WorldWideScience

Sample records for high ambient pressure

  1. Superconducting Properties of MgB2 Prepared by High and Ambient Pressures

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-An; CHE Guang-Can; ZHAO Zhong-Xian; CHEN Hong; DONG Cheng; NI Yong-Ming; JIA Shun-Lian; WEN Hai-Hu

    2001-01-01

    The new superconductor MgB2 has been prepared in two ways, by high pressure and ambient pressure synthesis.The superconducting properties were measured and compared. It is found that the sample prepared by highpressure is much denser than that prepared under ambient pressure. Accordingly the high pressure sample has avery narrow transition width and a much higher bulk critical current densityC

  2. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  3. Enzymatic hydrolysis of anchovy fine powder at high and ambient pressure, and characterization of the hydrolyzates.

    Science.gov (United States)

    Kim, Namsoo; Son, So-Hee; Maeng, Jin-Soo; Cho, Yong-Jin; Kim, Chong-Tai

    2016-02-01

    At specific conditions of high pressure, the stability and activity of some enzymes are reportedly known to increase. The aim of this study was to apply pressure-tolerant proteases to hydrolyzing anchovy fine powder (AFP) and to determine product characteristics of the resultant hydrolyzates. Anchovy fine powder enzyme hydrolyzates (AFPEHs) were produced at 300 MPa and ambient pressure using combinations of Flavourzyme 500MG, Alcalase 2.4L, Marugoto E and Protamex. When the same protease combination was used for hydrolysis, the contents of total soluble solids, total water-soluble nitrogen and trichloroacetic acid-soluble nitrogen in the AFPEHs produced at 300 MPa were conspicuously higher than those in the AFPEHs produced at ambient pressure. This result and electrophoretic characteristics indicated that the high-pressure process of this study accelerates protein hydrolysis compared with the ambient-pressure counterpart. Most peptides in the hydrolyzates obtained at 300 MPa had molecular masses less than 5 kDa. Functionality, sensory characteristics and the content of total free amino acids of selected hydrolyzates were also determined. The high-pressure hydrolytic process utilizing pressure-tolerant proteases was found to be an efficient method for producing protein hydrolyzates with good product characteristics. © 2015 Society of Chemical Industry.

  4. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  5. Stripe order in La2-xBaxCuO4 at ambient and high pressure.

    Science.gov (United States)

    Huecker, M.; Wen, J. S.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.; Zimmermann, M. V.

    2009-03-01

    The pronounced stability of the charge and spin stripe order in La2-xBaxCuO4 at x=1/8 doping still is a poorly understood peculiarity. A combination of electronic and structural interactions is likely, however it has been difficult to clearly separate the involved mechanisms. One approach is to explore how stripe order fades away for dopings x !=1/8. We have performed high energy (100 keV) x-ray diffraction and static magnetization experiments on single crystals between x=0.095 and 0.155. To our surprise, at ambient pressure stripes exist in a much broader range of doping around x=1/8 than expected. In the underdoped region charge stripe order always coincides with a structural transition associated with a rotation of the octahedral tilt axis. However, for x=1/8 and high pressure we have been able to show that stripe order also occurs in the absence of this structural phase, which motivates us to discuss stripes in terms of an electronic liquid crystal phase.

  6. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santa Rosa, D.T.; Pinto, D.G.; Silva, V.S. [SRE - Solucoes Racionais de Energia, S.A., Poligono Industrial do Alto do Ameal, Ramalhal (Portugal); Silva, R.A.; Rangel, C.M. [INETI, Unidade de Electroquimica de Materiais, Lisboa (Portugal)

    2007-12-15

    An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance). The results show that the stack outputs a maximum power density of 310mW/cm{sup 2} at 790mA/cm{sup 2} when operating at ambient temperature, atmospheric air pressure, self-humidifying, air fan voltage at 5.0 V and 250 mbar hydrogen relative pressure. For the studied range of hydrogen relative pressure (150-750 mbar), it is found that the stack performance is practically not affected by this operation condition, although a slightly higher power output for 150 mbar was observed. On the other hand, it is found that the stack performance increases appreciably when operated with forced air convection instead of natural convection. Finally, the continuous fuel flow operation mode does not improve the stack performance in comparison with the hydrogen dead-end mode, in spite of being preferable to operate the stack with hydrogen flow rates above 0.20 l/min. (author)

  7. Ambient Interstellar Pressure and Superbubble Evolution

    CERN Document Server

    Oey, M S

    2004-01-01

    High ambient interstellar pressure is suggested as a possible factor to explain the ubiquitous observed growth-rate discrepancy for supernova-driven superbubbles and stellar wind bubbles. Pressures of P/k ~ 1e5 cm-3 K are plausible for regions with high star formation rates, and these values are intermediate between the estimated Galactic mid-plane pressure and those observed in starburst galaxies. High-pressure components also are commonly seen in Galactic ISM localizations. We demonstrate the sensitivity of shell growth to the ambient pressure, and suggest that superbubbles ultimately might serve as ISM barometers.

  8. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  9. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  10. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  11. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon

    2014-08-01

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  12. Particulate matter air pollution and ambient temperature: opposing effects on blood pressure in high-risk cardiac patients.

    Science.gov (United States)

    Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D

    2015-10-01

    Fine particulate matter air pollution (PM2.5) and extreme temperatures have both been associated with alterations in blood pressure (BP). However, few studies have evaluated their joint haemodynamic actions among individuals at high risk for cardiovascular events. We assessed the effects of short-term exposures during the prior week to ambient PM2.5 and outdoor temperature levels on resting seated BP among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from 2003 to 2011) using multiple linear regression analyses adjusting for age, sex, BMI, ozone and the same-day alternate environmental factor (i.e. PM2.5 or temperature). Mean PM2.5 and temperature levels were 12.6 ± 8.2 μg/m and 10.3 ± 10.4°C, respectively. Each standard deviation elevation in PM2.5 concentration during lag days 4-6 was associated with significant increases in SBP (2.1-3.5 mmHg) and DBP (1.7-1.8 mmHg). Conversely, higher temperature levels (per 10.4°C) during lag days 4-6 were associated with reductions in both SBP (-3.6 to -2.3 mmHg) and DBP (-2.5 to -1.8 mmHg). There was little evidence for consistent effect modification by other covariates (e.g. demographics, seasons, medication usage). Short-term exposures to PM2.5, even at low concentrations within current air quality standards, are associated with significant increases in BP. Contrarily, higher ambient temperatures prompt the opposite haemodynamic effect. These findings demonstrate that both ubiquitous environmental exposures have clinically meaningful effects on resting BP among high-risk cardiac patients.

  13. Effect of ambient-pressure reduction on multibubble sonochemiluminescence

    Science.gov (United States)

    Tuziuti, Toru; Hatanaka, Shin-ichi; Yasui, Kyuichi; Kozuka, Teruyuki; Mitome, Hideto

    2002-04-01

    The effect of ambient-pressure reduction on multibubble sonochemiluminescence (MBSCL) is studied experimentally with a luminol solution through measurements of MBSCL intensity as a function of ultrasound irradiation time, applied voltage to a transducer and ultrasonic frequencies to accomplish high efficiency in chemical reactions. From the measurement of ambient-pressure dependence, it is shown that there is an ambient pressure that produces the maximum intensity of the MBSCL and the maximum intensity appears at higher ambient pressure as the applied voltage to the transducer increases. The highest intensity of MBSCL is obtained by appropriate reduction of ambient pressure both for various applied voltages and frequencies. This is caused by both the number of bubbles induced with supersaturation of the gas in a luminol solution and the variation in bubble dynamics.

  14. Identity Efficiency for High-Performance Ambient Pressure Ion Mobility Spectrometry.

    Science.gov (United States)

    Kanu, A Bakarr; Leal, Anne

    2016-03-15

    A new approach to reduce the false-positive responses commonly encountered in the field when drugs and explosives are detected is reported for an electrospray ionization high-performance ion mobility spectrometry (ESI-HPIMS). In this article, we report on the combination of reduced mobility and the width-at-half-height of a peak to give a new parameter called conditional reduced mobility (CRM). It was found that the CRM was capable of differentiating between real drugs peaks from that of a false-positive peak and may help to reduce false-positive rates. This effect was demonstrated using 11 drugs (amphetamine, cannabidiol, cocaine, codeine, heroine, methamphetamine, morphine, phentermine, L-phenylepherine, proglitazone, and rosiglitazone) and seven interferences chosen from off-the-shelf products. This report determined and compared CRM, resolving power (R(m)), and diffusion-limited conditional theoretical reduced mobility (DLCTRM) for ESI-HPIMS. The most important parameters for determining CRM are reduced mobility and width-at-half-height of a peak. There is a specific optimum voltage, gate pulse width, resolving power, and now CRM for each ion. DLCTRM indicate the optimum reduced mobility that is not normally possible under field conditions. CRM predicts the condition at which a target compound can be differentiated from a false-positive response. This was possible because different ions exhibits different drifting patterns and hence a different peak broadening phenomenon inside an ion mobility tube. Reduced mobility for target compounds reported were reproducible to within 2% for ESI-HPIMS. The estimated resolving power for the ESI-HPIMS used in this study was 61 ± 0.22. Conditional reduced mobility introduced in this paper show differences between target compounds and false-positive peaks as high as 74%, as was the case for cannabidiol and interference #1 at 70 μs gate pulse width.

  15. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    Science.gov (United States)

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  16. Ambient-pressure silica aerogel films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.S. [New Mexico Univ., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Hurd, A.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Very highly porous (aerogel) silica films with refractive index in the range 1.006--1.05 (equivalent porosity 98.5--88%) were prepared by an ambient-pressure process. It was shown earlier using in situ ellipsometric imaging that the high porosity of these films was mainly attributable to the dilation or `springback` of the film during the final stage of drying. This finding was irrefutably reconfirmed by visually observing a `springback` of >500% using environmental scanning electron microscopy (ESEM). Ellipsometry and ESEM also established the near cent per cent reversibility of aerogel film deformation during solvent intake and drying. Film thickness profile measurements (near the drying line) for the aerogel, xerogel and pure solvent cases are presented from imaging ellipsometry. The thickness of these films (crack-free) were controlled in the range 0.1-3.5 {mu}m independent of refractive index.

  17. Effects of Ambient Pressure on Bubble Characteristics

    Institute of Scientific and Technical Information of China (English)

    卢新培; 刘明海; 江中和; 潘垣

    2002-01-01

    The effects of the ambient pressure Pambient on the bubble characteristics of pulsed discharge in water are investigated. The simulation results show that, when Pambient increases from 1 atm to 100 atm, the bubble radius R decreases from 4cma to 7mm, and its pulsation period decreases frown 8ms to 0.2ms. The results also show that the peak pressure of the first shock wave is independent of Pambient, but the peak pressure of the second shock wave caused by the bubble re-expansion decreases when Pambient increases. On the other hand, the larger the ambient pressure, the larger the peak pressure of the plasma in the bubble, while the plasma temperature is independent of Pambient.

  18. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  19. Improved Ambient Pressure Pyroelectric Ion Source

    Science.gov (United States)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  20. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  1. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures

    Science.gov (United States)

    Santra, Biswajit; Klimeš, Jiří; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-01

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  2. Cyclic-load crack growth in ASME SA-105 grade II steel in high-pressure hydrogen at ambient temperature

    Science.gov (United States)

    Walter, R. J.; Chandler, W. T.

    1976-01-01

    ASME SA-105 Grade II steel, which is used in high-pressure hydrogen compressor systems, is similar to steels used or considered for use in high-pressure hydrogen storage vessels and pipelines. This paper summarizes the results of a program conducted to provide cyclic-load crack growth rate (da/dN) data for a fracture mechanics analysis of a 15,000 psi hydrogen compressor facility which contains pulse quieter and after-cooler separator vessels constructed of the ASME SA-105 Grade II steel. Included in the program were tests performed to assist in establishing operating procedures that could minimize the effect of hydrogen on crack growth rates during operation.

  3. A theoretical study of MgH2 ambient and high-pressure phases using NQCC parameters

    Science.gov (United States)

    Rafiee, Marjan A.

    2014-12-01

    Quadrupolar parameters of nuclei can be used as a tool to understand the electronic structure of the compounds. Magnesium hydride (MgH2) is a potential hydrogen storage material due to its outstanding hydrogen capacity, however, its high thermodynamic stability is unfavorable for dehydrogenation processes. Understanding the bonding nature of Mg and H is essential for improving its dehydrogenation performance. In this work the charge density distribution in MgH2 is studied. For this purpose, using calculated NQCCs of hydrogen atoms, the electronic structure of α-MgH2 with several high pressure forms of MgH2 were compared. The results show that in the high pressure phases (β, γ, and δ) some hydrogens have very small NQCC and therefore these hydrogens form weaker bond with Mg. In other words, easier condition for dehydrogenation in pressure-induced forms is expected. The electric field gradient (EFG) at the site of quadrupolar nuclei were calculated to obtain NQCC parameters using Gaussian 03 at B3LYP/6-31G level of theory. The selected level and basis set give the rather acceptable qualitative NQCCs of hydrogen atoms.

  4. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  5. Ambient-pressure thermodynamic measurements on UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Frederic; Loehneysen, Hilbert von [Forschungszentrum Karlsruhe (Germany). Institut fuer Festkoerperphysik; Physikalisches Institut, Universitaet Karlsruhe (Germany); Meingast, Christoph [Forschungszentrum Karlsruhe (Germany). Institut fuer Festkoerperphysik; Flouquet, Jacques; Huxley, Andrew [SPSMS-DRFMC, CEA-Grenoble (France); Lashley, Jason [Materials Science Division and Technology Division, LANL, Los Alamos, New Mexico (United States); Fisher, Robert A.; Phillips, Norman E. [Materials Science Division, LBNL, Berkeley, California (United States)

    2008-07-01

    The pairing interaction leading to the formation of the Cooper pairs remains unidentified in the ferromagnetic superconductor UGe{sub 2}. Nevertheless, there is strong experimental evidence that superconductivity is not mediated by the magnetic fluctuations that drive T{sub Curie}(p) to zero; it rather appears closely related to another phase boundary T{sub x}(p) that occurs at lower pressure. Theoretical works suggested that this additional phase boundary could arise either from a coupling between SDW and CDW orderings or from a peak in the electronic density of states. Although the existence of this anomaly is experimentally incontestable between 0.6 and 1.2 GPa, the situation at ambient pressure remains ambiguous. We discuss the aforementioned scenarios in the light of recent high-resolution thermal expansion and calorimetric measurements realized under high magnetic fields at ambient pressure.

  6. Ambient-pressure thermodynamic measurements on UGe2

    Science.gov (United States)

    Hardy, F.; Meingast, C.; von Loehneysen, H.; Flouquet, J.; Huxley, A.; Lashley, J.; Fisher, R. A.; Phillips, N. E.

    2008-03-01

    The pairing interaction leading to the formation of the Cooper pairs remains unidentified in the ferromagnetic superconductor UGe2. Nevertheless, there is strong experimental evidence that superconductivity is not mediated by the magnetic fluctuations that drive TCurie (p) to zero; it rather appears closely related to another phase boundary Tx (p) that occurs at lower pressure. Theoretical works suggested that this additional phase boundary could arise either from a coupling between SDW and CDW orderings or from a peak in the electronic density of states. Although the existence of this anomaly is experimentally incontestable between 0.6 and 1.2 GPa, the situation at ambient pressure remains ambiguous. We discuss the aforementioned scenarios in the light of recent high-resolution thermal expansion and calorimetric measurements realized under high magnetic fields at ambient pressure.

  7. Practical considerations for the rapid screening for pesticides using ambient pressure desorption ionisation with high-resolution mass spectrometry.

    Science.gov (United States)

    Edison, S E; Lin, L A; Parrales, L

    2011-10-01

    A rapid screening method for pesticides has been developed to streamline the processing of produce entering the United States. Foam swabs were used to recover multi-class mixtures of 240, 140, 132 and 60 pesticides from the surfaces of apples, kiwis, peaches and tomatoes. The mixtures were selected to span a large range of chemical classes, polarities, solubilities and sizes to provide a broad look at how this technique will perform for a variety of analytes. The swabs were analysed using direct analysis in real-time (DART) ionisation coupled with a high-resolution Exactive Orbitrap™ mass spectrometer. This study expands the types of commodities analysed using this method and explores the feasibility of compositing multiple units of produce per batch to analyse a representative sample. It was established that whilst smooth-skinned produce, such as apples, maintained a high detection rate for the pesticide mixtures even when ten apples are swabbed with one foam disk, commodities with rougher surfaces, such as peaches, suffered a decrease in detection rate when ten peaches are swabbed with one foam disk. In order to maintain some consistency across the sample preparation process, a composite size of three units was selected. The varying topography of the commodities necessitated minor modifications to the method; for example, analysis of kiwi required that the hair on the surface be shaved prior to swabbing to achieve good recovery. Additionally, the effect of storage conditions on detection rate was analysed by spiking the surface of tomatoes at levels of 5 and 10 ng g(-1) for each pesticide, storing them under refrigeration and ambient conditions for 3 and 8 days, and then analysing the surface using this method. After 8 days of storage under both conditions more than 80% of the pesticides in the mixture were detected. Also, analysis of the multi-class mixtures was performed in both positive- and negative-ion mode and many classes were detected in both modes

  8. A molecular dynamics study of ambient and high pressure phases of silica: Structure and enthalpy variation with molar volume

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S. Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J.

    2014-06-01

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume—for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  9. Phase formation in the (1-y)BiFeO3-yBiScO3 system under ambient and high pressure

    Science.gov (United States)

    Salak, A. N.; Khalyavin, D. D.; Pushkarev, A. V.; Radyush, Yu. V.; Olekhnovich, N. M.; Shilin, A. D.; Rubanik, V. V.

    2017-03-01

    Formation and thermal stability of perovskite phases in the BiFe1-yScyO3 system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO3) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO3-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi2O3. Single-phase perovskite ceramics of the BiFe1-yScyO3 composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2ap×√2ap×2√3ap superstructure (ap 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2ap×4ap×2√2ap) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6ap×√2ap×√6ap) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe1-yScyO3 phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively.

  10. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2010-01-01

    Local blood pressure measurements provide important information on the state of health of organs in the body and can be used to diagnose diseases in the heart, lungs, and kidneys. This paper presents an approach for investigating the ambient pressure sensitivity of a contrast agent using diagnostic.......94. The second measurement series at 485 kPa showed a sensitivity of 0.41 dB/kPa with a correlation coefficient of 0.89. Based on the measurements at 500 kPa, this acoustic driving pressure was concluded to be too high causing the bubbles to be destroyed. The pressure sensitivity for these two measurement series...... ultrasound. The experimental setup resembles a realistic clinical setup utilizing a single array transducer for transmit and receive. The ambient pressure sensitivity of SonoVue (Bracco, Milano, Italy) was measured twice using two different acoustic driving pressures, which were selected based...

  11. Equation of state in the generalized density scaling regime studied from ambient to ultra-high pressure conditions

    Science.gov (United States)

    Grzybowski, A.; Koperwas, K.; Paluch, M.

    2014-01-01

    In this paper, based on the effective intermolecular potential with well separated density and configuration contributions and the definition of the isothermal bulk modulus, we derive two similar equations of state dedicated to describe volumetric data of supercooled liquids studied in the extremely wide pressure range related to the density range, which is extremely wide in comparison with the experimental range reached so far in pressure-volume-temperature measurements of glass-forming liquids. Both the equations comply with the generalized density scaling law of molecular dynamics versus h(ρ)/T at different densities ρ and temperatures T, where the scaling exponent can be in general only a density function γ(ρ) = d ln h/d ln ρ as recently argued by the theory of isomorphs. We successfully verify these equations of state by using data obtained from molecular dynamics simulations of the Kob-Andersen binary Lennard-Jones liquid. As a very important result, we find that the one-parameter density function h(ρ) analytically formulated in the case of this prototypical model of supercooled liquid, which implies the one-parameter density function γ(ρ), is able to scale the structural relaxation times with the value of this function parameter determined by fitting the volumetric simulation data to the equations of state. We also show that these equations of state properly describe the pressure dependences of the isothermal bulk modulus and the configurational isothermal bulk modulus in the extremely wide pressure range investigated by the computer simulations. Moreover, we discuss the possible forms of the density functions h(ρ) and γ(ρ) for real glass formers, which are suggested to be different from those valid for the model of supercooled liquid based on the Lennard-Jones intermolecular potential.

  12. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Habbak, Enas L., E-mail: enas_habbak@yahoo.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Shabara, Reham M., E-mail: rehamph@hotmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Aly, Samy H., E-mail: samy.ha.aly@gmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Yehia, Sherif, E-mail: sherif542002@yahoo.com [Department of Physics, Faculty of Science, Helwan University, Cairo (Egypt)

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 µ{sub B} respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 µ{sub B} and 4 µ{sub B} respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch–Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  13. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Science.gov (United States)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  14. Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers

    Science.gov (United States)

    Trotochaud, Lena; Head, Ashley R.; Karslıoğlu, Osman; Kyhl, Line; Bluhm, Hendrik

    2017-02-01

    Over the past several decades, ambient pressure x-ray photoelectron spectroscopy (APXPS) has emerged as a powerful technique for in situ and operando investigations of chemical reactions under relevant ambient atmospheres far from ultra-high vacuum conditions. This review focuses on exemplary cases of APXPS experiments, giving special consideration to experimental techniques, challenges, and limitations specific to distinct condensed matter interfaces. We discuss APXPS experiments on solid/vapor interfaces, including the special case of 2D films of graphene and hexagonal boron nitride on metal substrates with intercalated gas molecules, liquid/vapor interfaces, and liquid/solid interfaces, which are a relatively new class of interfaces being probed by APXPS. We also provide a critical evaluation of the persistent limitations and challenges of APXPS, as well as the current experimental frontiers.

  15. CO oxidation on Pt(111) at near ambient pressures

    Energy Technology Data Exchange (ETDEWEB)

    Krick Calderón, S.; Grabau, M.; Kress, B.; Papp, C. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Óvári, L. [MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, 6720 Szeged (Hungary); Steinrück, H.-P. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Egerlandstr. 3, 91058 Erlangen (Germany)

    2016-01-28

    The oxidation of CO on Pt(111) was investigated simultaneously by near ambient pressure X-ray photoelectron spectroscopy and online gas analysis. Different CO:O{sub 2} reaction mixtures at total pressures of up to 1 mbar were used in continuous flow mode to obtain an understanding of the surface chemistry. By temperature-programmed and by isothermal measurements, the onset temperature of the reaction was determined for the different reactant mixtures. Highest turnover frequencies were found for the stoichiometric mixture. At elevated temperatures, the reaction becomes diffusion-limited in both temperature-programmed and isothermal measurements. In the highly active regime, no adsorbates were detected on the surface; it is therefore concluded that the catalyst surface is in a metallic state, within the detection limits of the experiment, under the applied conditions. Minor bulk impurities such as silicon were observed to influence the reaction up to total inhibition by formation of non-platinum oxides.

  16. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) Print ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  17. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  18. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  19. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  20. Photoelectron Spectroscopy under Ambient Pressure and Temperature Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ogletree, D. Frank; Bluhm, Hendrik; Hebenstreit, Eleonore B.; Salmeron, Miquel

    2009-02-27

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions or pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  1. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  2. High pressure technology 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, J.A.; Picqueuer, L.M. (eds.)

    1994-01-01

    This volume is divided into four sessions: fracture mechanics applications to high pressure vessels; high pressure code issues; high pressure design, analysis, and safety concerns; and military and other high pressure applications. Separate abstracts were prepared for eleven papers of this conference.

  3. [Research on Raman spectra of isooctane at ambient temperature and ambient pressure to 1. 2 GPa].

    Science.gov (United States)

    Zhang, Fei-fei; Zheng, Hai-fei

    2012-03-01

    The experimental study of the Raman spectral character for liquid isooctane (2,2,4-trimethylpentane, ATM) was con ducted by moissanite anvil cell at the pressure of 0-1.2 GPa and the ambient temperature. The results show that the Raman peaks of the C-H stretching vibration shift to higher frenquencies with increasing pressures. The relations between the system pressure and peaks positions is given as following: v2 873 = 0.002 8P+2 873.3; v2 905 = 0.004 8P+2 905.4; v2 935 = 0.002 7P+ 2 935.0; v2 960 = 0.012P+2 960.9. The Raman spectra of isooctane abruptly changed at the pressure about 1.0 GPa and the liquid-solid phase transition was observed by microscope. With the freezing pressure at ambient temperature and the melting temperature available at 1 atm, the authors got the liquid-solid phase diagram of isooctane. According to Clapeyron equation, the authors obtained the differences of volume and entropy for the liquid-solid phase transition of isooctane: deltaV(m) = 4.46 x 10(-6) m3 x mol-1 and deltaS = -30.32 J x K(-1) x mol(-1).

  4. Effect of gas pressure on ionization of ambient gas

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An Nd: YAG pulsed laser (145 mJ) was used to ablate aluminum target and Ar was used as protecting gas. Time-and space-resolved spectra of the plasmas under pressure 100 Pa, 1 kPa, 10 kPa and 100 kPa were acquired with time- and space-resolved technique. The characteristics of the plasma radiating under each pressure were briefly described, and the laws of Ar characteristical radiaton were analyzed in detail. Based on the profile of Ar characteristical radiation under these pressure, the relation between protecting gas pressure and its ionization was briefly discussed, and explained with quantum theory. Farther more, the mechanism of ambient gas ionization was investigated. As the result, it was suggested that the main mechanism inducing protecting gas to ionize should be the absorption of the plasma continuum radiation by the gas.

  5. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems

    Science.gov (United States)

    Park, S. K.; Kim, T. S.

    Design performances of the hybrid solid oxide fuel cell (SOFC)-gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

  6. Simulation of microbubble response to ambient pressure changes

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    The theory on microbubbles clearly indicates a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations...... of 4.6 dB is observed when changing pov from 0 to 25 kPa. Increasing the pulse duration makes the reduction even more clear. For a pulse with 64 cycles, the reduction is 9.9 dB. This simulation is in good correspondence with measurement results presented by Shi et al. 1999, who found a linear reduction...... of 9.6 dB. Further simulations of Levovist show that also the shape and the acoustic pressure of the driving pulse are very important factors. The best pressure sensitivity of Levovist was found to be 0.88 dB/kPa. For Sonazoid, a sensitivity of 0.71 dB/kPa has been found, although the reduction...

  7. Ambient pressure sensitivity of microbubbles investigated through a parameter study

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2009-01-01

    Measurements on microbubbles clearly indicate a relation between the ambient pressure and the acoustic behavior of the bubble. The purpose of this study was to optimize the sensitivity of ambient pressure measurements, using the subharmonic component, through microbubble response simulations...... cycles driving pulse, a reduction of 4.6 dB is observed when changing pov from 0 to 25 kPa. Increasing the pulse duration makes the reduction even more clear. For a pulse with 64 cycles, the reduction is 9.9 dB. This simulation is in good correspondence with measurement results presented by Shi et al....... 1999, who found a linear reduction of 9.6 dB. Further simulations of Levovist show that also the shape and the acoustic pressure of the driving pulse are very important factors. The best pressure sensitivity of Levovist was found to be 0.88 dB/kPa. For Sonazoid, a sensitivity of 1.14 dB/kPa has been...

  8. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  9. Treating High Blood Pressure

    Science.gov (United States)

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  10. High blood pressure - children

    Science.gov (United States)

    ... number is the diastolic pressure. This measures the pressure in the arteries when the heart is at rest. Blood pressure ... Medical Professional Call your child's provider if home monitoring shows that your child's blood pressure is still high. Prevention Your child's provider will ...

  11. Preparation and Characterization of Silica Aerogels Derived from Ambient Pressure

    Institute of Scientific and Technical Information of China (English)

    Jun SHEN; Zhihua ZHANG; Guangming WU; Bin ZHOU; Xingyuan NI; Jue WANG

    2006-01-01

    Silica aerogels were prepared by sol-gel technique from industrial silicon derivatives (polyethoxydisiloxanes, E40), followed by silylation and drying under ambient pressure. The specific surface area, pore size distribution and thermal conductivity of the silica aerogels were investigated and the results showed that the diameter of the silica particles is about 6 nm and the average pore size of the silica aerogels is 14.7 nm. The specific temperature and pressure of 1.01×105 Pa. The Si-CH3 groups were also detected on the internal surface of the silica aerogels, which show hydrophobic. Silica aerogels derived by this technique is low cost and have wide applications.

  12. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  13. Diffusion in the gas phase: the effects of ambient pressure and gas composition.

    Science.gov (United States)

    Paganelli, C V; Rahn, A A; Wangensteen, O D

    1975-12-01

    Gas transport across the pores of a hen's egg shell occurs by a process of diffusion in the gas phase and for any particular gas depends upon its diffusion coefficient and the pore geometry. The egg shell is thus a convenient model for measuring the diffusive permeability of the shell to a given gas species when its diffusion coefficient is altered by either a change in ambient pressure or by changing the second gas in the diffusion pathway. In this study the permeability of the shell to water vapor and O2 was inversely proportional to ambient pressures over the range of .06 to 8 atmospheres' absolute (ata). The permeability of the shell to water vapor in a He environment (KH20, He) was 2.4 times KH20, air. If KO2, N2 is taken as unity, the permeabilities of the shell to O2 in He, Ar, CO2 and SF6 are 3.38, 0.95, 0.88, and 0.52, respectively. The results are interpreted in terms of the Chapman-Enskog equation, from which binary diffusion coefficients can be predicted for given gas pairs and ambient pressures. These results also provide explantations for the structural modification of egg shells in altitude-adapted chickens, and for the reduced insensible water loss in man at high ambient pressure.

  14. High-Pressure Vibrational Spectroscopy.

    Science.gov (United States)

    Pogson, Mark

    1987-09-01

    both low temperature as well as high pressure, and the other only at high pressure, the latter again associated with the stopping of methyl rotation. The iodide displays two high pressure transitions. A Raman -active soft-mode has been observed in all three analogues, at both high pressure and variable temperature. For the chloride and bromide analogues there is a discussion of the nature of the soft-mode along with the mechanism associated with the I/II transition. The results of the X-ray crystal structure determination of CH_3HgBr at ambient temperature and pressure are given.

  15. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    Science.gov (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  16. High Blood Pressure Facts

    Science.gov (United States)

    ... More black women than men have high blood pressure. 2 Race of Ethnic Group Men (%) Women (%) African Americans 43.0 45.7 Mexican Americans 27.8 28.9 Whites 33.9 31.3 All 34.1 32.7 Top of Page Why Blood Pressure Matters View this graphic snapshot of blood pressure ...

  17. Pressure cycle rheology of nanofluids at ambient temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza; Yrac, Rommel; Amani, Mahmood

    2015-11-01

    Colloidal suspensions of particles dispersed in a base fluid (or drilling fluid) are commonly used in oil industry to aid the drilling of oil well into the ground. Nanofluids, the colloidal suspensions of nano-sized particles dispersed in a basefluid, have also shown potentials as cooling and abrasive fluids. Utilizing them along with drilling fluids under cyclic high-pressure loadings have not been investigated so far. In the present work, rheological characteristics of silicon oil based nanofluids (prepared with alumina nanoparticles) under pressures up to 1000 bar are investigated using a high-pressure viscometer. The rheological characteristics of nanofluids are measured and are compared with that of the basefluid under increasing and decreasing pressures. Relative viscosity variations of nanofluids were observed to have influenced by the shear rate. In addition, under cyclic high-pressure loading viscosity values of nanofluids are observed to have reduced. This reduction in viscosity at the second pressure cycle could have been caused by the de-agglomeration of particles in the first cycle while working a high-pressure and high-shear condition.

  18. Bridging the pressure gap: Can we get local quantitative structural information at 'near-ambient' pressures?

    Science.gov (United States)

    Woodruff, D. P.

    2016-10-01

    In recent years there have been an increasing number of investigations aimed at 'bridging the pressure gap' between UHV surface science experiments on well-characterised single crystal surfaces and the much higher (ambient and above) pressures relevant to practical catalyst applications. By applying existing photon-in/photon-out methods and developing instrumentation to allow photoelectron emission to be measured in higher-pressure sample environments, it has proved possible to obtain surface compositions and spectroscopic fingerprinting of chemical and molecular states of adsorbed species at pressures up to a few millibars. None of these methods, however, provide quantitative structural information on the local adsorption sites of isolated atomic and molecular adsorbate species under these higher-pressure reaction conditions. Methods for gaining this information are reviewed and evaluated.

  19. Effect of ambient nitrogen pressure on the formation and spatio-temporal behaviour of C2 and CN

    Indian Academy of Sciences (India)

    Archana Kushwaha; R K Thareja

    2010-12-01

    We report the effect of ambient gas on the formation as well as propagation behaviour of ablated species C2 and CN within the carbon plasma created by focussing a high-power Nd:YAG ( = 1064 nm) laser onto the rotating graphite target in the nitrogen ambient. The formation of C2 takes place earlier as well as nearer the target compared to that of CN which forms later and far from the target, in 1.2 mbar pressure of N2 gas. Peak arrival time vs. nitrogen gas pressure plot shows a shock wave-like dependence ∝ in the pressure range 1.2–120 mbar (collisional regime) which indicates plume confinement with increases in ambient pressure. At higher pressure, thermalization takes place.

  20. High blood pressure - infants

    Science.gov (United States)

    ... Certain tumors Inherited conditions (problems that run in families) Thyroid problems Blood pressure rises as the baby grows. The average blood ... vomiting constantly Prevention Some causes of high blood pressure run in families. Talk to your provider before you get pregnant ...

  1. Preventing High Blood Pressure

    Science.gov (United States)

    ... Web Sites Division for Heart Disease and Stroke Prevention Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share Compartir By living a healthy lifestyle, you can help keep your blood pressure in ...

  2. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... already been diagnosed with high blood pressure. Try yoga and meditation. Yoga and meditation not only can strengthen your body ... Accessed Sept. 21, 2015. Hu B, et al. Effects of psychological stress on hypertension in middle-aged ...

  3. The relation between composition in laser absorption region and ambient pressure

    Institute of Scientific and Technical Information of China (English)

    Yang Bo; Zhu Jin-Rong; Yang Yan-Nan; Shen Zhong-Hua; Lu Jian; Ni Xiao-Wu

    2008-01-01

    In this paper,the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling.When the ambient pressure varies from 9325 to 33325Pa,the compositions are vapour and plasma;while from 35325 to 101325Pa,they are ambient air and plasma.By analysing the relation between the degree of compression and the ambient pressure,the compositions can be determined and the variation of plasma can be explained.

  4. Ambient Pressure Synthesis of Nanostructured Tungsten Oxide Crystalline Films

    Directory of Open Access Journals (Sweden)

    H. X. Zhang

    2008-01-01

    Full Text Available We report the results of the ambient pressure synthesis of tungsten oxide nanowires and nanoparticles on AlN substrates using the hot filament CVD techniques. The morphologic surface, crystallographic structures, chemical compositions, and bond structures of the obtained samples have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, and Raman scattering, respectively. Different morphologies were observed for different substrate temperatures, but otherwise identical growth conditions. The experimental measurements reveal the evolutions of the crystalline states and bond structures following the substrate temperatures. Besides, different substrate materials also affected the tungsten oxide nanostructures. Bundles of wire-type tungsten oxide nanowires with a length of up to 5 mm were obtained on Al2O3 substrate. Furthermore, the sensitive properties of the super long nanowires to the gas and different temperature were investigated. The dependence of the sensitivity of tungsten oxide nanowires to the methane as a function of the time was obtained. The sensitive properties of the tungsten oxide nanowires have almost linear relationship with the temperature.

  5. Bicellar mixture phase behavior examined by variable-pressure deuterium NMR and ambient pressure DSC.

    Science.gov (United States)

    Uddin, Md Nasir; Morrow, Michael R

    2010-07-20

    Variable-pressure deuterium nuclear magnetic resonance ((2)H NMR) has been used to study the pressure-temperature phase diagram of bicellar mixtures containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). Spectra were obtained for DMPC-d(54)/DHPC (3:1), DMPC-d(54)/DHPC (4.4:1), DMPC/DHPC-d(22) (3:1), and DMPC/DHPC-d(22) (4.4:1) in the range 10-68 degrees C at ambient pressure, 66 MPa, 102 MPa, and 135 MPa. Isotropic-to-nematic and nematic-to-lamellar transition temperatures were found to rise with pressure at approximately 0.15 and approximately 0.14 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (3:1) and at at approximately 0.19 and approximately 0.18 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (4.4:1). Pressure had little effect on the range of DMPC-d(54) chain orientational order through the nematic phase temperature range, but the behavior of chain orientational order at the nematic-to-lamellar transition was found to vary slightly with pressure. Comparison of differential scanning calorimetry (DSC) observations with ambient-pressure (2)H NMR observations of DMPC-d(54) in the bicellar mixtures suggests that absorption of heat persists for a few degrees above the onset of axially symmetric DMPC-d(54) reorientation.

  6. Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure.

    Science.gov (United States)

    Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming

    2011-04-01

    Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5-15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter--increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed.

  7. Prevention of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  8. High Blood Pressure Fact Sheet

    Science.gov (United States)

    ... High Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN High Blood Pressure Fact Sheet Language: English Español (Spanish) Recommend on ... time. High blood pressure is also called hypertension. High Blood Pressure in the United States Having high blood pressure ...

  9. Ambient-Pressure X-ray Photoelectron Spectroscopy through Electron Transparent Graphene Membranes

    CERN Document Server

    Kraus, Jurgen; Gunther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using sophisticated and expensive electron energy analyzers coupled with differentially pumped electron lenses. An alternative economical approach proposed in this report uses ultrathin graphene membranes to isolate the ambient sample environment from the PES detection system. We demonstrate that the graphene membrane separating windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow PES of liquid and gaseous water. The reported proof-of-principle experiments also open a principal possibility to probe vacuum-incompatible toxic or reactive samples enclosed inside the hermetic environmental cells.

  10. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Science.gov (United States)

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution. PMID:22163984

  11. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Ichiro Yamada

    2011-06-01

    Full Text Available This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution.

  12. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  13. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  14. MD studies of electron transfer at ambient and elevated pressures

    Science.gov (United States)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  15. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    Science.gov (United States)

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Blood Pressure » Diagnosis of High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical ...

  17. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  18. Living with High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  19. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing

  20. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing engin

  1. Ethylene reduces plant gas exchange and growth of lettuce grown from seed to harvest under hypobaric and ambient total pressure.

    Science.gov (United States)

    He, Chuanjiu; Davies, Fred T

    2012-03-01

    Naturally occurring high levels of ethylene can be a problem in spaceflight and controlled environment agriculture (CEA) leading to sterility and irregular plant growth. There are engineering and safety advantages of growing plants under hypobaria (low pressure) for space habitation. The goals of this research were to successfully grow lettuce (Lactuca sativa cv. Buttercrunch) in a long-term study from seed to harvest under hypobaric conditions, and to investigate how endogenously produced ethylene affects gas exchange and plant growth from seed germination to harvest under hypobaric and ambient total pressure conditions. Lettuce was grown under two levels of total gas pressure [hypobaric or ambient (25 or 101 kPa)] in a long-term, 32-day study. Significant levels of endogenous ethylene occurred by day-15 causing reductions in photosynthesis, dark-period respiration, and a subsequent decrease in plant growth. Hypobaria did not mitigate the adverse ethylene effects on plant growth. Seed germination was not adversely affected by hypobaria, but was reduced by hypoxia (6 kPa pO(2)). Under hypoxia, seed germination was higher under hypobaria than ambient total pressure. This research shows that lettuce can be grown from seed to harvest under hypobaria (≅25% of normal earth ambient total pressure). Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living ... Confirming High Blood Pressure A blood pressure test is easy and painless and can be done in ...

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming ... minutes before the test. To track blood pressure readings over a period of time, the health care ...

  4. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  5. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    Science.gov (United States)

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  6. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    Science.gov (United States)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  7. Chromium at High Pressure

    Science.gov (United States)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  8. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments.

    Science.gov (United States)

    Murakami, Chiho; Ohmae, Eiji; Tate, Shin-ichi; Gekko, Kunihiko; Nakasone, Kaoru; Kato, Chiaki

    2011-03-01

    To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74-90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K(m) and k(cat); although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k(cat)/K(m)) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

  9. Effect of ambient gas pressure on pulsed laser ablation plume dynamics and ZnTe film growth

    Energy Technology Data Exchange (ETDEWEB)

    Rouleau, C.M.; Lowndes, D.H.; Geohegan, D.B.; Allard, L.F. [Oak Ridge National Lab., TN (United States); Strauss, M.A.; Cao, S.; Pedraza, A.J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Puretzky, A.A. [Inst. of Spectroscopy, Troitsk (Russian Federation)

    1995-12-01

    Epitaxial thin films of nitrogen-doped p-ZnTe were grown on single-crystal, semi-insulating Ga-As substrates via pulsed laser ablation of a stoichiometric ZnTe target. Both low pressure nitrogen ambients and high vacuum were used. Results of in situ reflection high energy electron diffraction (RHEED) and time-resolved ion probe measurements have been compared with ex situ Hall effect and transmission electron microscopy (TEM) measurements. A strong correlation was observed between the nature of the film`s surface during growth (2-D vs. 3-D, assessed via RHEED) and the ambient gas pressures employed during deposition. The extended defect content (assessed via cross-sectional TEM) in the region >150 mn from the film/substrate interface was found to increase with the ambient gas pressure during deposition, which could not be explained by lattice mismatch alone. At sufficiently high pressures, misoriented, columnar grains developed which were not only consistent with the RHEED observations but also were correlated with a marked decrease in Hall mobility and a slight decrease in hole concentration. Ion probe measurements, which monitored the attenuation and slowing of the ion current arriving at the substrate surface, indicated that for increasing nitrogen pressure the fast (vacuum) velocity distribution splits into a distinct fast and two collisionally-slowed components or modes. Gas controlled variations in these components mirrored trends in electrical properties and microstructural measurements.

  10. The discharge of fine silica sand in a silo under different ambient air pressures

    Science.gov (United States)

    Hsiau, Shu-San; Liao, Chun-Chung; Lee, Jie-Hsien

    2012-04-01

    Silos are widely used for the industrial scale handling and transportation of powdered and granular materials. The process of discharging powder in a silo involves the flow of both solid particles and an interstitial fluid, usually air. In this study, we experimentally investigate the effects of particle size and ambient pressure on the discharge process in open- and closed-top silos. The discharge rate, pressure drop, and pressure recovery rate are measured and discussed. The results show that the particle size, the diameter of the orifice, and the ambient pressure significantly influence the process of discharge. The effect of air flow is stronger on fine-powdered flow in a closed-top silo. The results indicate that the effects of air flow could be reduced by lowering the ambient pressure. In addition, a normalized critical pressure can be defined beyond which the discharge rate increases dramatically. With reduced ambient pressure, this normalized critical pressure decreases with increasing particle size. Finally, the experimental results are compared with results calculated using the Beverloo equation and Darcy's law.

  11. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...... have indicated that the amplitude of the subharmonic response from contrast agents is sensitive to the ambient pressure. This paper presents results from a new experimental setup for measuring the subharmonic response of a contrast agent when subjected to ambient over pressure. The setup is very...... flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen...

  12. High Blood Pressure

    Science.gov (United States)

    ... mmHg People read "118 over 76" millimeters of mercury. Normal Blood Pressure Normal blood pressure for adults ... health. Share your story with other women on Facebook . The Heart Truth campaign offers a variety of ...

  13. High Blood Pressure Increasing Worldwide

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162977.html High Blood Pressure Increasing Worldwide And health risks may appear even ... of people around the world with elevated or high blood pressure increases, so do the number of deaths linked ...

  14. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  15. What Causes High Blood Pressure?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  18. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  19. Diagnosis of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  20. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  1. High pressure multiaxial extensometry

    Science.gov (United States)

    Kurath, Peter

    1987-01-01

    The development of a multiple degree-of-freedom extensometer to measure axial, torsional, and diametrical strains on a tubular laboratory fatigue specimen is described. It is found that the overall accuracy of the extensometer is limited by cross talk due to torsional displacements in an ambient environment. If only axial and diametrical deformation occur, error induced by cross talk is less than + or - 0.5 percent.

  2. ambiental

    Directory of Open Access Journals (Sweden)

    Roque Leal Salcedo

    2008-01-01

    Full Text Available El derecho internacional ambiental es un conocimiento de carácter transversal, que entre otras consideraciones refleja las preocupaciones de la sociedad por la implementación de un modelo de desarrollo sustentable para el respeto a las reglas del medio natural que garantizan la integridad y renovación de los sistemas naturales. El presente artículo enfoca esta visión a través del análisis de material documental revisado, entre ellos tratados internacionales que permiten distinguir el desarrollo del derecho internacional ambiental y el papel de Organización de las Naciones Unidas (ONU, en el propósito común del derecho individual y colectivo de disfrutar de una vida, un ambiente seguro, sano y ecológicamente equilibrado. En función a estas disertaciones las consideraciones finales exponen parte de la visión que ha estructurado la ONU y que representan un aporte considerable en el fomento de la conciencia mundial sobre la necesidad de establecer vínculos entre las naciones para el continuo desarrollo de esta rama del derecho.

  3. Coesite Formation at Ambient Pressure and Low Temperatures

    Directory of Open Access Journals (Sweden)

    J. R. Martínez

    2008-01-01

    Full Text Available Partial crystallization of silica xerogel in the form of coesite has been obtained at low-pressure conditions and temperatures of ∼565∘C, in samples containing chlorophyll aggregates dispersed in amorphous silica. Silica xerogel samples were prepared by the sol-gel method using an ethanol:H2O:TEOS molar ratio of 4:11.6:1 and loaded with extracts from frozen spinach leaves. The silica xerogel microstructure of the powders was studied as a function of annealing temperature. It was found that partial crystallization of the glass matrix in the form of coestite was obtained at lower pressure than those specified by the phase diagram. Chlorophyll aggregates were added to the starting solutions which, upon thermal treatments, form small colloidal particles in the glass matrix. The presence of coesite is corroborated by the Rietveld refinement method.

  4. Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    YUAN Lei; CHANG Lijuan; FU Zhibing; YANG Xi; JIAO Xingli; TANG Yongjian; LIU Xichuan; WANG Chaoyang

    2015-01-01

    Carbon aerogels were synthesized via ambient pressure drying process using resorcinol-formaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 mA/cm2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950℃and 4 h, respectively.

  5. Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway.

    Science.gov (United States)

    Jeremias, Felix; Henninger, Stefan K; Janiak, Christoph

    2016-05-17

    Micro- to mesoporous iron(iii) trimesate MIL-100(Fe) is a MOF of high interest for numerous applications. With regard to large-scale synthesis, e.g., by continuous flow or the in situ deposition of coatings, a replacement for the conventional, hydrothermal low-yield fluoride-containing synthesis is desirable. In this contribution, we present a method to synthesize crystalline fluoride-free MIL-100(Fe) from iron(iii) nitrate and trimesic acid in zeotropic DMSO/water solution at normal ambient pressure involving a DMSO-nitrate redox pathway. Yields of 72%, surface areas of SBET = 1791 m(2) g(-1) and pore volumes of Vpore = 0.82 cm(3) g(-1) were achieved.

  6. [Ambient pressure synthesis and characterization of silica aerogel as adsorbent for dieldrin].

    Science.gov (United States)

    Sha, Wei; Liu, Rui-ping; Liu, Hui-juan; Qu, Jiu-hui

    2008-12-01

    Hydrophobic silica aerogels were prepared from cheap waterglass precursors via surface modification of wet gels and ambient pressure drying route. Its adsorption capacity of Dieldrin, a typical of persistent organic pollutants (POPs), was examined. It is characterized via BET, FTIR, and DSC-TGA. The silica aerogels were highly hydrophobic with contact angles of 135 degrees-142 degrees, and the hydrophobicity of the aerogels could be maintained up to the temperature of 380 degrees C. The silica aerogels were porous with, pore size distribution of 17.5-23.4 nm, porosity of 94.8%-95.6%, and surface area of 444-560 m2 x g(-1). The results of adsorption experiments indicated that the hydrophobic aerogels could remove 84% of dieldrin from aqueous solution within 4 h; the adsorption process followed the pseudo-second-order kinetics process. Based on the adsorption equilibrium results, the adsorption capacity of silica aerogel was 11 times bigger than by active carbon.

  7. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  8. High-pressure neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  9. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... of Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & ... blood pressure is due to other conditions or medicines or if you have primary high blood pressure. ...

  11. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to keep a written log of all your results. Whenever you have an appointment with the health ... appointments to diagnose high blood pressure. Using the results of your blood pressure test, your health care ...

  12. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  13. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  15. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  18. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  19. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  20. Effect of ambient oxygen pressure on structural, optical and electrical properties of SnO2 thin films

    Institute of Scientific and Technical Information of China (English)

    ZHAO Songqing; ZHOU Yueliang; WANG Shufang; ZHAO Kun; HAN Peng

    2006-01-01

    Polycrystalline SnO2 thin films were deposited on sapphire substrates at 450℃ under different ambient oxygen pressures by pulsed laser deposition technique. The effect of ambient oxygen pressure on the structural, optical and electrical properties of SnO2 thin films was studied. X-ray diffraction and Hall measurements show that increasing the ambient oxygen pressure can improve crystallization of the films and decrease resistivity of the films. A violet emission peak centered at 409 nm was observed from photoluminescence measurements for SnO2 films under deposition ambient oxygen pressure above 5 Pa, which is related to the improvement of crystalline of the films.

  1. Structural behaviour of niobium oxynitride under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bharat Bhooshan, E-mail: bbs86phy@gmail.com; Poswal, H. K., E-mail: bbs86phy@gmail.com; Pandey, K. K., E-mail: bbs86phy@gmail.com; Sharma, Surinder M., E-mail: bbs86phy@gmail.com [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Yakhmi, J. V. [Homi Bhabha National Institute, Mumbai - 400094 (India); Ohashi, Y.; Kikkawa, S. [Faculty of Engineering, Hokkaido University, N13W8, Sapporo 080-8628 (Japan)

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  2. High Blood Pressure

    Science.gov (United States)

    ... giving Gift and estate planning Circle of Champions Corporate sponsorship Join us at an event The Hope ... blood pressure is the #2 cause of kidney failure. It accounts for about one-fourth of all ...

  3. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... possible. Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity ... you monitor your blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow ...

  4. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  5. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  6. Investigation of nanomechanical oscillators based on amorphous carbon whiskers in vacuum and at ambient pressure

    Science.gov (United States)

    Lukashenko, S.; Mukhin, I.; Veniaminov, A.; Sapozhnikov, I.; Mozharov, A.; Kupriyanov, D.; Golubok, A.

    2016-11-01

    Nanomechanical oscillators (NMO) on the base of amorphous C nanowhiskers, localized on the tops of W needles have been created and studied. Trajectories of resonant oscillations were visualized using a scanning electron microscope and a confocal laser scanning microscope. Resonant frequencies and the quality factor of NMO were determined at low pressure and in air. Reduction of the nanomechanical oscillators quality factor after the transition from vacuum condition to ambient pressure was not observed.

  7. Processing of subharmonic signals from ultrasound contrast agents to determine ambient pressures.

    Science.gov (United States)

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Forsberg, Flemming

    2012-04-01

    Subharmonic-aided pressure estimation (SHAPE) is a technique that utilizes the subharmonic emissions, occurring at half the insonation frequency, from ultrasound contrast agents to estimate ambient pressures. The purpose of this work was to compare the performance of different processing techniques for the raw radiofrequency (rf) data acquired for SHAPE. A closed loop flow system was implemented circulating reconstituted Sonazoid (GE Healthcare, Oslo, Norway; 0.2 ml for 750 ml diluent) and the beam-formed unprocessed rf data were obtained from a 4 mm diameter lumen of a Doppler flow phantom (ATS Laboratories, Inc., Bridgeport, CT) using a SonixRP scanner (Ultrasonix, Richmond, BC, Canada). The transmit frequency and incident acoustic pressures were set to 2.5 MHz and 0.22 MPa, respectively, in order to elicit Sonazoid subharmonic emissions that are ambient-pressure sensitive. The time-varying ambient pressures within the flow phantom were recorded by a Millar pressure catheter. Four techniques for extracting the subharmonic amplitude from the rf data were tested along with two noise filtering techniques to process this data. Five filter orders were tested for the noise removing filters. The performance was evaluated based on the least root-mean-square errors reported after linear least-square regression analyses of the subharmonic data and the pressure catheter data and compared using a repeated ANOVA. When the subharmonic amplitudes were extracted as the mean value within a 0.2 MHz bandwidth about 1.25 MHz and when the resulting temporally-varying subharmonic signal was median filtered with an order of 500, the filtered subharmonic signal significantly predicted the ambient pressures (r2 = 0.90; p subharmonic data extracted as the mean value within a 0.2 MHz bandwidth about the theoretical subharmonic frequency turned out to be the best technique to process acoustic data for SHAPE. The implementation of this technique on ultrasound scanners may permit real

  8. High Blood Pressure and Women

    Science.gov (United States)

    ... blood pressure during a previous pregnancy, have a family history of high blood pressure or mild kidney disease. The combination of birth ... Print (PDF) | Online How to Measure Your Blood Pressure (PDF) Questions To Ask ... FREE digital-only, quarterly magazine for patients, families, and caregivers, which focuses on the prevention and ...

  9. Ambient-pressure specific heat of single-crystal UGe2

    Science.gov (United States)

    Lashley, J. C.; Fisher, R. A.; Flouquet, J.; Hardy, F.; Huxley, A.; Phillips, N. E.

    2006-05-01

    Measurements of the specific heat of UGe2 at ambient pressure show a feature in the 18-23 K region that is suggestive of a CDW transition. The magnetic field dependence of the specific heat shows the presence of structure in the electron density of states and an unusual nature of the ferromagnetic ordering at the Curie temperature.

  10. Ambient-pressure specific heat of single-crystal UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, J.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fisher, R.A. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Flouquet, J. [Departement de la Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble Cedex 9 (France); Hardy, F. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Huxley, A. [Departement de la Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble Cedex 9 (France); Phillips, N.E. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)]. E-mail: nephill@cchem.berkeley.edu

    2006-05-01

    Measurements of the specific heat of UGe{sub 2} at ambient pressure show a feature in the 18-23K region that is suggestive of a CDW transition. The magnetic field dependence of the specific heat shows the presence of structure in the electron density of states and an unusual nature of the ferromagnetic ordering at the Curie temperature.

  11. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  12. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Oct 31,2016 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  13. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    Science.gov (United States)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  14. Polymorphism of a polymer precursor: metastable glycolide polymorph recovered via large scale high-pressure experiments

    DEFF Research Database (Denmark)

    Hutchison, Ian B.; Delori, Amit; Wang, Xiao;

    2015-01-01

    Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure.......Using a large volume high-pressure press a new polymorph of an important precursor for biomedical polymers was isolated in gram quantities and used to seed crystallisation experiments at ambient pressure....

  15. Air Entrainment in Dynamic Wetting: Knudsen Effects and the Influence of Ambient Air Pressure

    CERN Document Server

    Sprittles, James E

    2015-01-01

    Recent experiments on coating flows and liquid drop impact both demonstrate that wetting failures caused by air entrainment can be suppressed by reducing the ambient gas pressure. Here, it is shown that non-equilibrium effects in the gas can account for this behaviour, with ambient pressure reductions increasing the gas' mean free path and hence the Knudsen number $Kn$. These effects first manifest themselves through Maxwell slip at the gas' boundaries so that for sufficiently small $Kn$ they can be incorporated into a continuum model for dynamic wetting flows. The resulting mathematical model contains flow structures on the nano-, micro- and milli-metre scales and is implemented into a computational platform developed specifically for such multiscale phenomena. The coating flow geometry is used to show that for a fixed gas-liquid-solid system (a) the increased Maxwell slip at reduced pressures can substantially delay air entrainment, i.e. increase the `maximum speed of wetting', (b) unbounded maximum speeds ...

  16. Effects of ambient pressure on the subharmonic response from encapsulated microbubbles

    CERN Document Server

    Mobadersany, Nima; Sarkar, Kausik

    2015-01-01

    Subharmonic response from contrast microbubbles as a function of ambient overpressure is numerically investigated for subharmonic aided noninvasive estimation of local organ level blood pressure. Three different interfacial rheological models for the encapsulation is used with material parameters appropriate for a common lipid coated contrast agent Sonazoid. The subharmonic response is seen to either decrease, increase or vary nonmonotonically with increasing ambient pressure. Compared to a free microbubbles important differences arise due to the encapsulation. Specifically due to the enhanced damping due to encapsulation, the range of excitation over which subharmonic is seen is broader than that in free microbubbles. This results in different trends of subharmonic response at the same excitation frequency for different excitation pressures. The observed behaviors are explained by investigating subharmonic generation threshold and resonance frequency.

  17. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dakang; Munday, Jeremy N., E-mail: jnmunday@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Garrett, Joseph L. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-03-02

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  18. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:Dec 9,2016 Knowing the facts ... health. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  19. High-pressure Raman study of Terephthalonitrile

    Science.gov (United States)

    Li, DongFei; Zhang, KeWei; Song, MingXing; Zhai, NaiCui; Sun, ChengLin; Li, HaiBo

    2017-02-01

    The in situ high-pressure Raman spectra of Terephthalonitrile (TPN) have been investigated from ambient to 12.6 GPa at room temperature. All the fundamental vibrational modes of TPN at ambient were assigned based on the first-principle calculations. A detailed Raman spectroscopy analysis revealed that TPN underwent a phase transition at 5.3 GPa. The frequencies of the TPN Raman peaks increase with increasing the pressure which can be attributed to the reduction in the interatomic distances and the escalation of effective force constants. The intensity of the C-C-C ring-out-plane deformation mode increases gradually as the frequency remains almost constant during the compression which can be explained by the existence of π-π interactions in TPN molecules. Additionally, the pressure-induced structural changes of TPN on the Fermi resonance between the C ≡ N out-of-plane vibration mode and the C - CN out-of-plane vibration mode have been analyzed.

  20. Stroke and High Blood Pressure

    Science.gov (United States)

    ... More How High Blood Pressure Can Lead to Stroke Updated:Dec 2,2016 Stroke and high blood ... Changes That Matter • Find Tools & Resources Show Your Stroke Support! Show your stroke support with our new ...

  1. Nanomaterials under high-pressure.

    Science.gov (United States)

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  2. Evidence of Tetragonal Nanodomains in the high pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Ehm, L.; Borkowski, L.A.; Parise J.B.; Ghose, S.; Chen, Z.

    2010-12-17

    The pressure induced P4mm {yields} Pm{bar 3}m phase transition in BaTiO{sub 3} perovskite was investigated by x-ray total scattering. The evolution of the structure was analyzed by fitting pair distribution functions over a pressure range from ambient pressure up to 6.85(7) GPa. Evidence for the existence of tetragonal ferroelectric nanodomains at high pressure was found. The average size of the nanodomains in the high-pressure phase decreases with increasing pressure. Extrapolation of the domain size to pressures higher than studied experimentally suggests a disappearance of the ferroelectric domains at about 9.3(5) GPa and a cubic symmetry of BaTiO{sub 3} high-pressure phase.

  3. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  4. Effect of ambient pressure and radiation reabsorption of atmosphere on the flame spreading over thermally thin combustibles in microgravity

    Institute of Scientific and Technical Information of China (English)

    杜文峰; 胡文瑞

    2003-01-01

    For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere of O2-N2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere of O2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.

  5. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  6. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  7. Raman Spectroscopy at High Pressures

    Directory of Open Access Journals (Sweden)

    Alexander F. Goncharov

    2012-01-01

    Full Text Available Raman spectroscopy is one of the most informative probes for studies of material properties under extreme conditions of high pressure. The Raman techniques have become more versatile over the last decades as a new generation of optical filters and multichannel detectors become available. Here, recent progress in the Raman techniques for high-pressure research and its applications in numerous scientific disciplines including physics and chemistry of materials under extremes, earth and planetary science, new materials synthesis, and high-pressure metrology will be discussed.

  8. Spatial coherences of the sound pressure and the particle velocity in underwater ambient noise

    Institute of Scientific and Technical Information of China (English)

    YAN Jin; LUO Xianzhi; HOU Chaohuan

    2007-01-01

    The spatial coherences were investigated between the sound pressure and the three orthogonal components of the particle velocity in underwater ambient noise. Based on the ray theory, integral expression was derived for the spatial coherence matrix of the sound pressure and the particle velocity in a stratified ocean with dipole noise sources homogenously distributed on the surface. The integrand includes a multiplying factor of the vertical directivity of the noise intensity, and the layered ocean environment affects the spatial coherences via this directivity factor. For a shallow water environment and a semi-infinite homogenous medium, the coherence calculation results were given. It was showed that the sound speed profile and the sea bottom could not be neglected in determining the spatial coherences of the ambient noise vector field.

  9. Steam Oxidation at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  10. High Blood Pressure Prevention

    Science.gov (United States)

    ... or "no added salt." Look for the sodium content in milligrams and the Percent Daily Value. Aim for foods that are less than 5 percent of the Daily Value of sodium. Foods with 20 percent or more Daily Value of sodium are considered high. To learn more about reading nutrition labels, see ...

  11. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... over the years led to verification of the important role of high blood pressure—especially in concert with ... is specific for that person will be an important key to improving prevention, ... an international team of investigators, funded in part by the NIH, ...

  12. Technology qualification of an ambient pressure subsea cryogenic pipeline for offshore LNG loading and receiving terminals

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal; Viteri, Martha; D' Angelo, Luis [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Prescott, Neal; Zhang, Jeff [Fluor Corporation, Irving, TX (Brazil)

    2009-07-01

    A project that deploys new technologies need to be confident that the technology can be implemented successfully and will perform reliably as designed. New technology is critical to industry, especially where such technology is a project enable without the existence of a backup solution, but also for projects where such technologies bring potential benefits such as technical, economic, schedule, and environmental improvements. DNV developed and has been implementing for many years a systematic, risk based technology qualification process as described in DNV RP-A203, qualification procedures for new technology. One of the major objectives of a formal technology qualification process is to ensure that risks are properly addressed. The DNV process includes several levels of technology qualification and review, starting with a statement of feasibility and concluding with a Certificate of Fitness for Service. Fluor Corporation (Fluor) has developed a new subsea cryogenic pipe-in-pipe configuration for offshore LNG loading and receiving terminals. The configuration uses a highly efficient thermal nano-porous insulation in the annular space between the inner and outer pipes. This material is kept in an ambient pressure environment, which is produced through sealing by metal bulkheads. The bulkheads transfer the contraction induced axial compression load on the inner cryogenic carrier pipe to the external jacket pipe. The resulting pipeline bundle is a structural element, which addresses the thermal contraction and expansion loads without the use of expansion bellows or ultra-low thermal contraction alloys. Fluor has followed the DNV technology qualification process to achieve the defined milestones therein which culminated in DNV issuing a certificate of fitness for service. Particular focus was put on the new aspects of the design. The certificate of fitness for service for the Fluor subsea LNG pipe technology provides project management with the confidence that this

  13. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High ... also may ask you to check readings at home or at other locations that have blood pressure ...

  15. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. ... The Heart Truth ® —a national heart disease awareness campaign for ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to check readings at home or at other locations that have blood pressure equipment and to keep ... office compared with readings taken in any other location. Health care providers diagnose this type of high ...

  18. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ... Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: ...

  19. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High Blood Pressure » ...

  20. Response of Microscopic Bubbles to Sudden Decrease of Ambient Pressure in Viscous Compressible Liquid

    Institute of Scientific and Technical Information of China (English)

    A. P. Szumowski; J. Piechna

    2001-01-01

    A shock tube is used to investigate the bubble dynamics under sudden decrease of ambient pressure. Both the oscillating and monotonously growing bubbles were simultaneously observed. Theoretical approach is based on Considering the linear approximation of these equations for the quasiequilibrium state, two critical Weber numbers are defined. They enable one to predict the following modes of the bubble expansion: (i) unbounded growth, (ii) asymptotic growth to limited volume and (iii) attenuated oscillations, depending on the pressure force,viscosity and compressibility of the liquid.

  1. Stream ambient noise, spectrum and propagation of sounds in the goby Padogobius martensii: sound pressure and particle velocity.

    Science.gov (United States)

    Lugli, Marco; Fine, Michael L

    2007-11-01

    The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.

  2. High pressure rinsing parameters measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, E. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Fusetti, M. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Michelato, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Pagani, C. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)]. E-mail: carlo.pagani@mi.infn.it; Pierini, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Paulon, R. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Sertore, D. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)

    2006-07-15

    High pressure rinsing with ultra pure water jet is an essential step in the high field superconducting cavity production process. In this paper, we illustrate the experimental characterization of a HPR system, in terms of specific power and energy deposition on the cavity surfaces and on the damage threshold for niobium. These measurements are used to tentatively derive general rules for the optimization of the free process parameters (nozzle geometry, speeds and water pressure)

  3. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  4. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh [Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States)

    2016-02-01

    We report a direct conversion of hexagonal boron nitride (h-BN) into pure cubic boron nitride (c-BN) by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN). The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  5. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  6. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure

    Science.gov (United States)

    Kaminska, E.; Kaminski, K.; Paluch, M.; Ngai, K. L.

    2006-04-01

    Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature Tg, the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the α relaxation and an additional faster γ process at the megahertz frequency range. By decreasing temperature below Tg at ambient pressure or by elevating pressure above Pg, the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary β-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the β-relaxation time τβ to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary β relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the β relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their γ relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and γ relaxation are further demonstrated by the nearly perfect superposition of the α-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same α-peak frequency), but not the γ-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the β-loss peak shifts to lower frequencies, but not the γ relaxation. Basing on these experimental facts, the faster γ relaxation is a local intramolecular process involving a side group and the slower β relaxation

  7. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  8. High-pressure creep tests

    Science.gov (United States)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  9. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  10. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  11. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    Science.gov (United States)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  12. Exploring novel phases of Cd-O system at ambient pressure

    Science.gov (United States)

    Zaoui, A.; Ferhat, M.

    2017-02-01

    First-principles evolutionary searches are used to explore stable Cd-O compounds at ambient pressure. Besides the well-known rock-salt CdO, a new cubic thermodynamically stable phase CdO2 with space group Pa3 and two metastable compounds: zinc-blende and wurtzite phases of CdO have been discovered at ambient pressure. Among these, CdO2 was successfully synthesized with perfect structural agreement to our theoretical predictions. The global stability of the well known rock-salt phase of CdO, our calculations of elastic constants and phonon dispersion curves demonstrate that the Pa3, zinc-blende and wurtzite structures are mechanically and dynamically stable. Finally, the state-of-the-art LDA-1/2 methods reveal that at ambient conditions, zinc-blende and wurtzite phases are semiconducting with a direct band gap (Γ- Γ) of 0.89 eV and 0.97 eV respectively; whereas the semiconducting cubic-Pa3 structure shows direct band gap (Γ- Γ) of ∼2.93 eV and an indirect band gap of ∼2.58 eV agreeing well with the experimental value of ∼2.4 eV.

  13. LX-17 Deflagration at High Pressures and Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

    2006-10-23

    We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

  14. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Rupprechter, Guenther; Weilach, Christian [Institute of Materials Chemistry, Vienna University of Technology, Veterinaerplatz 1, A-1210 Vienna (Austria)], E-mail: grupp@imc.tuwien.ac.at

    2008-05-07

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH{sub 3}OH, CH{sub 4} and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions.

  15. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  16. Effect of various structure directing agents on the physicochemical properties of the silica aerogels prepared at an ambient pressure

    KAUST Repository

    Sarawade, Pradip

    2013-12-01

    We studied the effects of various surfactants on the textural properties (BET surface area, pore size, and pore volume) of the silica aerogels prepared at an ambient pressure. A simple surface modification of silica gel prepared at an ambient pressure through hydrolysis and polycondensation of TEOS as asilica precursor was conducted using various structure directing agents. The treatment was found to induce a significant difference in the porosity of the silica aerogel. Highly porous silica aerogels with bimodal porous structures were prepared by modifying the surface of the silica wet-gel (alcogel) with trimethylchlorosilane (TMCS) in order to preserve its porosity. The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. In this work, a possible new type of highly porous hydrophobic silica aerogel with a bimodal porous structure is presented. A hydrophilic extremely porous (high surface area and large pore volume) silica aerogel was obtained by heating the as-synthesized hydrophobic silica aerogel at 400°C for 1 h. There was a significant effect of structure directing agent on the textural properties, such as specific surface area, pore size distribution and cumulative pore volume of the silicaaerogels. © 2013 Elsevier B.V. All rights reserved.

  17. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together...... with their structural chemistry, controlled largely by subtle interactions between the host and the enclosed guest molecules, makes them attractive to study as model systems. Quantifying the numerous superimposed interactions in these clathrates will advance our understanding of more complex supramolecular aggregates....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...

  18. High Blood Pressure and Kidney Disease

    Science.gov (United States)

    ... Disease Mineral & Bone Disorder View All Content High Blood Pressure & Kidney Disease What is high blood pressure? Blood pressure is the force of blood ... million filtering units called nephrons. How does high blood pressure affect the kidneys? High blood pressure can ...

  19. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... Conditions High blood pressure (hypertension) Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  20. High Blood Pressure Often Undiagnosed, Untreated

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162996.html High Blood Pressure Often Undiagnosed, Untreated Half of mobile clinic patients ... that's often referred to as a "silent killer" -- high blood pressure, a new Canadian study reveals. High blood pressure, ...

  1. Bisulphate-cluster based atmospheric pressure chemical ionization mass spectrometer for ultra-high sensitivity (10 ppq detection of atmospheric amines: proof-of-concept and first ambient data from boreal forest

    Directory of Open Access Journals (Sweden)

    M. Sipilä

    2015-04-01

    Full Text Available Atmospheric amines may play a crucial role in formation of new aerosol particles via nucleation with sulphuric acid. Recent studies have revealed that concentrations below 1 ppt can significantly promote nucleation of sulphuric acid particles. While sulphuric acid detection is relatively straightforward, no amine measurements to date have been able to reach the critical sub-ppt concentration range and atmospheric amine concentrations are in general poorly characterized. In this work we present a proof-of-concept of an instrument capable of detecting dimethyl amine (DMA with concentrations even down to 8 ppq (parts per quadrillion, 0.008 ppt for a 15 min integration time. Detection of ammonia and amines other than dimethyl amine is discussed. We also report results from the first ambient measurements performed in spring 2013 at a boreal forest site. While minute signals from some amines were observed, DMA concentration never exceeded the detection threshold of ambient measurements (20 ppq, suggesting that it is unlikely that nucleation at this location involves DMA.

  2. A novel approach to scanning electron microscopy at ambient atmospheric pressure.

    Science.gov (United States)

    Ominami, Yusuke; Kawanishi, Shinsuke; Ushiki, Tatsuo; Ito, Sukehiro

    2015-04-01

    Scanning electron microscopy (SEM) for observing samples at ambient atmospheric pressure is introduced in this study. An additional specimen chamber with a small window is inserted in the main specimen chamber, and the window is separated with a thin membrane or diaphragm allowing electron beam propagation. Close proximity of the sample to the membrane enables the detection of back-scattered electrons sufficient for imaging. In addition to the empirical imaging data, a probability analysis of the un-scattered fraction of the incident electron beam further supports the feasibility of atmospheric SEM imaging over a controlled membrane-sample distance.

  3. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    Science.gov (United States)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  4. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  5. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: NEXT >> Updated: ...

  6. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ...

  7. High-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  8. High-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  9. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project (www.openstreetmap.org). This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  10. High Pressure Treatment in Foods.

    Science.gov (United States)

    Bello, Edwin Fabian Torres; Martínez, Gerardo González; Ceberio, Bernadette F Klotz; Rodrigo, Dolores; López, Antonio Martínez

    2014-08-19

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  11. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  12. High pressure rinsing system comparison

    Energy Technology Data Exchange (ETDEWEB)

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  13. Phase formation of superconducting MgB2 at ambient pressure

    Indian Academy of Sciences (India)

    A Talapatra; S K Bandyopadhyay; Pintu Sen; A Sarkar; P Barat

    2004-10-01

    MgB2 superconductor has been synthesized using a simple technique at ambient pressure. The synthesis was carried out in helium atmosphere over a wide range of temperatures. Magnesium was employed in excess to the stoichiometry to prevent the decomposition of MgB2. Samples of MgB2 thus prepared have been almost free from MgO as compared to other methods. Resistivities of the samples are quite low with residual resistivity ratio (RRR) of around 3. c ( = 0) is 38.2–38.5 K with c of 0.6–1.0 K. Comparative studies of various methods of low pressure synthesis have been presented.

  14. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  15. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    Science.gov (United States)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  16. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  17. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    in the myofibrillar protein pattern and HP-induced change in activity of cathepsin B and L were investigated. Results: In this study we showed that HP treatment of pork meat emulsion, ranging from 0.1 to 800 MPa, induced protein gel formation as shown by the increased Young’s modulus (Fig.1). Analysis of SDS...... the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented......Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle...

  18. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure t

  19. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  20. Lung diffusing capacity for nitric oxide at lowered and raised ambient pressures.

    Science.gov (United States)

    Linnarsson, Dag; Hemmingsson, Tryggve E; Frostell, Claes; Van Muylem, Alain; Kerckx, Yannick; Gustafsson, Lars E

    2013-12-01

    Lung diffusing capacity for NO (DLNO) was determined in eight subjects at ambient pressures of 505, 1015, and 4053hPa (379, 761 and 3040mmHg) as they breathed normoxic gases. Mean values were 116.9±11.1 (SEM), 113.4±11.1 and 99.3±10.1mlmin(-1)hPa(-1)at 505, 1015, and 4053hPa, with a 13% difference between the two higher pressures (P=0.017). The data were applied to a model with two serially coupled conductances; the gas phase (DgNO, variable with pressure), and the alveolo-capillary membrane (DmNO, constant). The data fitted the model well and we conclude that diffusive transport of NO in the peripheral lung is inversely related to gas density. At normal pressure DmNO was approximately 5% larger than DLNO, suggesting that the Dg factor then is not negligible. We also conclude that the density of the breathing gas is likely to impact the backdiffusion of naturally formed NO from conducting airways to the alveoli.

  1. Questions and Answers about High Blood Pressure

    Science.gov (United States)

    ... checked out by a doctor. Am I at risk for high blood pressure? Anyone can develop high blood pressure. But there are several factors that increase your risk: Being overweight or obese Not ... if I have high blood pressure? High blood pressure is often called "the silent ...

  2. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) A ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  3. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  4. The high-pressure compressibility of B12P2

    Science.gov (United States)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  5. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    Science.gov (United States)

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Stabilization of HfB12 in Y1-xHfxB12 under Ambient Pressure.

    Science.gov (United States)

    Akopov, Georgiy; Yeung, Michael T; Turner, Christopher L; Li, Rebecca L; Kaner, Richard B

    2016-05-16

    Alloys of metal dodecaborides-YB12 with HfB12-were prepared via arc-melting in order to stabilize the metastable HfB12 high-pressure phase under ambient pressure. Previously, HfB12 had been synthesized only under high-pressure (6.5 GPa). Powder X-ray diffraction (PXRD) and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the purity and phase composition of the prepared samples. The solubility limit for HfB12 in Y1-xHfxB12 (cubic UB12 structure type) was determined to be ∼35 at. % Hf by PXRD and EDS analysis. The value of the cubic unit cell parameter (a) changed from 7.505 Å (pure YB12) to 7.454 Å across the solid solution range. Vickers hardness increased from 40.9 ± 1.6 GPa for pure YB12 to 45.0 ± 1.9 GPa under an applied load of 0.49 N for the Y1-xHfxB12 solid solution composition with ∼28 at. % Hf, suggesting both solid solution hardening and extrinsic hardening due to the formation of secondary phases of hafnium.

  7. Observation of in situ oxidation dynamics of vanadium thin film with ambient pressure X-ray photoemission spectroscopy

    Science.gov (United States)

    Kim, Geonhwa; Yoon, Joonseok; Yang, Hyukjun; Lim, Hojoon; Lee, Hyungcheol; Jeong, Changkil; Yun, Hyungjoong; Jeong, Beomgyun; Crumlin, Ethan; Lee, Jouhahn; Lee, Jaeyoung; Ju, Honglyoul; Mun, Bongjin Simon

    2016-11-01

    The evolution of oxidation/reduction states of vanadium oxide thin film was monitored in situ as a function of oxygen pressure and temperature via ambient pressure X-ray photoemission spectroscopy. Spectra analysis showed that VO2 can be grown at a relatively low temperature, T ˜ 523 K, and that V2O5 oxide develops rapidly at elevated oxygen pressure. Raman spectroscopy was applied to confirm the formation of VO2 oxide inside of the film. In addition, the temperature-dependent resistivity measurement on the grown thin film, e.g., 20 nm exhibited a desirable metal-insulator transition of VO2 with a resistivity change of ˜1.5 × 103 times at 349.3 K, displaying typical characteristics of thick VO2 film, e.g., 100 nm thick. Our results not only provide important spectroscopic information for the fabrication of vanadium oxides, but also show that high quality VO2 films can be formed at relatively low temperature, which is highly critical for engineering oxide film for heat-sensitive electronic devices.

  8. Multipole Electrodynamic Ion Trap Geometries for Microparticle Confinement under Standard Ambient Temperature and Pressure Conditions

    CERN Document Server

    Mihalcea, Bogdan M; Stan, Cristina; Visan, Gina T; Ganciu, Mihai; Filinov, Vladimir E; Lapitsky, Dmitry S; Deputatova, Lidiya V; Syrovatka, Roman A

    2015-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in multipole linear Paul trap geometries, operating under Standard Ambient Temperature and Pressure (SATP) conditions. An 8-electrode and a 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of the microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap was mapped using the electrolytic tank method. Particle dynamics was simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  9. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  10. Ceramic coating of metal by laser heat treatment at ambient pressure and temperature

    Science.gov (United States)

    Picouet, Pierre A.; McStay, Daniel; Hunter, Catherine; Tonge, Kenneth

    2000-02-01

    Initial results for a new laser based procedure to make ceramic coatings on ferrous metals are described. The procedure is performed at ambient temperature and pressure to avoid the use of a vacuum chamber. An Nd:YAG laser beam (1064 nm) coupled to a mechanical scanner is used to produce coating. The coating precursor materials are sprayed onto the metal sample before the laser-generated heat treatment. A jet of argon gas is used to avoid oxidation of the metallic substrate. The principal ingredients of the coating precursor are sodium tetraborate and a natural clay mineral. The product is a glassy ceramic. The product has been characterized by scanning electron microscopy, optical microscopy and hardness and adhesion tests. The results indicate that the surface material is a micrometric, single layer which adheres to the metal surface.

  11. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  12. Selected studies of magnetism at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hearne, G.R. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Physics; Pasternak, M.P. [Tel-Aviv Univ. (Israel). School of Physics and Astronomy; Taylor, R.D. [Los Alamos National Lab., NM (United States)

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  13. Pressure Drop in Cyclone Separator at High Pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For the design of pressurized circulating fluidized beds, experiments were conducted in a small cyclone with 120 mm in diameter and 300 mm in height at high pressures and at atmospheric temperatures. Influence of air leakage from the stand pipe into the cyclone was specially focused. A semi-empirical model was developed for the predic tion of the pressure drop of the cyclone separator at different operate pressures with the effect of air leakage and inlet solid loading. The operate pressure, air leakage and inlet solid loading act as significant roles in cyclone pressure drop. The pressure drop increases with the increasing of pressure and decreases with the increasing of the flow rate of air leakage from the standpipe and with the increasing of the inlet solid loading.

  14. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    Science.gov (United States)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  15. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  16. A geospatial model of ambient sound pressure levels in the contiguous United States.

    Science.gov (United States)

    Mennitt, Daniel; Sherrill, Kirk; Fristrup, Kurt

    2014-05-01

    This paper presents a model that predicts measured sound pressure levels using geospatial features such as topography, climate, hydrology, and anthropogenic activity. The model utilizes random forest, a tree-based machine learning algorithm, which does not incorporate a priori knowledge of source characteristics or propagation mechanics. The response data encompasses 270 000 h of acoustical measurements from 190 sites located in National Parks across the contiguous United States. The explanatory variables were derived from national geospatial data layers and cross validation procedures were used to evaluate model performance and identify variables with predictive power. Using the model, the effects of individual explanatory variables on sound pressure level were isolated and quantified to reveal systematic trends across environmental gradients. Model performance varies by the acoustical metric of interest; the seasonal L50 can be predicted with a median absolute deviation of approximately 3 dB. The primary application for this model is to generalize point measurements to maps expressing spatial variation in ambient sound levels. An example of this mapping capability is presented for Zion National Park and Cedar Breaks National Monument in southwestern Utah.

  17. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  18. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... blood pressure test is easy and painless and can be done in a health care provider’s office ... severity of your blood pressure, he or she can order additional tests to determine if your blood ...

  19. UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)2 Surface Analysis

    Science.gov (United States)

    Head, Ashley R.; Schnadt, Joachim

    2016-12-01

    The surface sensitivity of x-ray photoelectron spectroscopy (XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)2 systems, both in fundamental and applied studies.

  20. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  1. Avoid the Consequences of High Blood Pressure

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More Avoid the Consequences of High Blood Pressure Infographic Updated:Oct 31,2016 View a downloadable version of this infographic High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  2. High Blood Pressure: Keep the Beat Recipes

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: High Blood Pressure Keep the Beat Recipes Past Issues / Fall 2011 ... 65 million American adults—one in three—with high blood pressure, you have probably heard the advice, "watch your ...

  3. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  4. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J

    2005-07-29

    This document reports work performed at the Savannah River National Laboratory (SRNL) that resulted in a major accomplishment by demonstrating the proof-of-concept of the use of a proton exchange membrane or PEM-type electrochemical cell to produce hydrogen via SO{sub 2}-depolarized water electrolysis. For the first time sulfur dioxide dissolved in liquid sulfuric acid was used to depolarize water electrolysis in a modern PEM cell. The use of such a cell represents a major step in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The HyS Process is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Sulfur dioxide is oxidized at the anode, producing sulfuric acid, that is sent to the acid decomposition portion of the cycle. The focus of this work was to conduct single cell electrolyzer tests in order to prove the concept of SO{sub 2}-depolarization and to determine how the results can be used to evaluate the performance of key components of the HyS Process. A test facility for conducting SO{sub 2}-depolarized electrolyzer (SDE) testing was designed, constructed and commissioned. The maximum cell current is 50 amperes, which is equivalent to a hydrogen production rate of approximately 20 liters per hour. The test facility was designed for operation at room temperature with pressures up to 2 bar. Feed to the anode of the electrolyzer can be water, sulfuric acid of various concentrations, or sulfuric acid containing dissolved sulfur dioxide. Provisions

  5. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S

    2014-12-01

    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  6. Investigation of ambient air species diffusion into the effluent of an atmospheric pressure plasma jet by measurements and modeling

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Reuter, Stephan; Winter, Jörn; Lange, Hartmut; Weltmann, Klaus-Dieter; Leibniz InstitutePlasma Science; Technology (INP) Greifswald Team

    2011-10-01

    The diffusion of ambient air species into the effluent of a cold atmospheric pressure plasma (CAP) jet operated with pure argon is quantified using both experimental methods and theoretical estimations by a convection-diffusion approach. In the effluent of CAP jets operated in ambient air, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated. ROS and RNS are believed to play a central role in biomedical applications of low temperature atmospheric pressure plasmas. The inflow of atmospheric oxygen is determined by a novel absorption technique in the VUV spectral range, where emission originating from within the discharge is used as light source. An analytic expression for the estimation of the on-axis density of ambient species was obtained assuming a stationary drift-diffusion equation and is compared to complete numerical results. The easy to use expression correlates well with the experimental results obtained.

  7. Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure

    Directory of Open Access Journals (Sweden)

    Chun-Ying Chen

    2017-02-01

    Full Text Available Photo-hydrogenation of carbon dioxide (CO2 is a green and promising technology and has received much attention recently. This technique could convert solar energy under ambient temperature and pressure into desirable and sustainable solar fuels, such as methanol (CH3OH, methane (CH4, and formic acid (HCOOH. It is worthwhile to mention that this direction can not only potentially depress atmospheric CO2, but also weaken dependence on fossil fuel. Herein, 1 wt % Pt/CuAlGaO4 photocatalyst was successfully synthesized and fully characterized by ultraviolet-visible light (UV-vis spectroscopy, X-ray diffraction (XRD, Field emission scanning electron microscopy using energy dispersive spectroscopy analysis (FE-SEM/EDS, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET, respectively. Three kinds of experimental photo-hydrogenation of CO2 in the gas phase, liquid phase, and gas-liquid phase, correspondingly, were conducted under different H2 partial pressures. The remarkable result has been observed in the gas-liquid phase. Additionally, increasing the partial pressure of H2 would enhance the yield of product. However, when an extra amount of H2 is supplied, it might compete with CO2 for occupying the active sites, resulting in a negative effect on CO2 photo-hydrogenation. For liquid and gas-liquid phases, CH3OH is the major product. Maximum total hydrocarbons 8.302 µmol·g−1 is achieved in the gas-liquid phase.

  8. Ambient temperature nanoelectrospray ion mobility detector for high performance liquid chromatography in determining amines.

    Science.gov (United States)

    Chen, Chuang; Hou, Keyong; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2014-09-01

    A nanoelectrospray ionization ion mobility spectrometer (nanoESI-IMS) working at ambient pressure and ambient temperature was developed as a detector of high performance liquid chromatography (HPLC) to achieve sensitive detection of amines with no derivatization and meanwhile provide another dimension of separation. The easier desolvation property of the charged droplets formed in nanoESI source enabled complete desolvation of the product ions of sixteen amines and drugs using the nanoESI-IMS at ambient temperature. Working at ambient temperature was good for suppressing the dissociation of thermal volatile ions, such as only the proton adducted molecular ions were observed for morphine in the nanoESI-IMS. Besides, the resolving power of the nanoESI-IMS also showed an increasing tendency as lowering the working temperature, an increment of 19 percent and 10 percent was observed for diethylamine and triethylamine as the temperature dropped from 92°C to 32°C. The resolving power of the nanoESI-IMS at 32°C for the 16 tested compounds was amid 33-44. With the nanoESI-IMS coupled to HPLC, a six-compound mixture including isomers was successfully separated and detected without any derivatization. And linear response ranges of 1 to 20, 0.5 to 20, and 0.8 to 20μgml(-1) and limits of detection of 0.25, 0.15, and 0.17μgml(-1) for triethylamine, diethylamine, and butylamine, respectively, were obtained with the hyphenated system. These results showed the excellent performance of the two-dimensional separation and detection method in direct qualitative and quantitative analyses of amines.

  9. Risk Factors for High Blood Pressure

    Science.gov (United States)

    ... Share this page from the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... Lifestyle Habits Unhealthy lifestyle habits can raise your risk for high blood pressure, and they include: Eating too much sodium or ...

  10. High Pressure Brillouin Scattering in the Fragile Glass Former Cumene

    Science.gov (United States)

    Ransom, Tim; Oliver, William

    2012-02-01

    In recent years full-spectrum analysis in light-scattering has been utilized to explore the liquid-glass transition at variable temperature and ambient pressure. In this study we present temperature- and pressure-dependent Brillouin scattering results for the fragile glass-former cumene. Both equal-angle forward scattering and depolarized backscattering geometries are used, and high pressures are attained by the use of a diamond anvil cell mounted in a custom temperature-controlled housing. Opening up the variable pressure regime to full-spectrum analysis will allow more stringent tests of mode-coupling theory as well as greater insight into the behavior of glass-forming systems.

  11. The effects of high ambient radon on thermoluminescence dosimetry readings.

    Science.gov (United States)

    Harvey, John A; Kearfott, Kimberlee J

    2011-11-01

    The effect of a high level of ambient (222)Rn gas on thermoluminescence dosemeters (TLDs) is examined. Groups of LiF:Mg,Ti and CaF(2):Dy TLDs were exposed to (222)Rn under controlled environmental conditions over ∼7 d using a luminous (226)Ra aircraft dial. LiF:Mg,Ti TLDs were tested bare, and both types were tested mounted in cards used for environmental dosimetry and mounted in cards enclosed in plastic badges. A passive continuous radon monitor was used to measure the (222)Rn level in the small chamber during the experiments. The data were analysed to determine the relationship between the integrated (222)Rn level and the TLD response. Although both LiF:Mg,Ti and CaF(2):Dy TLDs showed a strong response to (222)Rn, the badges prevented measurable radon detection by the TLDs within. The TLDs were not used to directly measure the radon concentration; rather, a correction for its influence was desired.

  12. Structural phase transitions and superconductivity in Fe(1+delta)Se0.57Te0.43 at ambient and elevated pressures.

    Science.gov (United States)

    Gresty, Nathalie C; Takabayashi, Yasuhiro; Ganin, Alexey Y; McDonald, Martin T; Claridge, John B; Giap, Duong; Mizuguchi, Yoshikazu; Takano, Yoshihiko; Kagayama, Tomoko; Ohishi, Yasuo; Takata, Masaki; Rosseinsky, Matthew J; Margadonna, Serena; Prassides, Kosmas

    2009-11-25

    The ternary iron chalcogenide, Fe(1.03)Se(0.57)Te(0.43) is a member of the recently discovered family of Fe-based superconductors with an ambient pressure T(c) of 13.9 K and a simple structure comprising layers of edge-sharing distorted Fe(Se/Te)(4) tetrahedra separated by a van der Waals gap. Here we study the relationship between its structural and electronic responses to the application of pressure. T(c) depends sensitively on applied pressure attaining a broad maximum of 23.3 K at approximately 3 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting ground state. High-resolution synchrotron X-ray diffraction shows that the superconducting phase is metrically orthorhombic at ambient pressure but pressurization to approximately 3 GPa leads to a structural transformation to a more distorted structure with monoclinic symmetry. The exact coincidence of the crystal symmetry crossover pressure with that at which T(c) is maximum reveals an intimate link between crystal and electronic structures of the iron chalcogenide superconductors.

  13. Spray characteristics of high-pressure swirl injector fueled with alcohol

    Institute of Scientific and Technical Information of China (English)

    WANG Xibin; CHEN Wansheng; GAO Jian; JIANG Deming; HUANG Zuohua

    2007-01-01

    The spray characteristics of methanol and ethanol with high-pressure swirl injector were explored experimentally and numerically.Experimental results show that the spray characteristics of methanol and ethanol had displayed the same trends as that of gasoline.Under the low back pressure ambient conditions,the spray behavior exhibited a hollow cone with wide spray angle and initial spray slug at the tip,while the spray presented a solid cone in the case of high back-pressure.Vortexes in the opposite direction existed in the rear part of the spray under low back-pressure ambient conditions while the vortexes formed in the middle part under high back-pressure ambient conditions.Experiments also showed that methanol had the largest cone angle,while ethanol and gasoline presented almost the same cone angle.Simulation results indicated that methanol and ethanol had a slightly larger Sauter mean diameter (SMD) than that of gasoline with swirl injector..The SMD profile of methanol coincided well with that of ethanol under low back-pressure ambient conditions,but displayed a slightly larger value under high back-pressure due to fuel evaporation.Numerical simulation could successfully demonstrate the spray charac teristics of high-pressure swirl injector for methanol and ethanol fuels.

  14. Characterization Testing of H20-SO2 Electrolyzer at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J

    2005-07-29

    This document reports work performed at the Savannah River National Laboratory (SRNL) that resulted in a major accomplishment by demonstrating the proof-of-concept of the use of a proton exchange membrane or PEM-type electrochemical cell to produce hydrogen via SO{sub 2}-depolarized water electrolysis. For the first time sulfur dioxide dissolved in liquid sulfuric acid was used to depolarize water electrolysis in a modern PEM cell. The use of such a cell represents a major step in achieving the ultimate goal of an economical hydrogen production process based on the Hybrid Sulfur (HyS) Cycle. The HyS Process is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by water-splitting. Like all other sulfur-based cycles, HyS utilizes the high temperature thermal decomposition of sulfuric acid to produce oxygen. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Sulfur dioxide is oxidized at the anode, producing sulfuric acid, that is sent to the acid decomposition portion of the cycle. The focus of this work was to conduct single cell electrolyzer tests in order to prove the concept of SO{sub 2}-depolarization and to determine how the results can be used to evaluate the performance of key components of the HyS Process. A test facility for conducting SO{sub 2}-depolarized electrolyzer (SDE) testing was designed, constructed and commissioned. The maximum cell current is 50 amperes, which is equivalent to a hydrogen production rate of approximately 20 liters per hour. The test facility was designed for operation at room temperature with pressures up to 2 bar. Feed to the anode of the electrolyzer can be water, sulfuric acid of various concentrations, or sulfuric acid containing dissolved sulfur dioxide. Provisions

  15. Hydrogen Storage in Mesoporous Materials under High Pressure

    Science.gov (United States)

    Weinberger, Michelle; Somayazulu, Maddury; Hemley, Russell

    2008-03-01

    To date, the materials considered best candidates for hydrogen storage fuel cells include activated carbon and metal organic frameworks. Both very high surface area activated carbon and MOF-5 have been shown to adsorb around 4.5 wt % of hydrogen gas at 78 K. We have investigated the fundamental structural response of these materials to high pressure, as well as their behavior at high pressure when packed with dense hydrogen. Further investigation of these materials at low temperatures while still at elevated pressures may in fact provide a route for recovery of these hydrogen-packed materials to near ambient conditions. Covalent organic frameworks offer the potential for even better hydrogen storage capacity. These materials have significantly lower densities than the MOF materials and offer a significantly larger number of adsorption sites. Diamond anvil cells are uniquely suited for the study of these materials, allowing in situ measurements at high pressure as well as at low temperatures. Using X-ray diffraction and Raman spectroscopy and Infrared Spectroscopy we probe the behavior of the hydrogen confined in these porous materials at high pressure by tracking changes in the in situ high pressure x-ray diffraction patterns and shifts in the hydrogen vibron peaks.

  16. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  17. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  18. The effect of high pressure on the luminescent properties of coumarin 153

    CERN Document Server

    Li Hong; He Li Ming; Wu Shi Kang; Li Yi; Yang Guo Qiang

    2002-01-01

    A dual-fluorescence emitting behaviour of coumarin 153 powder has been detected at high pressure while at ambient pressure the dye exhibits only single-band emission. Because of the strong electron-withdrawal group at site 7, these two fluorescent peaks can be ascribed to local excited state emission and charge transfer state emission, respectively.

  19. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  20. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  1. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  2. How Is High Blood Pressure Treated?

    Science.gov (United States)

    ... or focusing on something calm or peaceful Performing yoga or tai chi Meditating Medicines Blood pressure medicines work in different ways to stop or slow some of the body’s functions that cause high blood pressure. Medicines to lower ...

  3. High blood pressure in women.

    Science.gov (United States)

    Calhoun, D A; Oparil, S

    1997-01-01

    There is a sexual dimorphism in blood pressure of humans and experimental animals: males tend to have higher blood pressure than females with functional ovaries, while ovariectomy or menopause tends to abolish the sexual dimorphism and cause females to develop a "male" pattern of blood pressure. Hypertensive male laboratory animals tend to have NaCl-sensitive blood pressure, while females are NaCl resistant unless their ovaries are removed, in which case NaCl sensitivity appears. The hormonal basis of NaCl sensitivity of blood pressure and of the sexual dimorphism of hypertension remains to be defined. Synthetic estrogens and progestins, as found in oral contraceptives, tend to elevate blood pressure, while naturally occurring estrogens lower it, or have no effect. Hypertension increases cardiovascular risk in women, as well as men, although the benefits of antihypertensive treatment have been more difficult to demonstrate in women. In the population of the United States, women are more aware of their hypertension, more likely to be treated medically, and more likely to have their blood pressure controlled.

  4. Ambient pressure structural quantum critical point in the phase diagram of (Ca(x)Sr(1-x))(3)Rh(4)Sn(13).

    Science.gov (United States)

    Goh, S K; Tompsett, D A; Saines, P J; Chang, H C; Matsumoto, T; Imai, M; Yoshimura, K; Grosche, F M

    2015-03-06

    The quasiskutterudite superconductor Sr_{3}Rh_{4}Sn_{13} features a pronounced anomaly in electrical resistivity at T^{*}∼138  K. We show that the anomaly is caused by a second-order structural transition, which can be tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad superconducting dome is centered around the structural quantum critical point. Detailed analysis of the tuning parameter dependence of T^{*} as well as insights from lattice dynamics calculations strongly support the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e., x_{c}=0.9). This establishes the (Ca_{x}Sr_{1-x})_{3}Rh_{4}Sn_{13} series as an important system for exploring the physics of structural quantum criticality without the need of applying high pressures.

  5. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  6. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  7. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    Science.gov (United States)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  8. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  10. Experimental Survey of Microbial Survival at High Pressure

    Science.gov (United States)

    Griffin, P.; Kish, A.

    2008-12-01

    The magnitude and onset of lethal pressure effects varies widely even among closely related organisms. This variability complicates the prediction of a species' piezotolerance based on cellular physiology and native stress resistance. In this study several non-piezophilic species were cultured at optimal conditions to both mid log and stationary phases, exposed to elevated pressure for ten minutes, and plated upon return to ambient conditions to determine survival via colony count. The archaeal halophile Halobacterium strain NRC-1 exhibited almost full survival up to pressures of 400 MPa. Model organism Escherichia coli was used to establish a baseline for bacterial organisms but also displayed a bifurcated pressure response, with pressure-sensitive and -tolerant substrains residing within a single population . Pressure exposure proved slightly more lethal to the bacterial halophile Chromohalobacter salexigens than for E. coli up to a critical point of 300 MPa beyond which modest increases in pressure (~ 25 MPa) decreased survival by orders of magnitude. These survival data combined with a comparison of cellular physiology and native stress resistance provide some insight into which aspects of cellular function contribute to high pressure survival.

  11. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... track blood pressure readings over a period of time, the health care provider may ask you to ...

  12. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    Science.gov (United States)

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  13. Application of High Pressure in Food Processing

    OpenAIRE

    Herceg, Z; Režek Jambrak, A; Lelas, V.; Krešić, G.

    2011-01-01

    In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200) MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure proc...

  14. Unusual energy state evolution in Ce-based metallic glass under high pressure

    Science.gov (United States)

    Ge, T. P.; Wang, C.; Tan, J.; Ma, T.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-05-01

    Metallic Glasses (MGs) are always aging toward the lower energy state, which leads to higher density, modulus, and hardness. We find that high pressure (HP) could lead to similar densification and hardening while the energy is increased. The comparison between two processes under HP and ambient pressure shows that densification happens in denser regions in MGs under HP, while it happens in looser regions under ambient pressure, which leads to the opposite energy changes in the two conditions. This result breaks the common wisdom about the relationship between the free volume and enthalpy and displays different structural and energy evolutions in MGs.

  15. Reinvestigation of high pressure polymorphism in hafnium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K. K., E-mail: kkpandey@barc.gov.in; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Gyanchandani, Jyoti; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Somayazulu, M. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States); Sikka, S. K. [Indian National Science Academy, New Delhi-110 002 (India)

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  16. Metallicity of boron carbides at high pressure

    Science.gov (United States)

    Dekura, Haruhiko; Shirai, Koun; Yanase, Akira

    2010-03-01

    Electronic structure of semiconducting boron carbide at high pressure has been theoretically investigated, because of interests in the positive pressure dependence of resistivity, in the gap closure, and in the phase transition. The most simplest form B12(CCC) is assumed. Under assumptions of hydrostatic pressure and neglecting finite-temperature effects, boron carbide is quite stable at high pressure. The crystal of boron carbide is stable at least until a pressure higher than previous experiments showed. The gap closure occurs only after p=600 GPa on the assumption of the original crystal symmetry. In the low pressure regime, the pressure dependence of the energy gap almost diminishes, which is an exceptional case for semiconductors, which could be one of reasons for the positive pressure dependence of resistivity. A monotonous increase in the apex angle of rhombohedron suggests that the covalent bond continues to increase. The C chain inserted in the main diagonal of rhombohedral structure is the chief reason of this stability.

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical Studies NHLBI Trials Clinical Trial Websites News & ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  18. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  19. High pressure droplet burning experiments in reduced gravity

    Science.gov (United States)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  20. Ionization Mechanism of the Ambient Pressure Pyroelectric Ion Source (APPIS) and Its Applications to Chemical Nerve Agent Detection

    OpenAIRE

    Neidholdt, Evan L.; Beauchamp, J. L.

    2009-01-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions su...

  1. Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification

    Science.gov (United States)

    Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M.

    2017-02-01

    A combined high-pressure mid-infrared absorption and Raman spectroscopy study on a natural CaMg0.98Fe0.02(CO3)2 dolomite sample was performed both at ambient and high temperatures. A pressure-temperature phase diagram was constructed for all the reported dolomite ambient- and high-pressure polymorphs. In addition, a local distortion of the ambient-pressure dolomite structure was identified close to 11 GPa, just before the transition toward the first known high-pressure phase. All the Clausius-Clapeyron slopes are found to be positive with similar magnitudes. Complementary first-principles calculations suggest a metastable nature of the high-pressure dolomite polymorphs. Finally, theoretical spectroscopy is used to interpret and discuss the observed changes in the measured vibrational spectra.

  2. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  3. High pressure processing for food safety.

    Science.gov (United States)

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  4. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    Science.gov (United States)

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  5. Stability of Dy{sub 6}UO{sub 12} under high pressure and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Balmukund; Sanjay Kumar, N.R.; Sekar, M. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Jena, H.; Asuvathraman, R. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India)

    2016-07-05

    In this paper, results obtained from high pressure-high temperature X-ray diffraction study of Dy{sub 6}UO{sub 12} are reported. X-ray diffraction (XRD) studies at ambient temperature on Dy{sub 6}UO{sub 12} reveals that the rhombohedral structure is stable up to 21.6 GPa. Beyond 21.6 GPa the peaks broaden out substantially indicating emergence of disorder in the system. Bulk modulus and its pressure derivative is 144 GPa and 7.0 respectively. High Pressure and High Temperature (HP-HT) XRD studies up to ∼ 11 GPa and ∼673 K was carried out using novel combination of membrane cell DAC coupled to a high flux micro-focus X-ray generator. At ambient pressure, thermal expansion coefficient comes out to be 14.5 × 10{sup −6} K{sup −1} at 400 K. Further, at 1 GPa and 2.6 GPa the thermal expansion coefficients are 21.4 × 10{sup −6} K{sup −1} and 32 × 10{sup −6} K{sup −1} respectively, in the temperature range ∼293–673 K. The thermal expansion coefficient shows an increasing trend with pressure. - Highlights: • First report on high pressure-high temperature (HP-HT) structural study of Dy{sub 6}UO{sub 12}. • HP studies show structural stability up to 21 GPa in rhombohedral structure. • Pressure induced structural disorder seen above 21 GPa. • HP-HT studies show that Dy{sub 6}UO{sub 12} remains stable up to 11.3 GPa and ∼673 K. • The thermal expansion coefficients increase with pressure.

  6. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  7. Synthesis and Thermal Insulation Performance of Silica Aerogel from Recycled Coal Gangue by Means of Ambient Pressure Drying

    Institute of Scientific and Technical Information of China (English)

    ZHU Pinghua; ZHENG Meng; ZHAO Shanyu; WU Junyong; XU Haixun

    2015-01-01

    Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitant precursors as well as cumbrous multi-step hydrophobization process has often narrowed the ifeld of applications. In this work, granular silica aerogel materials were synthesized by extracting SiO2from recycled rich silicon coal gangue, followed by one-step hydrophobization and ambient pressure drying. Lightweight (about 0.16 g/cm3) and nanostructural aerogels were obtained through this route. They exhibit a 3D open porous microstructure with around 600 cm2/g surface area and 20 nm of the average pore diameter, thermal conductivity of 4-5 mm packed granules is 20-25 mW/(m·K), which was proved by both guarded hot plate and hot-wire transient methods. This study offers a new facile route for the synthesis of silica aerogel from recycled solid waste coal gangue and suggests a method, which may lead to a cost reduction in terms of industrial production.

  8. High pressure elasticity and thermal properties of depleted uranium

    Science.gov (United States)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  9. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  10. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  11. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  12. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  13. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  14. High pressure superconductivity in iron-based layered compounds studied using designer diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, Georgiy; Stemshorn, Andrew K; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 (United States); Wu, Phillip M [Department of Physics, Duke University, Durham, NC 27708 (United States); Hsu, F C; Huang, Y L; Wu, M K; Yeh, K W [Institute of Physics, Academia Sinica-Nankang, Taipei, Taiwan (China); Weir, Samuel T [Lawrence Livermore National Laboratory, Mail Stop L-041, Livermore, CA 94550 (United States)

    2009-06-10

    High pressure superconductivity in iron-based superconductor FeSe{sub 0.5}Te{sub 0.5} has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show the onset of superconductivity (T{sub c}) at 14 K at ambient pressure with T{sub c} increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, T{sub c} decreases and extrapolation suggests non-superconducting behavior above 10 GPa. The loss of superconductivity coincides with the pressure induced disordering of the Fe(SeTe){sub 4} tetrahedra reported at 11 GPa in x-ray diffraction studies at ambient temperature. (fast track communication)

  15. Phase transition and superconductivity of SrFe2As2 under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Montgomery, Jeffrey M [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Yogesh [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2011-01-01

    High pressure x-ray diffraction and electrical resistance measurements have been carried out on SrFe{sub 2}As{sub 2} to a pressure of 23 GPa and temperature of 10 K using a synchrotron source and designer diamond anvils. At ambient temperature, a phase transition from the tetragonal phase to a collapsed tetragonal (CT) phase is observed at 10 GPa under non-hydrostatic conditions. The experimental relation that T-CT transition pressure for 122 Fe-based superconductors is dependent on ambient pressure volume is affirmed. The superconducting transition temperature is observed at 32 K at 1.3 GPa and decreases rapidly with a further increase of pressure in the region where the T-CT transition occurs. Our results suggest that T{sub C} falls below 10 K in the pressure range of 10-18 GPa where the CT phase is expected to be stable.

  16. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    High pressure synthesis is an important method in the search for new compounds that in many cases can be quenched to ambient conditions. Therefore high pressure syntheses push the boundaries of solid state chemistry. There is a large current interest in the metal dichalcogenides with their unique....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...... the physical properties since the related compound Bi2S3 is known to be a thermoelectric material.5 In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure...

  17. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  18. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  19. High-pressure and high-temperature studies on oxide garnets

    Science.gov (United States)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  20. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  1. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Ryuichi, E-mail: nomura@sci.ehime-u.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-04-15

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  2. Note: High-pressure in situ x-ray laminography using diamond anvil cell

    Science.gov (United States)

    Nomura, Ryuichi; Uesugi, Kentaro

    2016-04-01

    A high-pressure in situ X-ray laminography technique was developed using a newly designed, laterally open diamond anvil cell. A low X-ray beam of 8 keV energy was used, aiming at future application to dual energy X-ray chemical imaging techniques. The effects of the inclination angle and the imaging angle range were evaluated at ambient pressure using the apparatus. Sectional images of ruby ball samples were successfully reconstructed at high pressures, up to approximately 50 GPa. The high-pressure in situ X-ray laminography technique is expected to provide new insights into the deep Earth sciences.

  3. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  4. High-pressure minerals in shocked meteorites

    Science.gov (United States)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  5. Portable high precision pressure transducer system

    Science.gov (United States)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  6. Radiation of X-rays using polarized LiNbO3 single crystal in low-pressure ambient gas.

    Science.gov (United States)

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Yoshikado, Shinzo

    2009-09-01

    The dependence of X-ray intensity on the pressure and type of ambient gas was investigated for LiNbO(3) single crystals polarized in the c-axis direction at pressures of approximately 1 to 30 Pa. Ionization of surrounding gas molecules by the electric field generated by the crystal led to the production of both positive ions and free electrons. The electrons were accelerated toward a Cu target, radiating both white X-rays and X-rays specific to the crystal or target material by bremsstrahlung. The integrated X-ray intensity per cycle in the energy range 1 to 20 keV showed a local maximum value at a pressure P(max). The logarithm of P(max) was proportional to the Boltzmann factor using the first ionization energy of each ambient gas molecule. The value of P(max) was found to be independent of the electrical surface area of the crystal. The integrated X-ray intensity was approximated qualitatively by a quadratic function with pressure, which was upwardly convex. It was found that one of the causes of the reduction in X-ray intensity at pressures P > P(max) is the adsorption of positive ions generated by the ionization of gas molecules on the negative electric surface. It was also discovered that the lifetime of the X-ray radiation device could be improved when the X-ray radiation case was covered with another hermetically sealed decompression case. The gas with the smallest first ionization energy, with a partial pressure of P(max), was enclosed inside the X-ray radiation case (inner case) and the gas with the largest first ionization energy was enclosed at a suitable pressure between the inner and outer cases.

  7. Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin.

    Science.gov (United States)

    Murakami, Natsuko; Wakabayashi, Noriyuki; Matsushima, Rie; Kishida, Akio; Igarashi, Yoshimasa

    2013-04-01

    The aim of this study was to assess the effect of high-pressure polymerization on mechanical properties of denture base resin. A heat-curing denture base resin and an experimental PMMA were polymerized under 500MPa of pressure by means of an isostatic pressurization machine at 70°C for 24h to make rectangular specimens whose dimensions were 30mm×2mm×2mm. Each specimen was deflected on a three-point flexural test until either fracture occurred or the sample was loaded up to 8mm in deflection. The molecular weight of the PMMA without filler was analyzed using the high-speed liquid chromatography system. Increased ductility without fracture was shown in the specimens subjected to high pressure, while most of the control specimens (ambient pressure) fractured. The mean toughness of the PMMA specimens polymerized under the high pressure was significantly higher than the same material polymerized under ambient pressure (ppressure groups of the denture resin and the PMMA revealed a significantly lower mean 0.2% yield stress, flexural strength, and elastic modulus than control groups (ppressure specimens than were present in the controls. The increased toughness shown in the PMMA polymerized under the high pressure was presumably attributed to the higher molecular weight produced by the pressure. The result suggests a potential application of the high-pressure polymerization to the development of PMMA-based denture resin with improved fracture resistance.

  8. Thermal expansion of kyanite at ambient pressure: An X-ray powder diffraction study up to 1000 ℃

    Institute of Scientific and Technical Information of China (English)

    Xi Liu; Qiang He; Hejing Wang; Michael E. Fleet; Xiaomin Hu

    2010-01-01

    The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: aa = 5.8(3) × 10-5, ab = 5.8 (1) × 10-5, ac% = 5.2(1) × 10-5, and av = 7.4(1) × 10-3 ℃-1, in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles a, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.

  9. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.

  10. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  11. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure.

    Science.gov (United States)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-31

    The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a "nanoreactor" is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  12. Boosting the value of biodiesel byproduct by the non-catalytic transesterification of dimethyl carbonate via a continuous flow system under ambient pressure.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Jeon, Young Jae

    2014-10-01

    Transformation of coconut oil into biodiesel by using dimethyl carbonate (DMC) via a non-catalytic transesterification reaction under ambient pressure was investigated in this study. The non-catalytic transformation to biodiesel was achieved by means of a heterogeneous reaction between liquid triglycerides and gas phase DMC. The reaction was enhanced in the presence of porous material due to its intrinsic physical properties such as tortuosity and absorption/adsorption. The numerous pores in the material served as micro reaction chambers and ensured that there was enough contact time between the liquid triglycerides and the gaseous DMC, which enabled the completion of the transesterification. The highest fatty acid methyl esters (FAMEs) yield achieved was 98±0.5% within 1-2min at a temperature of 360-450°C under ambient pressure. The fast reaction rates made it possible to convert the lipid feedstock into biodiesel via a continuous flow system without the application of increased pressure. This suggested that the commonly used supercritical conditions could be avoided, resulting in huge cost benefits for biodiesel production. In addition, the high value of the byproduct from the transesterification of the lipid feedstock with DMC suggested that the production biodiesel using this method could be more economically competitive. Finally, the basic properties of biodiesel derived from the non-catalytic conversion of rapeseed oil with DMC were summarised.

  13. Preparation of TiO sub 2 nanoparticles by pulsed laser ablation: Ambient pressure dependence of crystallization

    CERN Document Server

    Matsubara, M; Yamaki, T; Itoh, H; Abe, H

    2003-01-01

    Pulsed laser ablation (PLA) with a KrF excimer laser was used to prepare fine particles of titanium dioxide (TiO sub 2). The ablation in an atmosphere of Ar and O sub 2 (5:5) at total pressures of >= 1 Torr led to the formation of TiO sub 2 nanoparticles composed of anatase and rutile structures without any suboxides. The weight fraction of the rutile/anatase crystalline phases was dependent on the pressure of the Ar/O sub 2 gas. The TiO sub 2 nanoparticles had a spherical shape and their size, ranging from 10 and 14 nm, also appeared to be dependent on the ambient pressure. (author)

  14. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  15. Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, Jyoti L. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India); Rao, A. Venkateswara [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India)], E-mail: raouniv@yahoo.com; Rao, A. Parvathy; Nadargi, D.Y.; Bhagat, S.D. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India)

    2009-05-12

    The experimental results on physical properties of water glass (sodium silicate) based silica aerogels prepared by single step sol-gel process, dried at atmospheric pressure are reported. The hydrolysis and condensation reactions of the sodium silicate precursor proceeded with tartaric acid as a catalyst. The hydrogel was vapour passed in order to remove sodium salt from the gel network. Solvent exchange was carried out using methanol and hexane as a solvents. Finally, surface chemical modification of the gel was done using trimethylchlorosilane (TMCS) followed by ambient pressure drying of the gel up to the temperature 200 deg. C. To get good quality aerogels various sol-gel parameters such as water vapour passing period varied from 0.5 to 2 h, gel aging from 1 to 4 h, Na{sub 2}SiO{sub 3}/H{sub 2}O molar ratio from 3 x 10{sup -3} to 1.5 x 10{sup -2}, tartaric acid/Na{sub 2}SiO{sub 3} molar ratio from 0.3 to 1.9 and TMCS/Na{sub 2}SiO{sub 3} molar ratio from 4.8 to 12. The aerogels were characterized by percentage of volume shrinkage, bulk density, porosity and hydrophobicity. The hydrophobicity of the aerogel was confirmed by Fourier Transform Infrared (FTIR) Spectroscopy and contact angle measurements. Microstructural studies have been carried out by Scanning Electron Microscopy (SEM) and nitrogen adsorption BET analysis. From the TGA-DTA studies of the aerogels, it was found that the aerogels were thermally stable up to 470 {sup o}C. Low density ({approx}0.066 g/cm{sup 3}), high hydrophobicity ({approx}145 deg.), high porosity ({approx}97 %), high pore volume, surface area of 510 m{sup 2}/g aerogels have been obtained for Na{sub 2}SiO{sub 3}:H{sub 2}O:tartaric acid (C{sub 4}H{sub 6}O{sub 6}):TMCS molar ratio at 1:166.6:2.5:12 respectively with half an hour water vapour passing.

  16. High-pressure Moessbauer study of perovskite iron oxides

    CERN Document Server

    Kawakami, T; Sasaki, T; Kuzushita, K; Morimoto, S; Endo, S; Kawasaki, S; Takano, M

    2002-01-01

    The perovskite oxides CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 have been investigated by high-pressure sup 5 sup 7 Fe Moessbauer spectroscopy. The critical temperatures of the charge disproportionation (CD) and the magnetic order (MO) have been determined as a function of pressure. In CaFeO sub 3 the CD (2Fe sup 4 sup + -> Fe sup 3 sup + + Fe sup 5 sup +) occurs at an almost constant temperature of 290 K in the pressure range of 0-17 GPa. Above 20 GPa, the CD is suppressed. The MO temperature of 125 K at an ambient pressure rises to 300 K at 34 GPa. In La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 the CD (3Fe sup 1 sup 1 sup / sup 3 sup + -> 2Fe sup 3 sup + + Fe sup 5 sup +) and the MO occur at the same temperature up to 21 GPa, which decreases from 207 to 165 K with increasing pressure. Above 25 GPa, however, the MO temperature rises above 400 K.

  17. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  18. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R

    2003-01-01

    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  19. Combined high-pressure and thermal treatments for processing of tomato puree : evaluation of microbial inactivation and quality parameters

    NARCIS (Netherlands)

    Krebbers, B.; Matser, A.M.; Hoogerwerf, S.W.; Moezelaar, R.; Tomassen, M.M.M.; Berg, van den R.W.

    2003-01-01

    The effects of combined high-pressure thermal treatments on consistency, viscosity, colour, lycopene content, enzyme activity and micro-organisms were determined, and compared to conventional pasteurisation and sterilisation processes of tomato puree. High-pressure processing at ambient temperature

  20. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... names are given for the drugs in each group.Find your drug. Then read some basic information about your kind of drug. Types of High Blood Pressure Medicines ACE Inhibitors Beta Blockers Calcium Channel Blockers ...

  1. High Blood Pressure May Hike Dementia Risk

    Science.gov (United States)

    ... fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American Heart Association warns ... in middle age, might open the door to dementia, the American Heart Association warns in a new ...

  2. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  3. High-precision analysis of SF6 at ambient level

    Directory of Open Access Journals (Sweden)

    J. S. Lim

    2013-09-01

    Full Text Available This work reports on the development of a technique for the precise analysis of ambient SF6. This technique, which involves a gas chromatograph/electron capture detector (GC-ECD coupled with an Activated Alumina-F1 (AA-F1 column, performed well in the measurements, particularly in terms of accuracy, which complies with the World Meteorological Organization (WMO-recommended compatibility of 0.02 ppt. Compared to the Porapak Q technique, we observed a sharper peak shape for the SF6 stream, which substantiates the improvement in the analytical precision. The traceability to the WMO scale was tested by calibrating the GC-ECD/AA-F1 analyser using five SF6 standards provided by the WMO/Global Atmosphere Watch (GAW Central Calibration Laboratory (CCL for SF6 (NOAA, United States of America. After calibration by various methods, the GC-ECD/AA-F1 accurately estimated the mole fraction of SF6 in the working standard prepared by the World Calibration Centre for SF6 operated by the Korea Meteorological Administration (KMA/Korea Research Institute of Standards and Science (KRISS. Among the calibration methods, the two-point calibration method emerged to be the most economical procedure in terms of the data quality and measurement time. It was found that the KRISS scale of SF6/N2 was biased by 0.13 ppt when compared to the WMO scale of SF6/air; this bias is probably due to a different matrix.

  4. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C2H5 + O2 reaction yields ethylperoxyl rather than C2H4 + HO2...

  5. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  6. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  7. Elasticity of orthoenstatite at high-pressure

    Science.gov (United States)

    Zhang, D.; Jackson, J. M.; Chen, B.; Zhao, J.; Yan, J.

    2011-12-01

    Orthoenstatite is an abundant yet complex mineral in Earth's upper mantle. Despite its abundance, the properties of orthopyroxene at high pressure remain ambiguous (e.g., Zhang et al. 2011; Jahn 2008; Kung et al. 2004). We explored select properties of a synthetic powdered orthoenstatite (Mg0.8757Fe0.13)2Si2O6 sample by X-ray diffraction (XRD) and nuclear resonance inelastic X-ray scattering (NRIXS) as a function of pressure in a neon pressure medium at 300 K. The XRD measurements were carried out at beamline 12.2.2 of the Advanced Light Source (Berkeley, CA), and the sample was studied up to 34 GPa. NRIXS measurements were carried out at sector 3ID-B of the Advanced Photon Source (Chicago, IL) in the pressure range of 3 to 17 GPa. From the raw NRIXS data, the partial phonon density of states (DOS) was derived (e.g., Sturhahn 2004). The volume (or pressure) dependence of several properties, such as the Lamb-Mössbauer factor, mean force constant, specific heat, vibrational entropy, and vibrational kinetic energy were determined from the DOS. We will discuss our results from these combined studies and the implications for Earth's upper mantle. References Zhang, D., J.M. Jackson, W. Sturhahn, and Y. Xiao (2011): Local structure variations observed in orthoenstatite at high-pressures. American Mineralogist, in press. Jahn, S. (2008) High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation. American Mineralogist, 93(4), 528-532. Kung, J., Li, B., Uchida, T., Wang, Y., Neuville, D., and Liebermann, R. (2004) In situ measurements of sound velocities and densities across the orthopyroxene high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of the Earth and Planetary Interiors, 147(1), 27-44. Sturhahn, W. (2004): Nuclear Resonant Spectroscopy. J. Phys. Condens. Matter, 16, S497-S530.

  8. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  9. Electronic properties and the nature of metal–insulator transition in NdNiO{sub 3} prepared at ambient oxygen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hooda, M.K.; Yadav, C.S., E-mail: shkehar@iitmandi.ac.in

    2016-06-15

    We report the electronic properties of the NdNiO{sub 3}, prepared at the ambient oxygen pressure condition. The metal–insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO{sub 3} prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal–insulator transition. The large value of the effective mass (m*~8m{sub e}) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2–20 K) is governed by the variable range hopping of the charge carriers.

  10. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    Science.gov (United States)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  11. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying

    Directory of Open Access Journals (Sweden)

    Uzma K H Bangi, A Venkateswara Rao and A Parvathy Rao

    2008-01-01

    Full Text Available An in-depth investigation into the synthesis of hydrophobic silica aerogels prepared by the surface derivatization of wet gels followed by subsequent drying at ambient pressure is reported. The following sol–gel parameters were examined for their effect on the physical properties of the derived aerogels: number of gel washings with water, percentage of hexane or methanol in silylating mixture, molar ratio of tartaric acid: Na2SiO3, gel aging period, weight% of silica, trimethylchlorosilane (TMCS percentage, and silylation period. These parameters were varied from 1 to 4, 0 to 100%, 0.27 to 1.2, 0 to 4 h, 1.5 to 8 wt.%, 20 to 40% and 6 to 24 h, respectively. The properties of hydrophobic silica aerogels synthesized by this new route were investigated in terms of bulk density, percentage volume shrinkage, percentage porosity, thermal conductivity and contact angle with water, and by Fourier transform infrared spectroscopy (FTIR. The as-prepared hydrophobic silica aerogels exhibited high temperature stability (up to approximately 435 °C as measured by thermogravimetric/differential thermal analysis (TGA-DTA. The optimal sol-gel parameters were found to be a molar ratio of Na2SiO3:H2O : tartaric acid : TMCS of 1 : 146.67 : 0.86 : 9.46, an aging period of 3 h, four washings with water in 24 h and the use of a 50% hexane- or methanol-based silylating mixture. Aerogels prepared with these optimal parameters were found to exhibit 50% optical transparency in the visible range, 84 kg m−3 density, 0.090 W mK−1 thermal conductivity, 95% porosity and a contact angle of 146° with water.

  12. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  13. Structures of Liquid Aluminium under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Hui; WANG Guang-Hou; BIAN Xiu-Fang; ZHANG Lin

    2001-01-01

    Molecular dynamics simulation has been carried out for melt A1 under constant temperature and constant pressure. The interaction between atoms is described by tight-binding many-body potentials based on the second moment approximation to the electronic density of states. The pair correlation function and the pair analysis technique are used to reveal the structural features of liquid Al under normal and high pressure. High pressure is favourable to the existence of bcc clusters 1661 and 1441, but has no effect on the fcc cluster 1421. The bond pair 1551 and 1541 with fivefold symmetry exists at high pressure. The microstructure of liquid is more similar to the non-crystalline structure than to the crystalline structure. The simulation results are supported by thex-ray experimental results.

  14. Influence of high pressure hydrogen on cyclic load crack growth in metals

    Science.gov (United States)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.

    1978-01-01

    The effect of high pressure hydrogen on the crack growth rate of various nickel-base alloys was studied at ambient temperature. Considerable enhancement of the cyclic flaw growth rate was observed for Inconel 718, wrought and cast, and Waspaloy, a nickel-base alloy similar to Inconel 718. Only slight enhancement of the flaw growth rate for Alloy 903 was observed.

  15. High pressure Raman scattering of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Khachadorian, Sevak; Scheel, Harald; Thomsen, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, 10623 Berlin (Germany); Papagelis, Konstantinos [Materials Science Department, University of Patras, 26504 Patras (Greece); Colli, Alan [Nokia Research Centre, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ferrari, Andrea C, E-mail: khachadorian@physik.tu-berlin.de [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-05-13

    We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with {approx} 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grueneisen parameters. We detect an increase of Raman linewidth at {approx} 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the {approx} 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.

  16. High-pressure studies on the calcium-ion-sensitive fluorophore Fluo-4

    Science.gov (United States)

    Frey, Eric W.; Urayama, Paul

    2007-10-01

    Fluorescence-based methods for intracellular calcium ion sensing are well established at ambient pressure. Because calcium ions play a ubiquitous role in cellular signaling, extending techniques of intracellular calcium-sensing to high pressures would play an important role in understanding the large variety of piezophysiologic effects. Here, we characterize the intracellular calcium-ion-sensitive fluorophore Fluo-4 under hydrostatic pressures up to 500 atm (50 MPa). Using an EGTA/MOPS solution as a calcium-buffer reference, we investigate the pressure dependence of the reaction pK and determine the thermodynamic volume change associated with the Fluo-4 calcium-binding reaction.

  17. High-pressure structural stability of the ductile intermetallic compound, ErCu

    Indian Academy of Sciences (India)

    S Meenakshi

    2014-10-01

    High-pressure angle dispersive X-ray diffraction measurements up to 23.6 GPa have been carried out on the ductile intermetallic compound, ErCu. Our measurements show that the ambient CsCl structure (: -3) is stable up to the highest pressure of the present measurements. A second-order Birch–Murnaghan equation of state fit to the pressure, volume data yielded a bulk modulus of 67.6 GPa with the pressure derivative of bulk modulus fixed at 4.

  18. High-pressure X-ray diffraction studies on {beta}-Ni(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Nandini; Karmakar, S.; Sharma, S.M.Surinder M.; Busseto, E.; Sikka, S.K

    2004-06-15

    Using in situ X-ray diffraction, we have investigated the high-pressure behavior of {beta}-Ni(OH){sub 2} upto 10 GPa. No phase transformation was observed in this pressure range. Our studies show that the diffraction peaks show inherent broadening on increase of pressure. This suggests that H-lattice may be already disordered at ambient conditions and further increase in pressure may increase the lattice disorder as observed in Co(OH){sub 2} (Phys. Rev. B 66 (2002) 134301)

  19. High pressure studies of potassium perchlorate

    Science.gov (United States)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  20. High pressure-low temperature processing of food proteins.

    Science.gov (United States)

    Dumay, Eliane; Picart, Laetitia; Regnault, Stéphanie; Thiebaud, Maryse

    2006-03-01

    High pressure-low temperature (HP-LT) processing is of interest in the food field in view of: (i) obtaining a "cold" pasteurisation effect, the level of microbial inactivation being higher after pressurisation at low or sub-zero than at ambient temperature; (ii) limiting the negative impact of atmospheric pressure freezing on food structures. The specific effects of freezing by fast pressure release on the formation of ice I crystals have been investigated on oil in water emulsions stabilized by proteins, and protein gels, showing the formation of a high number of small ice nuclei compared to the long needle-shaped crystals obtained by conventional freezing at 0.1 MPa. It was therefore of interest to study the effects of HP-LT processing on unfolding or dissociation/aggregation phenomena in food proteins, in view of minimizing or controlling structural changes and aggregation reactions, and/or of improving protein functional properties. In the present studies, the effects of HP-LT have been investigated on protein models such as (i) beta-lactoglobulin, i.e., a whey protein with a well known 3-D structure, and (ii) casein micelles, i.e., the main milk protein components, the supramolecular structure of which is not fully elucidated. The effects of HP-LT processing was studied up to 300 MPa at low or sub-zero temperatures and after pressure release, or up to 200 MPa by UV spectroscopy under pressure, allowing to follow reversible structural changes. Pressurisation of approximately 2% beta-lactoglobulin solutions up to 300 MPa at low/subzero temperatures minimizes aggregation reactions, as measured after pressure release. In parallel, such low temperature treatments enhanced the size reduction of casein micelles.

  1. Dense superconducting phases of copper-bismuth at high pressure

    Science.gov (United States)

    Amsler, Maximilian; Wolverton, Chris

    2017-08-01

    Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu11Bi7 , were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high densities from ab initio calculations. In particular, a Cu2Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu11Bi7 and CuBi, cubic Cu2Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu2Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm3 at 0 GPa is achieved. The moderate electron-phonon coupling of λ =0.68 leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu11Bi7 and CuBi, as well as in elemental Cu and Bi.

  2. Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry.

    Science.gov (United States)

    Shelley, Jacob T; Wiley, Joshua S; Chan, George C Y; Schilling, Gregory D; Ray, Steven J; Hieftje, Gary M

    2009-05-01

    Two relatively new ambient ionization sources, direct analysis in real time (DART) and the flowing atmospheric-pressure afterglow (FAPA), use direct current, atmospheric-pressure discharges to produce reagent ions for the direct ionization of a sample. Although at a first glance these two sources appear similar, a fundamental study reveals otherwise. Specifically, DART was found to operate with a corona-to-glow transition (C-G) discharge whereas the FAPA was found to operate with a glow-to-arc transition (G-A) discharge. The characteristics of both discharges were evaluated on the basis of four factors: reagent-ion production, response to a model analyte (ferrocene), infrared (IR) thermography of the gas used for desorption and ionization, and spatial emission characteristics. The G-A discharge produced a greater abundance and a wider variety of reagent ions than the C-G discharge. In addition, the discharges yielded different adducts and signal strengths for ferrocene. It was also found that the gas exiting the discharge chamber reached a maximum of 235 degrees C and 55 degrees C for the G-A and C-G discharges, respectively. Finally, spatially resolved emission maps of both discharges showed clear differences for N(2)(+) and O(I). These findings demonstrate that the discharges used by FAPA and DART are fundamentally different and should have different optimal applications for ambient desorption/ionization mass spectrometry (ADI-MS).

  3. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination.

    Science.gov (United States)

    Chen, Huanwen; Zheng, Jian; Zhang, Xie; Luo, Mingbiao; Wang, Zhichang; Qiao, Xiaolin

    2007-08-01

    Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples.

  4. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  5. A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures

    Science.gov (United States)

    Heine, Christian; Eren, Baran; Lechner, Barbara A. J.; Salmeron, Miquel

    2016-10-01

    The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10- 9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high, the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high-step density.

  6. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  7. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  8. Theoretical and Experimental Investigations on Droplet Evaporation and Droplet Ignition at High Pressures

    Science.gov (United States)

    Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.

    1993-01-01

    The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.

  9. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  10. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Directory of Open Access Journals (Sweden)

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  11. High-pressure and high-temperature differential scanning calorimeter for combined pressure-concentration-temperature measurements of hydrides.

    Science.gov (United States)

    Mauron, Ph; Bielmann, M; Bissig, V; Remhof, A; Züttel, A

    2009-09-01

    The design and construction of a high-pressure (200 bar) and high-temperature (600 degrees C) heat-flow differential scanning calorimeter (DSC) for the in situ investigation of the hydrogenation and dehydrogenation reactions of hydrides is presented. In combination with a pressure-concentration-temperature (pcT) system, simultaneous thermodynamic and volumetric measurements become accessible. Due to the high thermal conductivity of hydrogen, only the sample cell and the reference cell are exposed to hydrogen and the remaining system is under ambient conditions. This separation has the advantage that the calibration factor is independent of the hydrogen pressure. The internal empty volume of the combined system is as low as possible to maximize the precision of the pcT measurements. The calorimetric block of the DSC is designed with a silver/copper alloy and the temperature measurements are made resistively with platinum temperature sensors (Pt 100). The instrument was calibrated and its operability was successfully studied on the example of the hydrogen sorption behavior of LaNi(5).

  12. Curved and conformal high-pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  13. Superconductivity from insulating elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya

    2015-07-15

    Highlights: • Even insulating molecule can become metal and superconductor by pressure with relatively high T{sub c}. • The highest T{sub c} is observed in sulfur with 17 K at 160 GPa. • Hydrogen is the best candidate of the highest T{sub c} element. - Abstract: The insulating and superconducting states would seem to have very different characteristics. Can any insulator become a superconductor? One proven method, doping an insulating material with carriers, can create itinerant states inside the gap between the conduction and valence bands. Another method is to squeeze the structure by applying pressure. Pressure can expand the bandwidth and also narrow the energy band gap. So the first step to turn an insulator into a superconductor is to make it metallic. Here we review our experimental research and results on superconductivity induced by applying pressure to insulating molecular systems such as elemental molecules.

  14. Phase Stability of Epsilon and Gamma Hniw (CL-20) at High-Pressure and Temperature

    Science.gov (United States)

    Gump, Jared C.; Stoltz, Chad A.; Peiris, Suhithi M.

    2007-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 °C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 °C then underwent a transition to the gamma phase above 125 °C and then thermal decomposition occurred above 150 °C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 °C. Pressure—volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 °C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  15. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  16. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  17. High pressure effects on allergen food proteins.

    Science.gov (United States)

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  18. High pressure effects in anaesthesia and narcosis.

    Science.gov (United States)

    Wlodarczyk, Agnieszka; McMillan, Paul F; Greenfield, Susan A

    2006-10-01

    There is growing interest in determining the effects of high pressure on biological functions. Studies of brain processes under hyperbaric conditions can give a unique insight into phenomena such as nitrogen narcosis, inert gas anaesthesia, and pressure reversal of the effects of anaesthetic and narcotic agents. Such research may shed light on the action of anaesthetics, which remains poorly understood, and on the nature of consciousness itself. Various studies have established the behavioural response of organisms to hyperbaric conditions, in the presence or absence of anaesthetic agents. At the molecular level, X-ray crystallography has been used to investigate the incorporation of species like Xe in hydrophobic pockets within model ion channels that may account for pressure effects on neuronal transmission. New magnetic resonance imaging techniques are providing tomographic three-dimensional images that detail brain structure and function, and that can be correlated with behavioural studies and psychological test results. Such whole organ techniques are linked to the molecular scale via voltage-sensitive dye (VSD) imaging studies on brain slices that provide time-resolved images of the dynamic formation and interconnection of inter-neuronal complexes. The VSD experiments are readily adapted to in situ studies under high pressure conditions. In this tutorial review we review the current state of knowledge of hyperbaric effects on brain processes: anaesthesia and narcosis, recent studies at the molecular level via protein crystallography at high pressure in a Xe atmosphere, and we also present some preliminary results of VSD imaging of brain slices under hyperbaric conditions.

  19. Introduction to High-Pressure Science

    Science.gov (United States)

    Dera, Przemyslaw

    To a common person pressure is just one of the parameters that describe a thermodynamic state. We all hear about it in everyday weather forecasts, and most of us do not associate it with anything particularly unique. Probably the most intuitive idea of the effect of high-pressure comes from movies, where submarine sinking to the bottom of the ocean is gradually crushed by the surrounding water, until its hull implodes. Why, then hundreds of scientists throughout the world spent their lifelong careers studying high-pressure phenomena? Despite all the developments in experimental technologies and instrumentation, modern scientist has very few tools that allow him or her to "grab" two atoms and bring them, in a very controllable way, closer together. Being able to achieve this task means the ability to directly probe interatomic interaction potentials and can cause transformations as dramatic as turning of a common gas into solid metal. Before the reader delves into more advanced topics described later in this book, this introductory chapter aims to explain several elementary, but extremely important concepts in high-pressure science. We will start with a brief discussion of laboratory devices used to produce pressure, address the issue of hydrostaticity, elastic and plastic compression, and will conclude with a short discussion of unique effects of anisotropic stress.

  20. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  1. In-Situ Conductivity Measurement of BaF2 under High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    HAO Ai-Min; LI Xiao-Dong; LIU Jing; GAO Chun-Xiao; LI Ming; HE Chun-Yuan; HUANG Xiao-Wei; ZHANG Dong-Mei; YU Cui-Ling; ZOU Guang-Tian; LI Yan-Chun

    2006-01-01

    @@ We perform the in-situ conductivity measurement on BaF2 at high pressure using a microcircuit fabricated on a diamond anvil cell. The results show that BaF2 initially exhibits the electrical property of an insulator at pressure below 25 Gpa, it transforms to a wide energy gap semiconductor at pressure from 25 to 30 Gpa, and the conductivity increases gradually with increasing pressure from 30 Gpa. However, the metallization predicted by theoretical calculation at 30-33 Gpa cannot be observed. In addition, we measure the temperature dependence of the conductivity at several pressures and obtain the relationship between the energy gap and pressure. Based on the experimental data, it is predicted that BaF2 would transform to a metal at about 87 Gpa and ambient temperature. The conductivity of BaF2 reaches the order of 10-3Ω-1 cm-1 at 37 Gpa and 2400 K, the superionic conduction is not observed during the experiments, indicating the application of pressure elevates greatly the transition temperature of the superionic conduction.

  2. Photophysics of organic molecules at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean James

    1978-01-01

    The pressure dependence of emission intensities, energies, and lifetimes of several classes of organic compounds in plastic media were investigated over the range 0-140 kilobars. The fluorescence intensity of 9-anthraldehyde, 9-acetylanthracene, and 9-benzoylanthracene increases remarkably with increasing pressure, accompanied by a large red shift in the emission spectrum. For azulene and several derivatives, the efficiency of fluorescence from both the second and first excited singlet states was pressure dependent as was the relative energy of these states. The rate of internal conversion depended strongly on the energy separating the relevant states. The energy and quantum efficiency of fluorescence for fluorenone in crystalline form and in several polymeric matrices was measured as a function of pressure. The quantum yield, ranged from 0.001 at low pressure to a maximum of about 0.1 at high pressure in paraffinic plastics. Fluorescence quantum yields and phosphorescence quantum yields and lifetimes were measured for pyrazine (P) 2,6-dimethylpyrazine and tetramethylpyrazine (TMP) in PMMA over the pessure range 20-120 kbar. An additional emission, which is attributed to excimer fluorescence, was also observed for these samples and for crystalline pyrazine. The phosphorescence radiative lifetime for P and TMP was about 18 ms.

  3. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  4. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  5. High pressure photophysics of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brey, L. A.

    1979-01-01

    High pressure spectroscopic studies on several classes of organic compounds were made both in fluid solution (to 10 kbar) and in polymeric media (to 40 kbar). The first three studies were conducted in fluid solution and concern the effect of solvent viscosity on the nonradiative deactivation rates from electronically excited states. Pressure was utilized to attain high viscosities in organic solvents at room temperature. The primary experimental technique used was fluorescence emission spectroscopy. In the fourth and last study observations were made both in fluid solution and in plastic films. The focus of this study was the effect of pressure on the solvent-chromophore dispersion interaction in several polyenes and the concomitant changes in both the radiative and non-radiative rates from the excited states. Extensive use was made of fluorescence lifetime measurements and excitation spectra. 105 references.

  6. Too Many Americans Have High Blood Pressure, Doctors Warn

    Science.gov (United States)

    ... news/fullstory_163468.html Too Many Americans Have High Blood Pressure, Doctors Warn With February designated National Heart Month, ... physicians warns that too many Americans struggle with high blood pressure. High blood pressure is a major risk factor ...

  7. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  8. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  9. Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure

    CERN Document Server

    Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A

    2003-01-01

    The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.

  10. Nanoshells as a high-pressure gauge

    Science.gov (United States)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  11. Diagnostics of a High Pressure Helium Microplasma

    Science.gov (United States)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  12. Pressure-induced Formation of Energetic and Structural Extended Solids with Quench-recovery to Ambient Conditions

    Science.gov (United States)

    2014-06-12

    6.00 2.00 3.00 Oleksandr O. Kurakevych, Yann Le Godec, Timothy A. Strobel, Duck Young Kim, Wilson A. Crichton , Jérémy Guignard. High-Pressure and High...Wilson Crichton ,§, Jérémy Guignard,§ , Nicolas Guignot,? , George D. Cody† , Artem R. Oganov. Synthesis of ??Mg2C3: A Monoclinic High-Pressure

  13. High pressure luminescence studies of europium doped GaN

    Institute of Scientific and Technical Information of China (English)

    K.Wisniewski; W.Jadwisie(n)czak; T.Thomas; M.Spencer

    2009-01-01

    We reported on the high pressure luminescence spectra of polycrystalline Eu-doped GaN material synthesized in the reaction tween alloys of gallium,bismuth and europium in ammonia atmosphere.The integrated luminescence intensity of the dominant Eu3+ ion transition (5D0→7F2) at 622 nm increased approximately one order of magnitude whereas its spectral position and line width did not change significantly between ambient and 6.8 GPa pressure,respectively.Moreover,material was characterized with photo- and cathodo-luminescence,and photoluminescence excitation spectra at different temperatures.It was found that the Eu3+ ions occupying substitutional Ga site created different centers which could be effectively excited with above band gap excitation and from excitons resonantly photoexcited at the I2 bound exciton energy.Furthermore,the less efficient Eu3+ ions excitation path existed through intrinsic impurities and defects generating shallow energy levels in the forbidden gap.It was proposed that reduction of the thermal quenching and consequent enhancement of Eu3+ ion emission intensity resulted from stronger localization of bound exciton on RESI trap induced by applied pressure.

  14. Backbone NxH compounds at high pressures.

    Science.gov (United States)

    Goncharov, Alexander F; Holtgrewe, Nicholas; Qian, Guangrui; Hu, Chaohao; Oganov, Artem R; Somayazulu, Maddury; Stavrou, Elissaios; Pickard, Chris J; Berlie, Adam; Yen, Fei; Mahmood, Mahmood; Lobanov, Sergey S; Konôpková, Zuzana; Prakapenka, Vitali B

    2015-06-01

    Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first-principles theoretical structure predictions to investigate mixtures of N2 and H2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds [see also D. K. Spaulding et al., Nat. Commun. 5, 5739 (2014)] above 10 GPa. However, we found that these NxH (0.5 < x < 1.5) compounds transform abruptly to new oligomeric materials through barochemistry above 47 GPa and photochemistry at pressures as low as 10 GPa. These oligomeric compounds can be recovered to ambient pressure at T < 130 K, whereas at room temperature, they can be metastable on pressure release down to 3.5 GPa. Extensive theoretical calculations show that such oligomeric materials become thermodynamically more stable in comparison to mixtures of N2, H2, and NH3 above approximately 40 GPa. Our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

  15. Backbone NxH compounds at high pressures

    Science.gov (United States)

    Goncharov, Alexander F.; Holtgrewe, Nicholas; Qian, Guangrui; Hu, Chaohao; Oganov, Artem R.; Somayazulu, Maddury; Stavrou, Elissaios; Pickard, Chris J.; Berlie, Adam; Yen, Fei; Mahmood, Mahmood; Lobanov, Sergey S.; Konôpková, Zuzana; Prakapenka, Vitali B.

    2015-06-01

    Optical and synchrotron x-ray diffraction diamond anvil cell experiments have been combined with first-principles theoretical structure predictions to investigate mixtures of N2 and H2 up to 55 GPa. Our experiments show the formation of structurally complex van der Waals compounds [see also D. K. Spaulding et al., Nat. Commun. 5, 5739 (2014)] above 10 GPa. However, we found that these NxH (0.5 < x < 1.5) compounds transform abruptly to new oligomeric materials through barochemistry above 47 GPa and photochemistry at pressures as low as 10 GPa. These oligomeric compounds can be recovered to ambient pressure at T < 130 K, whereas at room temperature, they can be metastable on pressure release down to 3.5 GPa. Extensive theoretical calculations show that such oligomeric materials become thermodynamically more stable in comparison to mixtures of N2, H2, and NH3 above approximately 40 GPa. Our results suggest new pathways for synthesis of environmentally benign high energy-density materials. These materials could also exist as alternative planetary ices.

  16. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  17. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  18. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  19. Principles and application of high pressure-based technologies in the food industry.

    Science.gov (United States)

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  20. High-pressure structural study of yttrium monochalcogenides from experiment and theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Svane, A.

    2011-01-01

    High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82......, and 67 GPa for YS, YSe, and YTe, respectively. First-principles total energy calculations are carried out using the full-potential linear muffin-tin orbital method. The calculated and measured lattice constants and bulk moduli are in good agrement. Under applied pressure, the yttrium monochalcogenides...... are predicted to undergo a structural transition. Assuming that the high-pressure phase corresponds to the CsCl crystal structure, transition pressures of 53, 36, and 14 GPa are found for YS, YSe, and YTe, respectively....

  1. Casein Micelles at Non-Ambient Pressure Studied by Neutron Scattering

    NARCIS (Netherlands)

    Tromp, Hans; Huppertz, Thom; Kohlbrecher, Joachim

    2015-01-01

    The disruption of caseinmicelles, as found in cows’ milk, was investigated at pressures up to 300 MPa with small angle neutron scattering (SANS). From the decrease of the overall level of scattering, the expected disruption of the micelles was concluded. This disruption was incomplete, and stable at

  2. Characterization of Ultrafast Laser-Ablation Plasma Plumes at Various Ar Ambient Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Diwakar, P. K.; Harilal, S. S.; Phillips, Mark C.; Hassanein, A.

    2015-07-28

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plume species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. Possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.

  3. Influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma

    CERN Document Server

    Duluard, C Y; Hubert, J; Reniers, F

    2016-01-01

    The influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma has been investigated experimentally. Spatially resolved mass spectrometry and laser induced fluorescence on OH radicals were used to estimate the intrusion of air in between the plasma torch and the substrate as a function of the torch-to-substrate separation distance. No air is detected, within the limits of measurement uncertainties, for separation distances smaller than 5 mm. For larger distances, the effect of ambient air can no longer be neglected, and radial gradients in the concentrations of species appear. The Ar 4p population, determined through absolute optical emission spectroscopy, is seen to decrease with separation distance, whereas a rise in emission from the N2(C--B) system is measured. The observed decay in Ar 4p and N2(C) populations for separation distances greater than 9mm is partly assigned to the increasing collisional quenching rate by N2 and O2 molecules from the entrained air....

  4. Human respiration at rest in rapid compression and at high pressures and gas densities

    Science.gov (United States)

    Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.

    1983-01-01

    The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.

  5. Evaporative cooling for lactating sows under high ambient temperature

    Directory of Open Access Journals (Sweden)

    Charles Kiefer

    2012-05-01

    Full Text Available Two experiments were conducted to evaluate the evaporative cooling of the air at farrowing on the performance of lactating sows under high environmental temperature conditions in the Central West region of Brazil. One hundred and forty-four lactating sows - 46 of first and second farrowing (experiment I and 98 from the third to eighth farrowing (experiment II - were used. Sows were distributed in experimental design of randomized blocks consisting of two rooms (with air cooling and control, with the sow as the experimental unit. The average duration of lactation was 21 days. Sows were fed ad libitum with the same lactation diet. In experiment I, the air cooling increased the daily feed intake, reduced the total and percent weight loss, increased the weight of the piglets and litters at weaning and improved the daily milk production of sows. However, the air cooling did not affect the weight of the sows or the number of piglets at weaning. In experiment II the air cooling increased the daily feed intake of the sows, reduced the total and percent weight loss, increased the weight and the weight gain of the piglets and litters and improved the daily milk production of the sows. Air cooling enables the increase of the daily feed intake and, therefore, of nutrients by the sows, with consequent reduction of mobilization of body reserves and the increase in the milk production and in the weight of piglets and litters at weaning, regardless the farrowing order of the sow.

  6. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... microscope above maximum foaming temperature gives a suitable foaming temperature for the remaining samples. We show that the foaming kinetics depend on the type of gas and the pressure. A critical pressure of around 20 MPa is found to give the largest expansion for all gasses. Samples are obtained with 100...

  7. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    Science.gov (United States)

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  8. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  9. Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy

    Directory of Open Access Journals (Sweden)

    Seiji Kojima

    2012-07-01

    Full Text Available Hydrostatic pressure is one of the physical stimuli that characterize the environment of living matter. Many microorganisms thrive under high pressure and may even physically or geochemically require this extreme environmental condition. In contrast, application of pressure is detrimental to most life on Earth; especially to living organisms under ambient pressure conditions. To study the mechanism of how living things adapt to high-pressure conditions, it is necessary to monitor directly the organism of interest under various pressure conditions. Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped with a built-in separator, in which water pressure was properly transduced to that of the sample solution. The apparatus developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and epifluorescence images at various pressures and temperatures. We demonstrated that the application of pressure acted directly and reversibly on the swimming motility of Escherichia coli cells. The present technique should be applicable to a wide range of dynamic biological processes that depend on applied pressures.

  10. Zeeman Effect in Ruby at High Pressures

    Science.gov (United States)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  11. High Pressure Behavior of FeOOH

    Science.gov (United States)

    Reagan, M. M.; Gleason, A. E.; Mao, W. L.

    2013-12-01

    Understanding the stability and properties of simple hydroxides at high pressures and temperatures offers an important first step toward quantifying more complex hydrogen-bearing compounds relevant to the Earth's interior. We focus on iron-oxy-hydroxides because they may be an important Fe and water bearing component in the deep Earth. Goethite (α-FeOOH) transforms to a high-pressure phase, ɛ-FeOOH, which is isostructural with δ-AlOOH, a material which may transport hydrogen to the core-mantle boundary. Here we present XES spectroscopy data of powder samples of synthesized alpha-FeOOH, beta-FeOOH and gamma-FeOOH monitoring their electronic spin transition. The samples was loaded into a Beryllium gasket, where a 50 micron hole served as the sample chamber with 300 micron culet diamond paired with a beveled 150 micron diamond in a diamond-anvil cell (DAC) without a pressure transmitting medium. Pressure was determined using ruby fluorescence (Mao et al. 1978). Using the incident X-ray energy centered at 11.3 KeV from the Advanced Photon Source, beam line HPCAT 16-ID-D, we measured Fe K-β 13 emission to pressures greater than 73 GPa. For alpha-FeOOH, we saw a clear shift in the main peak to lower energy, and an increasingly diminishing K beta prime peak intensity, indicating the sample was undergoing an electronic spin transition. The K beta prime peak completely disappeared at a pressure greater than 73 GPa. Beta-FeOOH showed no evidence of the beginnings of a spin transition, while gamma- FeOOH underwent an incomplete transition.

  12. Morroniside protects cultured human umbilical vein endothelial cells from damage by high ambient glucose

    Institute of Scientific and Technical Information of China (English)

    Hui-qin XU; Hai-ping HAO; Xu ZHANG; Yang PAN

    2004-01-01

    AIM: To determine whether morroniside, a compound in Comus officinalis Sieb et Zucc can prevent cultured human umbilical vein endothelial cells (HUVEC) from damage by high ambient glucose. METHODS: HUVEC was incubated in glucose, 5 or 30 mmol/L, either alone or in the presence of morroniside (final concentration 100, 10,and 1 μmol/L, respectively) for 48 h. The proliferation of HUVEC was quantified by MTT method; its cycle was analyzed by flow cytometry; morphological change was observed with fluorescence microscopy. RESULTS:Survival of HUVEC cultured in high ambient glucose was significantly decreased when compared to that in normal concentration of glucose (P<0.01). High ambient glucose also lowered the rate of cells entering into S-phase, along with severe morphological damage. With the intervention of morroniside (final concentration 100 and 10 μmol/L),the cell survival was significantly recovered (P<0.01, P<0.05, respectively), accompanied with increased S-phase rate and less extent of morphological damage. CONCLUSION: Morroniside protected HUVEC against high ambient glucose induced injury, which suggested that morroniside could exert a beneficial effect on preventing diabetic angiopathies.

  13. Salt Survey Comparison of Pressurized vs Ambient Deck Air Intakes on JEFF (B) Hovercraft

    Science.gov (United States)

    1981-02-02

    10 Vegetation Collected on Lift Fan Screen 21 Figure 11 Paint Stripping in Lift Fan Shows Dirty vs Clean Air 22 APPENDIX FIGURES Figure A-l Nuclepore...terms of the readings on deck and that ingested in No. 6 engine. Although one single reading is insufficient to draw any fir * conclusions, these data, on...salt above 0.14 PPM, correlates with AVCO experimental data (TF-35 engine). 11. The pressurized engine data demonstrated that the effectof leakage

  14. Impacts of Ambient Temperature and Pressure on PM2.5 Emission Profiles of Light-Duty Diesel Vehicles

    Science.gov (United States)

    Wang, Chenyu; Wu, Ye; Li, Zhenhua; Hao, Jiming

    2012-01-01

    The impact of the environmental factors on the emissions of particulate matter (PM) number, size distribution and mass size distribution from diesel passenger cars was evaluated. Particle measurements from five modern light-duty diesel vehicles (LDDV) were performed in June and November 2011. Commercial low sulfur diesel fuel (less than 50 ppm) was used during the testing of these vehicles which were not equipped with after-treatment devices. The dynamometer test was based on the Economic Commission of Europe (ECE) 15 cycles. The results indicate that PM2.5 emissions from LDDV are significantly affected by ambient temperature and pressure. A comparison of the emissions concentration of PM2.5 in these two different months showed that the number concentration in June was (3.8 ± 0.69) × 107 cm-3 and (2.5 ± 0.66) × 107 cm-3 in November. The PM concentration of about 30 nm diameter was 25 ± 6% of the total emissions in November while only 14 ± 3% of total emissions in June. In the 60 nm to 2.5 μm test range, November data shows less of a contribution for number than data from June testing. The concentration of mass emissions in June was (325 ± 44) mg/m3 and (92 ± 30) mg/m3 in November. The contribution of the number of PM particles in November testing is lower than testing in June by 34% and the mass concentration in November is 70% lower than that in June. With the decrease of ambient temperature and the increase of ambient pressure, both the oxygen concentration in cylinder and air-fuel ratio are increased, which caused lower particle number and mass emissions during November testing. The size distribution is also altered by these changes: the more efficient in-cylinder combustion resulted in a higher proportion of particles in the 30 nm and smaller range than for other particle sizes.

  15. Formation of nanocrystalline MgB sub 2 under high pressure

    CERN Document Server

    Sun, L; Kikegawa, T; Cao, L; Zhan, Z; Wu, Q; Wu, X; Wang, W

    2002-01-01

    The microstructural features of MgB sub 2 at ambient pressure and high pressure have been investigated by means of in situ synchrotron radiation x-ray diffraction and transmission electron microscopy (TEM). The x-ray diffraction measurements indicated that nanocrystalline MgB sub 2 formed in the pressure range of 26.3-30.2 GPa. TEM investigations reveal complex structure domains with evident lattice distortion in the relevant samples. The superconductivity of nanocrystalline MgB sub 2 was measured and compared with that of the starting sample of MgB sub 2.

  16. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Yinan; Wand, A Joshua

    2013-08-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  17. On the relative stability of orthorhombic and hcp phases of beryllium at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, B.; Rao, R.S.; Godwal, B.K.; Sikka, S.K. [High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai (India)

    2000-10-16

    High-pressure electronic properties of Be have been investigated theoretically by means of ab initio electronic structure calculations. The calculations have been carried out by the semi-relativistic full-potential, linear muffin-tin orbital (FPLMTO) method, within the local density approximation. The crystal structure stability among the hcp, bcc and orthorhombic (distorted hcp) phases has been studied as a function of compression. The bcc structure is found to be energetically stable at pressures above 180 GPa. From the results of our calculations, the orthorhombic phase cannot occur as an intermediate phase between the ambient pressure hcp phase and the high-pressure bcc structure. Our work thus suggests the need for more accurate high-pressure x-ray data. (author)

  18. Structural and magnetic phase transitions in NdCoAsO under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter; Tsoi, Georgiy M.; Vohra, Yogesh K.; McGuire, Michael A.; Sefat, Athena S.; Sales, Brian C.; Mandrus, David; Weir, Samuel T. (UAB); (ORNL); (LLNL)

    2010-05-04

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  19. Structural and magnetic phase transitions in NdCoAsO under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Y. K. [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2010-01-01

    We have investigated structural and magnetic phase transitions under high pressures in a quaternary rare-earth transition-metal arsenide oxide NdCoAsO compound that is isostructural to the high temperature superconductor parent phase NdFeAsO. The four-probe electrical resistance measurements carried out in a designer diamond anvil cell show that the ferromagnetic Curie temperature and antiferromagnetic Neel temperature increase with an increase in pressure. High pressure x-ray diffraction studies using a synchrotron source show a structural phase transition from a tetragonal phase to a new crystallographic phase at a pressure of 23 GPa at 300 K. The NdCoAsO sample remained antiferromagnetic and non-superconducting down to 10 K and up to the highest pressure achieved in this experiment, 53 GPa. A P-T phase diagram for NdCoAsO is presented from ambient conditions to P = 53 GPa and T = 10 K.

  20. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  1. Yoga Called Good Medicine for High Blood Pressure

    Science.gov (United States)

    ... fullstory_162446.html Yoga Called Good Medicine for High Blood Pressure People who added this practice to a healthy ... elevated blood pressure] are likely to develop hypertension [high blood pressure] unless they improve their lifestyle," said study author ...

  2. Is sodium a superconductor under high pressure?

    Science.gov (United States)

    Tutchton, Roxanne; Chen, Xiaojia; Wu, Zhigang

    2017-01-07

    Superconductivity has been predicted or measured for most alkali metals under high pressure, but the computed critical temperature (Tc) of sodium (Na) at the face-centered cubic (fcc) phase is vanishingly low. Here we report a thorough, first-principles investigation of superconductivity in Na under pressures up to 260 GPa, where the metal-to-insulator transition occurs. Linear-response calculations and density functional perturbation theory were employed to evaluate phonon distributions and the electron-phonon coupling for bcc, fcc, cI16, and tI19 Na. Our results indicate that the maximum electron-phonon coupling parameter, λ, is 0.5 for the cI16 phase, corresponding to a theoretical peak in the critical temperature at Tc≈1.2 K. When pressure decreases or increases from 130 GPa, Tc drops quickly. This is mainly due to the lack of p-d hybridization in Na even at 260 GPa. Since current methods based on the Eliashberg and McMillian formalisms tend to overestimate the Tc (especially the peak values) of alkali metals, we conclude that under high pressure-before the metal-to-insulator transition at 260 GPa-superconductivity in Na is very weak, if it is measurable at all.

  3. Picosecond High Pressure Gas Switch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  4. Comparability of tympanic and oral mercury thermometers at high ambient temperatures

    Directory of Open Access Journals (Sweden)

    Chue Amy L

    2012-07-01

    Full Text Available Abstract Background Body temperature can be measured in seconds with tympanic thermometers as opposed to minutes with mercury ones. The aim of this study was to compare tympanic and oral mercury thermometer measurements under high ambient field temperatures. Results Tympanic temperature (measured thrice by 3 operators was compared to oral temperature measured once with a mercury-in-glass thermometer in 201 patients (aged ≥5 years, on the Thai-Myanmar border. Ambient temperature was measured with an electronic thermo-hygrometer. Participants had a mean [min-max] age of 27 [5–60] years and 42% (84 were febrile by oral thermometer. The mean difference in the mercury and tympanic temperature measurement for all observers/devices was 0.09 (95%CI 0.07-0.12°C and intra-class correlation for repeat tympanic measurements was high (≥0.97 for each observer. Deviations in tympanic temperatures were not related to ambient temperature. Conclusion Clinically significant differences were not observed between oral and tympanic temperature measurements at high ambient temperatures in a rural tropical setting.

  5. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Science.gov (United States)

    Prosvirin, Igor P.; Bukhtiyarov, Andrey V.; Bluhm, Hendrik; Bukhtiyarov, Valerii I.

    2016-02-01

    Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  6. Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, W; Crowhurst, J C; Zaug, J M; Jeanloz, R

    2007-03-20

    We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLS High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.

  7. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    Science.gov (United States)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  8. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  9. High-pressure investigations of Earth's interior

    Science.gov (United States)

    Jackson, Jennifer

    2007-03-01

    In the first half of the talk, the electronic structure of iron in ferromagnesium silicate perovskite will be discussed. Knowledge of iron valences and spin states in silicate perovskite is relevant to our understanding of the physical and chemical properties of Earth's lower mantle such as transport properties, mechanical behavior, and element partitioning. In this study, we have measured the electronic structure of the iron component of an aluminous Fe-bearing silicate perovskite sample, (Mg0.88Fe0.09)(Si0.94Al0.10)O3, close to a pyrolite composition, using synchrotron M"ossbauer spectroscopy (SMS) and laser heated diamond anvil cells at high-pressure and temperatures at beamline 3-ID of the Advanced Photon Source. Evaluation of the spectra provided the isomer shift and the quadrupole splitting of the iron component in silicate perovskite, which gives information on valence and spin states under lower mantle conditions. In the second half of the talk, experiments on the melting curve of iron at high-pressures will be presented. Seismological observations indicate that Earth's iron-dominated core consists of a solid inner region surrounded by a liquid outer core. Previously, melting studies of iron metal at high-pressures and temperatures were performed by shock-compression, resistive- and laser-heating in diamond anvil cells using visual observations or synchrotron x-ray diffraction and theoretical methods. However, the melting curve of iron is still controversial. Here, we will present a new method of detecting the solid-liquid phase boundary of iron at high-pressure using ^57Fe SMS. The characteristic SMS time signature is observed by fast detectors and vanishes suddenly when melting occurs. This process is described by the Lamb-M"ossbauer factor f = exp(-k^2), where k is the wave number of the resonant x-rays and is the mean-square displacement of the iron atoms.

  10. Modeling High Pressure Micro Hollow Cathode Discharges

    Science.gov (United States)

    2007-11-02

    cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the

  11. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  12. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  13. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  14. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Science.gov (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  15. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... of WO3 nanoparticles using this method is therefore a three step process: protonation of tungstate ions, crystallization of tungstite, and phase transformation to WO3. Furthermore, this process can be tailored. For example, we show that WO3 can be doped with cesium and that nanorods can also be obtained......Tungsten oxide (WO3) nanostructures receive sustained interest for a wide variety of applications, and especially for its usage as a photocatalyst. It is therefore important to find suitable methods allowing for its easy and inexpensive large scale production. Tungstite (WO3 center dot H2O...

  16. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    Science.gov (United States)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  17. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  18. Conversion of Dynamic High Pressures from Air to Water for a Spherical TNT Charge

    Directory of Open Access Journals (Sweden)

    A. K. Sharma

    1996-01-01

    Full Text Available A numerical method has been applied to convert the dynamic high pressures from air-to-water for a spherical TNT charge. Standard equation of scaling law in air for TNT has been utilised to make the necessary conversions. The investigations have been made by taking into consideration the ambient pressure values for the two media. The calculations have been performed under the scaled distances to get better results. Experimental measurements using indigenous blast pressure gauge have been undertaken by detonating spherical charges of TNT under the same scaled distances in water to check the correctness of results and direct application of this method. A fairly close agreement between the theoretically computed and the experimental values of the dynamic high pressures shows the practical utility of this approach in that it enables an estimate of the experimental shock wave pressures, without conducting underwater experiments.

  19. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  20. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide.

    Science.gov (United States)

    Laniel, Dominique; Downie, Laura E; Smith, Jesse S; Savard, Didier; Murugesu, Muralee; Desgreniers, Serge

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  1. Full-Scale Testing of the Ambient Pressure, Acid-Dissolution Front-End Process for the Current 99Mo Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division; Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division

    2013-01-31

    The Global Threat Reduction Initiative (GTRI) Conversion Program is actively developing technologies for converting civilian facilities that use high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The conversion of conventional HEU targets to LEU for the production of 99Mo production requires approximately five times the uranium in a target to maintain the 99Mo yield on a per-target basis. Under GTRI, Argonne National Laboratory (Argonne) is developing two frontend options for current 99Mo production processes to allow the use of LEU-foil targets. In both processes, the aim is to produce a frontend product that is compatible with current 99Mo purification operations and will provide the same or a higher yield of 99Mo for the same number of irradiated targets. The two frontend processes under development as part of this project are (1) the dissolution of irradiated LEU foil (up to 250 g in a single batch) and nickel fission recoil barrier in nitric acid at ambient pressure; and (2) the electrochemical dissolution of LEU foil in series of steps that produces an alkaline (basic) solution feed for 99Mo purification. This report describes results from performance tests and design optimization of the ambient pressure, nitric-acid-dissolver system. The design, fabrication, and performance test planning for this system are described in more detail in previous reports (Jerden et al. 2011a,b, 2012). Full-scale demonstrations of both of the frontend processes using irradiated uranium foils are planned to be performed at Oak Ridge National Laboratory this fiscal year.

  2. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2017-01-01

    Full Text Available Lithium and calcium are inefficient filling elements of CoSb3 at ambient pressure, but show nice filling behavior under high pressure. In this work, we synthesized Li/Ca double-filled CoSb3 with high pressure synthesis method. The products show the skutterudite structure of Im3¯ symmetry. Thermoelectric properties were effectively enhanced through Li and Ca co-filling. For the optimal Li0.08Ca0.18Co4Sb12 sample, the power factor maintains a relatively high value over the whole measurement temperature range and peaks at 4700μWm−1K−2, meanwhile the lattice thermal conductivity is greatly suppressed, leading to a maximal ZT of 1.18 at 700 K. Current work demonstrates high pressure synthesis as an effective method to produce multiple elemental filled CoSb3 skutterudites.

  3. High Pressure - High Temperature Polymorphism in Ta: Resolving an Ongoing Experimental Controversy

    Energy Technology Data Exchange (ETDEWEB)

    Burkovsky, L; Chen, S P; Preston, D L; Belonoshko, A B; Rosengren, A; Mikhaylushkin, A S; Simak, S I; Moriarty, J A

    2010-04-07

    Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high pressure (P) melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of two. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditions, transforms to another solid phase, possibly hexagonal omega phase, at high temperature (T). Hence the sample motion observed in DAC experiments is not due to melting but internal stresses accompanying a solid-solid transformation, as explained in more detail in our work. In view of our results on tantalum and previous work on molybdenum, as well as other published data, it is highly plausible that high-PT polymorphism is a general feature of Groups V and VI refractory metals.

  4. Phase Transition and Structure of Silver Azide at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Hou; F Zhang; C Ji; T Hannon; H Zhu; J Wu; V Levitas; Y Ma

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phases have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.

  5. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  6. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...

  7. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  8. Dietary spermidine for lowering high blood pressure

    Science.gov (United States)

    Zimmermann, Andreas; Schroeder, Sabrina; Pendl, Tobias; Harger, Alexandra; Stekovic, Slaven; Schipke, Julia; Magnes, Christoph; Schmidt, Albrecht; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S; Herbst, Viktoria; Carmona-Gutierrez, Didac; Pietrocola, Federico; Pieber, Thomas R; Sigrist, Stephan J; Linke, Wolfgang A; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank

    2017-01-01

    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets. PMID:28118075

  9. Rheological properties of oil-based drilling fluids at high temperature and high pressure

    Institute of Scientific and Technical Information of China (English)

    赵胜英; 鄢捷年; 舒勇; 张洪霞

    2008-01-01

    The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at pressures up to 138 MPa and temperatures up to 204 ℃ using the RheoChan 7400 Rheometer.The experimental results show that the apparent viscosity,plastic viscosity and yield point decrease with the increase of temperature,and increase with the increase of pressure.The effect of pressure on the apparent viscosity,plastic viscosity and yield point is considerable at ambient temperature.However,this effect gradually reduces with the increase of temperature.The major factor influencing the rheological properties of oil-based drilling fluids is temperature instead of pressure in the deep sections of oil wells.On the basis of numerous experiments,the model for predict the apparent viscosity,plastic viscosity and yield point of oil-based drilling fluids at high temperature and pressure was established using the method of regressive analysis.It is confirmed that the calculated data are in good agreement with the measured data,and the correlation coefficients are more than 0.98.The model is convenient for use and suitable for the application in drilling operations.

  10. New ambient pressure organic superconductor with Tc = 8.1 K : (EDT-TTF)4Hg3-dI8

    NARCIS (Netherlands)

    Lyubovskaya, R.N.; Zhilyaeva, E.I.; Torunova, S.A.; Mousdis, G.A.; Papavassiliou, G.C.; Perenboom, J.A.A.J.; Pesotskii, S.I.; Lyubovskii, R.B.

    2004-01-01

    New ethylenedithiotetrathiafulvalene (EDT-TTF)-based radical cation salts with mercury containing anions of different size and shape have been isolated and studied. Among these compounds the new ambient pressure organic superconductor (EDT-TTF)(4)Hg3-deltaI8, deltasimilar to0.1divided by 0.2, with T

  11. Strong ferromagnetic exchange interaction under ambient pressure in BaFe2S3

    Science.gov (United States)

    Wang, Meng; Jin, S. J.; Yi, Ming; Song, Yu; Jiang, H. C.; Zhang, W. L.; Sun, H. L.; Luo, H. Q.; Christianson, A. D.; Bourret-Courchesne, E.; Lee, D. H.; Yao, Dao-Xin; Birgeneau, R. J.

    2017-02-01

    Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe2S3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351; T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015), 10.1103/PhysRevLett.115.246402]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (S JR=-71 ±4 meV) along the rung direction, an antiferromagnetic S JL=49 ±3 meV along the leg direction, and a ferromagnetic S J2=-15 ±2 meV along the diagonal direction. Our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.

  12. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  13. Menopause and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    ... blood pressure (hypertension) Is there a connection between menopause and high blood pressure? Answers from Shannon K. ... Tommaso, M.D. Blood pressure generally increases after menopause. Some doctors think this increase suggests that hormonal ...

  14. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  15. LHDAC setup for high temperature and high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nishant N., E-mail: nnpatel@barc.gov.in; Meenakshi, S., E-mail: nnpatel@barc.gov.in; Sharma, Surinder M., E-mail: nnpatel@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  16. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage,...

  17. High-pressure structural properties of tetramethylsilane

    Science.gov (United States)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  18. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    Science.gov (United States)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  19. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  20. High blood pressure in children and adolescents.

    Science.gov (United States)

    Riley, Margaret; Bluhm, Brian

    2012-04-01

    High blood pressure in children and adolescents is a growing health problem that is often overlooked by physicians. Normal blood pressure values for children and adolescents are based on age, sex, and height, and are available in standardized tables. Prehypertension is defined as a blood pressure in at least the 90th percentile, but less than the 95th percentile, for age, sex, and height, or a measurement of 120/80 mm Hg or greater. Hypertension is defined as blood pressure in the 95th percentile or greater. A secondary etiology of hypertension is much more likely in children than in adults, with renal parenchymal disease and renovascular disease being the most common. Overweight and obesity are strongly correlated with primary hypertension in children. A history and physical examination are needed for all children with newly diagnosed hypertension to help rule out underlying medical disorders. Children with hypertension should also be screened for other risk factors for cardiovascular disease, including diabetes mellitus and hyperlipidemia, and should be evaluated for target organ damage with a retinal examination and echocardiography. Hypertension in children is treated with lifestyle changes, including weight loss for those who are overweight or obese; a healthy, low-sodium diet; regular physical activity; and avoidance of tobacco and alcohol. Children with symptomatic hypertension, secondary hypertension, target organ damage, diabetes, or persistent hypertension despite nonpharmacologic measures should be treated with antihypertensive medications. Thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, and calcium channel blockers are safe, effective, and well tolerated in children.

  1. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  2. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    Energy Technology Data Exchange (ETDEWEB)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp [Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Kazunori; Masaki, Mika; Sato, Masaru [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Inaka, Koji [Maruwa Foods and Biosciences Inc., Nara 639-1123 (Japan); Tanaka, Hiroaki [Confocal Science Inc., Tokyo 101-0032 (Japan); Nakagawa, Atsushi [Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-11-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  3. Prediction of superconducting iron-bismuth intermetallic compounds at high pressure

    CERN Document Server

    Amsler, Maximilian; Wolverton, Chris

    2016-01-01

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab\\,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $\\approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{\\rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly...

  4. Theory of high pressure hydrogen, made simple

    CERN Document Server

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  5. High-pressure structural phase transitions in chromium-doped BaFe2As2

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Brill, Joseph W. [University of Kentucky; Montgomery, Jeffrey M [University of Alabama, Birmingham; Samudrala, G K [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Y. K. [University of Alabama, Birmingham; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL); Safa-Sefat, Athena [ORNL

    2012-01-01

    We report on the results from high pressure x-ray powder diffraction and electrical resistance measurements for hole doped BaFe{sub 2-x}Cr{sub x}As{sub 2} (x = 0, 0.05, 0.15, 0.4, 0.61) up to 81 GPa and down to 10 K using a synchrotron source and diamond anvil cell (DAC). At ambient temperature, an isostructural phase transition from a tetragonal (T) phase (I4/mmm) to a collapsed tetragonal (CT) phase is observed at 17 GPa. This transition is found to be dependent on ambient pressure unit cell volume and is slightly shifted to higher pressure upon increase in the Cr-doping. Unlike BaFe{sub 2}As{sub 2} which superconduct under high pressure, we have not detected any evidence of pressure induced superconductivity in chromium doped samples in the pressure and temperature range of this study. The measured equation of state parameters are presented for both the tetragonal and collapsed tetragonal phases for x = 0.05, 0.15, 0.40 and 0.61.

  6. High-temperature and high-speed oxidation of 4H-SiC by atmospheric pressure thermal plasma jet

    Science.gov (United States)

    Hanafusa, Hiroaki; Ishimaru, Ryosuke; Higashi, Seiichiro

    2017-04-01

    The application of atmospheric pressure thermal plasma jet (TPJ) annealing to the high-temperature and high-speed thermal oxidation of Si-face of 4H-SiC wafer is reported. A high SiO2 film growth rate of 288 nm min‑1 was obtained at an oxidation temperature of 1640 °C without intentional dry O2 gas feeding. Ambient analysis suggested that ozone generated from oxygen in the ambient air by the plasma irradiation was supplied to the SiC surface. It is implied that a mono-oxygen decomposed from ozone was diffused into the oxide growth interface. As a result, high-speed oxidation occurred by combination of high-temperature TPJ annealing and ozone feeding.

  7. Superconductivity in hydrogen-rich materials at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, Alexander

    2016-07-01

    A room temperature superconductor is probably one of the most desired systems in solid state physics. The highest critical temperature (T{sub c}) that has been achieved so far is in the copper oxide system: 133 kelvin (K) at ambient pressure ([82]Schilling et al. 1993) and 160 K under pressure ([42]Gao et al. 1994). The nature of superconductivity in the cuprates and in the recently discovered iron-based superconductor family (T{sub c}=57 K) is still not fully understood. In contrast, there is a class of superconductors which is well-described by the Bardeen, Cooper, Schrieffer (BCS) theory - conventional superconductors. Great efforts were spent in searching for high-temperature (T{sub c} > 77 K) conventional superconductor but only T{sub c} = 39 K has been reached in MgB2 ([68]Nagamatsu et al. 2001). BCS theory puts no bounds for T{sub c} as follows from Eliashberg's formulation of BCS theory. T{sub c} can be high, if there is a favorable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. It does not predict however in which materials all three parameters are large. At least it gives a clear indication that materials with light elements are favorable as light elements provide high frequencies in the phonon spectrum. The lightest element is hydrogen, and Ashcroft made a first prediction that metallic hydrogen will be a high-temperature superconductor ([6]Ashcroft 1968). As pressure of hydrogen metallization was too high (about 400-500 GPa) for experimental techniques then he proposed that compounds dominated by hydrogen (hydrides) also might be good high temperature superconductors ([6]Ashcroft 1968; [7]Ashcroft 2004). A lot of the followed calculations supported this idea. T{sub c} in the range of 50-235 kelvin was predicted for many hydrides. Unfortunately, only a moderate T{sub c} of 17 kelvin has been observed experimentally ([27]Eremets et al. 2008) so far. A goal of the present work is to find a

  8. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient...... temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal...... are 99.10+/-1.26 GPa and 4.25+/-0.16, respectively. The compression behavior of different Bragg peaks is isotropic and the full width at half maximum of each peak remains almost unchanged during compression, indicating no anisotropic elasticity and no defects in the icosahedral Zr...

  9. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook Tweet Share ... cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National Health and Nutrition ...

  10. High Blood Pressure and Children: What Parents Need to Know

    Science.gov (United States)

    ... Lung, and Blood Institute Alternate Language URL Español High Blood Pressure and Children: What Parents Need to Know Page Content Children can have high blood pressure. Did you know that children could have high ...

  11. Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface.

    Science.gov (United States)

    Axnanda, Stephanus; Crumlin, Ethan J; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G; Edwards, Mårten O M; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  12. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.

  13. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  14. High-pressure coal fuel processor development

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  15. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  16. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    Science.gov (United States)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-01-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation. PMID:28240300

  17. Reactivity of Au nanoparticles supported over SiO2 and TiO2 studiedby ambient pressure photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Liu, Zhi; Soler-Illia, Galo; Salmeron, Miquel

    2009-04-15

    The influence of the metal cluster size and the identity of the support on the reactivity of gold based catalysts have been studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO{sub 2} and TiO{sub 2} and their catalytic activity was measured in a flow reactor. The reaction rate was dependent on the particle size and the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared upon supporting the Au nanoparticles over planar polycrystalline SiO{sub 2} and TiO{sub 2} thin films by means of the Langmuir-Blodgett (LB) technique to mimic the characteristic of the powder samples. In this way, the catalytically active surface was characterized under true reaction conditions, revealing that during CO oxidation gold remains in the metallic state.

  18. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    Science.gov (United States)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-02-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

  19. Experimental Determination of Spatial and Temporal Discharge Parameters for an Ambient Pressure Dielectric Barrier Discharge in Helium

    Science.gov (United States)

    Bures, Brian; Bourham, Mohamed

    2004-11-01

    Ambient pressure Dielectric Barrier Discharges (DBD's) are studied for a number of applications. Barrier discharges composed primarily of inert gases are potentially useful for the production of intense excimer light, sterilization of thermally sensitive materials and control of insects for quarantine. The neutral bremsstrahlung technique is used to determine spatial variations of electron density and electron temperature in a parallel plate, helium (99.9% by vol) dielectric barrier discharge operated at an average power density between 50 and 75 mW/cm^3. The applied frequency is varied between 2 kHz and 6 kHz. The time average electron density suggests a more intense discharge near the surface of the electrodes than the bulk of the discharge for all frequencies and power densities. When moving parallel to the electrodes, the electron temperature remains constant, while the electron density is constant within 20% of the average value. A monochromator tuned to a nitrogen ion line (391.4 nm) and a helium line (706.5 nm) has a more intense emission when the electrode is negatively biased.

  20. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  1. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  2. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  3. Stable magnesium peroxide at high pressure

    Science.gov (United States)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  4. High-pressure structures of yttrium hydrides

    Science.gov (United States)

    Liu, Lu-Lu; Sun, Hui-Juan; Wang, C. Z.; Lu, Wen-Cai

    2017-08-01

    In this work, the crystal structures of YH3 and YH4 at high pressure (100-250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH3 and YH4 structures at different temperatures and pressures were investigated. Among YH3 phases, the P21/m structure of YH3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 K at 200 GPa. Other YH3 structures have much lower T cs. Compared with YH3, the T c of the YH4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.

  5. Local structures of ionic liquids in the presence of gold under high pressures

    Directory of Open Access Journals (Sweden)

    Hai-Chou Chang

    2013-03-01

    Full Text Available The interactions between ionic liquid ([EMI][TFS] and gold surfaces have been investigated via the application of pressures up to ca. 2 GPa. Comparing the spectral features of [EMI][TFS]/gold with those of pure [EMI][TFS], no appreciable changes of C-H bands in the presence of gold powders were observed under ambient pressure. Nevertheless, the imidazolium C-H bands display red shifts in frequency as the [EMI][TFS] / Au mixture was compressed to the pressure above 1.4 GPa and a new alkyl C-H band at ca. 3016 cm−1 was also revealed. These spectral changes, being related to the addition of gold powders and pressure elevation, should be attributed to the local structural changes of C-H groups caused by pressure-enhanced interfacial interactions between [EMI][TFS] and Au. Gold powders tend to induce the changes in hydrogen bonding structures of imidazolium C2-H group under high pressures. The pressure-dependent spectral features in the asymmetric SO3 stretching region display band-narrowing and minor local structural changes induced by the presence of gold particles under high pressures. These observations suggest that Au powders perturb structural equilibrium of C-H groups of cations under high pressures.

  6. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    Science.gov (United States)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  7. High Speed Switching Micoplasma in High Pressure Gases

    Science.gov (United States)

    Wakim, Dani; Staack, David

    2012-10-01

    Micro-plasma discharges with switching times approaching 1 ns are studied at pressures from 1 to 16 atm. Applications of these devices are robust high speed switching transistors able to withstand electric interference, high temperatures and harsh environments. Measured discharge conditions at 250 psia in Nitrogen are: gas temperature 2900 K, discharge diameter ˜7 μm and electron density ˜10^17 cm-3. High speed switching is achieved by taking advantage of rapid dynamics of instabilities at high pressure and high electron density. The capacitance and inductance of the circuit also significantly affect transients. Tradeoffs are observed in switching times. By reducing capacitances from 10 pF to ˜1pF attainment of steady state conditions can be reduced from 1 us to ˜ 20 ns. However current rise times increase from 1 ns at high capacitance to 20 ns at low capacitance. A decrease in switching time with increased pressure is also observed. Also investigated are configurations with a third electrode acting as a gate or trigger and various high temperature (>2000K) materials such as platinum rhodium alloys and ceria stabilized zirconia ceramics for device fabrication.

  8. Synthesis of sodium polyhydrides at high pressures.

    Science.gov (United States)

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  9. Synthesis of sodium polyhydrides at high pressures

    Science.gov (United States)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  10. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm(2)) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  11. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  12. High pressure phase transition in Zr–Ni binary system: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Debojyoti, E-mail: debojyoti@barc.gov.in; Sahoo, B.D.; Joshi, K.D.; Gupta, Satish C.

    2015-11-05

    Total energy calculations have been performed on zirconium–nickel (with 50% nickel by atom) binary system to examine its structural stability under high pressure. The evolutionary structure search method in conjunction with density functional theory based projector augmented wave (PAW) method suggested that at zero pressure an orthorhombic phase with space group symmetry Cmcm is the lowest enthalpy structure, in agreement with the experiments. Further, it has been predicted that upon compression at ∼10 GPa, this structure will transform to a lower symmetry triclinic phase (space group P-1) which will remain stable up to ∼50 GPa, the maximum pressure of the present calculations. To support the results of our static lattice calculations, we performed lattice dynamic calculations also on Cmcm and P-1 structures. Lattice dynamic calculations correctly showed that at ambient condition the Cmcm phase is dynamically stable. Further, these calculations carried around the Cmcm to P-1 transition pressure predicted that the Cmcm phase will become unstable dynamically due to failure of acoustic zone boundary phonons, suggesting that the Cmcm to P-1 transition is phonon driven. For P-1 phase our calculations showed that this structure is dynamically stable not only at high pressures but also at ambient condition, indicating that at pressure lower than 10 GPa this phase could be a metastable structure. Further, we have calculated the elastic constants for both the phase at various pressures. - Highlights: • Pressure induced phonon driven orthorhombic to triclinic phase transformations in Zr–Ni binary system at ∼10 GPa. • Elastic and lattice dynamic stability of orthorhombic and triclinic phase. • Exploitation of evolutionary structure searching method to explore high pressure phase of Zr–Ni material.

  13. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    Science.gov (United States)

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  14. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    Energy Technology Data Exchange (ETDEWEB)

    Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang

    2010-04-01

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at {approx}13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Moessbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  15. Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)

    Energy Technology Data Exchange (ETDEWEB)

    Halevy, Itzhak, E-mail: halevyi@caltech.edu [Nuclear Research Center-Negev (Israel); Haroush, Shlomo [Soreq NRC, NRC Negev (Israel); Eisen, Yosef; Silberman, Ido; Moreno, Dany [Soreq NRC (Israel); Hen, Amir [Ben Gurion Univ., Department of Nuclear Engineering (Israel); Winterrose, Mike L. [Department of Materials Science California Institute of Technology (United States); Ghose, Sanjit; Chen Zhiqiang [Brookhaven National Laboratory, NSLS (United States)

    2010-04-15

    Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at {approx}13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Moessbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.

  16. Boron nitrides synthesized directly from the elements at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, M.; Yoo, C.S.; Akella, J.; Cynn, H.

    1996-11-01

    We use angle-resolved synchrotron x-ray diffraction, laser sample heating, and diamond-anvil cells to follow in-situ chemical reactions directly between elemental boron and nitrogen. The structures of the solid reaction products vary with pressure. Below 10 GPa, hexagonal BN is the product; cubic or wurzite BN form at higher pressures. Under nitrogen-rich conditions, another hexagonal allotrope occurs which seems to be a new highly transparent, low density h`-BN. No direct reactions occur at ambient temperature even at pressures as high as 50 GPa, implying that a large activation barrier limits the kinetics of these exothermic processes. Laser heating overcomes the large kinetic activation barrier and initiates spontaneous, self-sustaining exothermic reactions even at moderate pressures.

  17. Synthesis and Structural Study of Sr2CuO3+δ Superconductor under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-Qing; WANG Fu-Ren; LI Feng-Ying; CHEN Liang-Chen; YU Ri-Cheng; JIN Chang-Qing; LI Yan-Chun; LIU Jing

    2008-01-01

    A single-phase Sr2CuO3+δ superconductor is synthesized under high temperature and high pressure, in which oxygen atoms only partially occupy the apical sites next to the CuO2 planes and act as hole-dopants. The superconducting transition temperature with Tcmax = 75 K is achieved in the material. Structure analysis from x-ray powder diffraction data show that this material crystallizes into a K2NiF4 structure with tetragonal unit cell of α = 3.795(3) (A) and c = 12.507(1) (A). Energy-dispersive synchrotron x-ray-diffraction studies at ambient are performed on powder samples of St2CuO3+δ in a diamond-anvil cell at pressure up to 35 GPa. Anisotropic compressibility is found. Pressure-induced isostructural phase transition might exist as revealed by the discontinuous change of crystal cell volume V with pressure.

  18. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  19. Compressibility of Fe1.087Te: a high pressure X-ray diffraction study

    DEFF Research Database (Denmark)

    Jørgensen, J-E.; Olsen, J. Staun; Gerward, Leif

    2011-01-01

    Fe1.087Te exhibits three phases in the pressure range from ambient to 16.6 GPa and becomes amorphous at higher pressures. All three phases have tetragonal symmetry. The low pressure T-phase is stable in the pressure range 0......Fe1.087Te exhibits three phases in the pressure range from ambient to 16.6 GPa and becomes amorphous at higher pressures. All three phases have tetragonal symmetry. The low pressure T-phase is stable in the pressure range 0...

  20. Structures and Gas Storage Performance of Metal-organic Framework Materials at High Pressures

    Science.gov (United States)

    Song, Yang; Hu, Yue; Huang, Yining

    2013-06-01

    Metal Organic Frameworks (MOFs), are crystalline nanoporous materials comprised of small metal clusters connected three-dimensionally by polyfunctional organic ligands. MOFs have been widely studied due to their high porosity, surface area and thermal stability, which make them promising candidates for gas capture and storage. In the MOF family, Zeolitic Imidazolate Frameworks (ZIFs) have attracted much attention because of their promising applications for CO2 storage. In contrast to the extensive studies under ambient conditions, most ZIFs have only been studied under pressure in a very limited range. It is known that pressure can provide an effective driving force to achieve structural modification which includes changes in pore size, opening and geometry, channel shape and internal surface area. Subsequently, these pressure-induced changes will affect the sorption selectivity, capacity and access to the binding sites of the porous materials. Here, we report the first in situ high-pressure investigation of several ZIFs by FTIR spectroscopy. We observed rich pressure-induced transformations upon compression in different pressure ranges. Furthermore, the reversibilities of these transformations upon decompression were also examined. Finally, the performance of CO2 storage of selected ZIFs at high pressures will be addressed. Our observation and analyses contribute to the understanding of chemical and mechanical properties of ZIFs under high-pressure conditions and provide new insight into their storage applications.

  1. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X. D., E-mail: renxd@ujs.edu.cn; Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, S. Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang 212013 (China)

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  2. High pressure structural and magnetic studies of LaFe12B6

    Science.gov (United States)

    Diop, L. V. B.; Isnard, O.; Arnold, Z.; Itié, J. P.; Kastil, J.; Kamarad, J.

    2017-02-01

    The study of the structural and magnetic properties of LaFe12B6 under high pressure has been performed by combining angle-dispersive x-ray powder diffraction at room temperature up to 14 GPa and magnetization measurements up to 1 GPa. At ambient pressure, the itinerant-electron compound LaFe12B6 exhibits an antiferromagnetic ground state below TN=36 K. It is demonstrated that the antiferromagnetic state can be transformed into a ferromagnetic state via a field-induced first-order metamagnetic transition accompanied with a large magnetic hysteresis. The x-ray diffraction measurements under pressure reveal that the ambient pressure crystal structure of LaFe12B6 is preserved up to 14 GPa with a decrease of the unit cell parameters. A compressibility value of κ=4.90 10-3 GPa-1 has been determined. The application of an external pressure leads also to the progressive decrease of the Néel temperature dTN/dP=-4.5 K GPa-1. In addition a large pressure effect on the critical field μ0Hcr of the metamagnetic transition, dμ0Hcr/dP=24 T GPa-1, was discovered. This clearly indicates the crucial role of volume effect on the itinerant-electron metamagnetic transition.

  3. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    In the present work, a novel probe design for high pressure NMR experiments in gem anvil cells (GAC) was used which places a small microcoil inside the high pressure volume as the detection coil. Based on tests carried out at ambient pressure and high pressure of 42 kbar it is demonstrated that this approach is indeed feasible and results in an increase of sensitivity by two orders of magnitude compared to previous GAC-NMR designs. The design was then successfully employed in the investigation of the electronic properties of metallic aluminum and the high temperature superconductor YBa{sub 2}Cu{sub 4}O{sub 8} at pressures of up to 101 kbar. Because of its improved sensitivity and the potential to achieve even higher pressures, the microcoil GAC-NMR setup should prove useful in the investigation of materials under high pressure conditions in the future. In the case of metallic aluminum, the effect of pressure on the electronic density of states at the Fermi level was probed via the Knight-shift K and the spin-lattice relaxation time T{sub 1} at room temperature up to a pressure of 101 kbar, extending the pressure range of previous NMR measurements by a factor of 14 [72]. Most notably, a decrease of K(p) by 11% is detected in the investigated pressure range that is inconsistent with a free electron behavior of the density of states. Numerical band structure calculations that are in excellent agreement with the experimental data suggest that the observed changes of K and T{sub 1} are due to a kink in the electronic states at a Lifshitz-transition at about 75 kbar which has not been observed previously. A further decrease of K by a factor of 2 is predicted to occur in the pressure range up to 300 kbar. In addition, an increase of the NMR linewidths of the metallic aluminum signal was observed above about 42 kbar that is inconsistent with a pure dipolar linewidth. Based on an analysis of the field dependence of this effect it was ascribed to a small additional

  4. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  5. [High blood pressure and physical exercise].

    Science.gov (United States)

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  7. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  8. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  9. Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells.

    Science.gov (United States)

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-08-24

    Considering the evaporation of solvents during fabrication of perovskite films, the organic ambience will present a significant influence on the morphologies and properties of perovskite films. To clarify this issue, various ambiences of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and chlorobenzene (CBZ) are introduced during fabrication of perovskite films by two-step sequential deposition method. The results reveal that an ambient CBZ atmosphere is favorable to control the nucleation and growth of CH3NH3PbI3 grains while the others present a negative effect. The statistical results show that the average efficiencies of perovskite solar cells processed in an ambient CBZ atmosphere can be significantly improved by a relatively average value of 35%, compared with those processed under air. The efficiency of the best perovskite solar cells can be improved from 10.65% to 14.55% by introducing this ambience engineering technology. The CH3NH3PbI3 film with large-size grains produced in an ambient CBZ atmosphere can effectively reduce the density of grain boundaries, and then the recombination centers for photoinduced carriers. Therefore, a higher short-circuit current density is achieved, which makes main contribution to the improvement in efficiency. These results provide vital progress toward understanding the role of ambience in the realization of highly efficient perovskite solar cells.

  10. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    Energy Technology Data Exchange (ETDEWEB)

    Roper, T.R.; Williams, L.E. (Univ. of California, Davis (USA) Kearney Agricultural Center, Parlier, CA (USA))

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  11. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... High blood pressure (hypertension) Is it true that sleep deprivation can cause high blood pressure? Answers from Sheldon ... Cirelli C, et al. Definition and consequences of sleep deprivation. http://www.uptodate.com/home. Accessed March 24, ...

  12. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, Afib and Your Risk of Stroke Updated:Sep ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  13. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  14. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  15. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  16. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  17. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    Energy Technology Data Exchange (ETDEWEB)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to

  18. Age-related effects of increased ambient pressure on discrimination reaction time: A study in 105 professional divers at 6.0 atm abs.

    Science.gov (United States)

    Tikkinen, Janne; Siimes, Martti A

    2015-01-01

    We investigated 105 professional divers using a computerized visual discrimination trial (Cognitrone) to measure the effects of ambient pressure on reaction times. The possible improvement in performance due to practice was anticipated, and the trials were carried out four times prior to pressurization in a hyperbaric chamber. The effect of increased ambient pressure was measured at 6.0 and 1.9 atm abs, and the potential for residual effects was tested after decompression. The results of our study indicate that repeated testing had a systematic influence on the measured time values. The effects of learning, which were independent of diver age, may have independently influenced response times. Exposure to 6.0 atm abs modified the systematic pattern of learning and was associated with increased reaction times. There were also age-related differences in response times associated with exposure to increased ambient pressures. Younger divers were more susceptible to elevated ambient pressure, evidenced by increased response times at 6 atm abs relative to their older colleagues. One out of every four of the younger divers could be considered susceptible to inert gas narcosis (ION) when an increase of one standard deviation/1SD (> 19%) or more in discrimination reaction time is used as an indicator. ION susceptibility appears independent of body composition and physical fitness. The slowed response speed experienced at 6.0 atm abs was of short duration and returned to baseline immediately with decompression. Our results suggest that IGN is demonstrated by an impaired learning process and decreased response speed and that some younger divers appear more susceptible.

  19. DNS of High Pressure Supercritical Combustion

    Science.gov (United States)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  20. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  1. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  2. Simulating a high pressure die casting

    Energy Technology Data Exchange (ETDEWEB)

    Goldak, J.; Zhou, J.; Downey, D.; Aldea, V.; Li, G.; Mocanita, M. [Carleton Univ., Ottawa, Ontario (Canada)

    2000-07-01

    High pressure die casting is simulated for parts with complex geometry such as a large automotive transmission case. The closed die is filled in approximately 40 ms, the casting cools in the closed die for approximately 40s, to open the die, eject the casting and spray the die cavity surface requires another 40s. This 3D cyclic process is simulated using the following coupled composite solvers: the energy equation in the die and in the casting with solidification; filling of the casting by a droplet or a Navier-Stokes solver, and thermal stress analysis of the casting machine, casting and die during the cycle. This thermal analysis can be done for both starting and stopping transients and for the cyclic steady state. The software enables this analysis to be done almost automatically by designers. (author)

  3. Deformation at ambient and high temperature of in situ Laves phases-ferrite composites.

    Science.gov (United States)

    Donnadieu, Patricia; Pohlmann, Carsten; Scudino, Sergio; Blandin, Jean-Jacques; Babu Surreddi, Kumar; Eckert, Jürgen

    2014-06-01

    The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from ∼50 nm to ∼150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.

  4. Long-Term Effects of Ambient PM2.5 on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults.

    Science.gov (United States)

    Lin, Hualiang; Guo, Yanfei; Zheng, Yang; Di, Qian; Liu, Tao; Xiao, Jianpeng; Li, Xing; Zeng, Weilin; Cummings-Vaughn, Lenise A; Howard, Steven W; Vaughn, Michael G; Qian, Zhengmin Min; Ma, Wenjun; Wu, Fan

    2017-05-01

    Long-term exposure to ambient fine particulate pollution (PM2.5) has been associated with cardiovascular diseases. Hypertension, a major risk factor for cardiovascular diseases, has also been hypothesized to be linked to PM2.5 However, epidemiological evidence has been mixed. We examined long-term association between ambient PM2.5 and hypertension and blood pressure. We interviewed 12 665 participants aged 50 years and older and measured their blood pressures. Annual average PM2.5 concentrations were estimated for each community using satellite data. We applied 2-level logistic regression models to examine the associations and estimated hypertension burden attributable to ambient PM2.5 For each 10 μg/m(3) increase in ambient PM2.5, the adjusted odds ratio of hypertension was 1.14 (95% confidence interval, 1.07-1.22). Stratified analyses found that overweight and obesity could enhance the association, and consumption of fruit was associated with lower risk. We further estimated that 11.75% (95% confidence interval, 5.82%-18.53%) of the hypertension cases (corresponding to 914, 95% confidence interval, 453-1442 cases) could be attributable to ambient PM2.5 in the study population. Findings suggest that long-term exposure to ambient PM2.5 might be an important risk factor of hypertension and is responsible for significant hypertension burden in adults in China. A higher consumption of fruit may mitigate, whereas overweight and obesity could enhance this effect. © 2017 American Heart Association, Inc.

  5. Effect of high pressure on mesophilic lactic fermentation streptococci

    Science.gov (United States)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  6. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM10 (50.0 μg/m(3)) and O3 (53.0 μg/m(3)) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM10 and 2.77 (95% CI, 1.94-3.95) for O3. Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM10 and O3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China.

  7. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    Science.gov (United States)

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-02-16

    The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former dark time and darkness during the former light time, the CR-LL and CR-DD groups were each compared with the CR-LD group. Light delayed the evening decrease of BT, most likely via a suppression of the melatonin rise. Besides, it had a prominent arousal effect on SBP both in the former light and dark phases, a moderate effect on

  8. What about African Americans and High Blood Pressure?

    Science.gov (United States)

    ... whites. • Heredity —A tendency to have high blood pressure runs in families. • Age — In general, the older you get, the greater your chance of developing high blood pressure. • Sex — Men tend to develop high blood pressure ...

  9. Let's Talk about High Blood Pressure and Stroke

    Science.gov (United States)

    ... stroke. How does high blood pressure increase stroke risk? High blood pressure is the single most important risk factor for ... vessel ruptures over time. Who is at higher risk for HBP? People with a family history of high blood pressure African-Americans People age 35 or older People ...

  10. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  11. Probing Hydrogen Diffusion under High Pressure

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  12. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.

    Science.gov (United States)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ∼10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  13. The preparation of La2O3@AAO with simple hydrothermal method under ambient pressure and the enhanced electrowetting-on-dielectric performance

    Science.gov (United States)

    Jin, Hongxia; Wang, Jian; Yin, Yangyang; An, Yuying; Wang, Xiangzhuo; Li, Yan; Wang, Chengwei; Lv, Yudong

    2017-10-01

    Anodic aluminum oxide (AAO) has unique nanostructure and is a conventional EWOD material. The lanthanum oxide, a kind of rare-earth oxide, has unique electronic structure and high dielectric constant, but its synthesis is still complicated. A simple method is proposed to prepare the La2O3@AAO nanocomposites through immersing highly ordered AAO films into La(NO3)3 solution under ambient temperature and pressure and subsequent annealing. It can be known that when the immersion temperature gets to 60 °C, the La2O3 starts to grow in AAO by the characterization of morphology, crystal phase structure and surface chemical composition. The measurement of EWOD performance indicates that the incorporation of La2O3 into AAO greatly enhances the capacitance about 2-3 orders of magnitude, and the large contact angle modulation is acquired. Furthermore, the EW properties of La2O3@AAO nanocomposites, such as relaxation time, critical voltage, can be easily modulated by the immersion temperature and time.

  14. Structural stability and phase transition of Bi 2 Te 3 under high pressure and low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. L.; Zhang, S. J.; Zhu, J. L.; Liu, Q. Q.; Wang, X. C.; Jin, C. Q.; Yu, J. C.

    2017-09-01

    Structural stability and phase transition of topological insulator Bi2Te3 were studied via angle-dispersive synchrotron radiation X-ray diffraction under high pressure and low temperature condition. The results manifest that the R-3m phase (phase I) is stable at 8 K over the pressure range up to 10 GPa and phase transition occurs between 8 K and 45 K at 8 GPa. According to the Birch-Murnaghan equation of state, the bulk modulus at ambient pressure B0 was estimated to be 45 ± 3 GPa with the assumption of B0' = 4. The structural robustness of phase I at 8 K suggests that the superconductivity below 10 GPa is related to phase I. Topological properties of superconducting Bi2Te3 phase under pressure were discussed.

  15. In situ X-ray observation of phase transitions in ZnF2 under high pressure and high temperature

    Science.gov (United States)

    Kusaba, Keiji; Kikegawa, Takumi

    2008-02-01

    High-pressure and high-temperature behavior of ZnF 2 with the rutile-type structure was investigated using an energy-dispersive-type X-ray diffraction method. Two high-pressure phases were found in the range up to 15 GPa and 400 ∘C. The CaCl 2-type phase with an orthorhombic cell (space group: Pnnm) was clearly observed at 5.4 GPa and 400 ∘C. Further phase transition was induced above 10 GPa at room temperature. The single phase of the high-pressure phase was obtained at 15.3 GPa and 350 ∘C. The high-pressure phase was found to have the PdF 2-type structure with a cubic cell (space group: Pa-3). The single phase was observed above 4 GPa in a pressure-release process at room temperature, and completely reverted to a mixture of the rutile-type phase and the α- PbO 2-type phase at ambient condition. The high-pressure behavior of ZnF 2 was similar to that of MgF 2.

  16. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.

    Science.gov (United States)

    Wojnarowska, Z; Swiety-Pospiech, A; Grzybowska, K; Hawelek, L; Paluch, M; Ngai, K L

    2012-04-28

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M(")(f) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across T(g). The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below T(g). At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  17. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    Science.gov (United States)

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  18. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2013-02-01

    Full Text Available Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  19. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Science.gov (United States)

    Szanyi, Gyöngyvér; Gráczer, Zoltán; Győri, Erzsébet; Kaláb, Zdeněk; Lednická, Markéta

    2016-08-01

    Loess high banks along the right side of the Danube in Hungary are potential subjects of landslides. Small scale ambient seismic noise tomography was used at the Dunaszekcső high bank. The aim of the study was to map near surface velocity anomalies since we assume that the formation of tension cracks—which precede landslides—are represented by low velocities. Mapping Rayleigh wave group velocity distribution can help to image intact and creviced areas and identify the most vulnerable sections. The study area lies at the top of the Castle Hill of Dunaszekcső, which was named after Castellum Lugio, a fortress of Roman origin. The presently active head scarp was formed in April 2011, and our study area was chosen to be at its surroundings. Cross-correlation functions of ambient noise recordings were used to retrieve the dispersion curves, which served as the input of the group velocity tomography. Phase cross-correlation and time-frequency phase weighted stacking was applied to calculate the cross-correlation functions. The average Rayleigh wave group velocity at the loess high bank was found to be 171 ms^{-1}. The group velocity map at a 0.1 s period revealed a low-velocity region, whose location coincides with a highly creviced area, where slope failure takes place along a several meter wide territory. Another low velocity region was found, which might indicate a previously unknown loosened domain. The highest velocities were observed at the supposed remnants of Castellum Lugio.

  20. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.