change is increase.in ambient air temperature usually referred to as global warming. For sustainable development in a country, there is need to identify impacts of climate change and the necessary adaptation and mitigation strategies to adopt. To simulate the effect of global warming on the power consumption of refrigerators, a (model No. 150 THERMOCOOL refrigerator filled with twenty-five 750cl packaged water bottleswas run in an air-conditioned room, in a room with the air-conditioner switched off and near an oven in a bakery. The electric power consumption of the refrigerator was measured using "Watts up?.net" Watt meter and the ambient temperature was measured using FLUKE temperature/humidity meter. The average hourly energy consumption of the refrigerator operating at mean ambient temperatures of 25.4°C, 30.7oC, 38.8°C were 93.844 Wh, 100.32 Wh and 105.08 Wh respectively. Some possible ways to reduce the increase in power consumption of refrigerators due to global warming include using compressors of higher efficiency and condensers of greater effectiveness.

  7. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  8. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and Curcuma xanthorrhiza essential oil.

    Science.gov (United States)

    Akbarian, A; Golian, A; Kermanshahi, H; De Smet, S; Michiels, J

    2015-02-01

    The negative effects of high ambient temperature during some months of the year on poultry production have been of great concern in many countries. Dietary modifications are among the most practical ways to alleviate the effects of high temperature. Possible effects of dietary supplementation with 200 or 400 mg/kg feed of lemon peel extract (LPE), orange peel extract (OPE) and Curcuma xanthorrhiza essential oil (CXEO) under hot conditions (34 °C with 50% relative humidity for 5 h daily starting from day 28 until day 38 of age) on blood antioxidant enzyme activities, biochemical parameters and antibody titres of broiler chickens were investigated. All extracts are rich in phenolic compounds and highly available. Compared to control, supplementation with OPE at 400 mg/kg and CXEO significantly increased erythrocyte glutathione peroxidase and superoxide dismutase activity, plasma growth hormone concentrations and serum phosphorus, total protein and chloride concentrations and decreased serum low-density lipoprotein and cholesterol concentrations in chickens at 38 days of age. Regarding antibody titres, CXEO supplementation at 400 mg/kg caused a significant increase in bronchitis antibody titres. Supplementation with LPE and OPE gave more inconsistent results. Most interesting, 400 mg/kg LPE significantly increased 3,5,3'-triiodothyronine and GH concentration as compared to the control. In conclusion, the herbal extracts tested in this study, in particular CXEO at 400 mg/kg, may relieve some of the changes in blood composition induced by increased ambient temperatures. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  9. Wear Behavior of Selected Nuclear Grade Graphites at Room Temperature in Ambient Air Environment

    International Nuclear Information System (INIS)

    Kim, Eung-Seon; Park, Kwang-Seok; Kim, Yong-Wan

    2008-01-01

    In a very high temperature reactor (VHTR), graphite will be used not only for as a moderator and reflector but also as a major structural component due to its excellent neutronic, thermal and mechanical properties. In the VHTR, wear of graphite components is inevitable due to a neutron irradiation-induced dimensional change, thermal gradient, relative motions of graphite components and a shock load such as an earthquake. Large wear particles accumulated at the bottom of a reactor can influence the cooling of the lower part and small wear particles accumulated on the primary circuit and heat exchanger tube can make it difficult to inspect the equipment, and also decrease the heat exchange rate. In the present work, preliminary wear tests were performed at room temperature in ambient air environment to understand the basic wear characteristics of selected nuclear grade graphites for the VHTR

  10. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Liangzhi, E-mail: 15004110853@163.com; Liu, Qing

    2016-12-15

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H{sub 2} in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H{sub 2} and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H{sub 2} uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  11. Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature

    International Nuclear Information System (INIS)

    Xia, Liangzhi; Liu, Qing

    2016-01-01

    Density Functional Theory (DFT) combines with grand canonical Monte Carlo (GCMC) simulations are performed to explore the effect of Li doping on the hydrogen storage capability of COF-320. The results show that the interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. GCMC simulations are employed to study the hydrogen uptake of Li-doped COF-320 at ambient temperature, further confirm that the lithium doping can improve the hydrogen uptake at ambient temperature. Our results demonstrate that Li-doped COFs have good potential in the field of hydrogen storage. - Graphical abstract: Fig. 1. The optimized cluster model used here to represent the COF-320 and possible adsorption sites (A, B, C) for adsorption of metals in the COF-320. The dangling bonds are terminated by H atoms. C, H, and N atoms are shown as gray, white, and blue colors, respectively. Fig. 2. The adsorption isotherm of H 2 in the pristine and Li-doped COF-320 at 298 K. - Highlights: • The binding sites of single and two lithium atoms in COF-320 were studied. • The interaction energy between the H 2 and the Li-doped COF-320 is about three times higher than that of pristine COF-320. • H 2 uptakes on the Li-doped COFs obtain significant improvement at ambient temperature. • Lithium-doping is a successful strategy for improving hydrogen uptake.

  12. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  13. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  14. A high-flow humidograph for testing the water uptake by ambient aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H.M.; Khlystov, A.; Kos, G.P.A. [ECN Fuels Conversion and Environment, Petten (Netherlands); Tuch, T. [Institut of Medical Data Management, Biometrics and Epidemiology, Ludwig-Maximilian University, Muenich (Germany); Roth, C.; Kreyling, W. [Institute for Inhalation Biology, GSF National Research Center for Environment and Health, Neuherberg/Muenich (Germany)

    1999-10-01

    A scanning humidograph, with an air flow rate of 0.5 m{sup 3} s{sup -1} was built to investigate the uptake of water and its effect on sizing, collection and light-scattering of ambient aerosol. The performance of the system was assessed with laboratory particles of ammonium nitrate, ammonium sulfate and sodium chloride which are the major hygroscopic components of ambient aerosol. The increase in size at the deliquescence points, which ideally is a stepwise function of relative humidity, occurs over a range of 3% RH units. This is shown to be an optimum value in a system of such large dimensions. Because of the strong temperature increase of the vapor pressure of ammonium nitrate, its evaporative loss was investigated as a function of heating/drying temperature. The loss of pure test aerosol, with a mass distribution similar to that in the ambient atmosphere, was found to be acceptable for drying temperatures of up to 40C. The sizing of deliquesced aerosol by LAS-X monitors was tested and found to be a complex function of RH. In Berner low pressure impactors growth of hygroscopic aerosol was not observed, not even at an RH approaching saturation. 21 refs.

  15. Observation of high-temperature bubbles in an ECR plasma

    Science.gov (United States)

    Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.

    2018-05-01

    Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.

  16. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.

    Science.gov (United States)

    Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György

    2018-06-01

    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.

  17. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    Science.gov (United States)

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  18. The association between ambient temperature and childhood asthma: a systematic review

    Science.gov (United States)

    Xu, Zhiwei; Crooks, James Lewis; Davies, Janet Mary; Khan, Al Fazal; Hu, Wenbiao; Tong, Shilu

    2018-03-01

    The objectives of this study are to review available information on the association between ambient temperature and childhood asthma, and to elucidate the possible underlying mechanisms of this relationship. A systematic review was conducted based on the papers retrieved from four databases, including PubMed, ProQuest, ScienceDirect, and Scopus. Papers examining the association of absolute temperature or temperature variation with childhood asthma published from 1 January 2000 to 31 December 2016 were included. Thirteen papers have quantified the effect of absolute temperature on childhood asthma, and six papers have examined the effect of intra- or inter-day temperature variation on childhood asthma. All studies were conducted in urban areas. Aeroallergen sensitizations were only considered in the analyses of one study. Discrepancy existed in the significance of the relationship between absolute temperature and childhood asthma, and also in the shape of this relationship (i.e. linear or non-linear) and whether temperature effects were lagged. Increasing evidence is suggesting non-linear relationship between absolute temperature and childhood asthma. Future research should investigate the burden of childhood asthma specifically attributable to extreme temperatures and temperature variation using advanced statistical approach, particularly in rural areas, after properly considering aeroallergens and air pollution. Projecting future burden of childhood asthma under climate change scenarios is also warranted.

  19. Ambient Temperature Flotation of Sedimentary Phosphate Ore Using Cottonseed Oil as a Collector

    Directory of Open Access Journals (Sweden)

    Yaoyang Ruan

    2017-04-01

    Full Text Available The mid-low grade sedimentary phosphate ore, abundant in silicate and carbonate gangue minerals, exhibits a poor processability. It is conventionally enriched using high temperature flotation to remove silicate gangues with fatty acid as a collector. Cottonseed oil has been proved to be an efficient collector for achieving ambient temperature flotation of the sedimentary phosphate ore used in this study. Flotation kinetics was investigated to ascertain the excellent collecting performance of cottonseed oil, as compared with oleic acid, and the phosphate flotation fitted well with the first-order flotation model. Based on the analysis of flotation reagent effect on the direct flotation process using the response surface methodology (RSM, a closed circuit of direct-reverse flotation for stepwise removing silicate and carbonate gangues from the sedimentary phosphate ore was established. Consequently, a required high quality of phosphate concentrate containing 30.16% P2O5 was obtained, with a recovery of 90.90%. Scanning electron microscopy (SEM and X-ray diffraction analysis (XRD of the flotation products confirmed that the majority of silicate and carbonate gangues were effectively removed from the concentrate products.

  20. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature.

    Science.gov (United States)

    Lu, Guangwen; Wu, Fu-Qing; Wu, Weixun; Wang, Hong-Jun; Zheng, Xiao-Ming; Zhang, Yunhui; Chen, Xiuling; Zhou, Kunneng; Jin, Mingna; Cheng, Zhijun; Li, Xueyong; Jiang, Ling; Wang, Haiyang; Wan, Jianmin

    2014-05-01

    Low temperature (LT) is one of the most prevalent factors limiting the productivity and geographical distribution of rice (Oryza sativa L.). Although significant progress has been made in elucidating the effect of LT on seed germination and reproductive development in rice, the genetic component affecting vegetative growth under LT remains poorly understood. Here, we report that rice cultivars harboring the dominant LTG1 (Low Temperature Growth 1) allele are more tolerant to LT (15-25°C, a temperature range prevalent in high-altitude, temperate zones and high-latitude areas), than those with the ltg1 allele. Using a map-based cloning strategy, we show that LTG1 encodes a casein kinase I. A functional nucleotide polymorphism was identified in the coding region of LTG1, causing a single amino acid substitution (I357K) that is associated with the growth rate, heading date and yield of rice plants grown at LT. We present evidence that LTG1 affects rice growth at LT via an auxin-dependent process(es). Furthermore, phylogenetic analysis of this locus suggests that the ltg1 haplotype arose before the domestication of rice in tropical climates. Together, our data demonstrate that LTG1 plays an important role in the adaptive growth and fitness of rice cultivars under conditions of low ambient temperature. © 2014 The Authors. The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.

    Science.gov (United States)

    Resende, J A; Diniz, C G; Silva, V L; Otenio, M H; Bonnafous, A; Arcuri, P B; Godon, J-J

    2014-12-01

    This study was focused on evaluating the persistency of antimicrobial resistance (AR) genes and putative pathogenic bacteria in an anaerobic digesters operating at mesophilic ambient temperature, in two different year seasons: summer and winter. Abundance and dynamic of AR genes encoding resistance to macrolides (ermB), aminoglycosides (aphA2) and beta-lactams (blaTEM -1 ) and persistency of potentially pathogenic bacteria in pilot-scale anaerobic digesters were investigated. AR genes were determined in the influent and effluent in both conditions. Overall, after 60 days, reduction was observed for all evaluated genes. However, during the summer, anaerobic digestion was more related to the gene reduction as compared to winter. Persistency of potentially pathogenic bacteria was also evaluated by metagenomic analyses compared to an in-house created database. Clostridium, Acinetobacter and Stenotrophomonas were the most identified. Overall, considering the mesophilic ambient temperature during anaerobic digestion (summer and winter), a decrease in pathogenic bacteria detection through metagenomic analysis and AR genes is reported. Although the mesophilic anaerobic digestion has been efficient, the results may suggest medically important bacteria and AR genes persistency during the process. This is the first report to show AR gene dynamics and persistency of potentially pathogenic bacteria through metagenomic approach in cattle manure ambient temperature anaerobic digestion. © 2014 The Society for Applied Microbiology.

  2. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    Science.gov (United States)

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  3. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  4. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  5. The cycle life chemistry of ambient-temperature secondary lithium cells

    Science.gov (United States)

    Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.

  6. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation.

    Directory of Open Access Journals (Sweden)

    Ivanne Pincedé

    Full Text Available The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process.Basically, the procedures involved heating of the tail with a CO(2 laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making.We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice.

  7. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    Science.gov (United States)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  8. Threshold Evaluation of Emergency Risk Communication for Health Risks Related to Hazardous Ambient Temperature.

    Science.gov (United States)

    Liu, Yang; Hoppe, Brenda O; Convertino, Matteo

    2018-04-10

    Emergency risk communication (ERC) programs that activate when the ambient temperature is expected to cross certain extreme thresholds are widely used to manage relevant public health risks. In practice, however, the effectiveness of these thresholds has rarely been examined. The goal of this study is to test if the activation criteria based on extreme temperature thresholds, both cold and heat, capture elevated health risks for all-cause and cause-specific mortality and morbidity in the Minneapolis-St. Paul Metropolitan Area. A distributed lag nonlinear model (DLNM) combined with a quasi-Poisson generalized linear model is used to derive the exposure-response functions between daily maximum heat index and mortality (1998-2014) and morbidity (emergency department visits; 2007-2014). Specific causes considered include cardiovascular, respiratory, renal diseases, and diabetes. Six extreme temperature thresholds, corresponding to 1st-3rd and 97th-99th percentiles of local exposure history, are examined. All six extreme temperature thresholds capture significantly increased relative risks for all-cause mortality and morbidity. However, the cause-specific analyses reveal heterogeneity. Extreme cold thresholds capture increased mortality and morbidity risks for cardiovascular and respiratory diseases and extreme heat thresholds for renal disease. Percentile-based extreme temperature thresholds are appropriate for initiating ERC targeting the general population. Tailoring ERC by specific causes may protect some but not all individuals with health conditions exacerbated by hazardous ambient temperature exposure. © 2018 Society for Risk Analysis.

  9. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  10. Low ambient temperature elevates plasma triiodothyronine concentrations while reducing digesta mean retention time and methane yield in sheep.

    Science.gov (United States)

    Barnett, M C; McFarlane, J R; Hegarty, R S

    2015-06-01

    Ruminant methane yield (MY) is positively correlated with mean retention time (MRT) of digesta. The hormone triiodothyronine (T3 ), which is negatively correlated with ambient temperature, is known to influence MRT. It was hypothesised that exposing sheep to low ambient temperatures would increase plasma T3 concentration and decrease MRT of digesta within the rumen of sheep, resulting in a reduction of MY. To test this hypothesis, six Merino sheep were exposed to two different ambient temperatures (cold treatment, 9 ± 1 °C; warm control 26 ± 1 °C). The effects on MY, digesta MRT, plasma T3 concentration, CO2 production, DM intake, DM digestibility, change in body weight (BW), rumen volatile fatty acid (VFA) concentrations, estimated microbial protein output, protozoa abundance, wool growth, water intake, urine output and rectal temperature were studied. Cold treatment resulted in a reduction in MY (p < 0.01); digesta MRT in rumen (p < 0.01), hindgut (p = 0.01) and total digestive tract (p < 0.01); protozoa abundance (p < 0.05); and water intake (p < 0.001). Exposure to cold temperature increased plasma T3 concentration (p < 0.05), CO2 production (p = 0.01), total VFA concentrations (p = 0.03) and estimated microbial output from the rumen (p = 0.03). The rate of wool growth increased (p < 0.01) due to cold treatment, but DM intake, DM digestibility and BW change were not affected. The results suggest that exposure of sheep to cold ambient temperatures reduces digesta retention time in the gastrointestinal tract, leading to a reduction in enteric methane yield. Further research is warranted to determine whether T3 could be used as an indirect selection tool for genetic selection of low enteric methane-producing ruminants. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  11. Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis

    Science.gov (United States)

    Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.

    2017-05-01

    The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.

  12. Generation, insulated confinement, and heating of ultra-high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.

    1986-01-01

    This invention relates to the production and maintenance in steady state of ultra-high temperature confined plasmas, particularly those created by full ionization of a volume of some hydrogenic gas such as deuterium. The target mass is surrounded with an ambient fluid medium at a predetermined pressure. Pulsed energy is projected upon the target mass to bring it to a predetermined temperature and to fully ionize it; this energy may be pulsed photon energy or pulsed particle-beam kinetic energy. An electrostatic double layer is formed spontaneously between the ionized mass and the ambient medium, providing thermal insulation and leaving the dominant energy loss to be bremmstrahlung losses. The bremmstrahlung losses are compensated for completely by supplying additional radiant energy to the ionized mass to maintain its temperature. The frequency range of the additional radiant energy is selected so as to be absorbable by the ionized mass, and its power level is adjusted to maintain the ionized mass in a substantially steady state. The static pressure of the ambient medium is increased, thereby equally increasing the static pressure of the ionized mass so as to enable the mass to absorb more of the radiant energy and increasing its temperature but also increasing its power losses. Simultaneously the radius and temperature of the mass are monitored and the power level of the radiant energy supply is increased to as to compensate for the power losses. The minimum feasible size of the plasma is less than a centimeter in diameter, while there is no constraint on maximum feasible size. This invention may be practiced with commercially-available lasers and microwave beam generators

  13. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Viviana Lo Martire

    Full Text Available The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11 and wild-type controls (n = 12 were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C and the thermoneutral zone (30°C. In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS than either in non-rapid-eye-movement sleep (NREMS or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.

  14. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons.

    Science.gov (United States)

    Lo Martire, Viviana; Silvani, Alessandro; Bastianini, Stefano; Berteotti, Chiara; Zoccoli, Giovanna

    2012-01-01

    The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.

  15. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6% and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged

  16. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  17. Observation of immobile regions in natural rubber at ambient temperature by solid-state C-13 CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, F.H.; Rasmussen, T.; Pedersen, Walther Batsberg

    1999-01-01

    Employing C-13 CP/MAS NMR spectroscopy, the existence of immobile regions in natural rubber (cis-1,4-polyisoprene) corresponding to a few percent of the monomer units has been detected at ambient temperature. For synthetic rubbers no immobile regions have been detected at all. Applying different...... physical and chemical treatments to natural rubber it is shown that mastication, gamma-irradiation, and increasing the temperature, slightly above the ambient, reduce the amount of immobile regions. (C) 1999 Elsevier Science Ltd. All rights reserved....

  18. Experimental and computational investigation of temperature effects on soot mechanisms

    Directory of Open Access Journals (Sweden)

    Bi Xiaojie

    2014-01-01

    Full Text Available Effects of initial ambient temperatures on combustion and soot emission characteristics of diesel fuel were investigated through experiment conducted in optical constant volume chamber and simulation using phenomenological soot model. There are four difference initial ambient temperatures adopted in our research: 1000 K, 900 K, 800 K and 700 K. In order to obtain a better prediction of soot behavior, phenomenological soot model was revised to take into account the soot oxidation feedback on soot number density and good agreement was observed in the comparison of soot measurement and prediction. Results indicated that ignition delay prolonged with the decrease of initial ambient temperature. The heat release rate demonstrated the transition from mixing controlled combustion at high ambient temperature to premixed combustion mode at low ambient temperature. At lower ambient temperature, soot formation and oxidation mechanism were both suppressed. But finally soot mass concentration reduced with decreasing initial ambient temperature. Although the drop in ambient temperature did not cool the mean in-cylinder temperature during the combustion, it did shrink the total area of local high equivalence ratio, in which soot usually generated fast. At 700 K initial ambient temperature, soot emissions were almost negligible, which indicates that sootless combustion might be achieved at super low initial temperature operation conditions.

  19. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  20. 变温环境室空调系统实验研究%Experimental Study on Air Conditioning System of Variable Temperature Ambient Chamber

    Institute of Scientific and Technical Information of China (English)

    张柱; 吴蔚兰

    2017-01-01

    This paper introduces experimental facilities on air conditioning system of variable temperature ambient chamber.Researching and analysis the operating parameters of temperature distribution,compressor start-stop cycle and cooling capacity and COP changes.The results showed that the closer chamber controlled temperature is located to the ambient temperature,the smaller the temperature fluctuations is,temperature difference is also smaller;compared with the theoretical value,with ambient chamber temperature rising,compressor cooling capacity and COP rise;theoretical cooling capacity is more than the actual cooling capacity and compression of the start-stop,regardless of the theoretical value or experimental values,showed a downward trend from low to high,but the low temperature test values close to the theoretical value,when the high temperature is lower than the theoretical value.%介绍了变温环境室空调系统实验装置,研究分析了不同工况下室内温度分布、压缩机启停周期、制冷量及COP等运行参数的变化情况.实验结果表明:室内控制温度越接近坐落环境温度,温度波动幅度越小,不同位置的温差也越小;与理论值相比,压缩机的制冷量及COP随环境室温度升高而升高,理论制冷量大于实际制冷量;而压缩机启停比,无论理论值还是实验值,均呈现从低温到高温下降的趋势,但低温时实验值接近于理论值,高温时低于理论值.

  1. The influence of heated or cooled seats on the acceptable ambient temperature range

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Wyon, David Peter; Fang, Lei

    2007-01-01

    series, subjects were preconditioned to be too hot, while in other series they were preconditioned to be thermally neutral. They reported their thermal sensations, overall thermal acceptability and comfort on visual analogue scales at regular intervals. Instantaneous heat flow to the seat was measured...... continuously. At each ambient room temperature, the percentage dissatisfied was found to be a second-order polynomial function of local heat flow. Zero heat flow was preferred at an air temperature of 22 degrees C and the heat flow that minimized the percentage dissatisfied was found to be a single linear...

  2. Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens

    Directory of Open Access Journals (Sweden)

    Margaret J. Couvillon

    2010-01-01

    Full Text Available Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16∘C and 36∘C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.

  3. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study.

    Science.gov (United States)

    Zanobetti, Antonella; Luttmann-Gibson, Heike; Horton, Edward S; Cohen, Allison; Coull, Brent A; Hoffmann, Barbara; Schwartz, Joel D; Mittleman, Murray A; Li, Yongsheng; Stone, Peter H; de Souza, Celine; Lamparello, Brooke; Koutrakis, Petros; Gold, Diane R

    2014-03-01

    Extreme weather and air pollution are associated with increased cardiovascular risk in people with diabetes. In a population with diabetes, we conducted a novel assessment of vascular brachial artery responses both to ambient pollution and to weather (temperature and water vapor pressure, a measure of humidity). Sixty-four 49- to 85-year-old Boston residents with type 2 diabetes completed up to five study visits (279 repeated measures). Brachial artery diameter (BAD) was measured by ultrasound before and after brachial artery occlusion [i.e., flow-mediated dilation (FMD)] and before and after nitroglycerin-mediated dilation (NMD). Ambient concentrations of fine particulate mass (PM2.5), black carbon (BC), organic carbon (OC), elemental carbon, particle number, and sulfate were measured at our monitoring site; ambient concentrations of carbon monoxide, nitrogen dioxide, and ozone were obtained from state monitors. Particle exposure in the home and during each trip to the clinic (home/trip exposure) was measured continuously and as a 5-day integrated sample. We used linear models with fixed effects for participants, adjusting for date, season, temperature, and water vapor pressure on the day of each visit, to estimate associations between our outcomes and interquartile range increases in exposure. Baseline BAD was negatively associated with particle pollution, including home/trip-integrated BC (-0.02 mm; 95% CI: -0.04, -0.003, for a 0.28 μg/m3 increase in BC), OC (-0.08 mm; 95% CI: -0.14, -0.03, for a 1.61 μg/m3 increase) as well as PM2.5, 5-day average ambient PM2.5, and BC. BAD was positively associated with ambient temperature and water vapor pressure. However, exposures were not consistently associated with FMD or NMD. Brachial artery diameter, a predictor of cardiovascular risk, decreased in association with particle pollution and increased in association with ambient temperature in our study population of adults with type 2 diabetes. Zanobetti A, Luttmann

  4. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    International Nuclear Information System (INIS)

    Metwally, S.M.; Abo-Elmagdb, M.; Salamaa, E.

    2007-01-01

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate Φ=C ra λ rn fρ s (1-ε)L; C ra the effective radium content, λ rn decay constant, f emanation fraction, ρ s soil grain density, ε porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures

  5. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.

    Science.gov (United States)

    Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P

    2009-07-31

    In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be

  6. Improvement of the performance of Mg-based alloy electrodes at ambient temperatures

    International Nuclear Information System (INIS)

    Liu, H.K.; Chen, J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.

    1998-01-01

    Full text: Rechargeable batteries are finding increased application in modern communications, computers, and electric vehicles. The Nickel-Metal Hydride (Ni-MH) battery has the best comprehensive properties. It is known that the important step to increase the energy density of Ni-MH battery is to improve the negative (metal hydride) electrode properties. Of all the hydrogen storage alloys studied previously, (the best know alloys are LaNi 5 , Mg 2 Ni, Ti 2 Ni , TiNi and Zr 2 Ni), the intermetallic compound Mg 2 Ni has the highest theoretical hydrogen storage capacity. The Mg 2 Ni-based hydrogen storage alloy is a promising material for increasing the negative electrode capacity of Ni-MH batteries because this alloy is superior to the LaNi 5 -system or the Zr-based alloys in materials cost and hydrogen absorption capacity. A serious disadvantage, however, is that the reactions of most magnesium based alloys with hydrogen require relatively high temperature (>300 deg C) and pressure (up to 10 atm) due to the slowness of the hydriding/dehydriding reactions. In this paper it is shown that with a combination of modifications to the alloy composition and methods of electrode preparation, magnesium-based alloys can be made into electrodes which will not only be useful at ambient temperatures but will have a useful cycle life and extremely high capacity

  7. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    International Nuclear Information System (INIS)

    Baqai, A.

    2014-01-01

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  8. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqai, A. [Mehran Univ. of Engineering and Technology, Jamshoro (Pakistan). Dept. of Information and Communication Technology

    2014-07-15

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  9. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  10. Impacts of ambient temperature on the burden of bacillary dysentery in urban and rural Hefei, China.

    Science.gov (United States)

    Cheng, J; Xie, M Y; Zhao, K F; Wu, J J; Xu, Z W; Song, J; Zhao, D S; Li, K S; Wang, X; Yang, H H; Wen, L Y; Su, H; Tong, S L

    2017-06-01

    Bacillary dysentery continues to be a major health issue in developing countries and ambient temperature is a possible environmental determinant. However, evidence about the risk of bacillary dysentery attributable to ambient temperature under climate change scenarios is scarce. We examined the attributable fraction (AF) of temperature-related bacillary dysentery in urban and rural Hefei, China during 2006-2012 and projected its shifting pattern under climate change scenarios using a distributed lag non-linear model. The risk of bacillary dysentery increased with the temperature rise above a threshold (18·4 °C), and the temperature effects appeared to be acute. The proportion of bacillary dysentery attributable to hot temperatures was 18·74% (95 empirical confidence interval (eCI): 8·36-27·44%). Apparent difference of AF was observed between urban and rural areas, with AF varying from 26·87% (95% eCI 16·21-36·68%) in urban area to -1·90% (95 eCI -25·03 to 16·05%) in rural area. Under the climate change scenarios alone (1-4 °C rise), the AF from extreme hot temperatures (>31·2 °C) would rise greatly accompanied by the relatively stable AF from moderate hot temperatures (18·4-31·2 °C). If climate change proceeds, urban area may be more likely to suffer from rapidly increasing burden of disease from extreme hot temperatures in the absence of effective mitigation and adaptation strategies.

  11. Effects of Social Interaction and Warm Ambient Temperature on Brain Hyperthermia Induced by the Designer Drugs Methylone and MDPV

    Science.gov (United States)

    Kiyatkin, Eugene A; Kim, Albert H; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2015-01-01

    3,4-Methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV) are new drugs of abuse that have gained worldwide popularity. These drugs are structurally similar to 3,4-methylenedioxymethamphetamine (MDMA) and share many of its physiological and behavioral effects in humans, including the development of hyperthermia during acute intoxication. Here, we examined the effects of methylone (1–9 mg/kg, s.c.) or MDPV (0.1–1.0 mg/kg, s.c.) on brain temperature homeostasis in rats maintained in a standard laboratory environment (single-housed in a quiet rest at 22 °C) and under conditions that model human drug use (social interaction and 29 °C ambient temperature). By simultaneously monitoring temperatures in the nucleus accumbens, temporal muscle, and facial skin, we assessed the effects of methylone and MDPV on intra-brain heat production and cutaneous vascular tone, two critical factors that control brain temperature responses. Both methylone and MDPV dose-dependently increased brain temperature, but even at high doses that induced robust locomotor activation, hyperthermia was modest in magnitude (up to ∼2 °C). Both drugs also induced dose-dependent peripheral vasoconstriction, which appears to be a primary mechanism determining the brain hyperthermic responses. In contrast to the powerful potentiation of MDMA-induced hyperthermia by social interaction and warm ambient temperature, such potentiation was absent for methylone and minimal for MDPV. Taken together, despite structural similarities to MDMA, exposure to methylone or MDPV under conditions commonly associated with human drug use does not lead to profound elevations in brain temperature and sustained vasoconstriction, two critical factors associated with MDMA toxicity. PMID:25074640

  12. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  13. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  14. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  15. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    Science.gov (United States)

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  17. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  18. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Abo-Elmagdb, M [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Salamaa, E [National Institute for Standard, Radiation Measurements Department, Cairo (Egypt)

    2007-06-15

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate {phi}=C{sub ra}{lambda}{sub rn} f{rho}{sub s}(1-{epsilon})L; C{sub ra} the effective radium content, {lambda}{sub rn} decay constant, f emanation fraction, {rho}{sub s} soil grain density, {epsilon} porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures.

  19. [The Relationship Study between Expressions of P2X5 Receptor and Deficiency-cold Syndrome/Deficiency-heat Syndrome at Various Ambient Temperatures].

    Science.gov (United States)

    Yang, Li-ping; Yu, Hong-jie; Huang, Rui; Li, Xin-min; Zhan, Xiang-hong; Hou, Jun-lin

    2015-05-01

    To detect the expression of the peripheral blood P2X5 receptor at various ambient temperatures, and to explore its relationship with deficiency-cold syndrome and deficiency-heat syndrome. Subjects were selected by questionnaire and expert diagnosis, and assigned to the normal control group, the deficiency-cold syndrome group, and the deficiency-heat syndrome group, 20 in each group. 5 mL venous blood was collected at room temperature (25 °C) and cold temperature (-4-5 °C) respectively. Then the expression of P2X5 receptor was relatively quantified by real-time fluorescence quantitative PCR, and compared at room temperature and cold temperature respectively. The expression of P2X5 receptor in deficiency-cold syndrome and deficiency-heat syndrome groups was lower than that in the normal control group at room temperature (P cold temperature in the deficiency-cold syndrome group than in the normal control group (P receptor showed no difference in all groups at two different temperatures (P > 0.05). The expression of P2X5 receptor was different in different syndrome groups at various ambient temperatures. Ambient temperatures had insignificant effect on the expression of P2X5 receptor of the population with the same syndrome.

  20. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure.

    Science.gov (United States)

    Hoffmann, Barbara; Luttmann-Gibson, Heike; Cohen, Allison; Zanobetti, Antonella; de Souza, Celine; Foley, Christopher; Suh, Helen H; Coull, Brent A; Schwartz, Joel; Mittleman, Murray; Stone, Peter; Horton, Edward; Gold, Diane R

    2012-02-01

    Diabetes increases the risk of hypertension and orthostatic hypotension and raises the risk of cardiovascular death during heat waves and high pollution episodes. We examined whether short-term exposures to air pollution (fine particles, ozone) and heat resulted in perturbation of arterial blood pressure (BP) in persons with type 2 diabetes mellitus (T2DM). We conducted a panel study in 70 subjects with T2DM, measuring BP by automated oscillometric sphygmomanometer and pulse wave analysis every 2 weeks on up to five occasions (355 repeated measures). Hourly central site measurements of fine particles, ozone, and meteorology were conducted. We applied linear mixed models with random participant intercepts to investigate the association of fine particles, ozone, and ambient temperature with systolic, diastolic, and mean arterial BP in a multipollutant model, controlling for season, meteorological variables, and subject characteristics. An interquartile increase in ambient fine particle mass [particulate matter (PM) with an aerodynamic diameter of ≤ 2.5 μm (PM2.5)] and in the traffic component black carbon in the previous 5 days (3.54 and 0.25 μg/m3, respectively) predicted increases of 1.4 mmHg [95% confidence interval (CI): 0.0, 2.9 mmHg] and 2.2 mmHg (95% CI: 0.4, 4.0 mmHg) in systolic BP (SBP) at the population geometric mean, respectively. In contrast, an interquartile increase in the 5-day mean of ozone (13.3 ppb) was associated with a 5.2 mmHg (95% CI: -8.6, -1.8 mmHg) decrease in SBP. Higher temperatures were associated with a marginal decrease in BP. In subjects with T2DM, PM was associated with increased BP, and ozone was associated with decreased BP. These effects may be clinically important in patients with already compromised autoregulatory function.

  1. Effect of CaO2 addition on anaerobic digestion of waste activated sludge at different temperatures and the promotion of valuable carbon source production under ambient condition.

    Science.gov (United States)

    Ping, Qian; Lu, Xiao; Zheng, Ming; Li, Yongmei

    2018-06-06

    The effect of calcium peroxide (CaO 2 ) addition on anaerobic digestion (AD) of waste activated sludge (WAS) at different temperatures (20 °C, 35 °C, and 55 °C) were investigated. The results show that CaO 2 addition had significant positive effect on short-chain fatty acids (SCFAs) production under ambient and mesophilic conditions. Polysaccharides and proteins embedded in extracellular polymeric substances (EPS) were effectively released from inner fraction to outer fraction, and non-biodegradable humic-like substances were decreased while easily biodegradable tryptophan-like proteins increased. These effects were most remarkable under ambient conditions. However, CaO 2 addition was unfavorable to thermophilic AD because of high free ammonia concentrations and the accumulation of humic-like substances. Temperature showed a stronger effect than CaO 2 on microbial community structure, but CaO 2 addition was more effective than temperature in enhancing hydrolytic and acidifying microorganisms. Predictive functional profiling indicated that microbial hydrolysis, metabolism and acidification were promoted by CaO 2 under ambient conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mode I and Mode II Interlaminar Crack Growth Resistances of Ceramic Matrix Composites at Ambient Temperature

    National Research Council Canada - National Science Library

    Choi, Sung R; Kowalik, Robert W; Alexander, Donald J

    2007-01-01

    ...) including three gas-turbine grade melt-infiltrated SiC/SiC composites. Modes I and II crack growth resistances, GI and GII, were evaluated at ambient temperature using double cantilever beam and end notched flexure methods, respectively...

  3. Association of elevated ambient temperature with death from cocaine overdose.

    Science.gov (United States)

    Auger, Nathalie; Bilodeau-Bertrand, Marianne; Labesse, Maud Emmanuelle; Kosatsky, Tom

    2017-09-01

    Ecologic data suggest that elevated outdoor temperature is correlated with mortality rates from cocaine overdose. Using non-aggregated death records, we studied the association of hot temperatures with risk of death from cocaine overdose. We carried out a case-crossover study of all deaths from cocaine or other drug overdose between the months of May and September, from 2000 through 2013 in Quebec, Canada. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between maximum outdoor temperature and death from cocaine or other drug overdose. The main outcome measure was death from cocaine overdose as a function of maximum temperature the day of death and the days immediately preceding death. There were 316 deaths from cocaine overdose and 446 from other drug overdoses during the study. Elevated temperature the preceding week was associated with the likelihood of death from cocaine but not other drug overdose. Compared with 20°C, a maximum weekly temperature of 30°C was associated with an OR of 2.07 for death from cocaine overdose (95% CI 1.15-3.73), but an OR of 1.03 for other drug overdoses (95% CI 0.60-1.75). Associations for cocaine overdose were present with maximum daily temperature the day of and each of the three days preceding death. Elevated ambient temperature is associated with the risk of death from cocaine overdose. Public health practitioners and drug users should be aware of the added risk of mortality when cocaine is used during hot days. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of coronary band temperatures in healthy horses

    DEFF Research Database (Denmark)

    Rosenmeier, Jesper G.; Strathe, Anders Bjerring; Andersen, Pia Haubro

    2012-01-01

    To measure coronary band temperature (CBT) in healthy horses fed high-fructan or low-carbohydrate diets and to analyze the association of CBT with diet, time of day, and ambient temperature.......To measure coronary band temperature (CBT) in healthy horses fed high-fructan or low-carbohydrate diets and to analyze the association of CBT with diet, time of day, and ambient temperature....

  5. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  6. Characterization and Aging Test Methodology for Power Electronic Devices at High Temperature

    International Nuclear Information System (INIS)

    Ibrahim, A.; Khatir, Z.; Dupont, L.

    2011-01-01

    Power electronic modules are key elements in the chain of power conversion. The application areas include aerospace, aviation, railway, electrical distribution, automotive, home automation, oil industry ... But the use of power electronics in high temperature environments is a major strategic issue in the coming years especially in transport. However, the active components based on silicon are limited in their applications and not suitable for those require both high voltages and high ambient temperatures. The materials with wide energy gap like SiC, GaN and diamond, have the advantage of being able to exceed these limits [1,2]. These materials seem adequate to extremely harsh temperature environments and allow the reduction of cooling systems, but also the increasing of switching frequency. (author)

  7. Response of laying hens to feeding low-protein amino acid-supplemented diets under high ambient temperature: performance, egg quality, leukocyte profile, blood lipids, and excreta pH

    Science.gov (United States)

    Torki, Mehran; Mohebbifar, Ahmad; Ghasemi, Hossein Ali; Zardast, Afshin

    2015-05-01

    An experiment was conducted to determine whether, by using a low-protein amino acid-supplemented diet, the health status, stress response, and excreta quality could be improved without affecting the productive performance of heat-stressed laying hens. The requirements for egg production, egg mass, and feed conversion ratio were also estimated using second-order equations and broken-line regression. A total of 150 Lohmann Selected Leghorn (LSL-Lite) hens were divided randomly into five groups of 30 with five replicates of six hens. The hens were raised for an 8-week period (52 to 60 weeks) in wire cages situated in high ambient temperature in an open-sided housing system. The five experimental diets (ME; 2,720 kcal/kg) varied according to five crude protein (CP) levels: normal-CP diet (control, 16.5 % CP) and low-CP diets containing 15.0, 13.5, 12.0, or 10.5 % CP. All experimental diets were supplemented with crystalline amino acids at the levels sufficient to meet their requirements. The results showed that under high temperature conditions, all productive performance and egg quality parameters in the birds fed with 15.0, 13.5, and 12.0 % CP diets were similar to those of birds fed with control diet (16.5 % CP), whereas feeding 10.5 % CP diet significantly decreased egg production and egg mass. Estimations of requirements were of 13.93 and 12.77 % CP for egg production, 14.62 and 13.22 % CP for egg mass, and 12.93 and 12.26 % CP for feed conversion ratio using quadratic and broken-line models, respectively. Egg yolk color index, blood triglyceride level, and excreta acidity were also significantly higher in birds fed with 12.0 and 10.5 % CP diets compared with those of control birds. The heterophil to lymphocyte ratio, as a stress indicator, was significantly decreased by 15.0, 13.5, and 12 % CP diets. On the basis of our findings, reducing dietary CP from 16.5 to 12.0 % and supplementing the diets with the essential amino acids showed merit for improving the

  8. Memory effect in the high-temperature superconducting bulks

    International Nuclear Information System (INIS)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He

    2013-01-01

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T 1 ) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T 1 , the sample temperature was regulated at T 2 , and there were two cases of the experiments, ΔT = T 2 − T 1 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively

  9. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  10. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  11. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  12. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs. 'Mridula' and 'Bhagwa') at ambient and low temperature.

    Science.gov (United States)

    Sudhakar Rao, D V

    2018-01-01

    The present investigation was carried out to study the response of two commercial pomegranate cultivars to individual shrink wrapping in extending the storage life and quality maintenance. Pomegranate fruits ('Mridula' and 'Bhagwa') were individually shrink wrapped using three semi-permeable films (Cryovac ® BDF-2001, D-955 and normal LDPE) and stored at ambient (25-32 °C and 49-67% RH) and low temperature (8 °C and 75-80% RH). Shrink wrapping greatly reduced weight loss in both cultivars irrespective of the film used and storage temperature. Weight loss in shrink wrapped (D-955 film) 'Mridula' and 'Bhagwa' after 1 month storage at ambient temperature was respectively 1.40 and 1.05%, when compared to 22.92 and 22.53% in non-wrapped fruits. After 3 months at 8 °C, shrink wrapped 'Mridula' and 'Bhagwa' fruits lost only 0.43 and 0.68% weight respectively, compared to 17.23 and 21.67% in non-wrapped ones. Shrink wrapping significantly reduced the respiration rate at ambient temperature and the response varied with variety and film used. Shrink wrapped fruits of both cultivars retained the original peel colour (Hunter h∘ and C* values) to a maximum extent during 3 months storage at 8 °C and shelf-life period at ambient temperature. Irrespective of variety and film, shrink wrapping maintained the peel thickness and peel moisture content, significantly much higher than non-wrapped fruits at both temperatures. Compared to 'Mridula' cultivar, 'Bhagwa' responded well to shrink wrapping during prolonged storage at both temperatures with better maintenance of quality in terms of appearance, colour, juice content, TSS, acidity, sugars and sensory attributes. At ambient temperature, shrink wrapping with D-955 or LDPE film extended the storage life of 'Mridula' and 'Bhagwa' for 3 weeks and 1 month respectively, whereas at 8 °C both could be stored for 3 months with 3 days of shelf life.

  13. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sabbah, Rami; Kizilel, R.; Selman, J.R.; Al-Hallaj, S. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd Street, Chicago, IL 60616 (United States)

    2008-08-01

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power. (author)

  14. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    Science.gov (United States)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  15. Effects of high ambient temperature on ambulance dispatches in different age groups in Fukuoka, Japan.

    Science.gov (United States)

    Kotani, Kazuya; Ueda, Kayo; Seposo, Xerxes; Yasukochi, Shusuke; Matsumoto, Hiroko; Ono, Masaji; Honda, Akiko; Takano, Hirohisa

    2018-01-01

    The elderly population has been the primary target of intervention to prevent heat-related illnesses. According to the literature, the highest risks have been observed among the elderly in the temperature-mortality relationship. However, findings regarding the temperature-morbidity relationship are inconsistent. This study aimed to examine the association of temperature with ambulance dispatches due to acute illnesses, stratified by age group. Specifically, we explored the optimum temperature, at which the relative health risks were found to be the lowest, and quantified the health risk associated with higher temperatures among different age groups. We used the data for ambulance dispatches in Fukuoka, Japan, during May and September from 2005 to 2012. The data were grouped according to age in 20-year increments. We explored the pattern of the association of ambulance dispatches with temperature using a smoothing spline curve to identify the optimum temperature for each age group. Then, we applied a distributed lag nonlinear model to estimate the risks of the 85th-95th percentile temperature relative to the overall optimum temperature, for each age group. The relative risk of ambulance dispatches at the 85th and 95th percentile temperature for all ages was 1.08 [95% confidence interval (CI): 1.05, 1.12] and 1.12 (95% CI: 1.08, 1.16), respectively. In comparison, among age groups, the optimum temperature was observed as 25.0°C, 23.2°C, and 25.3°C for those aged 0-19, 60-79, and ≥80, respectively. The optimum temperature could not be determined for those aged 20-39 and 40-59. The relative risks of high temperature tended to be higher for those aged 20-39 and 40-59 than those for other age groups. We did not find any definite difference in the effect of high temperature on ambulance dispatches for different age groups. However, more measures should be taken for younger and middle-aged people to avoid heat-related illnesses.

  16. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana.

    Science.gov (United States)

    Ibañez, Carla; Poeschl, Yvonne; Peterson, Tom; Bellstädt, Julia; Denk, Kathrin; Gogol-Döring, Andreas; Quint, Marcel; Delker, Carolin

    2017-07-06

    Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.

  17. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    Science.gov (United States)

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  18. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  19. High mortality of Red Sea zooplankton under ambient solar radiation.

    Directory of Open Access Journals (Sweden)

    Ali M Al-Aidaroos

    Full Text Available High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation. The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM 18.4±5.8% h(-1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM 12±5.6 h(-1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  20. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  1. Development of rabbit embryos during a 96-h period of in vitro culture after superovulatory treatment under conditions of elevated ambient temperature.

    Science.gov (United States)

    Cheng, H; Dooley, M P; Hopkins, S M; Anderson, L L; Yibchok-anun, S; Hsu, W H

    1999-08-16

    The effects of elevated ambient temperature on the response to exogenous gonadotropins were evaluated in female New Zealand White rabbits exposed to 33+/-1 degrees C (mean +/- SE) and 10-30% relative humidity (8 h/day) during a 5-day period. Does were treated with pFSH (0.3 mg/0.3 ml Standard Armour) twice daily during three consecutive days with a minimum interval of 8 h between injections. Six hours after the last FSH injection all does were removed from the experimental chamber, given hCG (25 IU/kg) and paired overnight. Nineteen hours after pairing, embryos were flushed from the reproductive tracts, evaluated, and subjected to in vitro culture during a 96-h period. The ovulatory responses to exogenous gonadotropins and fertilization rates did not differ significantly under conditions of elevated ambient temperature, whereas fewer blastocysts and increased number of degenerate embryos were observed after culture. We conclude that although hyperthermia was induced during exposure to elevated ambient temperature, it did not alter the ovulatory responses to gonadotropin treatment and plasma concentrations of FSH and LH compared with does in a thermoneutral environment. Exposure of donor rabbits to elevated ambient temperature before mating, however, increased embryonic degeneration.

  2. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  3. High ambient contrast ratio OLED and QLED without a circular polarizer

    International Nuclear Information System (INIS)

    Tan, Guanjun; Zhu, Ruidong; Luo, Zhenyue; Wu, Shin-Tson; Tsai, Yi-Shou; Lee, Kuo-Chang; Lee, Yuh-Zheng

    2016-01-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized. (paper)

  4. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    Science.gov (United States)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  5. Advances in ambient temperature secondary lithium cells

    Science.gov (United States)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The Jet Propulsion Laboratory is involved in a Research and Development program sponsored by NASA/OAST on the development of ambient temperature secondary lithium cells for future space applications. Some of the projected applications are planetary spacecraft, planetary rovers, and astronaut equipment. The main objective is to develop secondary lithium cells with greater than 100 Wh/kg specific energy while delivering 1000 cycles at 50 percent Depth of Discharge (DOD). To realize these ambitious goals, the work was initially focused on several important basic issues related to the cell chemistry, selection of cathode materials and electrolytes, and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of realizable specific energy and cycle life. Some of the major advancements made so far in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. Methods were developed for the fabrication of large size high performance TiS2 cathodes. Among the various electrolytes examined, 1.5M LiAsF6/EC + 2-MeTHF mixed solvent electrolyte was found to be more stable towards lithium. Experimental cells activated with this electrolyte exhibited more than 300 cycles at 100 percent Depth of Discharge. Work is in progress in other areas such as selection of lithium alloys as candidate anode materials, optimization of cell design, and development of 5 Ah cells. The advances made at the Jet Propulsion Laboratory on the development of secondary lithium cells are summarized.

  6. Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan

    Science.gov (United States)

    Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen

    2008-01-01

    Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.

  7. Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview

    Science.gov (United States)

    Wattanachai, Pitiwat; Suwan, Teewara

    2017-06-01

    At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.

  8. Ambient temperature testing of the G-tunnel heated block

    International Nuclear Information System (INIS)

    Zimmerman, R.M.; Board, M.P.; Hardin, E.L.; Voegele, M.D.

    1984-01-01

    The G-Tunnel heated block experiment is being conducted on the Nevada Test Site (NTS) as part of the Nevada Nuclear Waste Storage Investigations project (NNWSI). The purpose of the ambient temperature testing phase is to evaluate rock-mass mechanical properties of a block (≅8 m/sup 3/) under biaxial stress changes up to 7.5 MPa above an initialization in situ value of 3.1 MPa. Results indicate that the modulus of deformation ranges from 9.7 to 17.0 GPa and Poisson's ratio ranges from 0.21 to 0.33. In general, the higher values of the modulus and Poisson's ratio were influenced by fracture propagations parallel to the compressive stress field. Other measurements indicated that cross-hole compression (p) wave velocities and single fracture permeability values were relatively insensitive to stress changes above the in situ value

  9. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    Science.gov (United States)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  10. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    Science.gov (United States)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  11. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    Science.gov (United States)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  12. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  13. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  14. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection...Temperature (K) 363 Ambient temperature (K) 900 Nozzle Diameter (mm) 0.09 Ambient density (kg/m3) 22.8 Injection Duration (ms) 1.5 Number of injector holes

  15. Design, Development and Implementation of the IR Signalling Techniques for Monitoring Ambient and Body Temperature in WBANs

    Directory of Open Access Journals (Sweden)

    Attiya Baqai

    2014-07-01

    Full Text Available Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks. This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes, TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags

  16. Periodic usage of low-protein methionine-fortified diets in broiler chickens under high ambient temperature conditions: effects on performance, slaughter traits, leukocyte profiles and antibody response

    Science.gov (United States)

    Ghasemi, Hossein Ali; Ghasemi, Rohollah; Torki, Mehran

    2014-09-01

    This study was performed to evaluate the effects of adding methionine supplements to low-protein diets and subsequent re-feeding with a normal diet on the productive performance, slaughter parameters, leukocyte profiles and antibody response in broiler chickens reared under heat stress conditions. During the whole experimental period (6-49 days), the birds were raised in battery cages located in high ambient temperature in an open-sided housing system. A total of 360 6-day-old male chickens were divided into six treatments in six replicates with ten chicks each. Six isoenergetic diets, with similar total sulfur amino acids levels, were formulated to provide 100 and 100 (control), 85 and 100 (85S), 70 and 100 (70S), 85 and 85 (85SG), 70 and 85 (70S85G), and 70 and 70 % (70SG) of National Research Council recommended levels for crude protein during the starter (6-21 day) and grower (22-42 day) periods, respectively. Subsequently, all groups received a diet containing the same nutrients during the finisher period (43-49 day). The results showed that, under heat stress conditions, average daily gain and feed conversion ratio and performance index from day 6 to 49, breast and thigh yields and antibody titer against Newcastle disease in the birds fed diets 85S, 70S and 85SG were similar to those of birds fed control diet, whereas feeding diets 70S85G and 70SG significantly decreased the values of above-mentioned parameters. Additionally, diets 85S, 70S and 85SG significantly decreased mortality rate and heterophil:lymphocyte ratio compared with the control diet. In conclusion, the results indicate that supplementation of methionine to diets 85S, 70S and 85SG, and then re-feeding with a conventional diet is an effective tool to maintain productive performance and to improve health indices and heat resistance in broilers under high ambient temperature conditions.

  17. PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, M.R.; Markel, T.

    2008-01-01

    The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

  18. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  19. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  20. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    Science.gov (United States)

    Liss, Alexander

    regionalization method algorithmically forms eight climatically homogeneous regions for Conterminous US from satellite Remote Sensing inputs. The relative risk of hospitalizations due to extreme ambient temperature varied across climatic regions. Difference in regional hospitalization rates suggests presence of an adaptation effect to a prevailing climate. In various climatic regions the hospitalizations peaked earlier than the peak of exposure. This suggests disproportionally high impact of extreme weather events, such as cold spells or heat waves when they occur early in the season. These findings provide an insight into the use of high frequency disjoint data sets for the assessment of the magnitude, timing, synchronization and non-linear properties of adverse health consequences due to exposure to extreme weather events to the elderly in defined climatic regions. These findings assist in the creation of decision support frameworks targeting preventions and adaptation strategies such as improving infrastructure, providing energy assistance, education and early warning notifications for the vulnerable population. This dissertation offers a number of methodological innovations for the assessment of the high frequency spatio-temporal and non-linear impacts of extreme weather events on human health. These innovations help to ensure an improved protection of the elderly population, aid policy makers in the development of efficient disaster prevention strategies, and facilitate more efficient allocation of scarce resources.

  1. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  2. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2016-07-01

    Full Text Available Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the “gradient effect”. This results in a positive linear error with increasing surface temperature. Another is the “substrate effect”. This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an

  3. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Liu, Yi; Zhang, Jun

    2016-07-01

    Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor

  4. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    Science.gov (United States)

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  5. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  6. Effect of High Temperature Annealing on Conduction-Type ZnO Films Prepared by Direct-Current Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sun Li-Jie; He Dong-Kai; Xu Xiao-Qiu; Zhong Ze; Wu Xiao-Peng; Lin Bi-Xia; Fu Zhu-Xi

    2010-01-01

    We experimentally find that the ZnO thin films deposited by dc-magnetron sputtering have different conduction types after annealing at high temperature in different ambient. Hall measurements show that ZnO films annealed at 1100°C in N 2 and in O 2 ambient become n-type and p-type, respectively. This is due to the generation of different intrinsic defects by annealing in different ambient. X-ray photoelectron spectroscopy and photolumi-nescence measurements indicate that zinc interstitial becomes a main defects after annealing at 1100°C in N 2 ambient, and these defects play an important role for n-type conductivity of ZnO. While the ZnO films annealed at 1100°C in O 2 ambient, the oxygen antisite contributes ZnO films to p-type. (condensed matter: structure, mechanical and thermal properties)

  7. Fabrication of AlN thin films on different substrates at ambient temperature

    CERN Document Server

    Cai, W X; Wu, P H; Yang, S Z; Ji, Z M

    2002-01-01

    Aluminium nitride (AlN) is very useful as a barrier in superconductor-insulator-superconductor (SIS) device or as an insulating layer in many other applications. At ambient temperature, we deposit AlN thin films onto different substrates (such as MgO, LaAlO sub 3 and Si) by using radio-frequency magnetron sputtering and pure Al target. X-ray diffraction (XRD) and PHI-scan patterns show that the films grown on MgO substrates are excellent epitaxial films with (101) orientation of a hexagonal lattice. A possible structure of the interface between the film and the substrate is suggested and discussed.

  8. Evaluation of corrosion inhibitors for high temperature decontamination applications

    International Nuclear Information System (INIS)

    Sathyaseelan, V.S.; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Normally, chemical decontamination of coolant systems of nuclear power reactors is carried out at temperatures less than 90 °C. At these temperatures, though magnetite dissolves effectively, the rate of dissolution of chromium and nickel containing oxides formed over stainless steel and other non-carbon steel coolant system surfaces is not that appreciable. A high temperature dissolution process using 5 mM NTA at 160 °C developed earlier by us was very effective in dissolving the oxides such as ferrites and chromites. However, the corrosion of structural materials such as carbon steel (CS) and stainless steel (SS) also increased beyond the acceptable limits at elevated temperatures. Hence, the control of base metal corrosion during the high temperature decontamination process is very important. In view of this, it was felt essential to investigate and develop a suitable inhibitor to reduce the corrosion that can take place on coolant structural material surfaces during the high temperature decontamination applications with weak organic acids. Three commercial inhibitors viz., Philmplus 5K655, Prosel PC 2116 and Ferroqest were evaluated at ambient and at 160 °C temperature in NTA formulation. Preliminary evaluation of these corrosion inhibitors carried out using electrochemical techniques showed maximum corrosion inhibition efficiency for Philmplus. Hence, it was used for high temperature applications. A concentration of 500 ppm was found to be optimum at 160 °C and at this concentration it showed an inhibition efficiency of 62% for CS. High temperature dissolution of oxides such as Fe 3 O 4 and NiFe 2 O 4 , which are relevant to nuclear reactors, was also carried out and the rate of dissolution observed was less in the presence of Philmplus. Studies were also carried out to evaluate hydrazine as a corrosion inhibitor for high temperature applications. The results revealed that for CS inhibition efficiency of hydrazine is comparable to that of Philmplus, while

  9. Effects of ambient temperature and early open-field response on the behaviour, feed intake and growth of fast- and slow-growing broiler strains.

    Science.gov (United States)

    Nielsen, B L

    2012-09-01

    Increased activity improves broiler leg health, but also increases the heat production of the bird. This experiment investigated the effects of early open-field activity and ambient temperature on the growth and feed intake of two strains of broiler chickens. On the basis of the level of activity in an open-field test on day 3 after hatching, fast-growing Ross 208 and slow-growing i657 chickens were allocated on day 13 to one of the 48 groups. Each group included either six active or six passive birds from each strain and the groups were housed in floor-pens littered with wood chips and fitted with two heat lamps. Each group was fed ad libitum and subjected to one of the three temperature treatments: two (HH; 26°C), one (HC; 16°C to 26°C) or no (CC; 16°C) heat lamps turned on. Production and behavioural data were collected every 2 weeks until day 57. For both strains, early open-field activity had no significant effects on their subsequent behaviour or on any of the production parameters measured, and overall, the slow-growing strain was more active than the fast-growing strain. Ambient temperature had significant effects on production measures for i657 broilers, with CC chickens eating and weighing more, and with a less efficient feed conversion than HH chickens, with HC birds intermediate. A similar effect was found for Ross 208 only for feed intake from 27 to 41 days of age. Ross 208 chickens distributed themselves in the pen with a preference for cooler areas in the hottest ambient temperature treatments. In contrast, the behaviour of the slow-growing strain appeared to be relatively unaffected by the ambient temperature. In conclusion, fast-growing broilers use behavioural changes when trying to adapt to warm environments, whereas slow-growing broilers use metabolic changes to adapt to cooler ambient temperatures.

  10. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  11. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing

    Directory of Open Access Journals (Sweden)

    Nilius G

    2018-05-01

    Full Text Available Georg Nilius,1,2 Ulrike Domanski,1 Maik Schroeder,1 Holger Woehrle,3,4 Andrea Graml,4 Karl-Josef Franke,1,2 1Helios Klinik Hagen-Ambrock, Department of Pneumology, Hagen, Germany; 2Department of Internal Medicine, Witten-Herdecke University, Witten, Germany; 3Sleep and Ventilation Center Blaubeuren, Respiratory Center Ulm, Ulm, Germany; 4ResMed Science Center, ResMed Germany, Martinsried, Germany Purpose: Mucosal drying during continuous positive airway pressure (CPAP therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH and air temperature (T in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. Methods: CPAP (8 and 12 cmH2O without humidification (no humidity [nH], with heated humidification controlled by ambient temperature and humidity (heated humidity [HH] and HH plus heated tubing climate line (CL, with and without leakage, were compared in 18 subjects with OSA during summer and winter. Results: The absolute humidity (aH and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH (p < 0.05 in the presence and absence of mouth leak. There were no significant differences in aH between HH and CL. However, in-mask temperature during CL was higher (p < 0.05 and rH lower than during HH. In winter, CPAP with CL was more likely to keep rH constant at 80% than CPAP without humidification or with standard HH. Conclusion: Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms. Keywords: continuous positive

  12. Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status.

    Directory of Open Access Journals (Sweden)

    Julia Jaroslawska

    2015-06-01

    Full Text Available The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6 mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD, B6. Ucp1-/- mice with variable diet-induced obesity (DIO and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat.

  13. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    Directory of Open Access Journals (Sweden)

    Izarne Medina

    2015-11-01

    Full Text Available Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations.

  14. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  15. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    Science.gov (United States)

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  16. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  17. The effects of anesthetic technique and ambient temperature on thermoregulation in lower extremity surgery.

    Science.gov (United States)

    Ozer, Ayse B; Tosun, Fadime; Demirel, Ismail; Unlu, Serap; Bayar, Mustafa K; Erhan, Omer L

    2013-08-01

    The purpose of our study was to determine the effects of anesthetic technique and ambient temperature on thermoregulation for patients undergoing lower extremity surgery. Our study included 90 male patients aged 18-60 years in American Society of Anesthesiologists Physical Status groups I or II who were scheduled for lower extremity surgery. Patients were randomly divided into three groups according to anesthetic technique: general anesthesia (GA), epidural anesthesia (EA), and femoral-sciatic block (FS). These groups were divided into subgroups according to room temperature: the temperature for group I was 20-22 °C and that for group II was 23-25 °C. Therefore, we labeled the groups as follows: GA I, GA II, EA I, EA II, FS I, and FS II. Probes for measuring tympanic membrane and peripheral temperature were placed in and on the patients, and mean skin temperature (MST) and mean body temperature (MBT) were assessed. Postoperative shivering scores were recorded. During anesthesia, tympanic temperature and MBT decreased whereas MST increased for all patients. There was no significant difference between tympanic temperatures in either the room temperature or anesthetic method groups. MST was lower in group GA I than in group GA II after 5, 10, 15, 20, 60 and 90 min whereas MBT was significantly lower at the basal level (p temperature affected thermoregulation in Group GA.

  18. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  19. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2017-01-01

    Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (T-a) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across

  20. Elongated Hypocotyl 5-Homolog (HYH Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169

    Directory of Open Access Journals (Sweden)

    Phanu T. Serivichyaswat

    2017-12-01

    Full Text Available Arabidopsis microRNA169 (miR169 is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis.

  1. QUALITY CHANGES OF SARDINES (Sardinella neopilchardus AT INDONESIAN AMBIENT TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Farida Ariyani

    2018-01-01

    Full Text Available In tropical countries such as Indonesia, high ambient temperature and a lack of icing cause very rapid spoilage of fish. Leaving fish uniced while waiting for processing is a common practice resulting in lower quality of the end products, and consequently lower price of the products. To study the spoilage pattern of sardines (Sardinella neophilchardus in a tropical region, and to investigate a simple and quick method to judge the degree of spoilage, observations on the deterioration of sardines were carried out by incubating fish in a humidity chamber adjusted to 28-30oC. RH 70-80% for up to 14 h. The changes of sensory attributes based on demerit point score. pH, and total volatile base nitrogen (TVB-N were monitored to determine the degree of spoilage. Although the appearance of sardines was still bright after 6-h incubation time, fish were not as fresh as those without incubation and the belly and tissue were softened. After incubation time of 10 h, fish showed slight to moderate signs of spoilage with demerit point score of 25 out of the maximum score of 39, and a TVB-N content of 20 mg%N. This is similar to the fish quality commonly used in the commercial production of dried-salted fish in Indonesia. Fish incubated for 12 h or more appeared completely spoiled and were rejected by sensory panel. A high correlation between demerit point score and TVB-N was noted, therefore the demerit point system which was more suitable, quicker, and easier could be used to determine the degree of fish spoilage.

  2. Effects of ambient temperature, feather cover, and housing system on energy partitioning and performance in laying hens

    NARCIS (Netherlands)

    Krimpen, van M.M.; Binnendijk, G.P.; Anker, van den I.; Heetkamp, M.J.W.; Kwakkel, R.P.; Brand, van den H.

    2014-01-01

    Environmental factors, such as ambient temperature (T), feather cover (FC), and housing system (HS), probably affect energy requirements of laying hens. Using a 3 × 2 × 2 factorial arrangement, interaction effects of T (11, 16, and 21°C), FC (100 and 50%), and HS (cage and floor housing) on energy

  3. High-Pressure and High-Temperature in situ X-Ray Diffraction Study of FeP2 up to 70 GPa

    International Nuclear Information System (INIS)

    Gu Ting-Ting; Wu Xiang; Qin Shan; Liu Jing; Li Yan-Chun; Zhang Yu-Feng

    2012-01-01

    The high-pressure and high-temperature structural behavior of FeP 2 is investigated by means of synchrotron x-ray powder diffraction combined with a laser heating technique up to 70 GPa and at least 1800 K. No phase transition of FeP 2 occurs up to 68 GPa at room temperature. While a new phase of FeP 2 assigned to the CuAl 2 -type structure (I4/mcm, Z = 4) is observed at 70 GPa after laser-heating. This new phase presents a quenchable property on decompression to ambient conditions. Our results update previous experimental data and are consistent with theoretical studies. (condensed matter: structure, mechanical and thermal properties)

  4. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  5. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  6. Disturbances in Pro-Oxidant-Antioxidant Balance after Passive Body Overheating and after Exercise in Elevated Ambient Temperatures in Athletes and Untrained Men

    Science.gov (United States)

    Pilch, Wanda; Szygula, Zbigniew; Tyka, Anna K.; Palka, Tomasz; Tyka, Aleksander; Cison, Tomasz; Pilch, Pawel; Teleglow, Aneta

    2014-01-01

    The aim of the study was to investigate pro-oxidant-antioxidant balance in two series of examinations with two types of stressors (exogenous heat and the combined exogenous and endogenous heat) in trained and untrained men. The exogenous stressor was provided by Finnish sauna session, whereas the combined stressor was represented by the exercise in elevated ambient temperature. The men from the two groups performed the physical exercise on a cycle ergometer with the load of 53±2% maximal oxygen uptake at the temperature of 33±1°C and relative humidity of 70% until their rectal temperature rose by 1.2°C. After a month from completion of the exercise test the subjects participated in a sauna bathing session with the temperature of 96±2°C, and relative humidity of 16±5%. 15-minutes heating and 2-minute cool-down in a shower with the temperature of 20°C was repeated until rectal temperature rose by 1.2°C compared to the initial value. During both series of tests rectal temperature was measured at 5-minute intervals. Before both series of tests and after them body mass was measured and blood samples were taken for biochemical tests. Serum total protein, serum concentration of lipid peroxidation products and serum antioxidants were determined. The athletes were characterized by higher level of antioxidant status and lower concentration of lipid peroxidation products. Physical exercise at elevated ambient temperature caused lower changes in oxidative stress indices compared to sauna bathing. Sauna induced a shift in pro-oxidant-antioxidant balance towards oxidation, which was observed less intensively in the athletes compared to the untrained men. This leads to the conclusion that physical exercise increases tolerance to elevated ambient temperature and oxidative stress. PMID:24465535

  7. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  8. Preparation and characterization of mesoporous TiO{sub 2}-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping, E-mail: hwp914@nankai.edu.cn [Nankai University, College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and Tianjin Key Lab of Metal and Molecule-based Material Chemistry (China)

    2016-11-15

    Mesoporous TiO{sub 2}-sphere-supported Au-nanoparticles (Au/m-TiO{sub 2}-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO{sub 2} precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200–400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2–6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO{sub 2} spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO{sub 2}-spheres was as high as 117 m{sup 2} g{sup −1}. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm{sup −1} that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO{sub 2}-spheres could convert CO completely into CO{sub 2} at ambient temperature.

  9. Egg weights, egg component weights, and laying gaps in Great Tits (Parus major) in relation to ambient temperature

    NARCIS (Netherlands)

    Lessells, C.M.; Dingemanse, N.J.; Both, C.; Blem, C.

    2002-01-01

    We collected 328 freshly laid Great Tit (Parus major) eggs from 38 clutches in 1999 to determine the relationship of whole egg weight, wet yolk weight, wet albumen weight, dry shell weight, and the occurrence of laying gaps with mean ambient temperature in the three days preceding laying, while

  10. Egg weights, egg component weights, and laying gaps in great tits (Parus major) in relation to ambient temperature.

    NARCIS (Netherlands)

    Lessells, C.M.; Dingemanse, N.J.; Both, C.

    2002-01-01

    We collected 328 freshly laid Great Tit (Parus major) eggs from 38 clutches in 1999 to determine the relationship of whole egg weight, wet yolk weight, wet albumen weight, dry shell weight, and the occurrence of laying gaps with mean ambient temperature in the three days preceding laying, while

  11. Experimental investigation of thermal de-stratification in rock bed TES systems for high temperature applications

    International Nuclear Information System (INIS)

    Okello, Denis; Nydal, Ole J.; Banda, Eldad J.K.

    2014-01-01

    Highlights: • High thermal stratifications exists rock bed TES when charge with high temperature heat. • Faster thermal degradation occurs in highly stratified bed irrespective of the bed length. • Average rate of heat loss as a function of storage time increases with increasing average bed temperature. - Abstract: Solar energy fluctuates so much that it cannot promote continuous use. Integration of Thermal Energy Storage (TES) with solar energy collection devices has the potential of making solar energy available on demand. Thermal energy can be stored in a bed of rocks at temperatures suitable for applications like cooking, boiling space heating, etc. During charging, temperature stratification is observed in the bed. In a stratified system, if the heat is used immediately, then it is possible to extract heat at reasonably high temperature from the top. For cases where the system is to be used after sometime (later at night or the following morning), the high temperature heat at the top is observed to degrade as the system tries to establish thermal equilibrium irrespective of the bed height. The average rate of heat loss from the TES unit to the ambient is found to increase with increasing average bed temperatures

  12. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    International Nuclear Information System (INIS)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q.; Kawasuso, A.; Sekiguchi, T.

    2012-01-01

    Hydrothermal grown ZnO single crystals were annealed in N 2 or O 2 between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N 2 or O 2 atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O 2 ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O 2 ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Experimental assessment of the energy consumption of urban rail vehicles during stabling hours: Influence of ambient temperature

    International Nuclear Information System (INIS)

    Powell, J.P.; González-Gil, A.; Palacin, R.

    2014-01-01

    Urban rail has widely recognised potential to reduce congestion and air pollution in metropolitan areas, given its high capacity and environmental performance. Nevertheless, growing capacity demands and rising energy costs may call for significant energy efficiency improvements in such systems. Energy consumed by stabled rolling stock has been traditionally overlooked in the scientific literature in favour of analysing traction loads, which generally account for the largest share of this consumption. Thus, this paper presents the methodology and results of an experimental investigation that aimed to assess the energy use of stabled vehicles in the Tyne and Wear Metro system (UK). It is revealed that approximately 11% of the rolling stock's total energy consumption is due to the operation of on-board auxiliaries when stabled, and investigation of these loads is therefore a worthwhile exercise. Heating is responsible for the greatest portion of this energy, and an empirical correlation between ambient temperature and power drawn is given. This could prove useful for a preliminary evaluation of further energy saving measures in this area. Even though this investigation focused on a particular metro system in a relatively cold region, its methodology may also be valid for other urban and main line railways operating in different climate conditions. - Highlights: •Energy use of stabled vehicles in an actual metro system is experimentally examined. •Stabling hours account for about 11% of the vehicles' total energy consumption. •Heating is the major consumer during stabling hours. •An empirical correlation between ambient temperature and power drawn is derived. •The methodology described may also be applied to other urban and main line railways

  14. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    Full Text Available High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT and high night temperatures (HNT under controlled conditions. Four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan prior to the high-temperature treatment. A Nothing applied Control (NAC was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT. Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.

  15. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  16. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Use of Chlorhexidine/n-Propyl Gallate (CPG) as an Ambient-Temperature Urine Preservative

    Science.gov (United States)

    Nillen, Jeannie L.; Smith, Scott M.

    2003-01-01

    A safe, effective ambient temperature urine preservative, chlorhexidine/n-propyl gallate (CPG), has been formulated for use during spacefli ght that reduces the effects of oxidation and bacterial contamination on sample integrity while maintaining urine pH. The ability of this preservative to maintain stability of nine key analytes was evaluated for a period of one year. CPG effectively maintained stability of a mmonia, total nitrogen, 3-methylhistidine, chloride, sodium, potassiu m, and urea; however, creatinine and osmolality were not preserved by CPG. These data indicate that CPG offers prolonged room-temperature storage for multiple urine analytes, reducing the requirements for f rozen urine storage on future spaceflights. Iii medical applications on Earth, this technology can allow urine samples to be collected in remote settings and eliminate the need to ship frozen samples.

  18. Low temperature and high pressure crystals of room temperature ionic liquid: N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Abe, Hiroshi; Imai, Yusuke; Takekiyo, Takahiro; Yoshimura, Yukihiro; Hamaya, Nozomu

    2014-01-01

    Crystals of room temperature ionic liquid (RTIL) are obtained separately at low temperature or under high pressure. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]. At ambient pressure, low-temperature (LT) crystals appeared on slow cooling. By simultaneous X-ray diffraction and differential scanning calorimetry (DSC) measurements, metastable monoclinic and stable orthorhombic phases coexist in pure [DEME][BF 4 ]. Furthermore, the DSC thermal trace indicates that the metastable monoclinic phase was stabilized by adding water. In contrast, on compression process up to 7.6 GPa, crystallization is completely suppressed even upon slow compression. Direct observations using optical microscopy also support no crystal domain growth on compression process. High-pressure (HP) crystals at room temperature were seen only on decompression process, where two different kinds of crystals appeared subsequently. By crystal structure analysis, the LT crystal structures have no relation with the HP ones. Moreover, both metastable monoclinic phase at low temperature and higher pressure crystal has a folding molecular conformation and anti-parallel pairing of the [DEME] cation as the instability factors

  19. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  20. Sponge-microbe associations survive high nutrients and temperatures.

    Directory of Open Access Journals (Sweden)

    Rachel Simister

    Full Text Available Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU (97% sequence similarity levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.

  1. Milk and Blood Cortisol and T3 Hormones Content and Milk Composition in Buffaloes as a Function of Lactating Number and Ambient Temperature

    International Nuclear Information System (INIS)

    Habeeb Alsaied, A.M.; Ibahim, M.KH.

    1998-01-01

    The effect of lactating number and ambient temperature on T 3 and cortisol levels in each of milk and blood and milk composition of lactating Water buffaloes was the objective of this study. The experiment was carried out on 72 animals including two periods through 1994. The first was carried out on 36 animals in February where the average of ambient temperature was 17.5 degree, while the second was conducted on another 36 animals in July where the average of ambient temperature was 37.1 degree . In both two periods, the animals were classified according to lactating number into 6 equal groups from the 1st to 6 th lactation number. The data showed that milk yield and T 3 , either in milk or in blood and milk fat, protein and lactose were significantly lower in July than in February. Whereas the opposite was true with cortisol level either in milk or in blood. Concerning the effect of lactation number, it was observed that milk and blood T 3 , milk and blood cortisol and milk fat, protein and lactose were affected significantly due to lactation number

  2. The Role of Surface Protection for High-Temperature Performance of TiAl Alloys

    Science.gov (United States)

    Schütze, Michael

    2017-12-01

    In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.

  3. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  4. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2018-01-01

    Full Text Available The germination performances of fresh seed lots were determined for 5 tropical forage species: Mulato II hybrid brachiaria [Urochloa ruziziensis (syn. Brachiaria ruziziensis x U. decumbens (syn. B. decumbens x U. brizantha (syn. B. brizantha], Mombasa guinea [Megathyrsus maximus (syn. Panicum maximum], Tanzania guinea [M. maximus (syn. P. maximum], Ubon paspalum (Paspalum atratum and Ubon stylo (Stylosanthes guianensis, stored under ambient conditions in Thailand (mean monthly temperatures 23‒34 ºC; mean monthly relative humidity 40‒92% or in a cool room (18‒20 ºC and 50% relative humidity for up to 6 years. The first paper of this study showed all seeds, except unscarified Ubon stylo seed, were dead after a single year of storage in ambient conditions. This second paper shows that cool-room storage extended seed viability, but performance varied considerably between species. Germination percentage under laboratory conditions declined to below 50%, after 3 years storage for Mombasa guinea seed and Tanzania guinea seed, 4 years for Ubon paspalum seed and 4‒5 years for Mulato II seed. Ubon stylo seed maintained high germination for 5 years, in both cool-room storage (96% and ambient-room storage (84%. Apparent embryo dormancy in acid-scarified Mulato II seed steadily increased with time in cool-storage and this seed had to be acid-scarified again each year at the time of germination testing to overcome dormancy. Physical dormancy of Mulato II seeds, imposed by the tightly bound lemma and palea in unscarified seed, was not overcome by length of time in cool-storage and these seeds had to be acid-scarified to induce germination. Hardseeded percentage in Ubon stylo seed remained high throughout the study and could be overcome only by acid-scarification. The difficulties of maintaining acceptable seed germination percentages when storing forage seeds in the humid tropics are discussed.

  5. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    Science.gov (United States)

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  6. Comparative analysis of insect succession data from Victoria (Australia) using summary statistics versus preceding mean ambient temperature models.

    Science.gov (United States)

    Archer, Mel

    2014-03-01

    Minimum postmortem interval (mPMI) can be estimated with preceding mean ambient temperature models that predict carrion taxon pre-appearance interval. But accuracy has not been compared with using summary statistics (mean ± SD of taxon arrival/departure day, range, 95% CI). This study collected succession data from ten experimental and five control (infrequently sampled) pig carcasses over two summers (n = 2 experimental, n = 1 control per placement date). Linear and exponential preceding mean ambient temperature models for appearance and departure times were constructed for 17 taxa/developmental stages. There was minimal difference in linear or exponential model success, although arrival models were more often significant: 65% of linear arrival (r2 = 0.09–0.79) and exponential arrival models (r2 = 0.05–81.0) were significant, and 35% of linear departure (r2 = 0.0–0.71) and exponential departure models (r2 = 0.0–0.72) were significant. Performance of models and summary statistics for estimating mPMI was compared in two forensic cases. Only summary statistics produced accurate mPMI estimates.

  7. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  8. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Sand-Jensen, K.

    2006-01-01

    cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long-term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates...... +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended......1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient...

  9. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  10. Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment

    Science.gov (United States)

    Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-05-01

    Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.

  11. Analysis of the energetic metabolism in cyclic Bedouin goats (Capra hircus): Nychthemeral and seasonal variations of some haematochemical parameters in relation with body and ambient temperatures.

    Science.gov (United States)

    Malek, Mouna; Amirat, Zaina; Khammar, Farida; Khaldoun, Mounira

    2016-08-01

    Several studies have examined changes in some haematochemical parameters as a function of the different physiological status (cyclic, pregnant and lactating) of goats, but no relevant literature has exhaustively investigated these variations from anestrous to estrous stages in cyclic goats. In this paper, we report nychthemeral and seasonal variations in ambient and body temperatures, and in some haematochemical parameters (glycemia, cholesterolemia, triglyceridemia, creatininemia and uremia) measured during summer, winter and spring, in seven (7) experimental cyclic female Bedouin goats (Capra hircus) living in the Béni-Abbès region (Algerian Sahara desert). Cosinor rhythmometry procedure was used to determine the rhythmic parameters of ambient temperature and haematochemical parameters. To determine the effect of time of day on the rhythmicity of the studied parameters, as well as their seasonality, repeated measure analysis of variance (ANOVA) was applied. The results showed that in spite of the nychthemeral profile presented by the ambient temperature for each season, the body temperature remained in a narrow range, thus indicating a successful thermoregulation. The rhythmometry analysis showed a circadian rhythmicity of ambient temperature and haematochemical parameters with diurnal acrophases. A statistically significant effect of the time of day was shown on all studied haematochemical parameters, except on creatininemia. It was also found that only uremia, cholesterolemia and triglyceridemia followed the seasonal sexual activity of the studied ruminant. This study demonstrated the good physiological adaptation developed by this breed in response to the harsh climatic conditions of its natural environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The effect of ambient temperature on type-2-diabetes: case-crossover analysis of 4+ million GP consultations across England.

    Science.gov (United States)

    Hajat, S; Haines, A; Sarran, C; Sharma, A; Bates, C; Fleming, L E

    2017-07-12

    Given the double jeopardy of global increases in rates of obesity and climate change, it is increasingly important to recognise the dangers posed to diabetic patients during periods of extreme weather. We aimed to characterise the associations between ambient temperature and general medical practitioner consultations made by a cohort of type-2 diabetic patients. Evidence on the effects of temperature variation in the primary care setting is currently limited. Case-crossover analysis of 4,474,943 consultations in England during 2012-2014, linked to localised temperature at place of residence for each patient. Conditional logistic regression was used to assess associations between each temperature-related consultation and control days matched on day-of-week. There was an increased odds of seeking medical consultation associated with high temperatures: Odds ratio (OR) = 1.097 (95% confidence interval = 1.041, 1.156) per 1 °C increase above 22 °C. Odds during low temperatures below 0 °C were also significantly raised: OR = 1.024 (1.019, 1.030). Heat-related consultations were particularly high among diabetics with cardiovascular comorbidities: OR = 1.171 (1.031, 1.331), but there was no heightened risk with renal failure or neuropathy comorbidities. Surprisingly, lower odds of heat-related consultation were associated with the use of diuretics, anticholinergics, antipsychotics or antidepressants compared to non-use, especially among those with cardiovascular comorbidities, although differences were not statistically significant. Type-2 diabetic patients are at increased odds of medical consultation during days of temperature extremes, especially during hot weather. The common assumption that certain medication use heightens the risk of heat illness was not borne-out by our study on diabetics in a primary care setting and such advice may need to be reconsidered in heat protection plans.

  13. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  14. Thermal degradation of concrete in the temperature range from ambient to 315 degree C (600 degree F). Revision 10/96

    International Nuclear Information System (INIS)

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs

  15. Dietary self-selection by broilers at normal and high temperature changes feed intake behavior, nutrient intake, and performance

    NARCIS (Netherlands)

    Syafwan, W.; Wermink, G.J.D.; Kwakkel, R.P.; Verstegen, M.W.A.

    2012-01-01

    Self-selection assumes that at high ambient temperature, birds are able to select a diet from different sources to minimize the heat load associated with the ingested nutrient metabolism. The objective was to test the hypothesis that young chickens are able to compose an adequate ration by adjusting

  16. High-temperature spectroscopy for nuclear waste applications

    International Nuclear Information System (INIS)

    Grant, P.M.; Robouch, P.; Torres, R.A.; Silva, R.J.

    1991-10-01

    Instrumentation has been developed to perform uv-vis-nir absorbance measurements remotely and at elevated temperatures and pressures. Fiber-optic spectroscopy permits the interrogation of radioactive species within a glovebox enclosure at temperatures ranging from ambient to >100 degree C. Spectral shifts as a function of metal- ligand coordination are used to compute thermodynamic free energies of reaction by matrix regression analysis. Pr 3+ serves as a convenient analog for trivalent actinides without attendant radioactivity hazards, and recent results obtained from 20 degree--95 degree C with the Pr-acetate complexation system are presented. Preliminary experimentation on Am(3) hydrolysis is also described. 16 refs., 1 tab

  17. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  18. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  19. Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application

    International Nuclear Information System (INIS)

    Henry, R.E.; Malone, J.M.; Daly, M.J.; Hughes, J.H.; Moore, W.S.

    1982-01-01

    Quantitation of skin perfusion provides objective criteria to determine the optimal amputation level in ischemic limb disease, to assess the maturation of pedicle flaps in reconstructive surgery, and to select appropriate treatment for chronic skin ulcers. A technique for measurement of skin perfusion using intradermal (ID) Xe-133 and a gamma camera/minicomputer system was previously reported. An update of this procedure is now reported, the normal range for the lower extremity in men, observations on the effects of ambient temperature, and an experience using the procedure to determine amputation level

  20. Impacts of convection on high-temperature aquifer thermal energy storage

    Science.gov (United States)

    Beyer, Christof; Hintze, Meike; Bauer, Sebastian

    2016-04-01

    Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when

  1. Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry.

    Science.gov (United States)

    Wiley, Joshua S; García-Reyes, Juan F; Harper, Jason D; Charipar, Nicholas A; Ouyang, Zheng; Cooks, R Graham

    2010-05-01

    Low-temperature plasma (LTP) permits direct ambient ionization and mass analysis of samples in their native environment with minimal or no prior preparation. LTP utilizes dielectric barrier discharges (DBDs) to create a low power plasma which is guided by gas flow onto the sample from which analytes are desorbed and ionized. In this study, the potential of LTP-MS for the detection of pesticide residues in food is demonstrated. Thirteen multi-class agricultural chemicals were studied (ametryn, amitraz, atrazine, buprofezin, DEET, diphenylamine, ethoxyquin, imazalil, isofenphos-methyl, isoproturon, malathion, parathion-ethyl and terbuthylazine). To evaluate the potential of the proposed approach, LTP-MS experiments were performed directly on fruit peels as well as on fruit/vegetable extracts. Most of the agrochemicals examined displayed remarkable sensitivity in the positive ion mode, giving limits of detection (LOD) for the direct measurement in the low picogram range. Tandem mass spectrometry (MS/MS) was used to confirm identification of selected pesticides by using for these experiments spiked fruit/vegetable extracts (QuEChERS, a standard sample treatment protocol) at levels as low as 1 pg, absolute, for some of the analytes. Comparisons of the data obtained by direct LTP-MS were made with the slower but more accurate conventional LC-MS/MS procedure. Herbicides spiked in aqueous solutions were detectable at LODs as low as 0.5 microg L(-1) without the need for any sample preparation. The results demonstrate that ambient LTP-MS can be applied for the detection and confirmation of traces of agrochemicals in actual market-purchased produce and in natural water samples. Quantitative analysis was also performed in a few selected cases and displayed a relatively high degree of linearity over four orders of magnitude.

  2. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  3. High-pressure high-temperature stability of hcp-IrxOs1-x (x = 0.50 and 0.55) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Crichton, Wilson A.; Hanfland, Michael; Margadonna, Serena; Dubrovinsky, Leonid S.

    2016-12-23

    Hcp-Ir0.55Os0.45 and hcp-Ir0.50Os0.50 alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH4)2[Ir0.55Os0.45Cl6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has been investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir0.55Os0.45 alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10-5 K-1 at ambient pressure and α = 0.3·10-5 K-1 at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.

  4. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  5. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29...... that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications...

  6. Room temperature magnetism of few-nanometers-thick Fe{sub 3}O{sub 4}(111) films on Pt(111) and Ru(0001) studied in ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, M., E-mail: lewandowski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Miłosz, Z.; Michalak, N.; Ranecki, R. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Sveklo, I.; Kurant, Z.; Maziewski, A. [Faculty of Physics, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Mielcarek, S. [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Luciński, T. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jurga, S. [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-09-30

    Few-nanometers-thick Fe{sub 3}O{sub 4}(111) films were epitaxially grown on Pt(111) and Ru(0001) single crystal supports by sequential iron deposition and oxidation in an ultra-high vacuum chamber. The growth of well-ordered magnetite films was confirmed by low energy electron diffraction. The films were covered with a protective Au layer and subjected to magnetic and structural studies in ambient conditions. Magnetic hysteresis loops, recorded using magneto-optical Kerr effect apparatus, confirmed magnetic ordering in both films at room temperature. The Kerr measurements indicated in-plane orientation of magnetization, which was supported by the lack of magnetic contrast in magnetic force microscopy images. Atomic force microscopy revealed significant differences in morphology of the films, tentatively attributed to different lattice mismatch with Pt(111) and Ru(0001) single crystal supports. - Highlights: • Few-nanometers-thick Fe{sub 3}O{sub 4}(111) films were grown on Pt(111) and Ru(0001). • Magnetic properties were studied using MOKE and AFM/MFM in ambient conditions. • The films exhibited in-plane magnetic ordering at room temperature. • Differences in magnetic properties were tentatively assigned to structural differences.

  7. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same

  8. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes

    Science.gov (United States)

    Chabowska-Kita, Agnieszka; Trabczynska, Anna; Korytko, Agnieszka; Kaczmarek, Monika M.; Kozak, Leslie P.

    2015-01-01

    The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. PMID:25896784

  9. Shelf-life enhancement of fresh ginger rhizomes at ambient temperatures by combination of gamma-irradiation, biocontrol and closed polyethylene bag storage

    International Nuclear Information System (INIS)

    Mukherjee, P.K.; Thomas, P.; Raghu, K.

    1995-01-01

    The feasibility of a combination process involving gamma-irradiation, packing in closed polyethylene bags and biological control of fungi causing storage rot was evaluated as a means of extending the shelf-life of fresh ginger rhizomes at ambient temperatures (25–30°C). Storage in closed polyethylene bags reduced weight loss but increased sprouting and rooting, which could be prevented by gamma irradiation to 60 Gy. Rotting caused by Sclerotium rolfsii was, however, a major cause of spoilage during extended storage. Four isolates of Trichoderma sp. isolated from sclerotia of S. rolfsii infecting ginger rhizomes, one of Gliocfadium uirens, and four isolates of fluorescent Pseudomonas were tested, out of which, one isolate of Trichoderma was found to be highly effective in suppressing the growth of S. rolfsii. The efficacy of the antagonist was demonstrated under simulated market conditions using artificially inoculated rhizomes. The recommended procedure consists of dipping washed, air dried rhizomes in Trichoderma suspension (10 8 spores ml -1 ), air-drying, packing in 250 gauge LDPE bags followed by irradiation to 60 Gy. Rhizomes thus treated remained in good marketable condition for up to 2 months at ambient temperature without sprouting or significant loss of quality and less than 5% weight loss. An in vitro bioassay system was developed to demonstrate the efficacy of the antagonist to protect the cut surface of sliced rhizomes inoculated with the pathogen. The method could be used for rapid screening of antagonists

  10. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    Science.gov (United States)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  11. Grey water treatment in UASB reactor at ambient temperature.

    Science.gov (United States)

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  12. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    OpenAIRE

    Albert, Kristian; Ro-Poulsen, Helge; N. Mikkelsen, Teis

    2008-01-01

    UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a...

  13. Growth responses of male broilers subjected to increasing air velocities at high ambient temperatures and a high dew point.

    Science.gov (United States)

    Dozier, W A; Lott, B D; Branton, S L

    2005-06-01

    This study examined live performance responses of male broilers to increasing air velocity of 120 and 180 m/min reared under high cyclic temperatures (25-35-25 degrees C) with a 23 degrees C dew point from 21 to 49 d. Birds were reared in an environmental facility containing 2 wind tunnels (4 pens/tunnel) and 6 floor pens (control). At 21 d, 53 birds were placed in each pen of the wind tunnels and control group, respectively, and growth performance was determined weekly. Increasing air velocity from 120 to 180 m/min improved BW and BW gain from 29 to 35, 36 to 42, and 43 to 49 d of age leading to a cumulative advantage of 287 g in BW gain and a 10-point difference in feed conversion from 21 to 49 d of age. Subjecting birds to air velocity improved growth rate, feed consumption, and feed conversion at each weekly interval from 28 to 49 d over the control birds. These results indicate that male broilers approximating 2.0 to 3.0 kg respond to an air velocity of 180 m/min when exposed to high cyclic temperatures.

  14. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    Science.gov (United States)

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  15. Prediction of vertical distribution and ambient development temperature of Baltic cod, Gadus morhua L., eggs

    DEFF Research Database (Denmark)

    Wieland, Kai; Jarre, Astrid

    1997-01-01

    An artificial neural network (ANN) model was established to predict the vertical distribution of Baltic cod eggs. Data from vertical distribution sampling in the Bornholm Basin over the period 1986-1995 were used to train and test the network, while data sets from sampling in 1996 were used...... for validation. The model explained 82% of the variance between observed and predicted relative frequencies of occurrence of the eggs in relation to salinity, temperature and oxygen concentration; The ANN fitted all observations satisfactorily except for one sampling date, where an exceptional hydrographic...... situation was observed. Mean ambient temperatures, calculated from the predicted vertical distributions of the eggs and used for the computation of egg developmental times, were overestimated by 0.05 degrees C on average. This corresponds to an error in prediction of egg developmental time of less than 1%...

  16. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  17. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  18. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio to Acute and Chronic Temperature Change Using High-Resolution Echocardiography.

    Directory of Open Access Journals (Sweden)

    Ling Lee

    Full Text Available The zebrafish (Danio rerio is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1 determine if high resolution echocardiography (HRE in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2 if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR appears to be the critical factor in modifying cardiac output (CO with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C. Stroke volume (SV is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C. The isovolumetric contraction time (IVCT was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E velocity and early peak velocity / atrial peak velocity (E/A ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.

  19. Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

    Directory of Open Access Journals (Sweden)

    J. Salinas-Chavira

    2015-09-01

    Full Text Available In experiment 1, eighty crossbred steers (239±15 kg were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI (linear effect, p0.10 on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10 on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08, increased molar proportion of propionate (p = 0.09, and decreased acetate:propionate molar ratio (p = 0.07 and estimated ruminal methane production (p = 0.09. It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets.

  20. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    Science.gov (United States)

    Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.

    2014-05-01

    1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and α → β (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → (~210 °C), with the δ phase being stable up to ~251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.

  1. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  2. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    Science.gov (United States)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  3. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  4. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  5. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air

    International Nuclear Information System (INIS)

    Choi, Jinyong; Cho, Kyoungah; Kim, Sangsig

    2013-01-01

    We report on the thermoelectric characteristics of p-type silicon nanowires (NWs) on plastics in the relatively low temperature regime below 47 ° C, and for temperature differences of less than 10 K in ambient air. Thermal profile images are utilized to directly determine the temperature difference in the NWs generated by Joule heating in air. The Seebeck coefficient of the NWs increases from 294 to 414 μV K −1 as the NW length varies from 40 to 280 μm. For a temperature difference of 7 K, the maximal Seebeck voltage can be estimated to be 2.7 mV for NWs with a length of 280 μm. In contrast, the output power is maximized for NWs length of 240 μm. The maximized output power obtained experimentally in this study is 2.1 pW at a temperature difference of 6 K. The thermoelectric characteristics are analyzed and discussed. (paper)

  6. High-precision diode-laser-based temperature measurement for air refractive index compensation

    International Nuclear Information System (INIS)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-01-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  7. Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail ( Coturnix coturnix japonica under low ambient temperature

    Directory of Open Access Journals (Sweden)

    Assar Ali Shah

    Full Text Available ABSTRACT This study was designed to find the effect of vitamin E supplementation on growth, serum antioxidant enzymes, and some trace elements in Japanese quail (Coturnix coturnix japonica under low ambient temperature. A total of 180 day-old Japanese quails were randomly divided into four groups and provided with 0 (group A, 50 (group B, 100 (group C, and 150 IU/kg (group D vitamin E (dl-α-tocopherol acetate under an average temperature of 9±0.5 °C for an experimental period of 42 days. The result showed that feed intake per day, body weight, weight gain per day, and feed conversion ratio did not differ significantly between the groups. Serum concentrations of superoxide and glutathione peroxidase were significantly high in birds supplemented with 150 mg/kg of vitamin E. The concentration of aspartate aminotransferase was not significantly affected between the control and treated groups; however, alanine transaminase concentration significantly reduced in group D. Zinc concentration in the blood increased significantly in group D, with no significant effect on copper and manganese between the control and treated groups. Vitamin E at the level of 150 IU/kg of feed improves the blood antioxidant status and zinc concentration, with no effect on the performance traits of quail reared under low ambient temperature.

  8. Time budgets of Snow Geese Chen caerulescens and Ross's Geese Chen rossii in mixed flocks: Implications of body size, ambient temperature and family associations

    Science.gov (United States)

    Jonsson, J.E.; Afton, A.D.

    2009-01-01

    Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.

  9. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems.

    Science.gov (United States)

    Lores, Marta; Pájaro, Marta; Álvarez-Casas, Marta; Domínguez, Jorge; García-Jares, Carmen

    2015-08-01

    An important trend in the extraction of chemical compounds is the application of new environmentally friendly, food grade solvents. Ethyl lactate (ethyl 2-hydroxypropanoate), produced by fermentation of carbohydrates, is miscible with both hydrophilic and hydrophobic compounds being a potentially good solvent for bioactive compounds. Despite its relatively wide use as a general solvent, the utilization of ethyl lactate as an extraction solvent has only recently been considered. Here, we evaluate the possible use of ethyl lactate to extract phenolic compounds from wild plants belonging to Cytisus scoparius, and we compare the characteristics of the extracts obtained by Pressurized Solvent Extraction (the total phenolics content, the antioxidant activity and the concentration of the major polyphenols) with those of other extracts obtained with methanol. In order to explore the industrial production of the ethyl lactate Cytisus extract, we also evaluate medium scale ambient temperature setups. The whole plant and the different parts (flowers, branches, and seed pods) were evaluated separately as potential sources of polyphenols. All extracts were analyzed by LC-MS/MS for accurate identification of the major polyphenols. Similar phenolic profiles were obtained when using ethyl lactate or methanol. The main bioactives found in the Cytisus extract were the non-flavonoid phenolic compounds caffeic and protocatechuic acids and 3,4-dihydroxybenzaldehyde; the flavonoids rutin, kaempferol and quercetin; the flavones chrysin, orientin and apigenin; and the alkaloid lupanine. Regarding the comparison of the extraction systems, although the performance of the PLE was much better than that of the ambient-temperature columns, the energy consumption was also much higher. Ethyl lactate has resulted an efficient extraction solvent for polyphenols from C. scoparius, yielding extracts with high levels of plant phenolics and antioxidant activity. The antimicrobial activity of these

  10. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  11. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  12. A microcomputer-based data acquisition system for ECG, body and ambient temperatures measurement during bathing.

    Science.gov (United States)

    Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W

    2000-01-01

    A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Saveleva, Viktoriia A; Savinova, Elena R; Daletou, Maria K

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt 3 Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide. (paper)

  14. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  15. Fundamental study of a one-step ambient temperature ferrite ...

    African Journals Online (AJOL)

    ... involves the controlled oxidation of ferrous-containing AMD water at ambient ... solutions under controlled pH and oxidation conditions (pH 10.5, air flow rate ... The kinetics of the reaction under the investigated conditions were found to be ...

  16. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  17. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    Science.gov (United States)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  18. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  20. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  1. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  2. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  3. High pressure-temperature electrical conductivity of magnesiowustite as a function of iron oxide concentration

    Science.gov (United States)

    Li, Xiaoyuan; Jeanloz, Raymond

    1990-01-01

    The electrical conductivity of (Mg, Fe)O magnesiowustite containing 9 and 27.5 mol pct FeO has been measured at simultaneously high pressures (30-32 GPa) and temperatures using a diamond anvil cell heated with a continuous wave Nd:YAG laser and an external resistance heater. The conductivity depends strongly on the FeO concentration at both ambient and high pressures. At the pressures and temperatures of about 30 GPa and 2000 K, conditions expected in the lower mantle, the magnesiowustite containing 27.5 percent FeO is 3 orders of magnitude more conductive than that containing 9 percent FeO. The activation energy of magnesiowustite decreases with increasing iron concentration from 0.38 (+ or - 0.09) eV at 9 percent FeO to 0.29 (+ or - 0.05) eV at 27.5 percent FeO.

  4. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China.

    Science.gov (United States)

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-12-10

    Background : Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods : We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results : The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions : In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient

  5. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    Science.gov (United States)

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  6. Distribuição vertical e horizontal de temperaturas do ar em ambientes protegidos Vertical and horizontal distribution of air temperature in a plastic greenhouse

    Directory of Open Access Journals (Sweden)

    Raquel A. Furlan

    2002-04-01

    Full Text Available Este trabalho foi realizado na área experimental do Departamento de Engenharia Rural da Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, Brasil, em dois ambientes protegidos construídos no sentido leste-oeste, com área total de 112 m² e coberto com plástico (150 micra, tratado contra raios ultravioleta. Para caracterizar a distribuição espacial da temperatura do ar no ambiente protegido, instalaram-se termopares (cobre-constantã formando malhas, com espaçamento horizontal entre eles de 3,0 m e nas alturas de 0,5, 1,0, 2,0, 3,0 e 4,0 m em relação ao solo. Os dados foram armazenados a cada 15 min por sistemas automáticos de aquisição de dados nos ambientes protegidos. O sistema de nebulização constituiu-se de duas linhas com 70 bocais totais, instalados a uma altura de 3,0 m, utilizando-se uma pressão de trabalho de 200 kPa. A nebulização não afetou o gradiente vertical de temperatura, que manteve a tendência de aumento de temperatura com a altura, em relação ao nível do solo, enquanto o efeito na redução de temperatura pelo sistema de nebulização somente foi eficaz durante a realização da mesma. Para a representação da distribuição espacial de temperatura do ar no ambiente protegido nos diferentes níveis de altura, construiu-se superfícies isotérmicas a partir dos resultados. Verifica-se que a nebulização apresentou maior efeito na homogeneização da distribuição de temperatura no ambiente protegido no nível referente a 2,0 m de altura, em relação ao solo.This work was conducted in the experimental area of the Department of Rural Engineering of "Escola Superior de Agricultura Luiz de Queiroz", University of São Paulo, Piracicaba, São Paulo, Brazil. Two greenhouses were installed in the east-west direction, with 6.4 m of width, 17.5 m of length and 3.0 m high, with total area of 112 m²; covered by plastic of 150 micra thickness, treated against ultra violet rays. To characterize the

  7. Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays

    International Nuclear Information System (INIS)

    Zhou Hongjun; Yiu Yuen; Aronson, M.C.; Wong, Stanislaus S.

    2008-01-01

    The current report describes the systematic synthesis of polycrystalline, multiferroic MnWO 4 nanowires and nanowire arrays with controllable chemical composition and morphology, using a modified template-directed methodology under ambient room-temperature conditions. We were able to synthesize nanowires measuring 55±10, 100±20, and 260±40 nm in diameter, respectively, with lengths ranging in the microns. Extensive characterization of as-prepared samples has been performed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and energy-dispersive X-ray spectroscopy. Magnetic behavior in these systems was also probed. - Graphical abstract: Systematic synthesis of crystalline, multiferroic MnWO4 nanowires and nanowire arrays with controllable chemical composition and morphology, using a modified template-directed methodology under ambient room-temperature conditions

  8. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mass Spectrometry Imaging under Ambient Conditions

    Science.gov (United States)

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  10. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    Science.gov (United States)

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  11. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics.

    Science.gov (United States)

    Kim, Janghyuk; Oh, Sooyeoun; Mastro, Michael A; Kim, Jihyun

    2016-06-21

    This study demonstrated the exfoliation of a two-dimensional (2D) β-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces β-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This β-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D β-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D β-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

  12. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  13. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Xiaoying Chen

    2014-01-01

    Full Text Available The effect of four different arbuscular mycorrhizal fungi (AMF on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.

  14. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    Science.gov (United States)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  15. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Yang, Jun; Liu, Zhidong; Xu, Lei; Gao, Jinghong; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Yu, Jieqiong; Jiang, Baofa; Liu, Qiyong

    2017-07-01

    Understanding the health consequences of continuously rising temperatures-as is projected for China-is important in terms of developing heat-health adaptation and intervention programs. This study aimed to examine the association between mortality and daily maximum (T max ), mean (T mean ), and minimum (T min ) temperatures in warmer months; to explore threshold temperatures; and to identify optimal heat indicators and vulnerable populations. Daily data on temperature and mortality were obtained for the period 2007-2013. Heat thresholds for condition-specific mortality were estimated using an observed/expected analysis. We used a generalised additive model with a quasi-Poisson distribution to examine the association between mortality and T max /T min /T mean values higher than the threshold values, after adjustment for covariates. T max /T mean /T min thresholds were 32/28/24°C for non-accidental deaths; 32/28/24°C for cardiovascular deaths; 35/31/26°C for respiratory deaths; and 34/31/28°C for diabetes-related deaths. For each 1°C increase in T max /T mean /T min above the threshold, the mortality risk of non-accidental-, cardiovascular-, respiratory, and diabetes-related death increased by 2.8/5.3/4.8%, 4.1/7.2/6.6%, 6.6/25.3/14.7%, and 13.3/30.5/47.6%, respectively. Thresholds for mortality differed according to health condition when stratified by sex, age, and education level. For non-accidental deaths, effects were significant in individuals aged ≥65 years (relative risk=1.038, 95% confidence interval: 1.026-1.050), but not for those ≤64 years. For most outcomes, women and people ≥65 years were more vulnerable. High temperature significantly increases the risk of mortality in the population of Jinan, China. Climate change with rising temperatures may bring about the situation worse. Public health programs should be improved and implemented to prevent and reduce health risks during hot days, especially for the identified vulnerable groups. Copyright

  16. Development of integrated thermionic circuits for high-temperature applications

    International Nuclear Information System (INIS)

    McCormick, J.B.; Wilde, D.; Depp, S.; Hamilton, D.J.; Kerwin, W.; Derouin, C.; Roybal, L.; Dooley, R.

    1981-01-01

    A class of devices known as integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 0 C is described. The evolution of the ITC concept is discussed. A set of practical design and performance equations is demonstrated. Recent experimental results are discussed in which both devices and simple circuits have successfully operated in 500 0 C environments for extended periods of time

  17. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  18. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series for carbon monoxide (CO, nitric oxide (NO, nitrogen dioxide (NO2, and oxidants (Ox were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor.

  19. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring

    Science.gov (United States)

    Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.

    2018-01-01

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749

  20. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    Science.gov (United States)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  1. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    International Nuclear Information System (INIS)

    Bishop, M M; Dattelbaum, D M; Velisavljevic, N; Chellappa, R S; Liu, Z; Preston, D N; Sandstrom, M M; Vohra, Y K

    2014-01-01

    1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (∼110 °C) and α → β (∼160 °C) structural phase transitions; as well as, indicated an additional transition γ → (∼210 °C), with the δ phase being stable up to ∼251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ∼300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.

  2. Effects of ambient temperature, arginine-to-lysine ratio, and electrolyte balance on performance, carcass and blood parameters in commercial male turkeys

    NARCIS (Netherlands)

    Veldkamp, T.; Kwakkel, R.P.; Ferket, P.R.; Simons, P.C.M.; Noordhuizen, J.P.T.M.; Pijpers, A.

    2000-01-01

    The effects of ambient temperature (T; 15 C vs. 30 C from 6 wk of age onwards), dietary Arg:Lys ratio (Arg:Lys ratio; 1.00 vs. 1.25), dietary electrolyte balance (DEB: 164 vs. 254 meq/kg), and their interactions on growth performance and carcass yields of male turkeys were studied. The experiment

  3. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    Science.gov (United States)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  4. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    Science.gov (United States)

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  5. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China

    Science.gov (United States)

    Zhang, Xian-Jing; Ma, Wei-Ping; Zhao, Nai-Qing; Wang, Xi-Ling

    2016-01-01

    Research on the association between ambient temperature and cerebrovascular morbidity is scarce in China. In this study, we applied mixed generalized additive model (MGAM) to daily counts of cerebrovascular disease of Shanghai residents aged 65 years or older from 2007-2011, stratified by gender. Weighted daily mean temperature up to lags of one week was smoothed by natural cubic spline, and was added into the model to assess both linear and nonlinear effects of temperature. We found that when the mean temperature increased by 1 °C, the male cases of cerebrovascular disease reduced by 0.95% (95% Confidence Interval (CI): 0.80%, 1.10%) or reduced by 0.34% (95% CI: -0.68, 1.36%) in conditions of temperature was below or above 27 °C. However, for every 1 °C increase in temperature, the female cases of cerebrovascular disease increased by 0.34% (95% CI: -0.26%, 0.94%) or decreased by 0.92% (95% CI: 0.72, 1.11%) in conditions of temperature was below or above 8 °C, respectively. Temperature and cerebrovascular morbidity is negatively associated in Shanghai. MGAM is recommended in assessing the association between environmental hazards and health outcomes in time series studies.

  6. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2014-01-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration

  7. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  8. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  9. High temperature energy harvesters utilizing ALN/3C-SiC composite diaphragms

    Science.gov (United States)

    Lai, Yun-Ju; Li, Wei-Chang; Felmetsger, Valery V.; Senesky, Debbie G.; Pisano, Albert P.

    2014-06-01

    Microelectromechanical systems (MEMS) energy harvesting devices aiming at powering wireless sensor systems for structural health monitoring in harsh environments are presented. For harsh environment wireless sensor systems, sensor modules are required to operate at elevated temperatures (> 250°C) with capabilities to resist harsh chemical conditions, thereby the use of battery-based power sources becomes challenging and not economically efficient if considering the required maintenance efforts. To address this issue, energy harvesting technology is proposed to replace batteries and provide a sustainable power source for the sensor systems towards autonomous harsh environment wireless sensor networks. In particular, this work demonstrates a micromachined aluminum nitride/cubic silicon carbide (AlN/3C-SiC) composite diaphragm energy harvester, which enables high temperature energy harvesting from ambient pulsed pressure sources. The fabricated device yields an output power density of 87 μW/cm2 under 1.48-psi pressure pulses at 1 kHz while connected to a 14.6-kΩ load resistor. The effects of pulse profile on output voltage have been studied, showing that the output voltage can be maximized by optimizing the diaphragm resonance frequency based on specific pulse characteristics. In addition, temperature dependence of the diaphragm resonance frequency over the range of 20°C to 600°C has been investigated and the device operation at temperatures as high as 600°C has been verified.

  10. VSS Degradation Kinetics in High Temperature Aerobic Digestion and Microbial Community Characteristics

    Directory of Open Access Journals (Sweden)

    Yunfen Shi

    2018-01-01

    Full Text Available Piggery wastewater is a kind of high concentration organic wastewater with high concentration of pollutants, large amount of emissions, and serious environmental pollution and is difficult to deal with. Piggery wastewater was treated with autothermal hyperthermia aerobic digestion process (ATAD and its biodegradation kinetics was studied. The ATAD system was automatically heated up and the reaction temperature rose from ambient temperature of 20°C to a maximum temperature of 64°C. Based on Arrhenius formula, the empirical model is obtained through dimensional analysis. The removal of volatile suspended solids (VSS was correlated with the initial VSS concentration, water inlet temperature, aeration rate, and agitation rate in the model. In the empirical model, the apparent activation energy was 2.827 kJ·mol−1. The exponentials for the initial VSS concentration, aeration rate, and stirring rate were 1.0587, −0.0976, and −0.1618, respectively. The correlation coefficient of the exponential factor was 0.9971. The VSS removal efficiency predicted by the model was validated with an actual test, showing a maximum relative deviation of 8.82%. Sludge systems show a lower diversity of microbial populations and Bacillus occupies a very important position in the reactor. The data obtained will be useful for optimizing piggery wastewater treatment process. The new model provided good theoretical guidance with good practicality.

  11. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    Science.gov (United States)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  12. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: A large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis.

    Science.gov (United States)

    Luo, Yanxia; Li, Haibin; Huang, Fangfang; Van Halm-Lutterodt, Nicholas; Qin Xu; Wang, Anxin; Guo, Jin; Tao, Lixin; Li, Xia; Liu, Mengyang; Zheng, Deqiang; Chen, Sipeng; Zhang, Feng; Yang, Xinghua; Tan, Peng; Wang, Wei; Xie, Xueqin; Guo, Xiuhua

    2018-01-01

    The effects of ambient temperature on stroke death in China have been well addressed. However, few studies are focused on the attributable burden for the incident of different types of stroke due to ambient temperature, especially in Beijing, China. We purpose to assess the influence of ambient temperature on hospital stroke admissions in Beijing, China. Data on daily temperature, air pollution, and relative humidity measurements and stroke admissions in Beijing were obtained between 2013 and 2014. Distributed lag non-linear model was employed to determine the association between daily ambient temperature and stroke admissions. Relative risk (RR) with 95% confidence interval (CI) and Attribution fraction (AF) with 95% CI were calculated based on stroke subtype, gender and age group. A total number of 147, 624 stroke admitted cases (including hemorrhagic and ischemic types of stroke) were documented. A non-linear acute effect of cold temperature on ischemic and hemorrhagic stroke hospital admissions was evaluated. Compared with the 25th percentile of temperature (1.2 °C), the cumulative RR of extreme cold temperature (first percentile of temperature, -9.6 °C) was 1.51 (95% CI: 1.08-2.10) over lag 0-14 days for ischemic type and 1.28 (95% CI: 1.03-1.59) for hemorrhagic stroke over lag 0-3 days. Overall, 1.57% (95% CI: 0.06%-2.88%) of ischemic stroke and 1.90% (95% CI: 0.40%-3.41%) of hemorrhagic stroke was attributed to the extreme cold temperature over lag 0-7 days and lag 0-3 days, respectively. The cold temperature's impact on stroke admissions was found to be more obvious in male gender and the youth compared to female gender and the elderly. Exposure to extreme cold temperature is associated with increasing both ischemic and hemorrhagic stroke admissions in Beijing, China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of High Temperatures on the Workability of Fresh Ready-Mixed Concrete

    Directory of Open Access Journals (Sweden)

    Victor Sampebulu'

    2012-04-01

    Full Text Available Properties of fresh concrete made in tropical countries, which is mixed, transported (with agitation, placed and initially cured in places where the temperature ranges from about 20oC to 40oC and relative humidity above 60%, are not completely understood. Applicable requirements also differ from country to country and government agencies and private enterprises have their own specifications. Assuming such temperature and relative humidity conditions, the present study is an attempt at evaluating the properties of hot weather concrete in fresh state with using a method of ready–mixed concrete. The fresh concrete was mixed and agitated at varying concrete and ambient temperatures. Three groups of the component materials, each material having such temperature as to bring resulting temperature of the fresh concrete to about 20oC, 30oC, 35oC, were chosen. The temperature of cement was conditioned to about20o, 40oC and 60oC for each of groups respectively. The aggregate was made warm enough to simulate the condition of outdoor pile in ready-mixed concrete plant. The temperature of tap water was always 20oC as it was easily controlled and unlikely affected by outdoor temperature. With the fresh concrete prevented from evaporation, slump loss is caused solely by increased temperature of concrete. During agitation, the slump loss increases rapidly during the first 30 minutes but moderately during the remaining period. Concrete-placing temperature (upon arrival at the work site could be estimated by a proposed formula derived from this study. Besides the freshly mixed concrete temperature, this formula also takes into consideration the ambient temperature, agitating time in transit and hydration heat. The achievement as described in this study may be useful to control concrete quality in terms of strength, shrinkage and other properties of concrete to be placed in hot-humid environment.

  14. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  15. Thermogravimetric analysis of silicon carbide-silicon nitride fibers at ambient to 1000 C in air

    Science.gov (United States)

    Daniels, J. G.; Ledbetter, F. E., III; Clemons, J. M.; Penn, B. G.

    1984-01-01

    Thermogravimetric analysis of silicon carbide-silicon nitride fibers was carried out at ambient to 1000 C in air. The weight loss over this temperature range was negligible. In addition, the oxidative stability at high temperature for a short period of time was determined. Fibers heated at 1000 C in air for fifteen minutes showed negligible weight loss (i.e., less than 1 percent).

  16. α-Bromodiazoacetamides – a new class of diazo compounds for catalyst-free, ambient temperature intramolecular C–H insertion reactions

    Directory of Open Access Journals (Sweden)

    Åsmund Kaupang

    2013-07-01

    Full Text Available In this work, we introduce a new class of halodiazocarbonyl compounds, α-halodiazoacetamides, which through a metal-free, ambient-temperature thermolysis perform intramolecular C–H insertions to produce α-halo-β-lactams. When carried out with α-bromodiazoacetamides bearing cyclic side chains, the thermolysis reaction affords bicyclic α-halo-β-lactams, in some cases in excellent yields, depending on the ring size and substitution pattern of the cyclic amide side chains.

  17. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng

    2014-11-13

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  18. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng; He, Yabing; Zhao, Yunfeng; Weng, Linhong; Wang, Hailong; Krishna, Rajamani A A; Wu, Hui; Zhou, Wei; O'Keeffe, Michael A.; Han, Yu; Chen, Banglin

    2014-01-01

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  19. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  20. CO{sub 2} Capture by Sub-ambient Membrane Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    The main objective of the project was to develop a CO{sub 2} capture process based on sub-ambient temperature operation of a hollow fiber membrane. The program aims to reach the eventual DOE program goal of > 90% CO{sub 2} capture from existing PC fired power plants with < 35% increase in the cost of electricity. The project involves closed-loop testing of commercial fiber bundles under simulated process conditions to test the mechanical integrity and operability of membrane module structural component under sub ambient temperature. A commercial MEDAL 12” bundle exhibited excellent mechanical integrity for 2 months. However, selectivity was ~25% lower than expected at sub-ambient conditions. This could be attributed to a small feed to permeate leak or bundle non-ideality. To investigate further, and due to compressor flow limitations, the 12” bundle was replaced with a 6” bundle to conduct tests with lower permeate/feed ratios, as originally planned. The commercial 6” bundle was used for both parametric testing as well as long-term stability testing at sub-ambient conditions. Parametric studies were carried out both near the start and end of the long-term test. The parametric studies characterized membrane performance over a broad range of feed conditions: temperature (-25°C to -45°C), pressure (160 psig to 200 psig), and CO{sub 2} feed concentration (18% to 12%). Performance of the membrane bundle was markedly better at lower temperature (-45ºC), higher pressure (200 psig) and higher CO{sub 2} feed concentration (18%). The long-term test was conducted at these experimentally determined “optimum” feed conditions. Membrane performance was stable over 8 months at sub-ambient temperature operation. The experimentally measured high performance of the membrane bundle at sub-ambient operating conditions provides justification for interest in sub-ambient membrane processing of flue gas. In a parallel activity, the impact of contaminants (100 ppm SOx and NOx

  1. Impact of cold temperature on Euro 6 passenger car emissions.

    Science.gov (United States)

    Suarez-Bertoa, Ricardo; Astorga, Covadonga

    2018-03-01

    Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  3. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  4. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.

    2011-01-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  5. Temperature effect on protection diode for plasma-process induced charging damage

    NARCIS (Netherlands)

    Wang, Zhichun; Scarpa, A.; Smits, Sander M.; Kuper, F.G.; Salm, Cora

    2002-01-01

    In this paper, the leakage current of different drain-well diodes for plasma-charging protection has been simulated at high temperature. The simulation shows that the high ambient temperature, especially during plasma deposition process, enormously enhances the efficacy of the protection diodes in

  6. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  7. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  8. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  9. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    Science.gov (United States)

    Albert, Kristian R; Mikkelsen, Teis N; Ro-Poulsen, Helge

    2008-06-01

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B.

  10. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    Directory of Open Access Journals (Sweden)

    Apple Pui Yi Chui

    Full Text Available With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient, 30, 32°C] and salinity [33 psu (ambient, 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu could

  11. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  12. Superconducting Open-Framework Allotrope of Silicon at Ambient Pressure

    Science.gov (United States)

    Sung, Ha-Jun; Han, W. H.; Lee, In-Ho; Chang, K. J.

    2018-04-01

    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P 6 /m -Si6 can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P 6 /m -NaSi6 , which is predicted through first-principles study at high pressure. We identify that both P 6 /m -NaSi6 and P 6 /m -Si6 are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

  13. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  14. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.

    Directory of Open Access Journals (Sweden)

    Carly Starr

    Full Text Available The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert or active behaviour (travel, feeding, grooming, or others. Moon luminosity (bright/dark and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive, and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours.

  15. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  16. Short-term preservation of porcine oocytes in ambient temperature: novel approaches.

    Directory of Open Access Journals (Sweden)

    Cai-Rong Yang

    Full Text Available The objective of this study was to evaluate the feasibility of preserving porcine oocytes without freezing. To optimize preservation conditions, porcine cumulus-oocyte complexes (COCs were preserved in TCM-199, porcine follicular fluid (pFF and FCS at different temperatures (4°C, 20°C, 25°C, 27.5°C, 30°C and 38.5°C for 1 day, 2 days or 3 days. After preservation, oocyte morphology, germinal vesicle (GV rate, actin cytoskeleton organization, cortical granule distribution, mitochondrial translocation and intracellular glutathione level were evaluated. Oocyte maturation was indicated by first polar body emission and spindle morphology after in vitro culture. Strikingly, when COCs were stored at 27.5°C for 3 days in pFF or FCS, more than 60% oocytes were still arrested at the GV stage and more than 50% oocytes matured into MII stages after culture. Almost 80% oocytes showed normal actin organization and cortical granule relocation to the cortex, and approximately 50% oocytes showed diffused mitochondria distribution patterns and normal spindle configurations. While stored in TCM-199, all these criteria decreased significantly. Glutathione (GSH level in the pFF or FCS group was higher than in the TCM-199 group, but lower than in the non-preserved control group. The preserved oocytes could be fertilized and developed to blastocysts (about 10% with normal cell number, which is clear evidence for their retaining the developmental potentiality after 3d preservation. Thus, we have developed a simple method for preserving immature pig oocytes at an ambient temperature for several days without evident damage of cytoplasm and keeping oocyte developmental competence.

  17. Short-term preservation of porcine oocytes in ambient temperature: novel approaches.

    Science.gov (United States)

    Yang, Cai-Rong; Miao, De-Qiang; Zhang, Qing-Hua; Guo, Lei; Tong, Jing-Shan; Wei, Yanchang; Huang, Xin; Hou, Yi; Schatten, Heide; Liu, ZhongHua; Sun, Qing-Yuan

    2010-12-07

    The objective of this study was to evaluate the feasibility of preserving porcine oocytes without freezing. To optimize preservation conditions, porcine cumulus-oocyte complexes (COCs) were preserved in TCM-199, porcine follicular fluid (pFF) and FCS at different temperatures (4°C, 20°C, 25°C, 27.5°C, 30°C and 38.5°C) for 1 day, 2 days or 3 days. After preservation, oocyte morphology, germinal vesicle (GV) rate, actin cytoskeleton organization, cortical granule distribution, mitochondrial translocation and intracellular glutathione level were evaluated. Oocyte maturation was indicated by first polar body emission and spindle morphology after in vitro culture. Strikingly, when COCs were stored at 27.5°C for 3 days in pFF or FCS, more than 60% oocytes were still arrested at the GV stage and more than 50% oocytes matured into MII stages after culture. Almost 80% oocytes showed normal actin organization and cortical granule relocation to the cortex, and approximately 50% oocytes showed diffused mitochondria distribution patterns and normal spindle configurations. While stored in TCM-199, all these criteria decreased significantly. Glutathione (GSH) level in the pFF or FCS group was higher than in the TCM-199 group, but lower than in the non-preserved control group. The preserved oocytes could be fertilized and developed to blastocysts (about 10%) with normal cell number, which is clear evidence for their retaining the developmental potentiality after 3d preservation. Thus, we have developed a simple method for preserving immature pig oocytes at an ambient temperature for several days without evident damage of cytoplasm and keeping oocyte developmental competence.

  18. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  19. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    , nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  20. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  1. High-Temperature Tensile Behaviors of Base Metal and Electron Beam-Welded Joints of Ni-20Cr-9Mo-4Nb Superalloy

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod

    2018-05-01

    Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low ( 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.

  2. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-12-01

    Full Text Available Background: Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China; Methods: We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an “optimum temperature” that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results: The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%–13.65%. Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%, while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%–2.35%. The attributable risk (AR of respiratory diseases was higher (19.69%, 95%CI: 14.45%–24.24% than that of cardiovascular diseases (11.40%, 95%CI: 6.29%–16.01%; Conclusions: In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the

  3. Temperature and Violent Crime in Dallas, Texas: Relationships and Implications of Climate Change

    Directory of Open Access Journals (Sweden)

    Janet L. Gamble

    2012-08-01

    Full Text Available Introduction: To investigate relationships between ambient temperatures and violent crimes to determine whether those relationships are consistent across different crime categories and whether they are best described as increasing linear functions, or as curvilinear functions that decrease beyond some temperature threshold. A secondary objective was to consider the implications of the observed relationships for injuries and deaths from violent crimes in the context of a warming climate. To address these questions, we examined the relationship between daily ambient temperatures and daily incidents of violent crime in Dallas, Texas from 1993–1999.Methods: We analyzed the relationships between daily fluctuations in ambient temperature, other meteorological and temporal variables, and rates of daily violent crime using time series piece-wise regression and plots of daily data. Violent crimes, including aggravated assault, homicide, and sexualassault, were analyzed.Results: We found that daily mean ambient temperature is related in a curvilinear fashion to daily rates of violent crime with a positive and increasing relationship between temperature and aggravated crime that moderates beyond temperatures of 80 F and then turns negative beyond 90 F.Conclusion: While some have characterized the relationship between temperature and violent crime as a continually increasing linear function, leaving open the possibility that aggravated crime will increase in a warmer climate, we conclude that the relationship in Dallas is not linear, but moderatesand turns negative at high ambient temperatures. We posit that higher temperatures may encourage people to seek shelter in cooler indoor spaces, and that street crime and other crimes of opportunity are subsequently decreased. This finding suggests that the higher ambient temperatures expected with climate change may result in marginal shifts in violent crime in the short term, but are not likely to be

  4. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality.

    Science.gov (United States)

    Romanovsky, Andrej A; Ivanov, Andrei I; Shimansky, Yury P

    2002-06-01

    There is a misbelief that the same animal has the same thermoneutral zone (TNZ) in different experimental setups. In reality, TNZ strongly depends on the physical environment and varies widely across setups. Current methods for determining TNZ require elaborate equipment and can be applied only to a limited set of experimental conditions. A new, broadly applicable approach that rapidly determines whether given conditions are neutral for a given animal is needed. Consistent with the definition of TNZ [the range of ambient temperature (T(a)) at which body core temperature (T(c)) regulation is achieved only by control of sensible heat loss], we propose three criteria of thermoneutrality: 1) the presence of high-magnitude fluctuations in skin temperature (T(sk)) of body parts serving as specialized heat exchangers with the environment (e.g., rat tail), 2) the closeness of T(sk) to the median of its operational range, and 3) a strong negative correlation between T(sk) and T(c). Thermocouple thermometry and liquid crystal thermography were performed in five rat strains at 13 T(a). Under the conditions tested (no bedding or filter tops, no group thermoregulation), the T(a) range of 29.5-30.5 degrees C satisfied all three TNZ criteria in Wistar, BDIX, Long-Evans, and Zucker lean rats; Zucker fatty rats had a slightly lower TNZ (28.0-29.0 degrees C). Skin thermometry or thermography is a definition-based, simple, and inexpensive technique to determine whether experimental or housing conditions are neutral, subneutral, or supraneutral for a given animal.

  5. Blood and Milk Contents of Triiodothyronine (T3) and Cortisol in Lactating Buffaloes and Changes in Milk Yield and Composition as a Function of Lactation Number and Ambient Temperature

    International Nuclear Information System (INIS)

    Habeeb, A.M. Al-Saied.; Ibrahim, M.Kh.

    2000-01-01

    The effect of lactation number and ambient temperature on T 3 and cortisol levels in milk and blood and milk composition of lactating Water buffaloes was the objective of this study. Two experiment were carried out on 72 animals in two periods through 1994. The first one was carried out on 36 animals during February, where the average of ambient temperature was 17.5 degree while the second was conducted on another 36 animals during July where the average of ambient temperature was 37.1 degree. In both two periods, the animals were classified according to lactation number into 6 equal groups from the 1 st to the 6 Th lactation number. The data showed that milk yield and T-3 either in milk or in blood besides milk fat, protein and lactose were significantly lower in july than in february. Whereas the opposite trend was noted for cortisol levels either in milk or in blood. Concerning the effect of lactation lactation number, it was observed that milk and blood T 3 , mil and blood cortisol, milk fat, protein and lactose were affected significantly by lactation number

  6. Estrous cycle fluctuations in sex and ingestive behavior are accentuated by exercise or cold ambient temperatures.

    Science.gov (United States)

    Abdulhay, Amir; Benton, Noah A; Klingerman, Candice M; Krishnamoorthy, Kaila; Brozek, Jeremy M; Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". In female Syrian hamsters (Mesocricetus auratus), low circulating levels of ovarian steroids are associated with increased food hoarding and decreased sexual motivation, but these effects are exaggerated in food-restricted females. To determine whether cold ambient temperature has the same effects as food restriction, groups of hamsters were fed ad libitum while they were housed at either 5 °C or 22 °C, and then tested for behavior for 90 min on each day of the estrous cycle. In females housed at 22 °C, high levels of sexual motivation and low levels of food hoarding were seen every day of the estrous cycle. In females housed at 5 °C, high levels of sexual motivation were restricted to the periovulatory day. On the three nonestrous days, these females showed high levels of food hoarding, but not food intake. A separate cohort of females were provided with access to running wheels and housed at 22 °C. They showed high levels of sexual motivation restricted to the periovulatory day, similar to the pattern of sexual motivation seen in cold-housed females. Unlike cold-housed females, those with running wheels showed low levels of food hoarding and high levels of food intake. Food restriction, cold housing, and access to wheels had no significant effect on plasma estradiol or progesterone concentrations, but significantly decreased plasma leptin concentrations. All three energetic challenges unmask estrous cycle fluctuations in sexual motivation that are obscured in laboratory conditions, i.e., isolation in a small cage with an overabundance of food. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A new thermal conductivity probe for high temperature tests for the characterization of molten salts

    Science.gov (United States)

    Bovesecchi, G.; Coppa, P.; Pistacchio, S.

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  8. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light

    Science.gov (United States)

    Bellworthy, Jessica; Fine, Maoz

    2017-12-01

    Despite rapidly rising sea surface temperatures and recurrent positive temperature anomalies, corals in the Gulf of Aqaba (GoA) rarely experience thermal bleaching. Elsewhere, mass coral bleaching has been observed in corals when the water temperature exceeds 1-2 °C above the local maximum monthly mean (MMM). This threshold value or "bleaching rule" has been used to create predictive models of bleaching from satellite sea surface temperature observations, namely the "degree heating week" index. This study aimed to characterize the physiological changes of dominant reef building corals from the GoA in response to a temperature and light stress gradient. Coral collection and experiments began after a period of 14 consecutive days above MMM in the field. Stylophora pistillata showed negligible changes in symbiont and host physiology parameters after accumulating up to 9.4 degree heating weeks during peak summer temperatures, for which the index predicts widespread bleaching and some mortality. This result demonstrates acute thermal tolerance in S. pistillata from the GoA and deviation from the bleaching rule. In a second experiment after 4 weeks at 4 °C above peak summer temperatures, S. pistillata and Acropora eurystoma in the high-light treatment visibly paled and suffered greater midday and afternoon photoinhibition compared to corals under low-light conditions (35% of high-light treatment). However, light, not temperature (alone or in synergy with light), was the dominant factor in causing paling and the effective quantum yield of corals at 4 °C above ambient was indistinguishable from those in the ambient control. This result highlights the exceptional, atypical thermal tolerance of dominant GoA branching corals. Concomitantly, it validates the efficacy of protecting GoA reefs from local stressors if they are to serve as a coral refuge in the face of global sea temperature rise.

  9. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase.

    Science.gov (United States)

    Morita, V S; Almeida, V R; Matos Junior, J B; Vicentini, T I; van den Brand, H; Boleli, I C

    2016-08-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a constant incubation temperature [machine temperatures: 36°C (Low), 37.5°C (Control), and 39°C (High); eggshell temperature of 37.4 ± 0.08°C, 37.8 ± 0.15°C, and 38.8 ± 0.33°C, respectively] from d 13 till hatching. Low treatment chickens showed lower plasma T3 and GH levels at d 1 of age and lower T3 level at d 42 of age compared to the Control treatment. Preferred ambient, rectal temperature, T4 level, growth rate, food intake rate, and response to thermal challenge were not altered in these chickens. On the other hand, High-treatment chickens exhibited high preferred ambient temperature and rectal temperature during the first 2 wk post-hatch, lower plasma T3 level at d 21 and 42 and a delayed increase in respiratory movement in response to thermal challenge compared to the Control treatment. However, chickens subjected to the Control and High treatments did not differ in T4 and GH level and performance. We conclude that exposure to high temperature during late embryonic development has long-lasting effects on the thermoregulatory system of broiler chickens by affecting the heat tolerance of these chickens. Moreover, the preferred ambient temperature of the chickens from heat-treated eggs correspond to those recommended for the strain under study, whereas for the cold-treated and control-chickens it was 1°C below, indicating that incubation temperature might have consequences on the ambient temperature chickens require during the rearing phase. © 2016 Poultry Science Association Inc.

  10. Relationship between body temperature and air temperature in ...

    African Journals Online (AJOL)

    Body temperatures of singing male Gryllus bimaculatus were measured for the first time. Body temperatures were strongly correlated with ambient temperature. This indicates that, unlike some other orthopterans, larger crickets are not dependent on an elevated body temperature for efficient calling. Our results confirm that it ...

  11. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  12. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC IMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC NIOSH ratio and the EC IMPROVE-A to EC EUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  13. Double-step annealing and ambient effects on phosphorus implanted emitters in silicon

    International Nuclear Information System (INIS)

    Koji, T.; Tseng, W.F.; Mayer, J.W.; Suganuma, T.

    1979-01-01

    Emitters of npn silicon bipolar transistors have been made by a phosphorus implantation at 50 keV P + to a dose of 1 x 10 16 cm -2 . This was followed by high temperature processes to reduce lattice disorder, to drive-in the phosphorus atoms, and to form oxide layers. The first process step was carried out by using single- and double-step anneals in various ambients (dry N 2 , dry 0 2 and steam) while the drive-in and oxidation steps were common for all structures. Electrical measurements on emitter/base leakage current, low frequency (popcorn) noise and current gain showed that the annealing ambient had a major influence. The transistors with implanted emitters annealed in a dry N 2 ambient are comparable to commercial ones with thermally-diffused emitters. Transmission electron microscopy observations on samples annealed in steam ambients revealed dislocations extending into the sidewall of the emitter/base junction. This sidewell penetration of dislocations is the main origin of the degradation of the emitter/base junction characteristics. (author)

  14. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Science.gov (United States)

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 28-homobrassinolide Protects Photosynthetic Machinery in Indian mustard Under High Temperature Stress

    Directory of Open Access Journals (Sweden)

    Qazi Fariduddin

    2014-03-01

    Full Text Available High temperature is a serious threat to crop production. Brassinosteroids (BRs, a group of plant steroidal hormones, can reduce effects of abiotic stresses. The present study was aimed to study the potency of brassinosteroids on high temperature induced changes in Indian mustard (Brassica juncea L. for effects on growth, chlorophyll, photosynthesis, photosystem II, antioxidant system and proline. Surface sterilized seeds of Indian mustard were sown in pots, grown for 21 days and treated with double distilled water or 0.01 µM of 28-homobrassinolide. Treated plants, after 24 h, were exposed to 30°C or 40°C for 48 h. One set of plants were kept at ambient temperature, 25°C, as the control. Plants were harvested at 30 days stage of growth to assess the various parameters. Plants exposed to 40°C had a decline in growth, leaf water potential, chlorophyll, photosynthetic rate, and activities of carbonic anhydrase (E.C.4.2.1.1 and nitrate reductase (E.C.1.6.1.1. The 28-homobrassinolide alone improved growth and photosynthesis responses along with various enzymes activities. Treatment of plants with HBL prior to exposure to 40°C, partially reduced damage and completely controlled damage when exposure was to 30°C. Levels of the antioxidative enzymes catalase (E.C.1.11.1.6, peroxidase (E.C.1.11.1.7, and superoxide dismutase (E.C.1.15.1.1, and the level of proline increased in response to 30 or 40°C and were further enhanced in the presence of 28-homobrassinolide. Plants grown under high temperature had increased levels of H2O2; application of HBL before temperature treatment decreased H2O2 content compared to the control. Elevated levels of antioxidative enzymes and proline might be responsible for conferring tolerance to high temperature stress in Indian mustard and overcome the loss of productivity of the crop.

  16. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  17. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  18. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  19. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    Science.gov (United States)

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  20. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  1. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  2. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  3. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  4. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  5. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    Science.gov (United States)

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  6. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

    Science.gov (United States)

    Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on

  7. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature

    Science.gov (United States)

    Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel

    2018-03-01

    Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

  8. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  9. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  10. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  11. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta

    2016-01-01

    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016 http://link.springer.com/article/10.1007/s00024-016-1304-1

  12. Association between ambient temperature and acute myocardial infarction hospitalisations in Gothenburg, Sweden: 1985-2010.

    Directory of Open Access Journals (Sweden)

    Janine Wichmann

    Full Text Available Cardiovascular disease (CVD is the number one cause of death globally and evidence is steadily increasing on the role of non-traditional risk factors such as meteorology and air pollution. Nevertheless, many research gaps remain, such as the association between these non-traditional risk factors and subtypes of CVD, such as acute myocardial infarction (AMI. The objective of this study was to investigate the association between daily ambient temperature and AMI hospitalisations using a case-crossover design in Gothenburg, Sweden (1985-2010. A secondary analysis was also performed for out-of-hospital ischemic heart disease (IHD deaths. Susceptible groups by age and sex were explored. The entire year as well as the warm (April-September and cold periods (October-March were considered. In total 28,215 AMI hospitalisations (of 22,475 people and 21,082 out-of-hospital IHD deaths occurred during the 26-year study period. A linear exposure-response corresponding to a 3% and 7% decrease in AMI hospitalisations was observed for an inter-quartile range (IQR increase in the 2-day cumulative average of temperature during the entire year (11°C and the warm period (6°C, respectively, with and without adjustment for PM₁₀, NO₂, NOx or O₃. No heat waves occurred during the warm period. No evidence of an association in the cold period nor any association between temperature and IHD deaths in the entire year, warm or cold periods--with and without adjusting for PM₁₀, NO₂, NOx or O₃ was found. No susceptible groups, based on age or sex, were identified either. The inverse association between temperature and AMI hospitalisations (entire year and warm period in Gothenburg is in accordance with the majority of the few other studies that investigated this subtype of CVD.

  13. Size-tunable silver nanoparticles synthesized by using aminopolycarboxylic acids at ambient-temperature

    International Nuclear Information System (INIS)

    Malkar, Vishwabharati V.; Chadha, R.; Biswas, N.; Mukherjee, T.; Kapoor, S.

    2009-01-01

    Full text: Stable aqueous sols of silver nanoparticles are prepared by using various aminopolycarboxylic acids as stabilizing agents at ambient temperature. The precursor silver perchlorate is reduced using γ radiations. Interestingly, it was observed that size of silver nanoparticles obtained could be tuned using various aminopolycarboxylic acids of varying carboxylic acid groups The silver sols synthesized by this method were stable for months and particles obtained were monodisperse in almost all cases. Particle formation was observed at equimolar concentration of silver and aminopolycarboxylic acids. The stabilization of particles even in the absence of any polymer indicates that the adsorption of aminopolycarboxylic acids on silver particle is a spontaneous process. The adsorbed aminopolycarboxylic acids can saturate the residual valence force of the silver atom on the particle surface by coordinating with unoccupied orbital. Adsorption of aminopolycarboxylic acids does not lead to any change in surface plasmon band of silver nanoparticles; this indicates that anions in the double layer on the colloidal particle have different chemical properties from the free anions. Synthesized silver nanoparticles were characterized by UV-visible spectrophotometer, X-ray Diffraction, Dynamic Light Scattering and Transmission Electron Microscope

  14. Experimental confirmation of the ITER cryopump high temperature regeneration scheme

    International Nuclear Information System (INIS)

    Day, C.; Haas, H.

    2007-01-01

    Forschungszentrum Karlsruhe (FZK) is developing the ITER high vacuum pumping systems for evacuation and maintenance of the required pressure levels in the torus (during burn and dwell, conditioning and leak detection), the neutral beam injectors and the cryostat vessel. All ITER high vacuum systems share the same concept of accumulative cryosorption pumping. The pumping surfaces, forced-cooled by 4.5 K supercritical helium, are coated with activated charcoal so as to be able to adsorb helium and hydrogens. All other gases are cryopumped by cryogenic phase transition from gaseous into the liquid/solid state. For the hydrogen processing pumps in the torus and the NBI, the maximum pumping time is given by the limitation of the maximum hydrogen inventory such that the resulting pressure in case of a loss of vacuum event and a corresponding oxy-hydrogen explosion is compatible to the design criteria of the vacuum vessel. To limit the gas accumulation, a staggered regeneration philosophy has been adopted, which involves three different temperature levels in order to achieve high regeneration efficiencies at best availability of the pumping system. The regular regeneration step is performed at a charcoal temperature of 90 K to release all hydrogen isotopomers (and helium), which are subsequently pumped out by the forevacuum pumping system. The second step at ambient temperature leads to the release of all air-like species. It has to be performed less frequently, probably over-night. Any water-like species with strong sorption bonding forces need still higher temperatures for effective desorption from the charcoal. These species comprise not only water itself but also high molecular tracers added to the water circuits in case of leak localisation and any pumped higher hydrocarbons from the plasma exhaust or. The latter in their tritiated forms may contribute significantly to the semi-permanent tritium inventory; a good knowledge of their regeneration characteristics is

  15. Superheated emulsions in neutron spectrometry by varying ambient pressure

    International Nuclear Information System (INIS)

    Das, Mala; Sawamura, Teruko

    2005-01-01

    The principle of present work lies on the dependence of the threshold neutron energy on the dimensionless quantity ''degree of metastability (ss)'' of superheated liquids. The response of the superheated emulsions consists of the drops of superheated liquid (C 2 Cl 2 F 4 , b.p. 3.77 deg. C) has been measured at different 'ss' by varying ambient pressure at different temperatures, in the presence of neutrons generated in Pb by a (γ,n) reaction from 45 MeV electron LINAC of Hokkaido University. To unfold the neutron energy spectrum, a relationship has been developed between the 'ss' of superheated liquids and the threshold neutron energy. The spectrum at the detector position has been calculated by the MCNP code and a comparison has been made with the experimental spectrum. The utilisation of 'ss' is more flexible as this relation can be applied to both positive and negative ambient pressures as well as at different ambient temperatures

  16. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  17. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    Science.gov (United States)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  18. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  19. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  20. Correlation of rectal temperature and peripheral temperature from implantable radio-frequency microchips in Holstein steers challenged with lipopolysaccharide under thermoneutral and high ambient temperatures.

    Science.gov (United States)

    Reid, E D; Fried, K; Velasco, J M; Dahl, G E

    2012-12-01

    Early detection of disease can speed treatment, slow spread of disease in a herd, and improve health status of animals. Immune stimulation increases rectal temperature (RT). Injectable radio-frequency implants (RFI) can provide temperature at the site of implantation. The fidelity of peripheral site temperature, determined by RFI, relative to RT is unknown in cattle. We hypothesized that during lipopolysaccharide (LPS) challenge, temperature at 3 peripheral sites would be similar to RT in steers (n = 4; BW 77 ± 2.1 kg). The 3 sites were 1) subcutaneous (SC) at the base of the ear (ET); 2) SC posterior to the poll (PT); and 3) SC beneath the umbilical fold (UT). Steers were housed in controlled temperature (CT) rooms (between 18 and 21°C; n = 2/room). Rectal temperature, ET, PT, and UT were recorded every 8 h daily. On d 7, 21, 22, 36, and 37, RT and RFI were taken every 5 min for 6 h, every 15 min for 3 h, and every 30 min for 15 h. To test RFI during a simulated immune challenge, LPS (E. coli 055:B5) was injected intravenously (i.v.) at 1000 h on d 22 and 37. Basal temperatures (°C) were RT (38.7 ± 0.20), ET (37.1 ± 0.86), PT (36.7 ± 0.57), and UT (36.3 ± 0.97). Rectal temperature increased to 39.9 ± 0.30°C after LPS, but ET, PT, and UT decreased. Heat stress also increases RT, which makes it difficult to identify sick animals using RT. The second hypothesis tested was that ET positively correlates to RT and negatively correlates to RT during LPS under heat stress. Four steers (127 ± 7.3 kg) were housed in CT chambers (n = 2/chamber), implanted with a RFI, and allowed 2 wk to acclimate. One chamber remained at 20°C, the other was increased to 34°C starting at 0800 h for a period of 48 h. The LPS was administered i.v. to all steers at 1000 h on d 2. After a 2-wk recovery at 20°C, the temperature was increased in the other chamber, resulting in a crossover design with each steer serving as its own control. Pearson's correlation coefficients for ET and

  1. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    Science.gov (United States)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  2. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    The primary goal of this research was to uncover the principal reaction channels available to polycyclic aromatic hydrocarbons (PAHs) at high temperatures in the gas phase and to establish the factors that determine which channels will be followed in varying circumstances. New structure-property relationships for PAHs were also studied. The efficient production of clean energy from fossil fuels will remain a major component of the DOE mission until alternative sources of energy eventually displace coal and petroleum. Hydrocarbons constitute the most basic class of compounds in all of organic chemistry, and as the dominant species in fossil fuels, they figure prominently into the programs of the DOE. Much is already known about the normal chemistry of hydrocarbons under ambient conditions, but far less is known about their intrinsic chemistry at temperatures close to those reached during combustion. An understanding of the fundamental molecular transformations, rearrangements, and interconversions of PAHs at high temperatures in the gas phase, as revealed by careful studies on small, well-designed, molecular systems, provides insights into the underlying chemistry of many important processes that are more complex, such as the generation of energy by the combustion of fossil fuels, the uncatalyzed gasification and liquefaction of coal, the production of fullerenes in fuel-rich flames, and the formation of soot and carcinogenic pollutants in smoke (e.g., benzo[a]pyrene). The rational control of any of these processes, whether it be the optimization of a desirable process or the minimization of an undesirable one, requires a clear knowledge of the basic chemistry that governs the fate of the species involved. Advances in chemistry at the most fundamental level come about primarily from the discovery of new reactions and from new insights into how reactions occur. Harnessing that knowledge is the key to new technologies. The recent commercialization of a combustion

  3. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  4. Pulsed-laser heating: a tool for studying degradation of materials subjected to repeated high-temperature excursions

    International Nuclear Information System (INIS)

    Goldberg, A.; Cornell, R.H.

    1980-01-01

    The use of pulsed-laser heating was evaluated as a means to obtain high cyclic peak temperatures with short rise times. A two-stage neodymium glass laser was used which produces a 600-μs pulse with energy outputs of up to 100 J. Small disk-shaped samples of AISI 4340 steel served as targets. Some of these were coated with a tungsten deposit. The rear face of some of the targets was instrumented for evaluation of temperature, strain, and stress response. Post-shot metallographic evaluations were made on a number of targets. We saw evidence of surface melting, cracking, and phase transformation. Surface damage was related to differences in the number of pulse cycles and input energy level, variables in the target materials, and the extent of strain-induced stresses. These experiments were performed in air at 1 atm and ambient laboratory temperature. 36 figures

  5. Environmental and Physiological Factors Associated With Stamina in Dogs Exercising in High Ambient Temperatures.

    Science.gov (United States)

    Robbins, Patrick J; Ramos, Meghan T; Zanghi, Brian M; Otto, Cynthia M

    2017-01-01

    This IACUC approved study was performed to evaluate the environmental, physiological, and hematological components that contribute to stamina following successive bouts of exercise that included searching (5-min), agility (5-min), and ball retrieve (dogs ( N  = 12) were evaluated on five separate occasions. The population consisted of eight males and four females ranging in age from 8 to 23 months, which included six Labrador retrievers, three German shepherds, and one each English springer spaniel, German wirehaired pointer, and Dutch shepherd. The exercise period was up to 30 min with 5 min of intermittent rest between the exercise bouts or until a designated trainer determined that the dog appeared fatigued (e.g., curled tongue while panting, seeking shade, or voluntary reluctance to retrieve). At the end of the exercise period, pulse rate (PR), core temperature, blood lactate, and venous blood gas were collected. The median outdoor temperature was 28.9°C (84°F) (IQR; 27.2-30°C/81-86°F) and median humidity was 47% (IQR; 40-57%). Median duration of exercise was 27 min (IQR; 25-29). No dog showed signs of heat stress that required medical intervention. The components used to measure stamina in this study were total activity, post-exercise core body temperature (CBT), and increase in CBT. When controlling for breed, total activity, as measured by omnidirectional accelerometer device, could be predicted from a linear combination of the independent variables: pre-exercise activity ( p  = 0.008), post-exercise activity ( p  temperature ( p  = 0.005), reduction in base excess in extracellular fluid compartment (BEecf) ( p  = 0.044), and decrease in TCO 2 ( p  = 0.005). When controlling for breed and sex, increase in CBT could be predicted from a linear combination of the independent variables: study day ( p  = 0.005), increase in PR ( p  temperature, pre- and post-exercise activity, and the metabolic parameters are important

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. High Temperature Telemetry Transmitter for Venus Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian corrosive, high pressure, 460oC ambient atmosphere without being contained in a...

  8. High Temperature Telemetry Transmitter for Venus Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed S-band telemetry transmitter will operate in the exterior Venusian high pressure, 465?aC ambient atmosphere without being contained in a thermally...

  9. Quantum and quasi-classical collisional dynamics of O2–Ar at high temperatures

    International Nuclear Information System (INIS)

    Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto

    2016-01-01

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  10. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  11. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening

    Directory of Open Access Journals (Sweden)

    Dennis H Greer

    2013-12-01

    Full Text Available The heat event that occurred in many parts of Australia in 2009 was the worst on record for the past decade, with air temperatures exceeding 40oC for 14 days. Our aim was to assess the impacts of this heat event on vine performance, including ripening, yield and gas exchange of Vitis vinifera cv. Semillon grown in a Riverina vineyard. To assess the affect of high temperatures on Semillon grapevines, the vines were covered with a protective layer to reduce radiant heating and were compared with vines exposed to ambient conditions. The heat event had major effects on ripening; reducing the rate by 50% and delaying harvest ripeness and causing a high incidence of berry shrivel and sunburn. Yield was not affected. Photosynthesis was reduced 35% by the heat event while transpiration increased nearly 3-fold and was accounted for by increased stomatal conductance. The conclusion of this study was that heat events delayed ripening in Semillon berries and caused a significant reduction in berry quality. Strategies to minimise the radiant load during heat events are required and this study has confirmed a protective layer can reduce canopy temperatures and enhance berry quality.

  12. Evaluation of the mechanical performance of silicon carbide in TRISO fuel at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rohbeck, Nadia, E-mail: nadia.rohbeck@manchester.ac.uk; Xiao, Ping, E-mail: p.xiao@manchester.ac.uk

    2016-09-15

    The HTR design envisions fuel operating temperatures of up to 1000 °C and in case of an accident even 1600 °C are conceivable. To ensure safety in all conditions a thorough understanding of the impact of an extreme temperature environment is necessary. This work assesses the high temperature mechanical performance of the silicon carbide (SiC) layer within the tristructural-isotropic (TRISO) fuel particle as it poses the main barrier against fission product release into the primary circuit. Therefore, simulated fuel was fabricated by fluidized bed chemical vapour deposition; varying the deposition conditions resulted in strongly differing SiC microstructures for the various samples. Subsequently the TRISO particles were annealed in inert atmosphere at temperatures ranging from 1600 °C up to 2200 °C. Scanning electron microscopy and Raman spectroscopy showed that strong disintegration of the SiC layer occurred from 2100 °C onwards, but initial signs of porosity formation were visible already at 1800 °C. Still, the elastic modulus and hardness as measured by nanoindentation were hardly impaired. After annealing stoichiometric SiC coatings showed a reduction in fracture strength as determined by a modified crush test, however the actual annealing temperature from 1600 °C to 2000 °C had no measureable effect. Furthermore, a technique was developed to measure the elastic modulus and hardness in situ up to 500 °C using a high temperature nanoindentation facility. This approach allows conducting tests while the specimen and indenter tip are heated to a specific measurement temperature, thus obtaining reliable values for the temperature dependent mechanical properties of the material. For the SiC layer in TRISO particles it was found that the elastic modulus decreased slightly from room temperature up to 500 °C, whereas the hardness was reduced more severely to approximately half of its ambient temperature value.

  13. Evaluation of the mechanical performance of silicon carbide in TRISO fuel at high temperatures

    International Nuclear Information System (INIS)

    Rohbeck, Nadia; Xiao, Ping

    2016-01-01

    The HTR design envisions fuel operating temperatures of up to 1000 °C and in case of an accident even 1600 °C are conceivable. To ensure safety in all conditions a thorough understanding of the impact of an extreme temperature environment is necessary. This work assesses the high temperature mechanical performance of the silicon carbide (SiC) layer within the tristructural-isotropic (TRISO) fuel particle as it poses the main barrier against fission product release into the primary circuit. Therefore, simulated fuel was fabricated by fluidized bed chemical vapour deposition; varying the deposition conditions resulted in strongly differing SiC microstructures for the various samples. Subsequently the TRISO particles were annealed in inert atmosphere at temperatures ranging from 1600 °C up to 2200 °C. Scanning electron microscopy and Raman spectroscopy showed that strong disintegration of the SiC layer occurred from 2100 °C onwards, but initial signs of porosity formation were visible already at 1800 °C. Still, the elastic modulus and hardness as measured by nanoindentation were hardly impaired. After annealing stoichiometric SiC coatings showed a reduction in fracture strength as determined by a modified crush test, however the actual annealing temperature from 1600 °C to 2000 °C had no measureable effect. Furthermore, a technique was developed to measure the elastic modulus and hardness in situ up to 500 °C using a high temperature nanoindentation facility. This approach allows conducting tests while the specimen and indenter tip are heated to a specific measurement temperature, thus obtaining reliable values for the temperature dependent mechanical properties of the material. For the SiC layer in TRISO particles it was found that the elastic modulus decreased slightly from room temperature up to 500 °C, whereas the hardness was reduced more severely to approximately half of its ambient temperature value.

  14. Kinetics and mechanism of the oxidation of cerium in air at ambient temperature

    International Nuclear Information System (INIS)

    Wheeler, D.W.

    2016-01-01

    Highlights: • XRD and transverse sections suggest Ce_2O_3 forms on Ce before being overlaid by CeO_2. • XRD and oxide thickness measurements both indicate linear oxidation. • Extensive cracking on oxide surface which sustains continuing oxidation. • Electron microscopy has shown features indicative of nodular oxidation. • Oxide growth rate determined to be 0.1 μm day"−"1 under the conditions in this study. - Abstract: This paper describes a study of the oxidation of cerium in air at ambient temperature. Specimens were exposed for up to 60 days, during which they were analysed by X-ray diffraction (XRD) at regular intervals. Both XRD and oxide thickness measurements indicate linear oxidation over the duration of this study. Under the conditions employed in this study, the rate of oxide growth has been determined to be 0.1 μm day"−"1. The oxidation process appears to be assisted by extensive cracking in the oxide layer which acts as a non-protective film for the underlying metal.

  15. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    future use of tunneling spectroscopy. This feature leads to nonmonotonic and strongly asymmetric pressure dependence of Tc . Other hydrides, e.g., CaH6 and MgH6 , can be expected to display even higher values of Tc up to room temperature. The fundamental challenge lies in the creation of a structure capable of displaying high Tc at ambient pressure.

  16. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  17. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    Science.gov (United States)

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.

  18. Characterization of gamma irradiated peanut kernels stored one year under ambient and frozen conditions

    International Nuclear Information System (INIS)

    Chiou, R.Y.Y.; Shyu, S.L.; Tsai, C.L.

    1991-01-01

    Peanut kernels were gamma irradiated at 0, 2.5, 5.0, 10, and 20 KGy, and stored 1 yr at ambient and frozen (-14 degrees C) conditions. Irradiated peanuts lost germination capabilities during storage. Molds were detected only on peanuts irradiated with 2.5 KGy and stored at ambient temperature. Peanut oil in kernels stored at -14 degrees C was comparatively more stable than that in peanuts stored at ambient temperature. Oxidation of oil was not significantly changed by irradiation. Changes in fatty acid content varied slightly with exception of linoleic and linolenic acids which decreased with increased radiation depending on storage temperature. The SDS-PAGE protein patterns of peanuts revealed no noticeable variation of protein subunits resulting from irradiation and storage

  19. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers.

    Science.gov (United States)

    Hall, Marianne; Räntfors, Mats; Slaney, Michelle; Linder, Sune; Wallin, Göran

    2009-04-01

    Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1-3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20-30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.

  20. Incubation strategies of the Black-necked Crane (Grus nigricollis) in relation to ambient temperature and time of day

    Institute of Scientific and Technical Information of China (English)

    Lixun Zhang; Bei An; Meilin Shu; Changming Zhao; Xiaojun Yang; Yila Suo; Yongjun Se; Xilite Dabu

    2017-01-01

    Background: The behavior of cranes reflects many of their survival strategies, but little has been known of the incu-bation strategies of cranes, in which both parents share incubation duties, in response to cold temperatures in alpine environments. The lack of information may restrict the effective conservation of the threatened Black-necked Crane (Grus nigricollis), a biparental bird nesting in high elevation wetlands. Methods: We directly observed and used infrared video cameras from 2014 to 2015 to study the incubation behav-ior and quantitatively measured the frequency and details of egg turning behavior in the Black-necked Crane at the Yanchiwan National Nature Reserve in western Gansu Province, China. Results: At lower ambient temperatures in the morning, crane parents spent more time on the nest with less recess frequency and prolonged on-bout duration, while at higher temperatures around noon, the parents had more frequent recesses from incubation and shorter periods between nest exchanges. They adjusted the amount of time incubating by varying the recess frequency and the length of on-bout duration. Mean nest attendance and egg turn-ing frequency of females were significantly higher than those of the males. The nest attendance and on-bout duration of females showed a significantly negative relationship with those of males. The two parents responded differently to the change of temperature. Females spent more time on the nest at lower morning temperatures, while males increased their time on the nest at higher temperatures after noon. Higher incubation recess frequency and egg turn-ing frequency were observed at noon, probably because parents spent more time foraging, taking advantage of the lower egg cooling rate. Conclusion: Both Black-necked Crane parents in the alpine environment adjusted their behavior in response to the thermal requirements of eggs and the weather conditions experienced. Our findings demonstrate that parents of this species incubated